JP2019055913A - Lithocholic acid derivative having vitamin D activity - Google Patents

Lithocholic acid derivative having vitamin D activity Download PDF

Info

Publication number
JP2019055913A
JP2019055913A JP2016014012A JP2016014012A JP2019055913A JP 2019055913 A JP2019055913 A JP 2019055913A JP 2016014012 A JP2016014012 A JP 2016014012A JP 2016014012 A JP2016014012 A JP 2016014012A JP 2019055913 A JP2019055913 A JP 2019055913A
Authority
JP
Japan
Prior art keywords
compound
mmol
vitamin
added
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016014012A
Other languages
Japanese (ja)
Inventor
綾 棚谷
Aya Tanaya
綾 棚谷
晴江 佐々木
Harue SASAKI
晴江 佐々木
影近 弘之
Hiroyuki Kagechika
弘之 影近
弘幸 増野
Hiroyuki Masuno
弘幸 増野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Medical and Dental University NUC
Ochanomizu University
Original Assignee
Tokyo Medical and Dental University NUC
Ochanomizu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical and Dental University NUC, Ochanomizu University filed Critical Tokyo Medical and Dental University NUC
Priority to JP2016014012A priority Critical patent/JP2019055913A/en
Priority to PCT/JP2017/002902 priority patent/WO2017131144A1/en
Publication of JP2019055913A publication Critical patent/JP2019055913A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Abstract

To provide a novel lithocholic acid derivative having vitamin D activity, and to provide medicines, vitamin D receptor activating agents, and prophylactic and/or therapeutic agents of vitamin D receptor associated diseases which comprise the lithocholic acid derivative.SOLUTION: The present invention provides a lithocholic acid derivative having a hydroxyalkyl group at a position 3, a salt thereof, or a prodrug thereof.SELECTED DRAWING: None

Description

本発明は、ビタミンD活性を有するリトコール酸誘導体に関する。本発明はさらに、上記リトコール酸誘導体を含む、医薬、ビタミンD受容体活性化剤並びにビタミンD受容体関連疾患の予防及び/又は治療剤に関する。   The present invention relates to a lithocholic acid derivative having vitamin D activity. The present invention further relates to a pharmaceutical, a vitamin D receptor activator, and a preventive and / or therapeutic agent for vitamin D receptor-related diseases comprising the lithocholic acid derivative.

ビタミンDは、代謝活性化体である1α,25−ジヒドロキシビタミンD3がビタミンD受容体(VDR)に結合し、特異的遺伝子の発現を制御する。この遺伝子の発現の制御により、ビタミンDは、血中のカルシウム濃度維持、骨形成、免疫機能、細胞の分化・増殖制御などの重要な生理作用を担っている。これまでに、骨粗鬆症、乾癬及びがんなどの治療薬の開発を目的として、多数のVDRリガンドが開発され、そのうちの幾つかは医薬品として臨床応用されている。既存のVDRリガンドの多くは、天然型の1α,25−ジヒドロキシビタミンD3と同様にセコステロイド骨格を有している。セコステロイド骨格は、高活性を有する誘導体の開発には有用であるが、一般に化学的安定性が低く、煩雑な合成を要し、ビタミンD作用の多様な医薬応用性が限られている。そのため、非セコステロイド型の骨格を有するVDRリガンドの開発が望まれているが、そのような非セコステロイド型VDRリガンドの報告は少ない。   In vitamin D, 1α, 25-dihydroxyvitamin D3, which is a metabolic activator, binds to vitamin D receptor (VDR) and controls the expression of specific genes. By controlling the expression of this gene, vitamin D plays important physiological functions such as maintaining calcium concentration in the blood, bone formation, immune function, and cell differentiation / proliferation control. So far, a large number of VDR ligands have been developed for the purpose of developing therapeutic agents for osteoporosis, psoriasis and cancer, and some of them have been clinically applied as pharmaceuticals. Many of the existing VDR ligands have a secosteroid skeleton in the same manner as natural 1α, 25-dihydroxyvitamin D3. The secosteroid skeleton is useful for the development of derivatives having high activity, but generally has low chemical stability, requires complicated synthesis, and has a limited variety of pharmaceutical applications for vitamin D action. Therefore, development of a VDR ligand having a non-secosteroid type skeleton is desired, but there are few reports on such a non-secosteroid type VDR ligand.

リトコール酸が、VDRの内因性リガンドであることが見いだされているが、リトコール酸のVDR親和性は非常に弱く、生理的意義は不明である。特許文献1には、リトコール酸誘導体であるリトコール酸プロピオネートがCDRを活性化できることが記載され、非特許文献1には、リトコール酸アセテート及びリトコール酸プロピオネートが記載されている。   Lithocholic acid has been found to be an endogenous ligand for VDR, but the VDR affinity of lithocholic acid is very weak and the physiological significance is unknown. Patent Document 1 describes that lithocholic acid propionate, which is a lithocholic acid derivative, can activate CDR, and Non-Patent Document 1 describes lithocholic acid acetate and lithocholic acid propionate.

特許第5283043号公報Japanese Patent No. 5283043

Masuno et al, Journal of Lipid Research, Volume 54, 2013, pages 2206-2213Masuno et al, Journal of Lipid Research, Volume 54, 2013, pages 2206-2213

上記の通り、ビタミンD3活性を有するリトコール酸誘導体の報告はあるが、既存のリトコール酸誘導体はビタミンD3受容体に対する親和性が弱く、ビタミンD3活性は十分なものではなかった。本発明は、十分なビタミンD3活性を有する新規なリトコール酸誘導体を提供することを解決すべき課題とする。さらに本発明は、並びに上記リトコール酸誘導体を含む医薬、ビタミンD受容体活性化剤並びにビタミンD受容体関連疾患の予防及び/又は治療剤を提供することを解決すべき課題とする。   As described above, there are reports of lithocholic acid derivatives having vitamin D3 activity, but existing lithocholic acid derivatives have weak affinity for vitamin D3 receptors, and vitamin D3 activity is not sufficient. An object of the present invention is to provide a novel lithocholic acid derivative having sufficient vitamin D3 activity. Furthermore, this invention makes it the subject which should be solved to provide the pharmaceutical containing the said lithocholic acid derivative, a vitamin D receptor activator, and the prevention and / or treatment agent of a vitamin D receptor related disease.

本発明者らは上記課題を解決するために鋭意検討した結果、3位にヒドロキシアルキル基を有するリトコール酸誘導体であって、前記3位のヒドロキシアルキル基の主鎖の炭素数が2以上であるリトコール酸誘導体が、優れたビタミンD3活性を有することを見出し、発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors are a lithocholic acid derivative having a hydroxyalkyl group at the 3-position, and the main chain of the hydroxyalkyl group at the 3-position has 2 or more carbon atoms. The lithocholic acid derivative was found to have excellent vitamin D3 activity, and the present invention was completed.

本発明によれば、以下の発明が提供される。
[1] 下記一般式(I)で示される化合物、その塩、又はそのプロドラッグ。

Figure 2019055913
(式中、R1及びR2はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。R3、R4、R5及びR6はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。nは1から3の整数を示す。)
[2] R1及びR2がメチル基である、[1]に記載の化合物、その塩、又はそのプロドラッグ。
[3] R3、R4、R5及びR6が水素原子である、[1]又は[2]に記載の化合物、その塩、又はそのプロドラッグ。
[4] nが1である、[1]から[3]の何れか一に記載の化合物、その塩、又はそのプロドラッグ。
[5] 下記の何れかの化合物、その塩、又はそのプロドラッグ。
Figure 2019055913
[6] [1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグを含む医薬。
[7] [1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグを含む、ビタミンD受容体活性化剤。
[8] [1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグを含む、ビタミンD受容体関連疾患の予防及び/又は治療剤。 According to the present invention, the following inventions are provided.
[1] A compound represented by the following general formula (I), a salt thereof, or a prodrug thereof.
Figure 2019055913
(In the formula, R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or carbon. And represents an alkyl group of 1 to 6. n represents an integer of 1 to 3.)
[2] The compound according to [1], a salt thereof, or a prodrug thereof, wherein R 1 and R 2 are methyl groups.
[3] The compound, salt or prodrug thereof according to [1] or [2], wherein R 3 , R 4 , R 5 and R 6 are hydrogen atoms.
[4] The compound according to any one of [1] to [3], wherein n is 1, a salt thereof, or a prodrug thereof.
[5] Any of the following compounds, salts thereof, or prodrugs thereof.
Figure 2019055913
[6] A medicament comprising the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof.
[7] A vitamin D receptor activator comprising the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof.
[8] A preventive and / or therapeutic agent for a vitamin D receptor-related disease, comprising the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof.

本発明によればさらに以下の発明が提供される。
[9] [1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグをヒトを含む哺乳動物に投与することを含む、ビタミンD受容体を活性化する方法。
[10] [1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグをヒトを含む哺乳動物に投与することを含む、ビタミンD受容体関連疾患の予防及び/又は治療のための方法。
[11] ビタミンD受容体の活性化において使用するための、[1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグ。
[12] ビタミンD受容体関連疾患の予防及び/又は治療において使用するための、[1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグ。
[13] 医薬の製造のための、[1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグの使用。
[14] ビタミンD受容体活性化剤の製造のための、[1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグの使用。
[15] ビタミンD受容体関連疾患の予防及び/又は治療剤の製造のための、[1]から[5]の何れか一に記載の化合物、その塩、又はそのプロドラッグの使用。
The present invention further provides the following inventions.
[9] A method for activating a vitamin D receptor, comprising administering the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof to a mammal including a human.
[10] Prevention and / or prevention of a vitamin D receptor-related disease, comprising administering the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof to a mammal including a human. Method for treatment.
[11] The compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof for use in activation of a vitamin D receptor.
[12] The compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof for use in the prevention and / or treatment of a vitamin D receptor-related disease.
[13] Use of the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof for the manufacture of a medicament.
[14] Use of the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof for the production of a vitamin D receptor activator.
[15] Use of the compound according to any one of [1] to [5], a salt thereof, or a prodrug thereof for the manufacture of an agent for preventing and / or treating a vitamin D receptor-related disease.

本発明の化合物は、十分なビタミンD3活性を有する新規なリトコール酸誘導体である。本発明の化合物は、ビタミンD受容体活性化剤、並びにビタミンD受容体関連疾患の予防及び/又は治療剤等の医薬として有用である。また、本発明の化合物は、セコステロイド骨格を有さないことから、セコステロイド骨格を有する化合物より一般に化学的安定性が高い。   The compounds of the present invention are novel lithocholic acid derivatives having sufficient vitamin D3 activity. The compound of the present invention is useful as a pharmaceutical agent such as a vitamin D receptor activator and a preventive and / or therapeutic agent for vitamin D receptor-related diseases. In addition, since the compound of the present invention does not have a secosteroid skeleton, it generally has higher chemical stability than a compound having a secosteroid skeleton.

図1は、HL−60細胞に対する分化誘導作用の用量作用曲線を示す。FIG. 1 shows a dose response curve of differentiation-inducing action on HL-60 cells.

以下、本発明について更に具体的に説明する。
本発明の化合物は、下記一般式(I)で示される。

Figure 2019055913
(式中、R1及びR2はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。R3、R4、R5及びR6はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。nは1から3の整数を示す。)
ステロイド骨格の3位の置換基(即ち、HOC(R1)(R2)(CH2n−で示される基)の立体配置は特に限定されず、α置換体又はβ置換体の何れでもよい。 Hereinafter, the present invention will be described more specifically.
The compound of the present invention is represented by the following general formula (I).
Figure 2019055913
(In the formula, R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or carbon. And represents an alkyl group of 1 to 6. n represents an integer of 1 to 3.)
The configuration of the substituent at the 3-position of the steroid skeleton (that is, the group represented by HOC (R 1 ) (R 2 ) (CH 2 ) n —) is not particularly limited, and any of α-substituted or β-substituted Good.

本明細書における炭素数1から6のアルキル基は、直鎖状、分枝鎖状、環状、又はこれらの組み合わせのいずれでもよい。炭素数1から6のアルキル基は、特に制限されないが、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピルメチル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、シクロブチルメチル基、シクロペンチル基、シクロヘキシル基などを挙げることができ、中でも、メチル基、エチル基を好ましく挙げることができ、メチル基が特に好ましい。   In the present specification, the alkyl group having 1 to 6 carbon atoms may be linear, branched, cyclic, or a combination thereof. The alkyl group having 1 to 6 carbon atoms is not particularly limited, but is methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropylmethyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclobutyl. Group, cyclobutylmethyl group, cyclopentyl group, cyclohexyl group and the like. Among them, a methyl group and an ethyl group can be preferably exemplified, and a methyl group is particularly preferable.

1及びR2はそれぞれ独立に、同一の基でも異なる基でもよいが、同一の基であることが好ましい。R1及びR2がともにメチル基であることが特に好ましい。
3、R4、R5及びR6はそれぞれ独立に、同一の基でも異なる基でもよい。R3、R4、R5及びR6は全て水素原子であることが特に好ましい。
nは1から3の整数を示し、好ましくは1又は2であり、より好ましくは1である。
R 1 and R 2 may independently be the same group or different groups, but are preferably the same group. It is particularly preferred that both R 1 and R 2 are methyl groups.
R 3 , R 4 , R 5 and R 6 may each independently be the same group or different groups. R 3 , R 4 , R 5 and R 6 are particularly preferably all hydrogen atoms.
n represents an integer of 1 to 3, preferably 1 or 2, and more preferably 1.

本発明の化合物の具体例としては、以下の化合物2及び化合物3を挙げることができ、中でもHL−60細胞に対する分化誘導作用の観点からは、化合物2がより好ましい。   Specific examples of the compound of the present invention include the following compound 2 and compound 3, and among them, compound 2 is more preferable from the viewpoint of differentiation inducing action on HL-60 cells.

Figure 2019055913
Figure 2019055913

一般式(I)で示される化合物は、1個又は2個以上の不斉炭素を有する場合があるが、不斉炭素に基づく任意の光学活性体、ジアステレオ異性体などの立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。   The compound represented by the general formula (I) may have one or more asymmetric carbons, but any optically active substance based on the asymmetric carbon, a stereoisomer such as a diastereoisomer, a stereo Any mixture of isomers, racemates and the like are included in the scope of the present invention.

一般式(I)で示される化合物は、酸付加塩又は塩基付加塩などの塩の形態で存在する場合もあるが、それらも本発明の範囲に包含される。酸付加塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩などの鉱酸塩、p−トルエンスルホン酸塩、メタンスルホン酸塩、シュウ酸塩、酒石酸塩、マレイン酸塩などの有機酸塩を挙げることができ、塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩などの金属塩、アンモニウム塩、トリエチルアミン塩、エタノールアミン塩などの有機アミン塩などを挙げることができる。これらのほか、グリシン塩などのアミノ酸塩なども本発明の範囲に包含される。   The compound represented by the general formula (I) may exist in the form of a salt such as an acid addition salt or a base addition salt, and these are also included in the scope of the present invention. Examples of acid addition salts include mineral salts such as hydrochloride, hydrobromide, sulfate, and nitrate, p-toluenesulfonate, methanesulfonate, oxalate, tartrate, maleate, and the like. Examples of base addition salts include metal salts such as sodium salt, potassium salt, magnesium salt and calcium salt, organic amine salts such as ammonium salt, triethylamine salt and ethanolamine salt. Can be mentioned. In addition to these, amino acid salts such as glycine salts are also included in the scope of the present invention.

一般式(I)で示される化合物は、プロドラッグにしてもよい。プロドラッグは、生体に投与された後、酵素の作用や代謝的加水分解などにより、医薬的に活性な化合物になる。プロドラッグは、当業者に知られている酸誘導体であればよく、例えば、一般式(I)で示される化合物と適当なアルコールとの反応によって製造されるエステル、一般式(I)で示される化合物と適当なアミンとの反応によって製造されるアミド、カルボシル基の還元型として、24−アルコール体などが挙げられるが特に限定されない。   The compound represented by formula (I) may be a prodrug. After being administered to a living body, the prodrug becomes a pharmaceutically active compound by the action of an enzyme or metabolic hydrolysis. The prodrug may be any acid derivative known to those skilled in the art, for example, an ester produced by the reaction of a compound represented by the general formula (I) with an appropriate alcohol, represented by the general formula (I) Examples of reduced forms of amides and carbosyl groups produced by reacting a compound with an appropriate amine include 24-alcohol compounds, but are not particularly limited.

一般式(I)で示され化合物、その塩及びそのプロドラッグは、水あるいは各種溶媒との付加物(水和物又は溶媒和物)の形で存在することもあるが、これらの付加物も本発明の範囲内のものである。溶媒和物における溶媒としては、メタノール、エタノール、アセトニトリル等を挙げることができるが、特に限定されない。付加物(水和物又は溶媒和物)は、単独のものでもよいし、複数種の混合物でもよい。   The compound represented by the general formula (I), a salt thereof and a prodrug thereof may exist in the form of an adduct (hydrate or solvate) with water or various solvents. It is within the scope of the present invention. Examples of the solvent in the solvate include methanol, ethanol, acetonitrile and the like, but are not particularly limited. The adduct (hydrate or solvate) may be a single product or a mixture of plural types.

一般式(I)で示される化合物、その塩及びそのプロドラッグの任意の結晶形も本発明の範囲内のものである。   Arbitrary crystalline forms of the compounds of general formula (I), their salts and their prodrugs are also within the scope of the present invention.

一般式(I)に包含される代表的な化合物(上記化合物2及び上記化合物3)の製造方法を本明細書の実施例に詳細かつ具体的に記載した。当業者は、実施例に記載された具体的製造方法を参照しつつ、原料化合物、反応条件、試薬などを適宜選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えることにより、一般式(1)に包含される化合物を製造することが可能である。   The production methods of typical compounds (the above compound 2 and the above compound 3) included in the general formula (I) are described in detail and specifically in the examples of the present specification. A person skilled in the art refers to the specific production methods described in the examples, appropriately selects raw material compounds, reaction conditions, reagents, etc., and adds appropriate modifications or alterations to these methods as necessary. It is possible to produce compounds encompassed by general formula (1).

例えば、化合物2の合成は、特に限定されないが、後記の実施例1に記載の方法に準じて行うことができるが、実施例1において出発原料として使用する化合物11は、後記参考例1に記載の方法に準じて、リトコール酸を出発原料として合成することができる。化合物11は、適当な溶媒(例えば、無水メタノール等)中で水素化ホウ素ナトリウム (61.3 mg, 1.62 mmol)と反応させることにより、化合物16が得られる。化合物16は適当な溶媒(例えば、ピリジン等)p-トルエンスルフォニルクロライドと反応させることにより化合物17が得られる。化合物17は適当な溶媒(例えば、DMSO等)中でシアン化ナトリウムと反応させることにより、化合物18が得られる。   For example, the synthesis of compound 2 is not particularly limited, but can be carried out according to the method described in Example 1 described later. Compound 11 used as a starting material in Example 1 is described in Reference Example 1 described later. According to this method, lithocholic acid can be synthesized as a starting material. Compound 11 is obtained by reacting compound 11 with sodium borohydride (61.3 mg, 1.62 mmol) in a suitable solvent (eg, anhydrous methanol). Compound 16 is obtained by reacting compound 16 with p-toluenesulfonyl chloride such as pyridine. Compound 17 is obtained by reacting compound 17 with sodium cyanide in an appropriate solvent (for example, DMSO and the like).

化合物18は、適当な溶媒(例えば、ジエチルエーテル等)中で、メチルリチウムと反応させ、さらに塩酸を加えることによって、化合物19が得られる。なお、ここでメチルリチウムの代わりに、他のアルキルリチウムを使用することにより、一般式(I)においてR1及び又はR2がメチル基以外である化合物を合成することができる。 Compound 18 is reacted with methyllithium in an appropriate solvent (for example, diethyl ether and the like), and further, hydrochloric acid is added to obtain compound 19. Here, by using another alkyl lithium instead of methyl lithium, a compound in which R 1 and / or R 2 in the general formula (I) is other than a methyl group can be synthesized.

化合物19は、適当な溶媒(例えば、ジエチルエーテル 等)中で、メチルリチウムと反応させ、さらに塩化アンモニウムを加えることによって、化合物20が得られる。なお、ここでメチルリチウムの代わりに、水素化ホウ素ナトリウムなどの還元剤又は他のアルキルリチウムを使用することにより、一般式(I)においてR1又はR2がメチル基以外である化合物を合成することができる。 Compound 19 is reacted with methyllithium in an appropriate solvent (for example, diethyl ether and the like), and further ammonium chloride is added to obtain compound 20. Here, a compound in which R 1 or R 2 is other than a methyl group in the general formula (I) is synthesized by using a reducing agent such as sodium borohydride or other alkyl lithium instead of methyl lithium. be able to.

化合物20は、適当な溶媒(例えば、メタノール等)中で、水酸化パラジウムと反応させ、水素置換することにより、化合物21が得られる。化合物21は適当な溶媒(例えば、アセトン)中で、Jones試薬(酸化クロム(VI)を水に溶かし、濃硫酸を加えたもの)を反応させることにより、化合物2が得られる。   Compound 21 is obtained by reacting compound 20 with palladium hydroxide in an appropriate solvent (for example, methanol and the like) and replacing with hydrogen. Compound 21 can be obtained by reacting Jones reagent (chromium oxide (VI) dissolved in water and concentrated sulfuric acid) in a suitable solvent (for example, acetone).

化合物3の合成も同様に、特に限定されないが、後記の実施例2に記載の方法に準じて行うことができる。   Similarly, the synthesis of Compound 3 is not particularly limited, but can be performed according to the method described in Example 2 described later.

本発明の化合物は、ビタミンD受容体(VDR)に結合し、VDRを活性化することができる。本発明の化合物がビタミンD受容体(VDR)に結合し、それを活性化することは、ヒト急性前骨髄球性白血病細胞HL-60に対する細胞分化誘導作用を検定することにより検証することができる。細胞分化誘導の検定アッセイは、後記する試験例1に記載の通り、 Fujii et al. Bioorg. Med. Chem. 22 (2014) 5891-5901の「4.3.1. Assay of HL-60 cell differentiation-inducing activity」に記載の方法に準じた方法により行うことができる。   The compounds of the invention can bind to vitamin D receptor (VDR) and activate VDR. Whether the compound of the present invention binds to and activates the vitamin D receptor (VDR) can be verified by assaying the cell differentiation inducing action on human acute promyelocytic leukemia cells HL-60. . The assay for cell differentiation induction is described in Test Example 1 below, as described in “4.3.1. Assay of HL-60 cell differentiation-inducing” in Fujii et al. Bioorg. Med. Chem. 22 (2014) 5891-5901. It can be performed by a method according to the method described in “activity”.

リトコール酸は、VDR以外にも、核内受容体であるファルネソイドX受容体(Farnesoid X receptor:FXR)、Gタンパク質共役型胆汁酸受容体(GPBAR1)(TGR5とも言う)を活性化させる作用を有することが知られている。従って、本発明の化合物は、VDR以外にも、FXR、及び/又はGPBAR1に結合し、それらを活性化させる作用を示す可能性がある。   In addition to VDR, lithocholic acid has the effect of activating farnesoid X receptor (FXR) and G protein-coupled bile acid receptor (GPBAR1) (also referred to as TGR5), which are nuclear receptors. It is known. Therefore, the compound of the present invention may bind to FXR and / or GPBAR1 and activate them in addition to VDR.

上記の通り、本発明の式(I)で示される化合物は、VDRを活性化する作用を有し、さらにFXRやGPBAR1を活性化する作用を有する可能性がある。従って、式(I)で示される本発明の化合物、その塩、又はそのプロドラッグを有効成分として含む医薬は、ビタミンD受容体活性化剤、又はビタミンD作用剤として有用である。式(I)で示される本発明の化合物、その塩、又はそのプロドラッグは、ビタミンD受容体関連疾患の予防及び/又は治療剤として用いることができる。ビタミンD受容体関連疾患としては、例えば、くる病、骨軟化症、骨粗鬆症、腎臓障害に基づく骨疾患や副甲状腺機能低下症、乾癬などの皮膚疾患、がん(白血病、乳がん、前立腺がん、大腸がんなど)、自己免疫性疾患(慢性関節リウマチ、全身性ループスエリテマトーシスなど)、感染症(結核など)などが挙げられるが、特に限定されない。   As described above, the compound represented by the formula (I) of the present invention has an action of activating VDR, and may further have an action of activating FXR and GPBAR1. Therefore, a medicament containing the compound of the present invention represented by formula (I), a salt thereof, or a prodrug thereof as an active ingredient is useful as a vitamin D receptor activator or a vitamin D agonist. The compound of the present invention represented by the formula (I), a salt thereof, or a prodrug thereof can be used as a prophylactic and / or therapeutic agent for vitamin D receptor-related diseases. Vitamin D receptor related diseases include, for example, rickets, osteomalacia, osteoporosis, bone diseases based on kidney disorders, hypoparathyroidism, skin diseases such as psoriasis, cancer (leukemia, breast cancer, prostate cancer, Colorectal cancer), autoimmune diseases (such as rheumatoid arthritis, systemic lupus lupus erythematosis), and infectious diseases (such as tuberculosis), but are not particularly limited.

FXRは、コレステロール生合成の中間体であるファルネソールに応答する核内受容体として同定され、ケノデオキシコール酸等の胆汁酸分子がFXRに結合し、転写共役因子をリクルートすることにより、FXR標的遺伝子の転写を増強することが報告されている。FXR標的遺伝子としては、胆汁酸の胆汁中への排泄を担うBSEP(bile salt export pump)が知られている。FXRは、BSEPの遺伝子発現を増強することにより肝内からの胆汁酸の排出を促し、肝内胆汁うっ滞症を改善すると考えられている。また、FXRは、脂質代謝・糖代謝において重要な機能を果たしていると考えられている。FXR関連疾患としては、脂質異常症、コレステロール吸収疾患、アテローム性動脈硬化症、末梢閉塞性疾患、虚血性脳卒中、糖尿病(特にII型糖尿病)、メタボリックシンドローム、糖尿病性腎症、肥満、コレステロール胆石症、肝内胆汁うっ滞/肝線維症、非アルコール性脂肪性肝炎、非アルコール性脂肪肝疾患、乾癬、がん、骨粗鬆症、パーキンソン病及びアルツハイマー病などが挙げられるが特に限定されない。本発明の医薬は、上記したFXR関連疾患の予防及び/又は治療剤として用いることができる。   FXR has been identified as a nuclear receptor that responds to farnesol, an intermediate in cholesterol biosynthesis, and bile acid molecules such as chenodeoxycholic acid bind to FXR and recruit transcriptional coupling factors, thereby transcribing the FXR target gene. Has been reported to enhance. As a FXR target gene, BSEP (bile salt export pump) responsible for excretion of bile acids into bile is known. FXR is thought to improve the intrahepatic cholestasis by promoting the excretion of bile acids from the liver by enhancing the gene expression of BSEP. Further, FXR is considered to play an important function in lipid metabolism and sugar metabolism. FXR-related diseases include dyslipidemia, cholesterol absorption disease, atherosclerosis, peripheral obstructive disease, ischemic stroke, diabetes (particularly type II diabetes), metabolic syndrome, diabetic nephropathy, obesity, cholesterol gallstone disease Intrahepatic cholestasis / hepatic fibrosis, nonalcoholic steatohepatitis, nonalcoholic fatty liver disease, psoriasis, cancer, osteoporosis, Parkinson's disease, Alzheimer's disease, etc. are not particularly limited. The medicament of the present invention can be used as a preventive and / or therapeutic agent for the FXR-related diseases described above.

GPBAR1の生物学的作用としては、単球/マクロファージ移動/活性化、樹状細胞分化の制御、リンパ球活性化の制御、炎症の増殖および分化制御、サイトカイン産生および/または放出の制御、前炎症性メディエーター産生および/または放出の制御、免疫応答の制御、GLP(グルカゴン様ペプチド)−1分泌、インスリン分泌、食欲、膵臓再生、膵臓β細胞分化、膵臓β細胞増殖、インスリン抵抗性、エネルギー消費などが知られている。GPBAR1関連疾患としては、特に限定されないが、炎症性疾患、自己免疫疾患、ウイルス性疾患、移植片拒絶、がん、神経障害、心臓血管障害、II型糖尿病、肥満などが挙げられる。
本発明の医薬は、上記したGPBAR1関連疾患の予防及び/又は治療剤として用いることもできる。
The biological effects of GPBAR1 include monocyte / macrophage migration / activation, control of dendritic cell differentiation, control of lymphocyte activation, control of inflammation growth and differentiation, control of cytokine production and / or release, pro-inflammation Control of production and / or release of sex mediator, control of immune response, GLP (glucagon-like peptide) -1 secretion, insulin secretion, appetite, pancreas regeneration, pancreatic β-cell differentiation, pancreatic β-cell proliferation, insulin resistance, energy consumption, etc. It has been known. GPBAR1-related diseases include, but are not limited to, inflammatory diseases, autoimmune diseases, viral diseases, transplant rejection, cancer, neurological disorders, cardiovascular disorders, type II diabetes, obesity and the like.
The medicament of the present invention can also be used as a preventive and / or therapeutic agent for the above-described GPBAR1-related diseases.

本発明の医薬、ビタミンD受容体活性化剤及びビタミンD受容体関連疾患の予防及び/又は治療剤の有効成分としては、一般式(I)で示される化合物、その塩、又はそのプロドラッグを用いることができる。本発明の医薬、ビタミンD受容体活性化剤及びビタミンD受容体関連疾患の予防及び/又は治療剤としては、上記有効成分をそのまま投与してもよいが、一般的には、上記有効成分と1種又は2種以上の製剤用添加物を含む医薬組成物を調剤して投与することが望ましい。   As an active ingredient of the medicament, vitamin D receptor activator and vitamin D receptor-related disease of the present invention, a compound represented by the general formula (I), a salt thereof, or a prodrug thereof is used. Can be used. As the medicament, vitamin D receptor activator and vitamin D receptor related disease preventive and / or therapeutic agent of the present invention, the active ingredient may be administered as it is. It is desirable to prepare and administer a pharmaceutical composition containing one or more pharmaceutical additives.

本発明の医薬、ビタミンD受容体活性化剤及びビタミンD受容体関連疾患の予防及び/又は治療剤の投与経路は特に限定されず。経口投与でも非経口投与でもよい。非経口投与としては、静脈内、筋肉内、皮下又は皮内等への注射、直腸内投与、経粘膜投与などが挙げられるが特に限定されない。   The administration route of the medicament, the vitamin D receptor activator and the preventive and / or therapeutic agent for vitamin D receptor related diseases of the present invention is not particularly limited. Oral administration or parenteral administration may be used. Examples of parenteral administration include, but are not limited to, intravenous, intramuscular, subcutaneous or intradermal injection, rectal administration, and transmucosal administration.

経口投与に適する医薬用組成物としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができる。
非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、坐剤、吸入剤、点鼻剤、経皮吸収剤、軟膏剤、クリーム剤、及び貼付剤等を挙げることができる。
Examples of the pharmaceutical composition suitable for oral administration include tablets, capsules, powders, fine granules, granules, liquids, and syrups.
Examples of the pharmaceutical composition suitable for parenteral administration include injections, drops, suppositories, inhalants, nasal drops, transdermal absorption agents, ointments, creams, and patches.

製剤用添加物としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を用いることができ、医薬組成物の形態に応じて適宜のものを選択して使用することが可能である。   Examples of the additives for preparation include excipients, disintegrants or disintegration aids, binders, lubricants, coating agents, dyes, diluents, bases, solubilizers or solubilizers, isotonic agents, A pH adjuster, a stabilizer, a propellant, an adhesive, and the like can be used, and an appropriate one can be selected and used according to the form of the pharmaceutical composition.

経口投与用の製剤の調製に用いることができる製剤用添加物として、例えば、ブドウ糖、乳糖、D-マンニトール、デンプン、又は結晶セルロース等の賦形剤;カルボキシメチルセルロース、デンプン、又はカルボキシメチルセルロースカルシウム等の崩壊剤又は崩壊補助剤;ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、又はゼラチン等の結合剤;ステアリン酸マグネシウム又はタルク等の滑沢剤;ヒドロキシプロピルメチルセルロース、白糖、ポリエチレングリコール又は酸化チタン等のコーティング剤;ワセリン、流動パラフィン、ポリエチレングリコール、ゼラチン、カオリン、グリセリン、精製水、又はハードファット等の基剤を用いることができる。   Pharmaceutical additives that can be used in the preparation of formulations for oral administration include, for example, excipients such as glucose, lactose, D-mannitol, starch, or crystalline cellulose; carboxymethylcellulose, starch, carboxymethylcellulose calcium, etc. Disintegrating agents or disintegrating aids; binders such as hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, or gelatin; lubricants such as magnesium stearate or talc; coatings such as hydroxypropylmethylcellulose, sucrose, polyethylene glycol, or titanium oxide Agents: Bases such as petrolatum, liquid paraffin, polyethylene glycol, gelatin, kaolin, glycerin, purified water, or hard fat can be used.

注射あるいは点滴用の製剤の調製に用いることができる製剤用添加物としては、注射用蒸留水、生理食塩水、プロピレングリコール、界面活性剤等の水性あるいは用時溶解型注射剤を構成しうる溶解剤又は溶解補助剤;ブドウ糖、塩化ナトリウム、D-マンニトール、グリセリン等の等張化剤;無機酸、有機酸、無機塩基又は有機塩基等のpH調節剤等の製剤用添加物を用いることができる。   Examples of pharmaceutical additives that can be used for the preparation of pharmaceutical preparations for injection or infusion include aqueous solutions such as distilled water for injection, physiological saline, propylene glycol, surfactants, etc. Agents or solubilizers; isotonic agents such as glucose, sodium chloride, D-mannitol, glycerin; pharmaceutical additives such as pH regulators such as inorganic acids, organic acids, inorganic bases or organic bases can be used .

本発明の医薬、ビタミンD受容体活性化剤及びビタミンD受容体関連疾患の予防及び/又は治療剤はヒトなどの哺乳動物に投与することができる。
本発明の医薬、ビタミンD受容体活性化剤及びビタミンD受容体関連疾患の予防及び/又は治療剤の投与量は患者の年齢、性別、体重、症状、及び投与経路などの条件に応じて適宜増減されるべきであるが、一般的には、成人一日あたりの有効成分の量として10μg/kgから5000mg/kg程度の範囲であり、好ましくは100μg/kgから1000mg/kg程度の範囲である。上記投与量の薬剤は一日一回に投与してもよいし、数回(例えば、2〜4回程度)に分けて投与してもよい。
The medicament, vitamin D receptor activator and vitamin D receptor-related disease preventive and / or therapeutic agent of the present invention can be administered to mammals such as humans.
The dosage of the medicament, vitamin D receptor activator and vitamin D receptor related disease preventive and / or therapeutic agent of the present invention is appropriately determined according to conditions such as patient age, sex, weight, symptoms, and administration route. Generally, the amount of active ingredient per day for an adult is in the range of about 10 μg / kg to 5000 mg / kg, preferably in the range of about 100 μg / kg to 1000 mg / kg. . The above dose of the drug may be administered once a day, or may be divided into several times (for example, about 2 to 4 times).

また、本発明の一般式(I)で示される化合物、その塩又はそのプロドラッグは、実験用試薬として用いることもできる。ビタミンD受容体を有する細胞、組織、器官又は動物個体を本発明の一般式(I)で示される化合物、その塩又はそのプロドラッグで処理することによって、ビタミンD受容体を活性化させることができる。ビタミンD受容体を有する細胞としては、腎臓、腸管粘膜、骨髄、骨、乳腺、皮膚、神経由来の細胞などを挙げることができるが、特に限定されない。また、株化された動物細胞にビタミンD受容体遺伝子を導入することにより得られる組換え細胞を用いることもできる。ビタミンD受容体を有する組織及び器官としては、腎臓、腸管粘膜、骨髄、リンパ組織、骨、乳腺、皮膚、神経などを挙げることができるが、特に限定されない。動物個体としては、マウス、ラット、ハムスター、ウサギ、ニワトリなどを挙げることができるが、特に限定されない。ビタミンD受容体の活性化は、VDR標的遺伝子(例えば、CYP24など)の発現誘導を測定することにより、確認することができるが特に限定されない。   In addition, the compound represented by the general formula (I) of the present invention, a salt thereof or a prodrug thereof can also be used as an experimental reagent. By treating a cell, tissue, organ or animal individual having a vitamin D receptor with a compound represented by the general formula (I) of the present invention, a salt thereof or a prodrug thereof, the vitamin D receptor can be activated. it can. Examples of cells having a vitamin D receptor include, but are not limited to, kidney, intestinal mucosa, bone marrow, bone, mammary gland, skin, and nerve-derived cells. In addition, recombinant cells obtained by introducing a vitamin D receptor gene into established animal cells can also be used. Examples of tissues and organs having vitamin D receptors include, but are not limited to, kidney, intestinal mucosa, bone marrow, lymphoid tissue, bone, mammary gland, skin, nerve and the like. Examples of animal individuals include mice, rats, hamsters, rabbits and chickens, but are not particularly limited. The activation of the vitamin D receptor can be confirmed by measuring expression induction of a VDR target gene (for example, CYP24), but is not particularly limited.

以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定されることはない。   The present invention will be specifically described by the following examples, but the present invention is not limited to the examples.

略号は以下を意味する。
THF:テトラヒドロフラン
DMF: N,N−ジメチルホルムアミド
AcOEt:酢酸エチル
DMSO:ジメチルスルホキシド
DIBAL:水素化ジイソブチルアルミニウム
The abbreviations mean the following:
THF: Tetrahydrofuran DMF: N, N-dimethylformamide AcOEt: Ethyl acetate DMSO: Dimethyl sulfoxide DIBAL: Diisobutylaluminum hydride

参考例1:化合物1の合成
化合物1を、リトコール酸からScheme 1に従って合成した。
Reference Example 1: Synthesis of Compound 1 Compound 1 was synthesized from lithocholic acid according to Scheme 1.

Figure 2019055913
Figure 2019055913

(1)化合物4の合成
アルゴン雰囲気下、リトコール酸 (4.78 g, 0.013 mol)、p-トルエンスルフォン酸・1水和物 (237.6 mg, 1.4 mmol) の無水ジクロロメタン(60.0 mL) 溶液を0℃に冷却し、3,4-ジヒドロ-2H-ピラン (4.0 mL, 0.044 mmol) を加え、0℃で1時間20分間撹拌した。反応溶液に飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出し、有機層を食塩水で洗浄した。無水MgSO4で乾燥後、溶媒を留去し、黄色オイル状の化合物4 と4'の混合物(8.90 g) を得た。
1H NMR (400 MHz, CDCl3) δ4.72 (m, 1 H), 3.92 (m, 1 H), 3.62 (m, 1 H), 3.48 (m, 1 H), 2.40 (ddd, J = 15.7, 10.4, 5.2 Hz, 1 H), 2.26 (ddd, J = 15.8, 9.6, 6.4 Hz, 1 H), 2.00-0.95 (m, 32 H), 0.92 (d, J = 7.8 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H).
(1) Synthesis of Compound 4 Under an argon atmosphere, a solution of lithocholic acid (4.78 g, 0.013 mol) and p-toluenesulfonic acid monohydrate (237.6 mg, 1.4 mmol) in anhydrous dichloromethane (60.0 mL) at 0 ° C. The mixture was cooled, 3,4-dihydro-2H-pyran (4.0 mL, 0.044 mmol) was added, and the mixture was stirred at 0 ° C. for 1 hour and 20 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, extracted with dichloromethane, and the organic layer was washed with brine. After drying over anhydrous MgSO 4 , the solvent was distilled off to obtain a mixture (8.90 g) of compound 4 and 4 ′ as a yellow oil.
1 H NMR (400 MHz, CDCl 3 ) δ4.72 (m, 1 H), 3.92 (m, 1 H), 3.62 (m, 1 H), 3.48 (m, 1 H), 2.40 (ddd, J = 15.7, 10.4, 5.2 Hz, 1 H), 2.26 (ddd, J = 15.8, 9.6, 6.4 Hz, 1 H), 2.00-0.95 (m, 32 H), 0.92 (d, J = 7.8 Hz, 3 H) , 0.91 (s, 3 H), 0.64 (s, 3 H).

(2)化合物5の合成
アルゴン雰囲気下、水素化アルミニウムリチウム (696.3 mg, 0.018 mol) を入れたTHF (30 mL) 溶液に、化合物4 と4'の混合物(8.38 g, 0.012 mol相当) のTHF (60 mL) 溶液を加え、90℃で1時間還流した。反応溶液を0℃に冷却し、酢酸エチルと水を加え、セライトろ過の後、抽出、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物 (7.63 g) を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/6 → 1/4 → 1/0) で精製して、無色オイル状の化合物5 (5.36 g, 0.012 mmol, quant. in 2 steps) を得た。
1H NMR (400 MHz, CDCl3) δ4.72 (m, 1 H), 3.92 (m, 1 H), 3.61 (m, 3 H), 3.48 (m, 1 H), 1.96 (dt, J = 12.4, 3.2 Hz, 1 H), 1.91-0.85 (m, 33 H), 0.92 (d, J = 7.3 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H).
(2) Synthesis of compound 5 In a THF (30 mL) solution containing lithium aluminum hydride (696.3 mg, 0.018 mol) in an argon atmosphere, a mixture of compound 4 and 4 '(equivalent to 8.38 g, 0.012 mol) in THF (60 mL) The solution was added and refluxed at 90 ° C. for 1 hour. The reaction solution was cooled to 0 ° C., ethyl acetate and water were added, the mixture was filtered through celite, extracted, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (7.63 g). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/6 → 1/4 → 1/0) gave colorless oily compound 5 (5.36 g, 0.012 mmol, quant. In 2 steps) .
1 H NMR (400 MHz, CDCl 3 ) δ4.72 (m, 1 H), 3.92 (m, 1 H), 3.61 (m, 3 H), 3.48 (m, 1 H), 1.96 (dt, J = 12.4, 3.2 Hz, 1 H), 1.91-0.85 (m, 33 H), 0.92 (d, J = 7.3 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H).

(3)化合物6の合成
水素化ナトリウム(60%, 1.41g, 35.2 mmol) をヘキサンで洗浄し、DMF (10.0 mL) を加え、0℃に冷却した。ここに化合物5 (2.24 g, 5.0 mmol) のDMF (15.0 mL) 溶液を加え、0℃で30分撹拌した。臭化ベンジル(3.4 mL, 28.6 mmol) を加え、0℃で30分撹拌した後、室温で6時間30分撹拌した。反応溶液を0℃に冷却し、メタノールを加えて0℃で30分撹拌した後、溶媒を留去した。酢酸エチルと飽和炭酸水素ナトリウム水溶液、水を加えて抽出し、有機層を水と食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物 (3.86 g) を得た。シリカゲルカラムクロマトグラフィー (CHCl3) で精製して、淡黄色オイル状の化合物6 (2.07 g, 3.9 mmol, 77%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.72 (m, 1 H), 4.50 (s, 2 H), 3.92 (m, 1 H), 3.62 (m, 1 H), 3.48 (m, 1 H), 3.44 (t, J = 6.6 Hz, 2 H), 1.95 (dt, J = 12.4, 3.2 Hz, 1 H), 1.91-0.85 (m, 33 H), 0.91 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.63 (s, 3 H).
(3) Synthesis of Compound 6 Sodium hydride (60%, 1.41 g, 35.2 mmol) was washed with hexane, DMF (10.0 mL) was added, and the mixture was cooled to 0 ° C. A solution of compound 5 (2.24 g, 5.0 mmol) in DMF (15.0 mL) was added thereto, and the mixture was stirred at 0 ° C. for 30 minutes. Benzyl bromide (3.4 mL, 28.6 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes, and then stirred at room temperature for 6 hours and 30 minutes. The reaction solution was cooled to 0 ° C., methanol was added and the mixture was stirred at 0 ° C. for 30 minutes, and then the solvent was distilled off. Ethyl acetate, saturated aqueous sodium hydrogen carbonate solution and water were added for extraction, and the organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (3.86 g). Purification by silica gel column chromatography (CHCl 3 ) gave pale yellow oily compound 6 (2.07 g, 3.9 mmol, 77%).
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.72 (m, 1 H), 4.50 (s, 2 H) , 3.92 (m, 1 H), 3.62 (m, 1 H), 3.48 (m, 1 H), 3.44 (t, J = 6.6 Hz, 2 H), 1.95 (dt, J = 12.4, 3.2 Hz, 1 H), 1.91-0.85 (m, 33 H), 0.91 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.63 (s, 3 H).

(4)化合物7の合成
化合物6 (2.07 g, 3.9 mmol) のジクロロメタン (5.0 mL) とメタノール(15.0 mL) 混合溶液に、p-トルエンスルフォン酸・1水和物 (50.8 mg, 0.27 mmol) を加え、室温で7時間撹拌した。反応溶液の溶媒を留去し、酢酸エチルを加え、2 M 水酸化ナトリウム水溶液で中和した。水を加えた後、有機層をとり、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(1.44 g) を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/14 → 1/7 → 1/4) で精製して、白色固体の化合物7 (1.28 g, 2.8 mmol, 73%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.62 (m, 1 H), 3.44 (t, J = 6.6 Hz, 2 H), 1.96 (d, J = 11.9 Hz, 1 H), 1.91-0.86 (m, 27 H), 0.92 (s, 3 H), 0.91 (d, J = 5.5 Hz, 3 H), 0.64 (s, 3 H).
(4) Synthesis of Compound 7 To a mixed solution of Compound 6 (2.07 g, 3.9 mmol) in dichloromethane (5.0 mL) and methanol (15.0 mL), p-toluenesulfonic acid monohydrate (50.8 mg, 0.27 mmol) was added. The mixture was further stirred at room temperature for 7 hours. The solvent of the reaction solution was distilled off, ethyl acetate was added, and neutralized with 2 M aqueous sodium hydroxide solution. After adding water, the organic layer was taken and washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (1.44 g). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/14 → 1/7 → 1/4) gave Compound 7 (1.28 g, 2.8 mmol, 73%) as a white solid.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.62 (m, 1 H) , 3.44 (t, J = 6.6 Hz, 2 H), 1.96 (d, J = 11.9 Hz, 1 H), 1.91-0.86 (m, 27 H), 0.92 (s, 3 H), 0.91 (d, J = 5.5 Hz, 3 H), 0.64 (s, 3 H).

(5)化合物8の合成
0℃に冷却した化合物7 (4.89 g, 0.011 mol) の無水ピリジン (40.0 mL) 溶液に、再結晶したp-トルエンスルフォニルクロリド (3.09 g, 0.016 mol) を加え、0℃で1時間30分撹拌した後、室温で4時間撹拌した。0℃に冷却してp-トルエンスルフォニルクロリド (2.06 g, 0.010 mol) を加え、0℃で1時間撹拌した後、室温で16時間30分撹拌した。反応溶液に水を加え、酢酸エチルで抽出し、有機層を水、2 M 塩酸、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し、黄白色固体の化合物8 (5.98 g, 9.9 mmol, 91%) を得た。
1H NMR (400 MHz, CDCl3) δ7.79 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 4.1 Hz, 4 H), 7.32 (d, J = 7.8 Hz, 2 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 4.46 (m, 1 H), 3.43 (t, J = 6.4 Hz, 2 H), 2.44 (s, 3 H), 2.05-1.91 (m, 2 H), 1.89-0.85 (m, 26 H), 0.90 (d, J = 6.4 Hz, 3 H), 0.88 (s, 3 H), 0.62 (s, 3 H).
(5) Synthesis of compound 8
Recrystallized p-toluenesulfonyl chloride (3.09 g, 0.016 mol) was added to a solution of compound 7 (4.89 g, 0.011 mol) in anhydrous pyridine (40.0 mL) cooled to 0 ° C and stirred at 0 ° C for 1 hour 30 minutes. And stirred at room temperature for 4 hours. After cooling to 0 ° C., p-toluenesulfonyl chloride (2.06 g, 0.010 mol) was added, and the mixture was stirred at 0 ° C. for 1 hour and then at room temperature for 16 hours and 30 minutes. Water was added to the reaction solution, followed by extraction with ethyl acetate, and the organic layer was washed with water, 2 M hydrochloric acid and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain Compound 8 (5.98 g, 9.9 mmol, 91%) as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 ) δ 7.79 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 4.1 Hz, 4 H), 7.32 (d, J = 7.8 Hz, 2 H) , 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 4.46 (m, 1 H), 3.43 (t, J = 6.4 Hz, 2 H), 2.44 (s, 3 H), 2.05- 1.91 (m, 2 H), 1.89-0.85 (m, 26 H), 0.90 (d, J = 6.4 Hz, 3 H), 0.88 (s, 3 H), 0.62 (s, 3 H).

(6)化合物9の合成
化合物8 (2.07 g, 3.4 mmol) の無水DMSO (20.0 mL) 溶液にシアン化ナトリウム (0.523 g, 10.7 mmol) を加え、80℃で6時間30分撹拌した。反応溶液を室温まで冷ました後、水を加え、酢酸エチルで抽出した。有機層を水、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(1.58 g) を得た。シリカゲルカラムクロマトグラフィー (CHCl3 / n-hexane = 1/1 → 3/2) で精製して、白色固体の化合物9 (1.11 g, 2.4 mmol, 71%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6, 2.1 Hz, 2 H), 3.01 (br, 1 H), 2.10-0.95 (m, 28 H), 1.00 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).
(6) Synthesis of Compound 9 Sodium cyanide (0.523 g, 10.7 mmol) was added to a solution of Compound 8 (2.07 g, 3.4 mmol) in anhydrous DMSO (20.0 mL), and the mixture was stirred at 80 ° C. for 6 hours and 30 minutes. The reaction solution was cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (1.58 g). Purification by silica gel column chromatography (CHCl 3 / n-hexane = 1/1 → 3/2) gave Compound 9 (1.11 g, 2.4 mmol, 71%) as a white solid.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6 , 2.1 Hz, 2 H), 3.01 (br, 1 H), 2.10-0.95 (m, 28 H), 1.00 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s , 3 H).

(7)化合物10の合成
アルゴン雰囲気下、化合物9 (500.1 mg, 1.1 mmol) の無水ジクロロメタン (25.0 mL) 溶液を-71℃に冷却し、1.0 M DIBAL (ヘキサン溶液, 1.9 mL, 1.9 mmol) を加え、-68℃で1時間10分撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、ジクロロメタンで抽出した。有機層を水、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(502.0 mg) を得た。フラッシュカラムクロマトグラフィー (CHCl3 / n-hexane = 3/4, 4/5) で精製して、無色オイル状の化合物10 (263.4 mg, 0.57 mmol, 53%) を得た。
1H NMR (400 MHz, CDCl3) δ9.72 (s, 1 H), 7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.44 (dt, J = 6.6, 1.7 Hz, 2 H), 2.45 (br, 1 H), 2.10-0.80 (m, 28 H), 0.91 (d, J = 6.8 Hz, 3 H), 0.88 (s, 3 H), 0.64 (s, 3 H).
(7) Synthesis of compound 10 Under an argon atmosphere, a solution of compound 9 (500.1 mg, 1.1 mmol) in anhydrous dichloromethane (25.0 mL) was cooled to -71 ° C, and 1.0 M DIBAL (hexane solution, 1.9 mL, 1.9 mmol) was added. In addition, the mixture was stirred at -68 ° C for 1 hour and 10 minutes. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with dichloromethane. The organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (502.0 mg). Purification by flash column chromatography (CHCl 3 / n-hexane = 3/4, 4/5) gave colorless oily compound 10 (263.4 mg, 0.57 mmol, 53%).
1 H NMR (400 MHz, CDCl 3 ) δ9.72 (s, 1 H), 7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H) , 3.44 (dt, J = 6.6, 1.7 Hz, 2 H), 2.45 (br, 1 H), 2.10-0.80 (m, 28 H), 0.91 (d, J = 6.8 Hz, 3 H), 0.88 (s , 3 H), 0.64 (s, 3 H).

(8)化合物11の合成
化合物10 (856.0 mg, 1.7 mmol) の無水THF (16.0 mL) および無水メタノール(20.0 mL)混合溶液に炭酸カリウム(649.5 mg, 4.7 mmol) を加え、室温で7時間撹拌した。反応溶液を減圧留去し、クロロホルムと水を加え抽出した。有機層を水、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(1.00 g) を得た。フラッシュカラムクロマトグラフィー (CHCl3 / n-hexane = 2/3) で精製して、無色オイル状の化合物11 (497.5 mg, 1.07 mmol, 62% in 2 steps) を得た。
1H NMR (500 MHz, CDCl3) δ9.64 (d, J =1.4 Hz, 1 H), 7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.7, 1.4 Hz, 2 H), 2.27 (dt, J = 12.5, 1.1 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.96 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.64 (s, 3 H).
(8) Synthesis of Compound 11 To a mixed solution of Compound 10 (856.0 mg, 1.7 mmol) in anhydrous THF (16.0 mL) and anhydrous methanol (20.0 mL) was added potassium carbonate (649.5 mg, 4.7 mmol), and the mixture was stirred at room temperature for 7 hours. did. The reaction solution was evaporated under reduced pressure, and extracted with chloroform and water. The organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (1.00 g). Purification by flash column chromatography (CHCl 3 / n-hexane = 2/3) gave colorless oily compound 11 (497.5 mg, 1.07 mmol, 62% in 2 steps).
1 H NMR (500 MHz, CDCl 3 ) δ9.64 (d, J = 1.4 Hz, 1 H), 7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 ( s, 2 H), 3.43 (dt, J = 6.7, 1.4 Hz, 2 H), 2.27 (dt, J = 12.5, 1.1 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.96 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.64 (s, 3 H).

(9)化合物12の合成
りん酸二水素ナトリウム二水和物 (380.0 mg, 2.4 mmol) と亜塩素酸ナトリウム (254.4 mg, 2.8 mmol) を水 (3.5 mL) に溶かし、酸化溶液を調製した。0℃に冷却した化合物11 (111.1 mg, 0.24 mmol) の2-メチル-2-ブテン (2.0 mL) およびt-ブタノール (8.0 mL) 混合溶液に、酸化溶液 (3.5 mL) を加え、0℃で15分、室温で1時間40分撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(140.2 mg)を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/5 → 1/1 → 1/0) で精製して、白色固体の化合物12 (101.6 mg, 0.21 mmol, 88%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (t, J = 6.6 Hz, 2 H), 2.37 (tt, J = 12.4, 3.7 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.94 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).
(9) Synthesis of Compound 12 Sodium dihydrogen phosphate dihydrate (380.0 mg, 2.4 mmol) and sodium chlorite (254.4 mg, 2.8 mmol) were dissolved in water (3.5 mL) to prepare an oxidation solution. To a mixed solution of compound 11 (111.1 mg, 0.24 mmol) 2-methyl-2-butene (2.0 mL) and t-butanol (8.0 mL) cooled to 0 ° C, an oxidizing solution (3.5 mL) was added, and The mixture was stirred at room temperature for 1 hour and 40 minutes. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a crude product (140.2 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/5 → 1/1 → 1/0) gave Compound 12 (101.6 mg, 0.21 mmol, 88%) as a white solid.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (t, J = 6.6 Hz, 2 H), 2.37 (tt, J = 12.4, 3.7 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.94 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H ), 0.64 (s, 3 H).

(10)化合物13の合成
化合物12 (70.9 mg, 0.15 mmol) のクロロホルム(0.6 mL) およびメタノール (4.0 mL) 混合溶液を0℃に冷却し、濃硫酸 (0.6 mL) を加え、80℃で2時間還流した。反応溶液を減圧留去し、水を加え、ジクロロメタンで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し、黄色オイル状の化合物13 (66.6 mg, 0.13 mmol, 91%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.67 (s, 3 H), 3.44 (t, J = 6.6 Hz, 2 H), 2.32 (tt, J = 12.4 3.9 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.93 (s 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.63 (s, 3 H).
(10) Synthesis of Compound 13 A mixed solution of Compound 12 (70.9 mg, 0.15 mmol) in chloroform (0.6 mL) and methanol (4.0 mL) was cooled to 0 ° C., concentrated sulfuric acid (0.6 mL) was added, and 2 at 80 ° C. Reflux for hours. The reaction solution was evaporated under reduced pressure, water was added, extraction was performed with dichloromethane, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain Compound 13 (66.6 mg, 0.13 mmol, 91%) as a yellow oil.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.67 (s, 3 H) , 3.44 (t, J = 6.6 Hz, 2 H), 2.32 (tt, J = 12.4 3.9 Hz, 1 H), 2.00-0.80 (m, 28 H), 0.93 (s 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.63 (s, 3 H).

(11)化合物14の合成
アルゴン雰囲気下、化合物13 (24.2 mg, 0.049 mmol) のTHF (4.0 mL) 溶液を-69℃に冷却し、1.08 M メチルリチウム(ジエチルエーテル溶液, 0.10 mL, 0.108 mmol) を加え、-69℃で1時間20分撹拌した。再度1.08 M チルリチウム(ジエチルエーテル溶液, 0.20 mL, 0.216 mmol) を加え、-69℃で55分撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、室温にした後、水を加え、酢酸エチルで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物 (23.1 mg) を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/5 → 1/0) で精製して、無色オイル状の化合物14 (16.4 mg, 0.033 mmol, 68%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (t, J = 6.6, 1.4 Hz, 2 H), 2.00-1.93 (d, J = 11.9 Hz, 1 H), 1.93-1.75 (m, 3 H), 1.75-0.80 (m, 25 H), 1.18 (s, 6 H), 0.93 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).
(11) Synthesis of Compound 14 Under an argon atmosphere, a THF (4.0 mL) solution of Compound 13 (24.2 mg, 0.049 mmol) was cooled to −69 ° C., and 1.08 M methyllithium (diethyl ether solution, 0.10 mL, 0.108 mmol). And stirred at -69 ° C. for 1 hour and 20 minutes. 1.08 M tillithium (diethyl ether solution, 0.20 mL, 0.216 mmol) was added again, and the mixture was stirred at -69 ° C for 55 minutes. Saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was allowed to reach room temperature, water was added, and the mixture was extracted with ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (23.1 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/5 → 1/0) gave Compound 14 (16.4 mg, 0.033 mmol, 68%) as a colorless oil.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (t, J = 6.6 , 1.4 Hz, 2 H), 2.00-1.93 (d, J = 11.9 Hz, 1 H), 1.93-1.75 (m, 3 H), 1.75-0.80 (m, 25 H), 1.18 (s, 6 H) , 0.93 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).

(12)化合物15の合成
化合物14 (9.8 mg, 0.020 mmol) のメタノール (2.5 mL) 溶液に水酸化パラジウム (2 mg) を加え、水素置換をした後、室温で1時間50分撹拌した。反応溶液をセライトろ過した後、溶媒を留去し、白色固体の化合物15 (7.5 mg, 0.019 mmol, 94%) を得た。
1H NMR (400 MHz, CDCl3) δ3.61 (dt, J = 6.6, 2.5 Hz, 2 H), 1.96 (dt, J = 11.7, 2.9 Hz, 1 H), 1.94-1.77 (m, 3 H), 1.71-0.85 (m, 25 H), 1.18 (s, 6 H), 0.93 (s, 3 H), 0.92 (d, J = 6.9 Hz, 3 H), 0.65 (s, 3 H).
(12) Synthesis of Compound 15 To a solution of compound 14 (9.8 mg, 0.020 mmol) in methanol (2.5 mL) was added palladium hydroxide (2 mg), followed by hydrogen substitution, and the mixture was stirred at room temperature for 1 hour and 50 minutes. The reaction solution was filtered through celite, and the solvent was evaporated to obtain white solid compound 15 (7.5 mg, 0.019 mmol, 94%).
1 H NMR (400 MHz, CDCl 3 ) δ3.61 (dt, J = 6.6, 2.5 Hz, 2 H), 1.96 (dt, J = 11.7, 2.9 Hz, 1 H), 1.94-1.77 (m, 3 H ), 1.71-0.85 (m, 25 H), 1.18 (s, 6 H), 0.93 (s, 3 H), 0.92 (d, J = 6.9 Hz, 3 H), 0.65 (s, 3 H).

(13)化合物1の合成
酸化クロム(VI) (1.06 g) を水 (3.1 mL) に溶かし、氷冷下で濃硫酸 (0.92 mL) を加えてJones試薬を調製した。化合物15 (11.4 mg, 0.028 mmol) の無水アセトン (6.0 mL) 溶液に、Jones試薬 (0.1 mL) を加え、室温で30分間撹拌した。反応溶液に水を加え、アセトンを留去した後、ジエチルエーテルで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(12.6 mg) を得た。GPC (CHCl3) によって精製し、白色固体の化合物1 (7.9 mg, 0.019 mmol, 69%) を得た。
1H NMR (600 MHz, CDCl3) δ2.39 (ddd, J = 15.6, 10.5, 5.1 Hz, 1 H), 2.24 (ddd, J = 16.1, 9.8, 6.2 Hz, 1 H), 1.95 (dt, J = 12.0, 3.2 Hz, 1 H), 1.91-1.76 (m, 4 H), 1.60-0.80 (m, 22 H), 1.18 (s, 6 H), 0.92 (s, 3 H), 0.91 (d, J = 5.4 Hz, 3 H), 0.64 (s, 3 H); 13C NMR (150 MHz, CDCl3) ・・179.82, 73.21, 56.58, 56.02, 49.86, 43.76, 42.87, 40.77, 40.26, 37.49, 35.96, 35.45, 35.03, 31.02, 30.89, 28.32, 28.02, 27.77, 27.28, 27.21, 26.65, 24.32, 24.12, 22.09, 20.95, 18.39, 12.20.
(13) Synthesis of Compound 1 Chromium (VI) oxide (1.06 g) was dissolved in water (3.1 mL), and concentrated sulfuric acid (0.92 mL) was added under ice cooling to prepare Jones reagent. Jones reagent (0.1 mL) was added to a solution of compound 15 (11.4 mg, 0.028 mmol) in anhydrous acetone (6.0 mL), and the mixture was stirred at room temperature for 30 minutes. Water was added to the reaction solution, and acetone was distilled off, followed by extraction with diethyl ether, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (12.6 mg). Purification by GPC (CHCl 3 ) gave Compound 1 (7.9 mg, 0.019 mmol, 69%) as a white solid.
1 H NMR (600 MHz, CDCl 3 ) δ 2.39 (ddd, J = 15.6, 10.5, 5.1 Hz, 1 H), 2.24 (ddd, J = 16.1, 9.8, 6.2 Hz, 1 H), 1.95 (dt, J = 12.0, 3.2 Hz, 1 H), 1.91-1.76 (m, 4 H), 1.60-0.80 (m, 22 H), 1.18 (s, 6 H), 0.92 (s, 3 H), 0.91 (d , J = 5.4 Hz, 3 H), 0.64 (s, 3 H); 13 C NMR (150 MHz, CDCl 3 ) ・ ・ 179.82, 73.21, 56.58, 56.02, 49.86, 43.76, 42.87, 40.77, 40.26, 37.49, 35.96, 35.45, 35.03, 31.02, 30.89, 28.32, 28.02, 27.77, 27.28, 27.21, 26.65, 24.32, 24.12, 22.09, 20.95, 18.39, 12.20.

実施例1:化合物2の合成
化合物2は、化合物11からScheme 2に従って合成した。
Example 1: Synthesis of Compound 2 Compound 2 was synthesized from Compound 11 according to Scheme 2.

Figure 2019055913
Figure 2019055913

(1)化合物16の合成
化合物11 (330.5 mg, 0.71 mmol) の無水メタノール (60.0 mL) 溶液を0℃に冷却し、水素化ホウ素ナトリウム (61.3 mg, 1.62 mmol) を加え、0℃で40分撹拌した。反応溶液を減圧留去した後、酢酸エチルと水を加え抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し、無色オイル状の化合物16 (280.1 mg, 0.60 mmol, 84%) を得た。
1H NMR (500 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.48 (d, J = 6.0 Hz, 2 H), 3.43 (dt, J = 6.7, 2.6 Hz, 2 H), 1.95 (d, J = 12.3 Hz, 1 H), 1.93-1.77 (m, 3 H), 1.75-1.64 (m, 1 H), 1.64-0.85 (m, 24 H), 0.94 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.64 (s, 3 H).
(1) Synthesis of compound 16 A solution of compound 11 (330.5 mg, 0.71 mmol) in anhydrous methanol (60.0 mL) was cooled to 0 ° C, sodium borohydride (61.3 mg, 1.62 mmol) was added, and the mixture was stirred at 0 ° C for 40 min Stir. After the reaction solution was distilled off under reduced pressure, ethyl acetate and water were added for extraction, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain colorless oily compound 16 (280.1 mg, 0.60 mmol, 84%).
1 H NMR (500 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.48 (d, J = 6.0 Hz, 2 H), 3.43 (dt, J = 6.7, 2.6 Hz, 2 H), 1.95 (d, J = 12.3 Hz, 1 H), 1.93-1.77 (m, 3 H), 1.75-1.64 (m, 1 H), 1.64-0.85 (m, 24 H), 0.94 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.64 (s, 3 H).

(2)化合物17の合成
化合物16 (48.4 mg, 0.10 mmol) の無水ピリジン (5.0 mL) 溶液を0℃に冷却し、再結晶したp-トルエンスルフォニルクロライド(42.6 mg, 0.22 mmol) を加え、0℃で30分、室温で1時間10分撹拌した。反応溶液を0℃に冷却してp-トルエンスルフォニルクロライド (43.0 mg, 0.23 mmol) を加え、0℃で10分、室温で6時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出し、有機層を水、2 M 塩酸、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し、無色オイル状の化合物17 (60.5 mg, 0.098 mmol, 94%) を得た。
1H NMR (400 MHz, CDCl3) δ7.79 (dd, J = 7.3, 1.8 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.84 (d, J = 6.4 Hz, 2 H), 3.43 (dt, J = 6.6, 1.4 Hz, 2 H), 2.45 (s, 3 H), 1.94 (d, J = 11.9 Hz, 1 H), 1.90-1.74 (m, 3 H), 1.74-1.60 (m, 2 H), 1.60-0.82 (m, 29 H), 0.62 (s, 3 H).
(2) Synthesis of Compound 17 A solution of Compound 16 (48.4 mg, 0.10 mmol) in anhydrous pyridine (5.0 mL) was cooled to 0 ° C., and recrystallized p-toluenesulfonyl chloride (42.6 mg, 0.22 mmol) was added. The mixture was stirred at 30 ° C. for 30 minutes and at room temperature for 1 hour and 10 minutes. The reaction solution was cooled to 0 ° C., p-toluenesulfonyl chloride (43.0 mg, 0.23 mmol) was added, and the mixture was stirred at 0 ° C. for 10 minutes and at room temperature for 6 hours. Water was added to the reaction solution, followed by extraction with ethyl acetate, and the organic layer was washed with water, 2 M hydrochloric acid and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain colorless oily compound 17 (60.5 mg, 0.098 mmol, 94%).
1 H NMR (400 MHz, CDCl 3 ) δ 7.79 (dd, J = 7.3, 1.8 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.84 (d, J = 6.4 Hz, 2 H), 3.43 (dt, J = 6.6, 1.4 Hz, 2 H), 2.45 (s, 3 H), 1.94 (d, J = 11.9 Hz, 1 H), 1.90-1.74 (m, 3 H), 1.74-1.60 (m, 2 H), 1.60-0.82 (m, 29 H), 0.62 (s, 3 H).

(3)化合物18の合成
化合物17 (273.9 mg, 0.44 mmol) の無水DMSO (17.5 mL) 溶液にシアン化ナトリウム (67.2 mg, 1.37 mmol) を加え、80℃で2時間30分撹拌した。反応溶液を室温まで冷ました後、水を加え、酢酸エチルで抽出した。有機層を水、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物 (213.6 mg) を得た。フラッシュカラムクロマトグラフィー (AcOEt / n-hexane = 1/14) で精製して、無色オイル状の化合物18 (176.2 mg, 0.37 mmol, 84%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.44 (dt, J = 6.5, 1.1 Hz, 2 H), 2.26 (d, J = 6.9 Hz, 2 H), 1.96 (dt, J = 11.9, 2.7 Hz, 1 H), 1.93-1.76 (m, 3 H), 1.76-1.64 (m, 2 H), 1.64-0.96 (m, 23 H), 0.94 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.64 (s, 3 H).
(3) Synthesis of Compound 18 Sodium cyanide (67.2 mg, 1.37 mmol) was added to a solution of Compound 17 (273.9 mg, 0.44 mmol) in anhydrous DMSO (17.5 mL), and the mixture was stirred at 80 ° C. for 2 hours and 30 minutes. The reaction solution was cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (213.6 mg). Purification by flash column chromatography (AcOEt / n-hexane = 1/14) gave Compound 18 (176.2 mg, 0.37 mmol, 84%) as a colorless oil.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.44 (dt, J = 6.5 , 1.1 Hz, 2 H), 2.26 (d, J = 6.9 Hz, 2 H), 1.96 (dt, J = 11.9, 2.7 Hz, 1 H), 1.93-1.76 (m, 3 H), 1.76-1.64 ( m, 2 H), 1.64-0.96 (m, 23 H), 0.94 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.64 (s, 3 H).

(4)化合物19の合成
アルゴン雰囲気下、化合物18 (96.1 mg, 0.20 mmol) のジエチルエーテル(7.0 mL) 溶液を0℃に冷却し、1.08 M メチルリチウム(ジエチルエーテル溶液, 0.90 mL, 0.97 mmol) を加え、0℃で40分撹拌した。反応溶液に2 M 塩酸を加え、室温で40分撹拌した。反応溶液に28% アンモニア水を加え、ジクロロメタンで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(95.5 mg) を得た。シリカゲルカラムクロマトグラフィー(AcOEt / n-hexane = 1/8, 1/9) とフラッシュカラムクロマトグラフィー (AcOEt / n-hexane = 1/19) で精製して、無色オイル状の化合物19 (76.2 mg, 0.15 mmol, 77%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.8, 1.5 Hz, 2 H), 2.32 (d, J = 6.9 Hz, 2 H), 2.12 (s, 3 H), 1.95 (d, J = 11.9 Hz, 1 H), 1.91-1.62 (m, 5 H), 1.62-0.88 (m, 23 H), 0.92 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.63 (s, 3 H).
(4) Synthesis of Compound 19 Under an argon atmosphere, a solution of Compound 18 (96.1 mg, 0.20 mmol) in diethyl ether (7.0 mL) was cooled to 0 ° C., and 1.08 M methyllithium (diethyl ether solution, 0.90 mL, 0.97 mmol). And stirred at 0 ° C. for 40 minutes. 2 M hydrochloric acid was added to the reaction solution, and the mixture was stirred at room temperature for 40 minutes. To the reaction solution was added 28% aqueous ammonia, extracted with dichloromethane, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (95.5 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/8, 1/9) and flash column chromatography (AcOEt / n-hexane = 1/19) gave colorless oily compound 19 (76.2 mg, 0.15 mmol, 77%).
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.8 , 1.5 Hz, 2 H), 2.32 (d, J = 6.9 Hz, 2 H), 2.12 (s, 3 H), 1.95 (d, J = 11.9 Hz, 1 H), 1.91-1.62 (m, 5 H ), 1.62-0.88 (m, 23 H), 0.92 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.63 (s, 3 H).

(5)化合物20の合成
アルゴン雰囲気下、化合物19 (62.6 mg, 0.13 mmol) のジエチルエーテル (5.0 mL) 溶液を-69℃に冷却し、1.08 M メチルリチウム(ジエチルエーテル溶液, 0.30 mL, 0.32 mmol) を加え、-69℃で2時間30分撹拌した。再度1.08 M メチルリチウム(ジエチルエーテル溶液, 0.10 mL, 0.11 mmol) を加え、-69℃で2時間撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、室温にした後水を加え、酢酸エチルで抽出した。有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(59.8 mg) を得た。フラッシュカラムクロマトグラフィー (AcOEt / n-hexane = 1/9) で精製して、無色オイル状の化合物20 (46.4 mg, 0.09 mmol, 72%) を得た。
1H NMR (500 MHz, CDCl3) δ7.34 (d, J = 4.3 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.44 (dt, J = 6.7, 2.6 Hz, 2 H), 1.95 (d, J = 11.7 Hz, 1 H), 1.90-0.85 (m, 30 H), 1.22 (s, 6 H), 0.91 (d, J = 6.3 Hz, 3 H), 0.91 (s, 3 H), 0.63 (s, 3 H);
13C NMR (150 MHz, CDCl3) δ138.83, 128.48, 127.78, 127.60, 72.97, 71.88, 71.21, 56.72, 56.35, 51.42, 43.77, 42.85, 40.68, 40.38, 37.63, 36.10, 36.01, 35.73, 35.17, 34.87, 32.33, 30.17, 30.14, 29.96, 28.45, 27.62, 26.66, 26.44, 24.38, 24.15, 20.98, 18.75, 12.19.
(5) Synthesis of Compound 20 Under an argon atmosphere, a solution of Compound 19 (62.6 mg, 0.13 mmol) in diethyl ether (5.0 mL) was cooled to −69 ° C., and 1.08 M methyllithium (diethyl ether solution, 0.30 mL, 0.32 mmol). ) Was added, and the mixture was stirred at -69 ° C for 2 hours and 30 minutes. 1.08 M methyl lithium (diethyl ether solution, 0.10 mL, 0.11 mmol) was added again, and the mixture was stirred at -69 ° C for 2 hours. Saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was brought to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (59.8 mg). Purification by flash column chromatography (AcOEt / n-hexane = 1/9) gave Compound 20 (46.4 mg, 0.09 mmol, 72%) as a colorless oil.
1 H NMR (500 MHz, CDCl 3 ) δ7.34 (d, J = 4.3 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.44 (dt, J = 6.7 , 2.6 Hz, 2 H), 1.95 (d, J = 11.7 Hz, 1 H), 1.90-0.85 (m, 30 H), 1.22 (s, 6 H), 0.91 (d, J = 6.3 Hz, 3 H ), 0.91 (s, 3 H), 0.63 (s, 3 H);
13 C NMR (150 MHz, CDCl 3 ) δ138.83, 128.48, 127.78, 127.60, 72.97, 71.88, 71.21, 56.72, 56.35, 51.42, 43.77, 42.85, 40.68, 40.38, 37.63, 36.10, 36.01, 35.73, 35.17, 34.87, 32.33, 30.17, 30.14, 29.96, 28.45, 27.62, 26.66, 26.44, 24.38, 24.15, 20.98, 18.75, 12.19.

(6)化合物21の合成
化合物20 (24.3 mg, 0.048 mmol) のメタノール (4.0 mL) 溶液に水酸化パラジウム(5.4 mg) を加え、水素置換をした後、室温で3時間撹拌した。反応溶液をセライトろ過した後、溶媒を留去し、白色固体の化合物21 (20.6 mg, 0.048 mmol, quant.) を得た。
1H NMR (400 MHz, CDCl3) δ3.61 (m, 2 H), 1.95 (dd, J = 11.4, 3.7 Hz, 1 H), 1.90-1.79 (m, 2 H), 1.75 (d, J = 13.3 Hz, 1 H), 1.70-0.85 (m, 27 H), 1.22 (s, 6 H), 0.92 (d, J = 7.3 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H).
(6) Synthesis of Compound 21 Palladium hydroxide (5.4 mg) was added to a solution of compound 20 (24.3 mg, 0.048 mmol) in methanol (4.0 mL), and after hydrogen substitution, the mixture was stirred at room temperature for 3 hours. The reaction solution was filtered through Celite, and then the solvent was distilled off to obtain a white solid compound 21 (20.6 mg, 0.048 mmol, quant.).
1 H NMR (400 MHz, CDCl 3 ) δ3.61 (m, 2 H), 1.95 (dd, J = 11.4, 3.7 Hz, 1 H), 1.90-1.79 (m, 2 H), 1.75 (d, J = 13.3 Hz, 1 H), 1.70-0.85 (m, 27 H), 1.22 (s, 6 H), 0.92 (d, J = 7.3 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s , 3 H).

(7)化合物2の合成
酸化クロム(VI) (266.3 mg) を水 (0.77 mL) に溶かし、氷冷下で濃硫酸 (0.23 mL) を加えてJones試薬を調製した。化合物21 (7.6 mg, 0.018 mmol) の無水アセトン (5.0 mL) 溶液に、Jones試薬 (0.1 mL) を加え、室温で40分撹拌した。反応溶液に水を加え、アセトンを留去した後、ジエチルエーテルで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(10.5 mg) を得た。GPC (CHCl3) によって精製し、白色固体の化合物2 (4.3 mg, 0.010 mmol, 55%) を得た。
1H NMR (600 MHz, CDCl3) δ2.40 (ddd, J = 15.8, 10.4, 5.3 Hz, 1 H), 2.26 (ddd, J = 15.9, 9.9, 6.3 Hz, 1 H), 1.94 (dd, J = 12.0, 3.6 Hz, 1 H), 1.88-1.77 (m, 3 H), 1.74 (d, J = 13.8 Hz, 1 H), 1.60-0.80 (m, 24 H), 1.22 (s, 6 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H);
13C NMR (150 MHz, CDCl3) δ179.59, 71.94, 56.67, 56.05, 51.38, 43.73, 42.89, 40.63, 40.32, 37.60, 36.06, 35.98, 35.46, 35.14, 34.85, 30.97, 30.91, 30.16, 30.11, 29.94, 28.34, 27.57, 26.62, 24.34, 24.14, 20.96, 18.39, 12.20.
(7) Synthesis of Compound 2 Chromium (VI) oxide (266.3 mg) was dissolved in water (0.77 mL), and concentrated sulfuric acid (0.23 mL) was added under ice cooling to prepare Jones reagent. To a solution of compound 21 (7.6 mg, 0.018 mmol) in anhydrous acetone (5.0 mL) was added Jones reagent (0.1 mL), and the mixture was stirred at room temperature for 40 minutes. Water was added to the reaction solution, and acetone was distilled off, followed by extraction with diethyl ether, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (10.5 mg). Purification by GPC (CHCl 3 ) gave Compound 2 (4.3 mg, 0.010 mmol, 55%) as a white solid.
1 H NMR (600 MHz, CDCl 3 ) δ 2.40 (ddd, J = 15.8, 10.4, 5.3 Hz, 1 H), 2.26 (ddd, J = 15.9, 9.9, 6.3 Hz, 1 H), 1.94 (dd, J = 12.0, 3.6 Hz, 1 H), 1.88-1.77 (m, 3 H), 1.74 (d, J = 13.8 Hz, 1 H), 1.60-0.80 (m, 24 H), 1.22 (s, 6 H ), 0.92 (d, J = 6.6 Hz, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H);
13 C NMR (150 MHz, CDCl 3 ) δ179.59, 71.94, 56.67, 56.05, 51.38, 43.73, 42.89, 40.63, 40.32, 37.60, 36.06, 35.98, 35.46, 35.14, 34.85, 30.97, 30.91, 30.16, 30.11, 29.94, 28.34, 27.57, 26.62, 24.34, 24.14, 20.96, 18.39, 12.20.

実施例2:化合物3の合成
化合物3は、化合物10からScheme 2に従って合成した。
(1)化合物22の合成
化合物10 (310.1 mg, 0.69 mmol) の無水メタノール (60.0 mL) 溶液を0℃に冷却し、水素化ホウ素ナトリウム (61.6 mg, 1.63 mmol) を加え、0℃で40分撹拌した。反応溶液を減圧留去した後、酢酸エチルと水を加え抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(320.0 mg) を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/4) で精製して、淡黄色オイル状の化合物22 (296.0 mg, 0.63 mmol, 95%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.67 (m, 2 H), 3.43 (dt, J = 6.6, 1.2 Hz, 2 H), 2.05-1.76 (m, 5 H), 1.76-0.98 (m, 24 H), 0.92 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).
Example 2: Synthesis of Compound 3 Compound 3 was synthesized from Compound 10 according to Scheme 2.
(1) Synthesis of Compound 22 A solution of compound 10 (310.1 mg, 0.69 mmol) in anhydrous methanol (60.0 mL) was cooled to 0 ° C., sodium borohydride (61.6 mg, 1.63 mmol) was added, and then at 0 ° C. for 40 minutes Stir. After the reaction solution was distilled off under reduced pressure, ethyl acetate and water were added for extraction, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (320.0 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/4) gave pale yellow oily compound 22 (296.0 mg, 0.63 mmol, 95%).
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.67 (m, 2 H) , 3.43 (dt, J = 6.6, 1.2 Hz, 2 H), 2.05-1.76 (m, 5 H), 1.76-0.98 (m, 24 H), 0.92 (s, 3 H), 0.91 (d, J = 6.4 Hz, 3 H), 0.64 (s, 3 H).

(2)化合物23の合成
化合物22 (281.2 mg, 0.60 mmol) の無水ピリジン (22.0 mL) 溶液を0℃に冷却し、再結晶したp-トルエンスルフォニルクロライド (230.9 mg, 1.21 mmol) を加え、0℃で30分、室温で2時間撹拌した。反応溶液を0℃に冷却してp-トルエンスルフォニルクロライド (230.6 mg, 1.21 mmol) を加え、0℃で1時間、室温で4時間30分撹拌した。反応溶液に水を加え、酢酸エチルで抽出し、有機層を水、2 M 塩酸、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(358.5 mg) を得た。シリカゲルカラムクロマトグラフィー(AcOEt / n-hexane = 1/8, 1/10) で精製して、無色オイル状の化合物23 (325.9 mg, 0.52 mmol, 87%) を得た。
1H NMR (400 MHz, CDCl3) δ7.79 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 9.2 Hz, 2 H), 7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.49 (s, 2 H), 4.05 (m, 2 H), 3.43 (dt, J = 6.6, 1.9 Hz, 2 H), 2.45 (s, 3 H), 2.10 (br, 1 H), 1.99-1.87 (m, 2 H), 1.87-1.62 (m, 3 H), 1.62-0.94 (m, 22 H), 0.90 (d, J = 6.4 Hz, 3 H), 0.84 (s, 3 H), 0.79 (dt, J = 14.2, 4.1 Hz, 1 H), 0.61 (s, 3 H).
(2) Synthesis of Compound 23 A solution of Compound 22 (281.2 mg, 0.60 mmol) in anhydrous pyridine (22.0 mL) was cooled to 0 ° C., and recrystallized p-toluenesulfonyl chloride (230.9 mg, 1.21 mmol) was added. Stir at 30 ° C. for 30 minutes and at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., p-toluenesulfonyl chloride (230.6 mg, 1.21 mmol) was added, and the mixture was stirred at 0 ° C. for 1 hour and at room temperature for 4 hours and 30 minutes. Water was added to the reaction solution, followed by extraction with ethyl acetate, and the organic layer was washed with water, 2 M hydrochloric acid and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (358.5 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/8, 1/10) gave Compound 23 (325.9 mg, 0.52 mmol, 87%) as a colorless oil.
1 H NMR (400 MHz, CDCl 3 ) δ 7.79 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 9.2 Hz, 2 H), 7.34 (d, J = 4.6 Hz, 4 H) , 7.31-7.25 (m, 1 H), 4.49 (s, 2 H), 4.05 (m, 2 H), 3.43 (dt, J = 6.6, 1.9 Hz, 2 H), 2.45 (s, 3 H), 2.10 (br, 1 H), 1.99-1.87 (m, 2 H), 1.87-1.62 (m, 3 H), 1.62-0.94 (m, 22 H), 0.90 (d, J = 6.4 Hz, 3 H) , 0.84 (s, 3 H), 0.79 (dt, J = 14.2, 4.1 Hz, 1 H), 0.61 (s, 3 H).

(3)化合物24の合成
化合物23 (51.9 mg, 0.084 mmol) の無水 DMSO (4.0 mL) 溶液にシアン化ナトリウム(12.0 mg, 0.245 mmol) を加え、80℃で22時間撹拌した。反応溶液を室温まで冷ました後水を加え、酢酸エチルで抽出し、有機層を水、食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(39.2 mg) を得た。GPC (CHCl3) で精製し、白色固体の化合物24 (29.9 mg, 0.063 mmol, 75%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6, 1.8 Hz, 2 H), 2.44 (d, J = 8.2 Hz, 2 H), 2.27 (br, 1 H), 2.11 (dt, J = 14.0, 5.0 Hz, 1 H), 1.97 (dd, J = 12.1, 3.0 Hz, 1 H), 1.94-1.76 (m, 2 H), 1.76-1.63 (m, 2 H), 1.63-0.97 (m, 22 H), 0.94 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.64 (s, 3 H).
(3) Synthesis of Compound 24 Sodium cyanide (12.0 mg, 0.245 mmol) was added to a solution of Compound 23 (51.9 mg, 0.084 mmol) in anhydrous DMSO (4.0 mL), and the mixture was stirred at 80 ° C. for 22 hours. The reaction solution was cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (39.2 mg). Purification by GPC (CHCl 3 ) gave Compound 24 (29.9 mg, 0.063 mmol, 75%) as a white solid.
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6 , 1.8 Hz, 2 H), 2.44 (d, J = 8.2 Hz, 2 H), 2.27 (br, 1 H), 2.11 (dt, J = 14.0, 5.0 Hz, 1 H), 1.97 (dd, J = 12.1, 3.0 Hz, 1 H), 1.94-1.76 (m, 2 H), 1.76-1.63 (m, 2 H), 1.63-0.97 (m, 22 H), 0.94 (s, 3 H), 0.91 (d , J = 6.9 Hz, 3 H), 0.64 (s, 3 H).

(4)化合物25の合成
アルゴン雰囲気下、化合物24 (160.5 mg, 0.34 mmol) のジエチルエーテル(9.0 mL) 溶液を0℃に冷却し、1.08 M メチルリチウム(ジエチルエーテル溶液, 1.40 mL, 1.51 mmol) を加え、0℃で30分撹拌した。反応溶液に2 M 塩酸を加え、室温で40分撹拌した。反応溶液に28% アンモニア水を加え、ジクロロメタンで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(153.0 mg) を得た。フラッシュカラムクロマトグラフィー (AcOEt / n-hexane = 1/19) で精製して、無色オイル状の化合物25 (133.5 mg, 0.27 mmol, 80%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6, 1.4 Hz, 2 H), 2.52 (d, J = 7.3 Hz, 2 H), 2.39 (br, 1 H), 2.13 (s, 3 H), 2.03 (dt, J = 13.6, 5.3 Hz, 1 H), 1.96 (d, J = 11.9 Hz, 1 H), 1.91-1.76 (m, 2 H), 1.76-0.95 (m, 24 H), 0.93 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.63 (s, 3 H).
(4) Synthesis of Compound 25 Under an argon atmosphere, a solution of Compound 24 (160.5 mg, 0.34 mmol) in diethyl ether (9.0 mL) was cooled to 0 ° C., and 1.08 M methyllithium (diethyl ether solution, 1.40 mL, 1.51 mmol). And stirred at 0 ° C. for 30 minutes. 2 M hydrochloric acid was added to the reaction solution, and the mixture was stirred at room temperature for 40 minutes. To the reaction solution was added 28% aqueous ammonia, extracted with dichloromethane, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (153.0 mg). Purification by flash column chromatography (AcOEt / n-hexane = 1/19) gave colorless oily compound 25 (133.5 mg, 0.27 mmol, 80%).
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.6 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6 , 1.4 Hz, 2 H), 2.52 (d, J = 7.3 Hz, 2 H), 2.39 (br, 1 H), 2.13 (s, 3 H), 2.03 (dt, J = 13.6, 5.3 Hz, 1 H ), 1.96 (d, J = 11.9 Hz, 1 H), 1.91-1.76 (m, 2 H), 1.76-0.95 (m, 24 H), 0.93 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.63 (s, 3 H).

(5)化合物26の合成
アルゴン雰囲気下、化合物25 (69.7 mg, 0.14 mmol) のジエチルエーテル(5.0 mL) 溶液を-69℃に冷却し、1.08 M メチルリチウム(ジエチルエーテル溶液, 0.50 mL, 0.54 mmol) を加え、-69℃で2時間撹拌した。再度1.08 M メチルリチウム(ジエチルエーテル溶液, 0.25 mL, 0.27 mmol) を加え、-69℃で1時間30分撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、室温にした後水を加え、酢酸エチルで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(69.9 mg) を得た。フラッシュカラムクロマトグラフィー (AcOEt / n-hexane = 1/9) で精製して、無色オイル状の化合物26 (61.4 mg, 0.12 mmol, 85%) を得た。
1H NMR (400 MHz, CDCl3) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6, 1.4 Hz, 2 H), 2.06-1.92 (m, 3 H), 1.92-1.76 (m, 2 H), 1.76-0.98 (m, 26 H), 1.22 (s, 6 H), 0.92 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.64 (s, 3 H).
(5) Synthesis of Compound 26 Under an argon atmosphere, a solution of Compound 25 (69.7 mg, 0.14 mmol) in diethyl ether (5.0 mL) was cooled to −69 ° C. and 1.08 M methyllithium (diethyl ether solution, 0.50 mL, 0.54 mmol). ) Was added, and the mixture was stirred at -69 ° C for 2 hours. 1.08 M methyllithium (diethyl ether solution, 0.25 mL, 0.27 mmol) was added again, and the mixture was stirred at -69 ° C for 1 hour 30 minutes. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was allowed to reach room temperature, water was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (69.9 mg). Purification by flash column chromatography (AcOEt / n-hexane = 1/9) gave colorless oily compound 26 (61.4 mg, 0.12 mmol, 85%).
1 H NMR (400 MHz, CDCl 3 ) δ7.34 (d, J = 4.1 Hz, 4 H), 7.31-7.25 (m, 1 H), 4.50 (s, 2 H), 3.43 (dt, J = 6.6 , 1.4 Hz, 2 H), 2.06-1.92 (m, 3 H), 1.92-1.76 (m, 2 H), 1.76-0.98 (m, 26 H), 1.22 (s, 6 H), 0.92 (s, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 0.64 (s, 3 H).

(6)化合物27の合成
化合物26 (52.2 mg, 0.10 mmol) のメタノール(7.0 mL) 溶液に水酸化パラジウム(11 mg) を加え、水素置換をした後、室温で2時間30分撹拌した。反応溶液をセライトろ過した後、溶媒を留去し粗生生物(43.2 mg) を得た。シリカゲルカラムクロマトグラフィー (AcOEt / n-hexane = 1/3) で精製して、白色固体の化合物27 (38.0 mg, 0.091 mmol, 89%) を得た。
1H NMR (400 MHz, CDCl3) δ3.61 (br, 2 H), 2.06-1.92 (m, 3 H), 1.92-1.76 (m, 2 H), 1.60-0.98 (m, 26 H), 1.22 (s, 6 H), 0.92 (d, J = 6.4 Hz, 3 H), 0.92 (s, 3 H), 0.65 (s, 3 H).
(6) Synthesis of Compound 27 Palladium hydroxide (11 mg) was added to a solution of Compound 26 (52.2 mg, 0.10 mmol) in methanol (7.0 mL), and after hydrogen substitution, the mixture was stirred at room temperature for 2 hours 30 minutes. The reaction solution was filtered through celite, and then the solvent was distilled off to obtain a crude product (43.2 mg). Purification by silica gel column chromatography (AcOEt / n-hexane = 1/3) gave white solid compound 27 (38.0 mg, 0.091 mmol, 89%).
1 H NMR (400 MHz, CDCl 3 ) δ3.61 (br, 2 H), 2.06-1.92 (m, 3 H), 1.92-1.76 (m, 2 H), 1.60-0.98 (m, 26 H), 1.22 (s, 6 H), 0.92 (d, J = 6.4 Hz, 3 H), 0.92 (s, 3 H), 0.65 (s, 3 H).

(7)化合物3の合成
酸化クロム(VI) (266.3 mg) を水 (0.77 mL) に溶かし、氷冷下で濃硫酸 (0.23 mL) を加えてJones試薬を調製した。化合物27 (25.7 mg, 0.061 mmol) の無水アセトン (10.0 mL) 溶液に、Jones試薬 (0.1 mL) を加え、室温で40分撹拌した。再度Jones試薬 (0.1 mL) を加え、室温で40分撹拌した。反応溶液に水を加え、アセトンを留去した後、ジエチルエーテルで抽出し、有機層を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し粗生生物(31.2 mg) を得た。GPC (CHCl3) によって精製し、白色固体の化合物3 (24.1 mg, 0.056 mmol, 91%)を得た。
1H NMR (600 MHz, CDCl3) δ2.40 (ddd, J = 15.8, 10.4, 5.2 Hz, 1 H), 2.26 (ddd, J = 15.9, 9.9, 6.3 Hz, 1 H), 2.04-1.92 (m, 3 H), 1.90-1.76 (m, 3 H), 1.61-0.98 (m, 23 H), 1.22 (s, 6 H), 0.92 (s, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.64 (s, 3 H);
13C NMR (150 MHz, CDCl3) δ179.37, 72.26, 56.71, 56.05, 46.30, 42.89, 40.36, 40.06, 37.89, 35.87, 35.46, 35.18, 32.95, 31.62, 31.01, 30.91, 29.70, 29.64, 29.43, 28.34, 27.48, 27.07, 26.55, 24.42, 24.33, 21.09, 18.38, 12.20.
(7) Synthesis of Compound 3 Chromium (VI) oxide (266.3 mg) was dissolved in water (0.77 mL), and concentrated sulfuric acid (0.23 mL) was added under ice cooling to prepare Jones reagent. Jones reagent (0.1 mL) was added to a solution of compound 27 (25.7 mg, 0.061 mmol) in anhydrous acetone (10.0 mL), and the mixture was stirred at room temperature for 40 minutes. Jones reagent (0.1 mL) was added again, and the mixture was stirred at room temperature for 40 minutes. Water was added to the reaction solution, and acetone was distilled off, followed by extraction with diethyl ether, and the organic layer was washed with brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product (31.2 mg). Purification by GPC (CHCl 3 ) gave Compound 3 (24.1 mg, 0.056 mmol, 91%) as a white solid.
1 H NMR (600 MHz, CDCl 3 ) δ2.40 (ddd, J = 15.8, 10.4, 5.2 Hz, 1 H), 2.26 (ddd, J = 15.9, 9.9, 6.3 Hz, 1 H), 2.04-1.92 ( m, 3 H), 1.90-1.76 (m, 3 H), 1.61-0.98 (m, 23 H), 1.22 (s, 6 H), 0.92 (s, 3 H), 0.92 (d, J = 6.6 Hz , 3 H), 0.64 (s, 3 H);
13 C NMR (150 MHz, CDCl 3 ) δ179.37, 72.26, 56.71, 56.05, 46.30, 42.89, 40.36, 40.06, 37.89, 35.87, 35.46, 35.18, 32.95, 31.62, 31.01, 30.91, 29.70, 29.64, 29.43, 28.34, 27.48, 27.07, 26.55, 24.42, 24.33, 21.09, 18.38, 12.20.

試験例1:HL-60細胞における細胞分化誘導検定
化合物1、化合物2、及び化合物3に関して、ヒト急性前骨髄球性白血病細胞HL-60に対する細胞分化誘導作用を検討した。比較として活性型ビタミンD3を用いた。
Test Example 1: Cell differentiation induction assay in HL-60 cells With respect to Compound 1, Compound 2, and Compound 3, the cell differentiation induction action on human acute promyelocytic leukemia cells HL-60 was examined. For comparison, active vitamin D 3 was used.

細胞分化誘導の検定アッセイは、 Fujii et al. Bioorg. Med. Chem. 22 (2014) 5891-5901の「4.3.1. Assay of HL-60 cell differentiation-inducing activity」に記載の方法と同様に行った。具体的には以下の通りである。   The assay for cell differentiation induction was performed in the same manner as described in “4.3.1. Assay of HL-60 cell differentiation-inducing activity” in Fujii et al. Bioorg. Med. Chem. 22 (2014) 5891-5901. It was. Specifically, it is as follows.

HL−60細胞を、5%FBS(胎児ウシ血清)、ペニシリンG及びストレプトマイシンを添加したRPMI−1640培地において、37℃、5%CO2で培養した。細胞は、RPMI−1640(5%FBS)で8.0×104細胞/mLに希釈し、被験化合物のエタノール溶液を、最終濃度10-10〜10-5Mになるように添加した。対照の細胞は、同量のエタノールのみで処理した。1α,25−ジヒドロキシビタミンD3は陽性対照として同時にアッセイした。細胞を37℃、5%CO2で4日間インキュベートした。分化した細胞の割合は、ニトロブルーテトラゾリウム(NBT)の還元能測定により測定した。細胞は、RPMI−1640(5%FBS)と、NBT(0.2%)及び12-O-テトラデカノイルホルボール13-アセテート (TPA; 200 ng/mL)を含む同量のリン酸緩衝生理食塩水(PBS)中において37℃で20分間インキュベートした。濃い藍色のホルマザンを含む細胞の割合を、最低限の200細胞において測定した。
NBT還元能から算出した分化した細胞の割合(%)を、表1および図1に示す。
HL-60 cells were cultured in RPMI-1640 medium supplemented with 5% FBS (fetal bovine serum), penicillin G and streptomycin at 37 ° C., 5% CO 2 . The cells were diluted with RPMI-1640 (5% FBS) to 8.0 × 10 4 cells / mL, and an ethanol solution of the test compound was added to a final concentration of 10 −10 to 10 −5 M. Control cells were treated with the same amount of ethanol only. 1α, 25-dihydroxyvitamin D3 was assayed simultaneously as a positive control. Cells were incubated for 4 days at 37 ° C., 5% CO 2 . The proportion of differentiated cells was measured by measuring the reducing ability of nitro blue tetrazolium (NBT). Cells were treated with the same amount of phosphate buffered physiology containing RPMI-1640 (5% FBS) and NBT (0.2%) and 12-O-tetradecanoylphorbol 13-acetate (TPA; 200 ng / mL). Incubated for 20 minutes at 37 ° C. in saline (PBS). The percentage of cells containing dark indigo formazan was measured in a minimum of 200 cells.
The percentage (%) of differentiated cells calculated from NBT reducing ability is shown in Table 1 and FIG.

Figure 2019055913
Figure 2019055913

表1及び図1の結果から分かるように、本発明の化合物2及び化合物3は、参考用の化合物1と比較して、HL-60細胞に対する分化誘導作用が高い。   As can be seen from the results in Table 1 and FIG. 1, Compound 2 and Compound 3 of the present invention have higher differentiation-inducing action on HL-60 cells than Compound 1 for reference.

Claims (8)

下記一般式(I)で示される化合物、その塩、又はそのプロドラッグ。
Figure 2019055913
(式中、R1及びR2はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。R3、R4、R5及びR6はそれぞれ独立して、水素原子又は炭素数1から6のアルキル基を示す。nは1から3の整数を示す。)
A compound represented by the following general formula (I), a salt thereof, or a prodrug thereof.
Figure 2019055913
(In the formula, R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or carbon. And represents an alkyl group of 1 to 6. n represents an integer of 1 to 3.)
1及びR2がメチル基である、請求項1に記載の化合物、その塩、又はそのプロドラッグ。 The compound according to claim 1, a salt thereof, or a prodrug thereof, wherein R 1 and R 2 are methyl groups. 3、R4、R5及びR6が水素原子である、請求項1又は2に記載の化合物、その塩、又はそのプロドラッグ。 The compound, its salt, or its prodrug of Claim 1 or 2 whose R < 3 >, R < 4 >, R < 5 > and R < 6 > are hydrogen atoms. nが1である、請求項1から3の何れか一項に記載の化合物、その塩、又はそのプロドラッグ。 The compound according to any one of claims 1 to 3, wherein n is 1, a salt thereof, or a prodrug thereof. 下記の何れかの化合物、その塩、又はそのプロドラッグ。
Figure 2019055913
Any of the following compounds, salts thereof, or prodrugs thereof.
Figure 2019055913
請求項1から5の何れか一項に記載の化合物、その塩、又はそのプロドラッグを含む医薬。 A medicament comprising the compound according to any one of claims 1 to 5, a salt thereof, or a prodrug thereof. 請求項1から5の何れか一項に記載の化合物、その塩、又はそのプロドラッグを含む、ビタミンD受容体活性化剤。 A vitamin D receptor activator comprising the compound according to any one of claims 1 to 5, a salt thereof, or a prodrug thereof. 請求項1から5の何れか一項に記載の化合物、その塩、又はそのプロドラッグを含む、ビタミンD受容体関連疾患の予防及び/又は治療剤。 A preventive and / or therapeutic agent for a vitamin D receptor-related disease comprising the compound according to any one of claims 1 to 5, a salt thereof, or a prodrug thereof.
JP2016014012A 2016-01-28 2016-01-28 Lithocholic acid derivative having vitamin D activity Pending JP2019055913A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016014012A JP2019055913A (en) 2016-01-28 2016-01-28 Lithocholic acid derivative having vitamin D activity
PCT/JP2017/002902 WO2017131144A1 (en) 2016-01-28 2017-01-27 Lithocholic acid derivative having vitamin d activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014012A JP2019055913A (en) 2016-01-28 2016-01-28 Lithocholic acid derivative having vitamin D activity

Publications (1)

Publication Number Publication Date
JP2019055913A true JP2019055913A (en) 2019-04-11

Family

ID=59398821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014012A Pending JP2019055913A (en) 2016-01-28 2016-01-28 Lithocholic acid derivative having vitamin D activity

Country Status (2)

Country Link
JP (1) JP2019055913A (en)
WO (1) WO2017131144A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033766A1 (en) * 2019-08-22 2021-02-25 国立大学法人お茶の水女子大学 Lithocholic acid derivative having vitamin d activity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU664059B2 (en) * 1991-12-20 1995-11-02 Hoechst Aktiengesellschaft Ethylenically unsaturated bile acid derivatives, processes for their preparation and precursors
EP2163557B1 (en) * 2007-06-04 2014-10-15 Nihon University Function-selective vitamin d receptor agonist

Also Published As

Publication number Publication date
WO2017131144A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
RU2712033C2 (en) Deuterated derivative of chenodeoxycholic acid and pharmaceutical composition containing said compound
JP6749406B2 (en) Method for preparing obeticholic acid and its derivatives
US10414791B2 (en) Methods for preparation of bile acids and derivatives thereof
US7858608B2 (en) Bile acid derivatives as FXR ligands for the prevention or treatment of FXR-mediated diseases or conditions
JP2021091736A (en) Process for preparing acc inhibitor and solid form thereof
CA2994687A1 (en) Methods for preparation of bile acids and derivatives thereof
BG107289A (en) 3-nitrogen-6,7-dioxygen steroids and uses related thereto
BR112019020780A2 (en) process for preparing sulfonyl carbamate bile acid derivatives
JP2022504697A (en) SSAO inhibitors and their use
US10550146B2 (en) Methods for the preparation of obeticholic acid and derivatives thereof
JPWO2007142158A1 (en) 9,10-secopregnane derivatives and medicaments
JP2020526505A (en) Fatty acid derivatives and their use
JP2019055913A (en) Lithocholic acid derivative having vitamin D activity
CN112409435A (en) Bile acid derivatives, compositions and uses thereof
DK2634171T3 (en) 23-yne-vitamin D 3 DERIVATIVE
JP2021519276A (en) Deuterated analogs of D-β-hydroxybutyric acid and their use
JPWO2008149563A1 (en) Action-selective vitamin D receptor agonist
JP2023518399A (en) Crystalline Forms of Farnesoid X Receptor Agonists
JP2023111289A (en) Lithocholic acid derivatives with vitamin D activity
JP4852416B2 (en) Cyclic diamine compound and pharmaceutical containing the same
WO2021033766A1 (en) Lithocholic acid derivative having vitamin d activity
EP4019528A1 (en) Bile acid derivative, composition and application thereof
WO2006059768A1 (en) 9,10-secopregnane derivative and medicine
WO2023233346A1 (en) Cholesterol derivatives and their uses
JP2021534212A (en) Aromatic molecules for use in the treatment of pathological conditions