JP2019055173A - 単極誘導心電図(ecg)信号中の律動を識別するためのカスケード2値クラシファイア - Google Patents

単極誘導心電図(ecg)信号中の律動を識別するためのカスケード2値クラシファイア Download PDF

Info

Publication number
JP2019055173A
JP2019055173A JP2018023660A JP2018023660A JP2019055173A JP 2019055173 A JP2019055173 A JP 2019055173A JP 2018023660 A JP2018023660 A JP 2018023660A JP 2018023660 A JP2018023660 A JP 2018023660A JP 2019055173 A JP2019055173 A JP 2019055173A
Authority
JP
Japan
Prior art keywords
ecg signal
windows
signal
noise
features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023660A
Other languages
English (en)
Other versions
JP6786536B2 (ja
Inventor
シュレヤシ ダッタ
Shreyasi Datta
シュレヤシ ダッタ
チェタンヤ プリ
Chetanya Puri
チェタンヤ プリ
アヤン ムカージー
Mukherjee Ayan
アヤン ムカージー
ロハン バナージー
Banerjee Rohan
ロハン バナージー
アニルバン ドゥッタ チョウドゥリー
Dutta Choudhury Anirban
アニルバン ドゥッタ チョウドゥリー
アリジット ウキル
Ukil Arijit
アリジット ウキル
ソマ バンドョパダイヤイ
Bandyopadhyay Soma
ソマ バンドョパダイヤイ
アルパン パル
Arpan Pal
アルパン パル
サンディープ カンデルワル
Khandelwal Sundeep
サンディープ カンデルワル
リトゥラジ シン
Rituraj Singh
リトゥラジ シン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Consultancy Services Ltd
Original Assignee
Tata Consultancy Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Consultancy Services Ltd filed Critical Tata Consultancy Services Ltd
Publication of JP2019055173A publication Critical patent/JP2019055173A/ja
Application granted granted Critical
Publication of JP6786536B2 publication Critical patent/JP6786536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2148Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/347Detecting the frequency distribution of signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2431Multiple classes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

【課題】律動を分類するためのロバストでより効率的なシステムおよび方法を提供する。【解決手段】取得された単極誘導ECG信号からクリーンなECG信号を得るスペクトログラムベースのノイズ除去と、抽出された特徴のプールから最適特徴を選択する、分類の各層での最適特徴の選択と、クラシファイアの各層でクリーンなECG信号中の律動を識別する多層カスケード2値クラシファイアとを実装することにより、律動、例えば、正常、AF、他の異常律動、および多ノイズECG記録を分類するためのロバストでより効率的なシステムおよび方法を提供する。【選択図】図3

Description

関連出願および優先権の相互参照
本特許出願は、2017年9月19日に出願のインド国特許出願第201721033210号に基づく優先権を主張する。
技術分野
本明細書の開示は、一般に心電図(ECG:electrocardiogram)の信号解析に関し、さらに具体的には、カスケード2値クラシファイアを用いて単極誘導心電図(ECG)信号中の律動を識別するためのシステムおよび方法に関する。
心房細動(AF:Atrial Fibrillation)は、脳卒中、心不全、または他の合併症につながる一般的な種類の心臓病である。毎年、何百万人もの人々がAFを患い、この病気の有病率は増大する傾向にある。AFの非侵襲的検出は、かなり長期に亘って研究活動のポピュラーな分野になっている。心拍の不整は、AFの最も一般的な症候と考えられ、ECGで追跡することができる。しかしながら、AFは一時的発症であり、その正確な検出は必ずしも容易なことではない。従来式のAF検出器は、ほとんどが心房活動解析ベース、または心室応答解析ベースの方法をとっている。心房活動解析ベースのAF検出器では、TQ間隔中のP波の欠如またはf波の存在が調べられる。他方、心室応答解析ベースの方法では、心拍不整を識別するために、RR間隔から時間、周波数、および形態学的特徴が抽出される。しかしながら、旧来式の方法は、リアルタイム展開に関しいくつかの限界を有しており、第1に、それらのほとんどは、臨床的に容認された誘導ECG信号の倍数で、比較的に長い持続時間の間記録されて確認されている。第2に、アルゴリズムのほとんどが、注意深く選択されたクリーンなデータに適用されている。しかしながら、実際の状況では、ECG信号は多くの場合、本来的にノイズが多いものである。第3に、多くの場合、検査用データセットのサイズが結論(または決定)を出すのに適切でなく、これにより誤分類が生じている。最後に、ほとんどの旧来式または従来式方法は、AF記録と正常記録との間の2項分類だけを行っている。また一方、AFと類似の心拍パターンを示す、多くの非AFの異常律動(例えば、頻脈、徐脈、不整脈など)があるが、これら非AFの異常律動は、分類の考慮対象となっていない。データセット中でこれらを考慮したとしても、分類作業がより難しくなる。
本開示の実施形態は、本発明者らによって従来式システム中で認識された前述の技術的問題の1つ以上に対するソリューションとして技術的改良を提供する。例えば、一態様において、カスケード2値クラシファイアを用いる、単極誘導心電図(ECG)信号中の律動を識別するためのプロセッサ実装の方法が提供される。本方法は、1つ以上のハードウェアプロセッサによって、所定時間間隔の間記録された単極誘導心電図(ECG)信号を取得するステップと、クリーンなECG信号を得るため、1つ以上のハードウェアプロセッサによって、取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用するステップと、クリーンなECG信号から1つ以上の特徴を抽出するステップと、最適特徴選択技法を使って、この1つ以上の抽出された特徴から1つ以上の最適特徴を選択するステップであって、最適特徴選択技法は、最小冗長性最大関連性(mRMR:minimum redundancy maximum relevancy)技法、および最大情報係数(MIC:Maximal Information Coefficient)技法のうちの少なくとも1つである、この選択するステップと、2値カスケードクラシファイアを用いて、この選択された1つ以上の最適特徴に基づき、単極誘導心電図(ECG)信号およびクリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別するステップと、を含む。
或る実施形態において、1つ以上のハードウェアプロセッサによって、取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用するステップは、取得された単極誘導ECG信号を、複数のウィンドウにリアルタイムで分割するステップと、これら複数のウィンドウの各々のスペクトログラムをリアルタイムで計算するステップと、複数のウィンドウの各々の計算されたスペクトログラムと動的に計算された閾値との比較をリアルタイムで行うステップであって、この動的に計算された閾値は信号対ノイズ比(SNR:signal to noise ratio)に基づいている、この比較を行うステップと、この比較に基づいて、複数のウィンドウの少なくとも一サブセット中のノイズをリアルタイムで算定するステップと、複数のウィンドウの少なくとも一サブセット中のこの算定されたノイズに基づいて、クリーンなECG信号を抽出するステップと、を含み得る。
或る実施形態において、複数のウィンドウの少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するときに、このサブセットにおいてノイズが算定される。
別の態様において、カスケード2値クラシファイアを用いて、単極誘導心電図(ECG)信号中の律動を識別するためのシステムが提供される。本システムは、命令を格納するメモリと、1つ以上の通信インターフェースと、この1つ以上の通信インターフェースを介してメモリに連結された1つ以上のハードウェアプロセッサとを含み、これら1つ以上のハードウェアプロセッサは、命令によって、所定の時間間隔の間記録された単極誘導心電図(ECG)信号を取得し、クリーンなECG信号を得るため、取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用し、クリーンなECG信号から1つ以上の特徴を抽出し、最適特徴選択技法を使って、この1つ以上の抽出した特徴から1つ以上の最適特徴を選択し、最適特徴選択技法は、最小冗長性最大関連性(mRMR)技法、および最大情報係数(MIC)技法のうちの少なくとも1つであり、ならびに、2値カスケードクラシファイアを用いて、この選択された1つ以上の最適特徴に基づき、単極誘導心電図(ECG)信号およびクリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別する、ように構成される。
或る実施形態において、クリーンなECG信号は、取得された単極誘導ECG信号に対しスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用し、取得された単極誘導ECG信号を、複数のウィンドウにリアルタイムで分割し、これら複数のウィンドウの各々のスペクトログラムをリアルタイムで計算し、複数のウィンドウの各々の計算されたスペクトログラムと動的に計算された閾値との比較をリアルタイムで行い、この動的に計算された閾値は信号対ノイズ比(SNR)に基づいており、この比較に基づいて、複数のウィンドウの少なくとも一サブセット中のノイズをリアルタイムで算定し、および、複数のウィンドウの少なくとも一サブセット中のこの算定されたノイズに基づいて、クリーンなECG信号をリアルタイムで抽出する、ことによって抽出される。
或る実施形態において、ノイズは、複数のウィンドウの少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するときに、このサブセットにおいて算定される。
さらに別の態様において、1つ以上の命令を含む1つ以上の非一時的マシン可読情報ストレージ媒体が提供される。これら1つ以上の命令は、1つ以上のハードウェアプロセッサによって実行されると、この1つ以上のハードウェアプロセッサによって、所定時間間隔の間記録される単極誘導心電図(ECG)信号を取得させ、クリーンなECG信号を得るため、1つ以上のハードウェアプロセッサによって、取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用させ、クリーンなECG信号から1つ以上の特徴を抽出させ、最適特徴選択技法を使って、この1つ以上の抽出された特徴から1つ以上の最適特徴を選択させ、最適特徴選択技法は、最小冗長性最大関連性(mRMR)技法、および最大情報係数(MIC)技法のうちの少なくとも1つであり、ならびに、2値カスケードクラシファイアを用いて、この選択された1つ以上の最適特徴に基づき、単極誘導心電図(ECG)信号およびクリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別させる。
或る実施形態において、1つ以上のハードウェアプロセッサによって、取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法を適用するステップは、取得された単極誘導ECG信号を複数のウィンドウに分割するステップと、この複数のウィンドウの各々のスペクトログラムを計算するステップと、複数のウィンドウの各々の計算されたスペクトログラムと、動的に計算された閾値との比較を行うステップであって、この動的に計算された閾値は信号対ノイズ比(SNR)に基づいている、この比較を行うステップと、この比較に基づいて、複数のウィンドウの少なくとも一サブセット中のノイズを算定するステップと、複数のウィンドウの少なくとも一サブセット中のこの算定されたノイズに基づいて、クリーンなECG信号を抽出するステップと、を含み得る。
或る実施形態において、このノイズは、複数のウィンドウのこの少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するときに、このサブセットにおいて算定される。
当然のことながら、前述の概要説明および以降の詳細な説明の両方は、例示のためだけのものであり、本発明の請求対象を限定するものではない。
本開示に組み入れられその一部を構成する添付の図面は、例示的な実施形態を表し、説明と併せ開示対象の原理を解説する役割を果たす。
本開示の或る実施形態による、カスケード2値クラシファイアを用いて、単極誘導心電図(ECG)信号中の律動を識別するためのシステムの例示的なブロック図を表す。 本開示の或る実施形態による、図1のシステムによって実行される、カスケード2値クラシファイアを用いて単極誘導心電図(ECG)信号中の律動を識別する方法の例示的な流れ図を表す。 本開示の或る例示の実施形態による、図1のシステムの例示的なアーキテクチャを表す。 本開示の或る例示の実施形態による、スペクトログラムベースのノイズ除去のグラフィカル表現を表す。 本開示の或る例示の実施形態による、単極誘導ECG信号上のPQRST検出のグラフィカル表現を表す。
例示的な実施形態を、添付の図面を参照しながら説明する。これらの図において、参照符号の最左の数字は、その参照符号が最初に出現した図を識別する。図面全体を通して、便利な場合は常に、同じまたは類似の部分を指すために同じ参照符号が用いられる。本明細書では開示対象の原理の例および特徴を説明するが、開示された実施形態の趣旨および範囲を逸脱せずに、修改、改作、および異なった実装が可能である。以降の詳細な説明は単なる例示と見なすように意図されており、本来の範囲および趣旨は添付の特許請求の範囲に示されている。
(背景技術の段落で)前述したように、旧来式(または従来式)のシステムおよび/または方法はそれら自体の限界を有し、それ故、ECG信号を誤分類する傾向があり、それによりアンバランスなマルチラベル分類問題をもたらすことがある。本開示の実施形態は、正常、AF、その他の異常律動、および多ノイズECG記録を分類するためのロバストでより効率的な技法についてのシステムおよび方法を提供する。さらに具体的には、本開示の実施形態は、カスケード2値クラシファイアを用いて単極誘導心電図(ECG)信号中の律動を識別するためのシステムおよび方法を提供する。本開示の実施形態は、内部のパフォーマンス評価およびトレーニングモデルの生成に使われた多様なECGデータセット(フィジオネットチャレンジ2017中に掲載されている)での実験結果を提示する。全ての非AF関連の異常律動は一緒にまとめられて単一のクラスを形成しているので、このデータセット中ではその他の律動についての個別の記録に関する情報は利用できなかった。本開示の実施形態は、1)単一の多クラスクラシファイアの代わりに、多層のカスケード2値クラシファイアと、2)フロントエンドのノイズ除去と、3)各層の分類での特徴のプールからの最適特徴の選択と、を実装することによって、単極誘導心電図(ECG)信号中の律動を識別する。
ここで図面を、さらに具体的には図1〜図5を参照すると、同様な参照文字は図を通して一貫して対応する特徴を表していて、好適な実施形態が示されており、これらの実施形態を以降の例示的なシステムおよび/または方法に関連させて説明する。
図1は、本開示の或る実施形態による、カスケード2値クラシファイアを用いて、単極誘導心電図(ECG)信号中の律動を識別するためのシステム100の例示的なブロック図を表す。或る実施形態において、システム100は、1つ以上のプロセッサ104と、通信インターフェースデバイスまたは入力/出力(I/O:input/output)インターフェース106と、1つ以上のプロセッサ104に動作可能に連結された1つ以上のデータストレージデバイスまたはメモリ102とを含む。1つ以上のプロセッサ104は、1つ以上のソフトウェアの処理モジュールおよび/またはハードウェアのプロセッサであってよい。或る実施形態において、このハードウェアプロセッサは、1つ以上のマイクロプロセッサ、マイクロコンピュータ、マイクロコントローラ、デジタル信号プロセッサ、中央処理装置、状態マシン、ロジック回路、および/または、動作命令に基づいて信号を操作する任意のデバイスとして実装することができる。このプロセッサは、他の機能に加えて、メモリ中に格納されたコンピュータ可読命令をフェッチし、実行するように構成される。或る実施形態では、デバイス100は、ラップトップコンピュータ、ノートブック型、ハンドヘルドデバイス、ワークステーション、メインフレームコンピュータ、サーバ、ネットワーククラウドなど、様々なコンピューティングシステムに実装されてよい。
I/Oインターフェースデバイス106は、例えば、ウェブインターフェース、グラフィカルユーザインターフェースなどの様々なソフトウェアおよびハードウェアインターフェースを含むことができ、例えばLAN、ケーブルなどの有線ネットワーク、ならびにWLAN、セルラーまたは衛星などのワイヤレスネットワークを含め、多種多様なネットワークN/Wおよびプロトコルタイプ内での多地点通信を容易化することができる。或る実施形態において、これらI/Oインターフェースデバイスは、多くのデバイスを相互にまたは別のサーバに接続するために1つ以上のポートを含むことが可能である。
メモリ102は、例えば、スタティックランダムアクセスメモリ(SRAM:static random access memory)、ダイナミックランダムアクセスメモリ(DRAM:dynamic random access memory)などの揮発性メモリ、および/または読み取り専用メモリ(ROM:read only memory)、消去およびプログラム可能ROM、フラッシュメモリ、ハードディスク、光ディスクおよび磁気テープなどの不揮発性メモリを含む、当該技術で周知の任意のコンピュータ可読媒体を含んでよい。或る実施形態において、データベース108はメモリ102に格納することができ、データベース108は、信号(例えば、生データおよびクリーンな信号)、抽出された特徴、最適特徴、律動の型(例えば、正常、異常、心房細動(AF)、非AF、トレーニングデータセット、検査用データセットなど)に関する情報を含み得るが、これらに限らない。或る実施形態では、メモリ102は、クラシファイア(例えば、カスケード2値クラシファイア)、例えばスペクトログラムベースの多ノイズデータ除去技法、特徴抽出技法、最小冗長性最大関連性(mRMR)技法および/または最大情報係数(MIC)技法などの最適特徴選択技法、および同類のものなどを格納することができ、これらは、1つ以上のハードウェアプロセッサ104によって(またはシステム100によって)本明細書に記載の方法を遂行するために実行される。
図1を参照しながら見ると、図2は、本開示の或る実施形態による、図1のシステム100によって実行される、カスケード2値クラシファイアを用いて単極誘導心電図(ECG)信号中の律動を識別する方法の例示的な流れ図を表している。或る実施形態において、システム100は、1つ以上のハードウェアプロセッサ104に動作可能に連結された、1つ以上のデータストレージデバイスまたはメモリ102を含み、1つ以上のプロセッサ104によって本方法のステップを実行するための命令を格納するように構成される。システム100は、ECG信号に関連する値/情報(および/またはパラメータ、特徴、律動など)を格納する。本開示の方法のステップを、図1および図3に示されたシステム100のコンポーネント、および図2の流れ図を参照しながら、以下に説明する。本開示の或る実施形態では、ステップ202で、1つ以上のハードウェアプロセッサ104は、所定の時間間隔(例えば短い持続期間−例えば30秒)の間記録された単極誘導心電図(ECG)信号(以降、ECG信号、またはECG波形とも言う)を取得する。或る実施形態では、このECG信号は、1つ以上のウェアラブルデバイス(例えば、スマート腕時計、健康バンド、フィットバンドなど)またはユーザの健康データを記録する機能のある任意の他のデバイスを用いて記録されてよい。
単極誘導、非医療グレードの装置を使って記録されたECG信号は本来的にノイズが多い。記録中のユーザの身体の動き、センサデバイスの電圧の変動、または被験者身体とセンサ電極との間の不適切な接触は、信号を大きく掻乱する。また呼吸による低周波成分も存在する。信号内の多ノイズ部分を突き止め棄却することが、特徴の抽出および分類の前の必須条件と考えられる。本開示の或る実施形態において、ステップ204で、1つ以上のハードウェアプロセッサ104は、クリーンなECG信号を得るため、取得した単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用する。本開示の或る実施形態において、クリーンなECG信号は次のようにして得られる。取得された単極誘導ECG信号を複数のウィンドウに分割し、これら複数のウィンドウの各々のスペクトログラムを計算し、複数のウィンドウの各々の計算されたスペクトログラムと動的に計算された閾値との比較を行い、この閾値は動的に計算され、この比較に基づいて複数のウィンドウの少なくとも一サブセット中のノイズを算定し、および、複数のウィンドウの少なくとも一サブセット中のこの算定されたノイズに基づいて、クリーンなECG信号を抽出する。或る例示の実施形態では、これら分割を行い、スペクトログラムを計算し、比較を行い、ノイズを算定するステップは、リアルタイムで(またはほぼリアルタイムで)行われる。或る実施形態において、動的に計算される(またはリアルタイムで計算される)この閾値は、信号対ノイズ比(SNR)に基づく。本開示の或る実施形態では、記録(またはECG信号)中の全てのウィンドウに対してSNRが測定される。最大SNR値と最小SNR値との間の差異が最小値の「n」倍(例えば、3倍など)であれば、最大SNRのx%が、多ノイズウィンドウを棄却するための閾値尺度となる(例えば、最大SNRの75%が閾値尺度となり、これは動的に計算された閾値とも言われる)。言い換えれば、最大SNRの75%が動的に計算された閾値であると言える。本開示の或る実施形態において、ノイズは、複数のウィンドウの少なくとも一サブセットの各ウィンドウが「X」ヘルツ(例えば50Hz)より上で閾値電力を上回る電力(例えば高スペクトルパワー)を有するときに、このサブセットにおいて算定される。言い換えれば、50Hzより上で閾値電力(閾値「P」とも言う)を超える電力を有するECG信号(例えば、取得された単極誘導ECG信号)の部分を含むサブセットの各ウィンドウが、多ノイズウィンドウと見なされ、かくして、クリーンなECG信号を得るために棄却される。
重要な心臓情報は、通常、ECG波形/信号中の20Hz以内に格納されている。かくして、時間軸に亘るスペクトログラムをプロットを追って、引き続くRR間隔(ここで、RはECG信号のQRS群(後記参照)のピークに対応する点であり、RRは、(図4のグラフィカル表現に示されるような)50Hzより上の高スペクトルパワーを有する、引き続くRの間の間隔である)の領域が見付かった場合、それは、多ノイズとして間違いなくマークすることができ、さらなる処理をする前に棄却される。さらに具体的には、図1〜図3を参照しながら見ると、図4は、本開示の或る例示の実施形態による、スペクトログラムベースのノイズ除去のグラフィカル表現を表している。さらに、信号のベースラインの動きを除去するため、クリーン信号は、ハイパスフィルタ(カットオフ周波数0.5Hz)を通される。或る特定の波形(例えば、単極誘導ECG信号)のX%(例えば80%)を超えるものがこのプロセスで棄却された場合、それは多ノイズとしてマークされる。
区別化する特徴のセットを識別することは、あらゆる分類問題の最重要課題であると見なされている。P、Q、R、S、T点の正確な検出は、正確な特徴抽出のための第1の要件である。システム100は、QRS群およびRピークを識別するために、1つ以上の技法(例えば、変形パントンプキンス技法)を実装する。QRS群は、標準的な心電図(EKGまたはECG)上に見られるグラフ上の3つの屈折点の組み合わせに対する名称である。これは、通常、トレーシングの中央にあり最も視覚的に顕著な部分である。これは、ヒトの心臓の右心室および左心室の脱分極に対応する。次の段階で、(図5に示されるように)Rピークを基準点として、P、Q、S、およびT点が位置決めされる。さらに具体的には、図1〜図4を参照しながら見ると、図5は、本開示の或る例示の実施形態による、単極誘導ECG信号上のPQRST検出のグラフィカル表現を表している。本開示の或る実施形態において、ステップ206で、1つ以上のハードウェアプロセッサ104は、クリーンなECG信号から1つ以上の特徴を抽出する。このクリーンなECG信号からの1つ以上の特徴は、以下に例として示した1つ以上のカテゴリに大別することができる。
形態的ECG特徴:
形態的ECG特徴は、図5に表されているようなECG波形中で検出されたPQRST点から導出される。本開示の或る実施形態において、これらの特徴は、以下に限らないが、とりわけ、補正済みのQT間隔(QTc)、QRおよびQRSの幅、QRの傾斜、RSおよびSTの間隔、QおよびS点のRに対する深さ、TR波の振幅差、のメディアン、範囲、および分散、ならびに、R波の数に対するP波の数の比率、およびS点から横切るST線分の距離を含み得る。これらの特徴は、心臓の異常を識別するため、臨床医によって広く使われている。なお、これらの特徴のいくつかはAFを示唆するが、それ以外は他の異常律動を検出するためのものである。例えば、AFでは、多くの場合、P波が不在で、それ故、検出されたR波の数に対するP波の数の比率は非常に小さいはずである。それ故、この特定の特徴は、図3に示すように、カスケード2値クラシファイアの、層1のクラシファイアおよび層2のクラシファイア3によって選択されたが、但し、層2のクラシファイア2には選択されなかった。さらに具体的には、図1〜図2を参照しながら見ると、図3は、本開示の或る例示の実施形態による、図1のシステム100の例示的なアーキテクチャを表している。
AFの特徴:
AF事象を識別するためにいくつかの特徴が用いられる。不整なRR間隔は、AF患者において非常に一般的な症候である。AFを識別するためのいくつかの指標がある。例えば、AFEvidence(AFの証拠)、Original Count(元来のカウント)、Irregularity Evidence(不整の証拠)、Pace Count(ペースカウント)、Density Evidence(密度の証拠)、Anisotropy Evidence(異方性の証拠)、RR間隔のローレンツプロットからのAFEvidenceなど、いくつかの計測値が提案されてきた。いくつかの特徴は、AFの識別において推賞的な正確さでも知られているポアンカレプロットを用いてビート間の間隔から導出される。他の特徴は、AF検出に対する近似的なサンプルエントロピーベースの特徴、ならびにRRおよびデルタRR間隔の変動係数を含む。
心拍変動特徴:
いくつかのHRV関連の特徴もまた、提案する解析に組み込まれる。例えば、pNNx(記録の持続期間によって正規化された、xを上回るNN間隔の数、このxは20〜500msの間にある)、SDNN(NN間隔の標準偏差)、SDSD(逐次差分の標準偏差)、および正規化RMSSD(逐次差分の正規化二乗平均平方根)などの特徴が、心臓血管疾患の識別に用いられた。0〜0.04Hz、0.04〜0.15Hz、および0.15〜0.5Hzの周波数域内のRR間隔時系列の正規化スペクトルパワーもまた、使われている。
周波数特徴:
本開示の実施形態は、生物医学および他の用途に使われている特定の周波数領域の特徴もまた、調査した。生の時間信号は、ハミングウィンドウを使って、Y%(例えば、50%)のオーバーラップを有する、「n」秒の持続期間(例えば、2秒の持続期間)の小さなウィンドウに分割される。周波数解析は、各ウィンドウの短時間フーリエ変換(STFT:Short Time Fourier Transform)を計算することによって行われる。抽出された特徴は、以下に限らないが、測定の全ウィンドウに亘り、0〜10Hzおよび10〜20Hzの間の正規化スペクトルパワーとともに、平均スペクトル中心、スペクトルロールオフ、スペクトルフラックスを含む。
統計的特徴:
統計的特徴は、以下に限らないが、RR間隔の平均値、メディアン、分散、範囲、尖度および歪み、ならびにRR間隔およびデルタRR間隔の確率密度推定値(PDE:probability density estimate)を含む。加えて、RRピークの間でのエネルギの分散とともに、RRおよびデルタRR間隔のPDE上のピークの数も特徴として用いられた。本開示の実施形態によって、クリーンなECG信号中の律動を識別するために、生の時系列データのシャノン、ツァリス、およびレーニイエントロピ、線形予測係数(LPC:Linear Predictive Coefficient)も、抽出特徴として使われた。
その他異常についての特徴:
本開示の実施形態(またはシステム100)は、ECG信号中に存在する不整脈または他の非AFに関連する異常を検出するため、主要特徴のいくつかを抽出するよう試みる。本開示の或る実施形態において、用いられる様々な特徴は、ウィンドウごとに「x」のピーク(例えば、ウィンドウあたり6つのピーク)を有するスライディングウィンドウ、その平均RR間隔、このウィンドウ中の「z」mV(例えば、z=0.1mV)を超える大きさのサンプルの数の第1差の最大値、このウィンドウの正規化パワースペクトル密度(nPSD:normalized power spectrum density)などを用いて抽出される。RR間隔の平均値、HRの減少、最大SPIインデックス、平均HR、異常HRなどとして特徴を導出するために、適応周波数追跡アルゴリズム(AMM)を使って心拍数が見積もられる。
多ノイズ記録を検出するための特徴:
信号のいろいろな部分のノイズ/動きのアーチファクトを検出するいくつかのやり方がある。しかしながら、心異常導出のため、完全な信号を全く使えない(またはほとんど使えない)ときがある。本開示の実施形態は、改良されたノイズ検出のため、ECG信号の形態中の立ち上がり立ち下りを利用する特定の統計的特徴とともに、領域依存型の時間および周波数特徴を使用する。これらの特徴は、クリーンなECG信号の規則性とそれに対する多ノイズ波形の中の乱雑性との間を十分に区別する。
図2に戻って参照すると、本開示の或る実施形態において、ステップ208で、1つ以上のハードウェアプロセッサ104は、最適特徴選択技法を用いて、1つ以上の抽出特徴から1つ以上の最適特徴を選択する。
特徴選択は、多くの場合、多ノイズの(無関係な)特徴を除去することによって分類の正確さを向上し、また、余分な特徴を除去することによって計算時間も低減する。例えば、以下に限らないが、最大情報係数(MIC)技法、および最小冗長性最大関連性(mRMR)技法など、1つ以上統計的特徴選択技法(以降、最適特徴選択技法とも言う)を用いて効率的に選ばれ、トレーニングフェーズの過程で確定される、提案した方法論の3つのクラシファイアのそれぞれにおいて、別個の特徴のセットが使われる。また、分類の或る特定のレベルに対して医師によって推奨される特徴も選択特徴のリストに組み入れられた。
本開示の或る実施形態において、ステップ210で、1つ以上のハードウェアプロセッサ104は、選択された1つ以上の最適特徴に基づいて、2値カスケードクラシファイアを使い、単極誘導心電図(ECG)信号およびクリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動(正常)、異常律動の第1セット(その他)、および異常律動の第2セット(AFおよび多ノイズ)のうちの少なくとも1つを識別する。本開示の或る実施形態では、カスケード2値クラシファイアの(層1に示されるような)第1の2値クラシファイアは、律動の「A」セット(例えば、正常およびその他)および律動の「B」セット(例えば、AFおよび多ノイズ)を出力または識別する。本開示の或る実施形態では、律動の「A」セットは、1つ以上の正常律動およびその他の律動を指してよく、律動の「B」セットは、AF律動および多ノイズを指してよい。
言い換えれば、システム100は、未知の短い単極誘導ECG信号を、正常、AF、その他の多ノイズ律動、および多ノイズ記録を含む4つのクラスのうちの1つに分類する。この課題の主要な問題は、単一の試み(または単一のインスタンス)で4つのクラスに分級できる単一の特徴がないことである。例えば、不整なHRVは、正常とAFとの間の一般的差別化因子である。しかしながら、他の律動も同様な特性を有し、これがクラシファイアに曖昧さを持ち込む。かくして、本開示の実施形態およびシステム100は、カスケード2値クラシファイアを含み、これは、1つ以上のハードウェアプロセッサ104によって実行されると、クリーンなECG信号中の、1つ以上の正常律動およびその他の律動を表し得る(that by be referred)律動の「A」セットを識別し、ここで、律動の「B」セットはAF律動および多ノイズを表し得る。
本開示の或る実施形態において、システム100中に実装され実行されるカスケード2値クラシファイアは、図3に示されるような2つの引き続く層につながれた3レベルのクラシファイアである。各層において2値クラシファイアが実行される。各レベルで、前述の1つ以上の統計的特徴抽出技法を使って、対応する区別化特徴が選択される。例えば、AFおよび多ノイズ両方の律動は、高周波ノイズ成分を包含する。一方、正常およびAFは類似の周波数特徴パターンを示す。かくして、スペクトル中心、スペクトルロールオフ、スペクトルフラックスなどの特徴は、これらを2つのクラス「正常+その他」と「AF+多ノイズ」とに非常にうまく分離することができる。次いで、次レベルで、システム100(またはカスケード2値クラシファイア)はより細かな分類を行う。例えば、正常ECG信号は、RR間隔中に規則的なパターンを有し、心拍数は或る特定の限度内にある。一方、他の律動に対しては、HRV特徴はあまり安定的ではない(またはその可能性がある)。図3に示される3レベルのクラシファイアを通過する際、最適特徴選択技法を使って、これらの種類の特徴が選択される。他方、AF信号については、しばしばP波が喪失しているのが見られ、これは多ノイズ記録では発見されず、さらに、多ノイズ記録は、AF中には存在しない高周波スペクトル成分を有する。これらの種類の特徴は、分類のため、クラシファイアの第3ラベル(例えば、図3中に示されたクラシファイア3)で選択される。本開示の或る実施形態では、分類の各レベルに対し、分類のため適応型ブースティング(AdaBoost:Adaptive Boosting)が用いられ、その詳細はドラフトペーパーに記載されている。AdaBoost(適応型ブースティング)は分類の全レベルで使用される。AdaBoostは、集合的学習アプローチであり、多くの弱学習子が、トレーニングの各ラウンドで反復的に加えられ、誤分類率を低減するため重み付けベクトルが調整される。この技法は、過学習になる傾向が少なく、多ノイズデータおよび外れ値に敏感で、トレーニングセット中のクラスラベルアンバランスを処理することができる。これら3つのクラシファイアの各々に対し、集合的なクラシファイアの2つのパラメータ、すなわち、学習サイクルの回数と学習速度とが、ベイズの最適化関数を使って最適化される。
実験結果:
フィジオネットのデータセットに対して実験が行われた。このデータセットは、平均持続期間が32.5秒の合計8528の記録を含んでいた。これらの全ては、AliveCor社製デバイスを用い記録され300Hzでサンプルされた単極誘導ECG信号であった。このデータセットでは、正常、AF、その他の律動、および多ノイズデータの分布は、大きくアンバランスであった。パフォーマンス解析のため、正常(Fnorm)、AF(Faf)およびその他の律動(Foth)に対するF1スコアが計算され、最終的正確さは、下記の例証的な式で報告された。
=((Fnorm+Faf+Foth)/3)
本開示の実施形態および図2で提案された方法が、最初に、5重交差検証を使ってトレーニングデータセット全体に適用され、そのパフォーマンスが例示のため下記の表1に示されている。
上記の表1から、図2で提案の方法は、各種の検査シナリオを通しての小さな標準偏差値のおかげで、5重交差検証の各回に亘って、十分に安定的であることが観察できる。また、この方法が、正常の記録の分類(または識別)において非常に高いF1スコア(平均値0.9)を示し、その他の律動の検出のF1スコアは約0.77であることも観察できる。詳細に検査すると、その他の律動の多くが誤って正常に分類されていることが分かる。この特定のクラス中の各記録に対応する実際の疾病情報が利用できないので、適切な特徴を識別する分類作業がより難しくなり、かくして分類の正確さが低下する。トレーニングデータセット全体についての最終的トレーニングモデルが生成され、サーバにある隠れた検査データセットのサブセットに対して評価された。下記の表2は、例証のため、隠れた検査データセットのサブセットに対する提案された方法のパフォーマンスを示す。
表2から、トレーニングセットに対する内部交差検証に比べ、この検査データセットに対するAF律動の検出(または識別)のパフォーマンスは格段に改善されていることが観察できる。他方で、その他の律動の検出(または識別)のパフォーマンスはわずかに低下し、正常の記録の検出はほぼ同じであった。
本開示の実施形態およびシステム100は、多層カスケード2値クラシファイア(カスケード2値クラシファイアとも言う)のシリーズを用いて、(短期の)単極誘導ECG記録(例えば、30秒記録のECG信号)中の1つ以上律動を識別する。提案された方法は、前述のように、フィジオネット(2017)データセットに対して成功裏に検証されている。
本記載内容は、いずれかの当業者がこれらの実施形態を作製および使用できるように本明細書の主題を説明している。本主題の実施形態の範囲は、特許請求の範囲によって定義され、当業者が発想する他の修改を含み得る。かかる他の修改は、それらが、特許請求の範囲の文字言語から外れない類似の要素を有する場合、または特許請求の範囲の文字言語からごくわずかな差異のある等価の要素を含む場合、本特許請求の範囲内にあるとすることが意図されている。
当然のことながら、保護の範囲は、かかるプログラムに加え、メッセージを中に有するコンピュータ可読手段にも及び、かかるコンピュータ可読ストレージ手段は、プログラムがサーバもしくは携帯デバイスまたは任意の適したプログラム可能デバイス上で実行されたとき、本方法の1つ以上のステップを遂行するためのプログラムコード手段を包含する。ハードウェアデバイスは、例えば、サーバもしくはパソコン等、またはこれらの任意の組み合せなど任意の種類のコンピュータを含め、プログラムが可能な任意の種類のデバイスであってよい。また、このデバイスは、例えば、例として特定用途向け集積回路(ASIC:application−specific integrated circuit)、フィールドプログラマブルゲートアレイ(FPGA:field−programmable gate array)などのハードウェア手段、または、例えばASICとFPGA、もしくは少なくとも1つのマイクロプロセッサとソフトウェアモジュールが配置された少なくとも1つのメモリなど、ハードウェアおよびソフトウェア手段の組み合わせ、であってよい手段を含むことが可能である。かくして、この手段は、ハードウェア手段およびソフトウェア手段の両方を含むことができる。本明細書に記載の方法の実施形態は、ハードウェアおよびソフトウェア中に実装することができよう。また、このデバイスはソフトウェア手段も含むことが可能である。あるいは、これら実施形態は、例えば、複数のCPUを使うなど、各種のハードウェアデバイス上に実装されてもよい。
本明細書中の実施形態は、ハードウェアおよびソフトウェア要素を含むことができる。ソフトウェア中に実装される実施形態は、以下に限らないが、ファームウェア、常駐ソフトウェア、マイクロコードなどを含む。本明細書中に記載の様々なモジュールによって実行される機能は、他のモジュール、または他のモジュールの組み合せ中にも実装が可能である。本明細書の目的の上で、コンピュータ可用またはコンピュータ可読媒体は、命令実行システム、装置、もしくはデバイスによって、またはこれらに関連させて使用するためのプログラムを含み、格納し、通信し、伝播し、または伝送ができる任意の装置であってよい。
例示されたステップは、提示の例示的な実施形態を説明するために述べられており、当然のことながら、進展する技術開発により特定の機能が実行される仕方が変わることになろう。本明細書中のこれらの例は例証のため提示されており、限定のためではない。さらに、ブロックを構成する機能の境界は、本明細書では説明の便宜上随意的に定義されている。規定された機能およびそれらの関係が適切に実行される限りにおいて、別の境界を定義することも可能である。当業者には、本明細書に包含された教示に基づく代替案(本明細書に記載されたものの等価物、拡張、変形、変成などを含む)は自明であろう。かかる代替案は、開示された実施形態の範囲および趣旨に包含される。また、用語「含む(comprising)」、「有する(having)」、「包含する(containing)」、および「内包する(including)」、ならびに他の類似の表現形は、意味において等価であることが意図され、これらの用語の何れかに続く項目または項目群が、かかる項目または項目群の全網羅的リストアップを意味するわけでなく、記載された項目または項目群だけの限定を意味するという点で、制限のないことが意図されている。また、本明細書および添付の特許請求の範囲で用いられる、単数形「或る(a、an)」、および「前記(the)」は、文脈上明確に別途に示されていなければ、複数の参照も含むことに留意しなければならない。
さらに、本開示と合致する実施形態を実装するのに、1つ以上のコンピュータ可読ストレージ媒体が用いられてよい。コンピュータ可読ストレージ媒体とは、プロセッサが可読の情報またはデータの格納が可能な任意の種類の物理メモリを言う。かくして、コンピュータ可読ストレージ媒体は、1つ以上のプロセッサに本明細書に記載の実施形態に合致するステップまたはステージを実行させる命令を含め、これらプロセッサによる実行のための命令を格納することが可能である。用語「コンピュータ可読媒体」は有形の品目を含み、搬送波および一時的信号を除く(すなわち、非一時的である)と理解すべきである。例には、ランダムアクセスメモリ(RAM:random access memory)、読み取り専用メモリ(ROM)、揮発性メモリ、不揮発性メモリ、ハードドライブ、CDROM、DVD、フラッシュドライブ、ディスク、および任意の他の周知の物理ストレージ媒体が含まれる。
本開示および例は単なる例示であると見なし、開示された実施形態の真の範囲および趣旨は添付の特許請求の範囲によって示すことが意図されている。

Claims (15)

  1. 1つ以上のハードウェアプロセッサによって、所定時間間隔の間記録された単極誘導心電図(ECG)信号を取得するステップと、
    クリーンなECG信号を得るため、前記1つ以上のハードウェアプロセッサによって、前記取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用するステップと、
    前記クリーンなECG信号から1つ以上の特徴を抽出するステップと、
    最適特徴選択技法を使って、前記1つ以上の抽出された特徴から1つ以上の最適特徴を選択するステップと、
    2値カスケードクラシファイアを用いて、前記選択された1つ以上の最適特徴に基づき、前記単極誘導心電図(ECG)信号および前記クリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別するステップと、
    を含む、プロセッサ実装の方法。
  2. 前記1つ以上のハードウェアプロセッサによって、前記取得された単極誘導ECG信号に、スペクトログラムベースの多ノイズデータ除去技法を適用する前記ステップは、
    前記取得された単極誘導ECG信号を、複数のウィンドウに分割するステップと、
    前記複数のウィンドウの各々のスペクトログラムを計算するステップと、
    前記複数のウィンドウの各々の前記計算されたスペクトログラムと、動的に計算された閾値との比較を行うステップと、
    前記比較に基づいて、前記複数のウィンドウの少なくとも一サブセット中のノイズを算定するステップと、
    前記複数のウィンドウの前記少なくとも一サブセット中の前記算定されたノイズに基づいて、前記クリーンなECG信号を抽出するステップと、
    を含む、請求項1に記載のプロセッサ実装の方法。
  3. 前記複数のウィンドウの前記少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するとき、前記サブセットにおいてノイズが算定される、請求項2に記載のプロセッサ実装の方法。
  4. 前記最適特徴選択技法は、最小冗長性最大関連性(mRMR)技法、および最大情報係数(MIC)技法のうちの少なくとも1つである、請求項1に記載のプロセッサ実装の方法。
  5. 前記動的に計算された閾値は信号対ノイズ比(SNR)に基づく、請求項2に記載のプロセッサ実装の方法。
  6. 命令を格納するメモリと、
    1つ以上の通信インターフェースと、
    前記1つ以上の通信インターフェースを介して前記メモリに連結された1つ以上のハードウェアプロセッサと、
    を含むシステムであって、前記1つ以上のハードウェアプロセッサは、前記命令によって、
    所定の時間間隔の間記録された単極誘導心電図(ECG)信号を取得し、
    クリーンなECG信号を得るため、前記取得された単極誘導ECG信号に、スペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用し、
    前記クリーンなECG信号から1つ以上の特徴を抽出し、
    最適特徴選択技法を使って、前記1つ以上の抽出された特徴から1つ以上の最適特徴を選択し、
    2値カスケードクラシファイアを用いて、前記選択された1つ以上の最適特徴に基づき、前記単極誘導心電図(ECG)信号および前記クリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別する、
    ように構成される、
    システム。
  7. 前記クリーンなECG信号は、
    前記取得された単極誘導ECG信号を、複数のウィンドウに分割し、
    前記複数のウィンドウの各々のスペクトログラムを計算し、
    前記複数のウィンドウの各々の前記計算されたスペクトログラムと、動的に計算された閾値との比較を行い、
    前記比較に基づいて、前記複数のウィンドウの少なくとも一サブセット中のノイズを算定し、および、
    前記複数のウィンドウの前記少なくとも一サブセット中の前記算定されたノイズに基づいて、前記クリーンなECG信号を抽出する、
    ことにより、前記取得された単極誘導ECG信号に対し前記スペクトログラムベースの多ノイズデータ除去技法を適用することによって抽出される、請求項6に記載のシステム。
  8. ノイズは、前記複数のウィンドウの前記少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するときに、前記サブセットにおいて算定される、請求項7に記載のシステム。
  9. 前記最適特徴選択技法は、最小冗長性最大関連性(mRMR)技法、および最大情報係数(MIC)技法のうちの少なくとも1つである、請求項6に記載のシステム。
  10. 前記動的に計算された閾値は信号対ノイズ比(SNR)に基づく、請求項7に記載のシステム。
  11. 1つ以上の命令を含む、1つ以上の非一時的マシン可読情報ストレージ媒体であって、前記1つ以上の命令は、1つ以上のハードウェアプロセッサによって実行されると、
    前記1つ以上のハードウェアプロセッサによって、所定時間間隔の間記録される単極誘導心電図(ECG)信号を取得させ、
    クリーンなECG信号を得るため、前記1つ以上のハードウェアプロセッサによって、前記取得された単極誘導ECG信号にスペクトログラムベースの多ノイズデータ除去技法をリアルタイムで適用させ、
    前記クリーンなECG信号から1つ以上の特徴を抽出させ、
    最適特徴選択技法を使って、前記1つ以上の抽出された特徴から1つ以上の最適特徴を選択させ、ならびに
    2値カスケードクラシファイアを用いて、前記選択された1つ以上の最適特徴に基づき、前記単極誘導心電図(ECG)信号、および前記クリーンなECG信号のうちの少なくとも1つの中の、1つ以上の正常律動、異常律動の第1セット、および異常律動の第2セットのうちの少なくとも1つを識別させる、
    1つ以上の非一時的マシン可読情報ストレージ媒体。
  12. 前記1つ以上のハードウェアプロセッサによって、前記取得された単極誘導ECG信号に、スペクトログラムベースの多ノイズデータ除去技法を適用する前記ステップは、
    前記取得された単極誘導ECG信号を、複数のウィンドウに分割するステップと、
    前記複数のウィンドウの各々のスペクトログラムを計算するステップと、
    前記複数のウィンドウの各々の前記計算されたスペクトログラムと、動的に計算された閾値との比較を行うステップと、
    前記比較に基づいて、前記複数のウィンドウの少なくとも一サブセット中のノイズを算定するステップと、
    前記複数のウィンドウの前記少なくとも一サブセット中の前記算定されたノイズに基づいて、前記クリーンなECG信号を抽出するステップと、
    を含む、請求項11に記載の1つ以上の非一時的マシン可読情報ストレージ媒体。
  13. ノイズは、前記複数のウィンドウの前記少なくとも一サブセットの各ウィンドウが閾値電力を上回る電力を有するときに、前記サブセットにおいて算定される、請求項12に記載の1つ以上の非一時的マシン可読情報ストレージ媒体。
  14. 前記最適特徴選択技法は、最小冗長性最大関連性(mRMR)技法、および最大情報係数(MIC)技法のうちの少なくとも1つである、請求項11に記載の1つ以上の非一時的マシン可読情報ストレージ媒体。
  15. 前記動的に計算された閾値は信号対ノイズ比(SNR)に基づく、請求項12に記載の1つ以上の非一時的マシン可読情報ストレージ媒体。
JP2018023660A 2017-09-19 2018-02-14 単極誘導心電図(ecg)信号中の律動を識別するためのカスケード2値クラシファイア Active JP6786536B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201721033210 2017-09-19
IN201721033210 2017-09-19

Publications (2)

Publication Number Publication Date
JP2019055173A true JP2019055173A (ja) 2019-04-11
JP6786536B2 JP6786536B2 (ja) 2020-11-18

Family

ID=61163478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023660A Active JP6786536B2 (ja) 2017-09-19 2018-02-14 単極誘導心電図(ecg)信号中の律動を識別するためのカスケード2値クラシファイア

Country Status (6)

Country Link
US (1) US10750968B2 (ja)
EP (1) EP3456246A1 (ja)
JP (1) JP6786536B2 (ja)
CN (1) CN109522916B (ja)
AU (1) AU2018200751B2 (ja)
SG (1) SG10201800886TA (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110458245A (zh) * 2019-08-20 2019-11-15 图谱未来(南京)人工智能研究院有限公司 一种多标签分类模型训练方法、数据处理方法及装置
WO2023022516A1 (ko) * 2021-08-17 2023-02-23 주식회사 메디컬에이아이 딥러닝 알고리즘을 기반으로 복수개의 표준 심전도 데이터를 생성하는 방법

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553843B2 (en) * 2017-10-18 2023-01-17 Nxgen Partners Ip, Llc Topological features and time-bandwidth signature of heart signals as biomarkers to detect deterioration of a heart
FR3079405B1 (fr) * 2018-03-30 2023-10-27 Substrate Hd Dispositif informatique de detection de troubles du rythme cardiaque
WO2020086865A1 (en) * 2018-10-26 2020-04-30 Mayo Foundation For Medical Education And Research Neural networks for atrial fibrillation screening
CN109770862B (zh) * 2019-03-29 2022-03-08 广州视源电子科技股份有限公司 心电信号分类方法、装置、电子设备和存储介质
CN111743530A (zh) * 2019-03-29 2020-10-09 丽台科技股份有限公司 心电图信号判断装置及方法
CN109907753B (zh) * 2019-04-23 2022-07-26 杭州电子科技大学 一种多维度ecg信号智能诊断系统
EP3735894B1 (en) * 2019-05-09 2022-11-30 Tata Consultancy Services Limited Recurrent neural network architecture based classification of atrial fibrillation using single lead ecg
CN110226921B (zh) * 2019-06-27 2022-07-29 广州视源电子科技股份有限公司 心电信号检测分类方法、装置、电子设备和存储介质
US20220313098A1 (en) * 2019-09-06 2022-10-06 Valencell, Inc. Wearable biometric waveform analysis systems and methods
CN110638430B (zh) * 2019-10-23 2022-08-09 苏州大学 级联神经网络ecg信号心律失常分类模型的搭建方法
CN112826514B (zh) * 2019-11-22 2022-07-22 华为技术有限公司 一种房颤信号的分类方法、装置、终端以及存储介质
CN111259820B (zh) * 2020-01-17 2023-05-05 上海乐普云智科技股份有限公司 一种基于r点的心搏数据分类方法和装置
KR102461702B1 (ko) * 2020-02-18 2022-11-01 주식회사 에이티센스 심전도 신호 처리 방법
EP3881767A1 (en) * 2020-03-19 2021-09-22 Tata Consultancy Services Limited Systems and methods for atrial fibrillation (af) and cardiac disorders detection from biological signals
CN111407261B (zh) * 2020-03-31 2024-05-21 京东方科技集团股份有限公司 生物信号的周期信息的测量方法及装置、电子设备
US11709844B2 (en) * 2020-09-11 2023-07-25 Volvo Car Corporation Computerized smart inventory search methods and systems using classification and tagging
CN112842342B (zh) * 2021-01-25 2022-03-29 北京航空航天大学 一种结合希尔伯特曲线和集成学习的心电磁信号分类方法
CN113052229B (zh) * 2021-03-22 2023-08-29 武汉中旗生物医疗电子有限公司 一种基于心电数据的心脏病症分类方法及装置
CN113177514B (zh) * 2021-05-20 2023-06-16 浙江波誓盾科技有限公司 无人机信号检测方法、装置及计算机可读存储介质
CN114469126B (zh) * 2022-03-09 2023-06-23 平安科技(深圳)有限公司 心电数据的分类处理方法、装置、存储介质及计算机设备
US20240079140A1 (en) * 2022-09-05 2024-03-07 Tata Consultancy Services Limited Method and system for generating 2d representation of electrocardiogram (ecg) signals

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511166A (ja) * 2001-12-03 2005-04-28 メドトロニック・インコーポレーテッド 不整脈の診断および処置のための二腔の方法および装置
US20130096447A1 (en) * 2011-09-27 2013-04-18 Akshay Dhawan System and methods for serial analysis of electrocardiograms
WO2017060569A1 (en) * 2015-10-07 2017-04-13 Turun Yliopisto Method and apparatus for producing information indicative of cardiac condition
JP2017080026A (ja) * 2015-10-27 2017-05-18 日本電信電話株式会社 ノイズ判定装置、方法、およびプログラム
US20170135631A1 (en) * 2007-11-14 2017-05-18 Medasense Biometrics Ltd. System and method for pain monitoring using a multidimensional analysis of physiological signals
JP2017513680A (ja) * 2014-04-25 2017-06-01 メドトロニック,インコーポレイテッド 検出されるペーシングに応答した植え込み型カーディオバータ−除細動器(icd)の頻脈性不整脈検出修正
WO2017091736A1 (en) * 2015-11-23 2017-06-01 Mayo Foundation For Medical Education And Research Processing physiological electrical data for analyte assessments
JP2017525410A (ja) * 2014-07-07 2017-09-07 ゾール メディカル コーポレイションZOLL Medical Corporation 心電図(ecg)信号において心イベントをノイズと区別するためのシステム及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751873B2 (en) * 2006-11-08 2010-07-06 Biotronik Crm Patent Ag Wavelet based feature extraction and dimension reduction for the classification of human cardiac electrogram depolarization waveforms
US20120123232A1 (en) * 2008-12-16 2012-05-17 Kayvan Najarian Method and apparatus for determining heart rate variability using wavelet transformation
CN101449971A (zh) * 2008-12-30 2009-06-10 南京大学 基于节律模式的便携式心电诊断监测设备
US9392948B2 (en) * 2011-12-09 2016-07-19 The Regents Of The University Of California System and method of identifying sources for biological rhythms
US9314181B2 (en) * 2009-11-03 2016-04-19 Vivaquant Llc Method and apparatus for detection of heartbeat characteristics
US9089272B2 (en) * 2013-01-02 2015-07-28 Boston Scientific Scimed Inc. Estimating restitution curves in an anatomical mapping system
US9545227B2 (en) * 2013-12-13 2017-01-17 Vital Connect, Inc. Sleep apnea syndrome (SAS) screening using wearable devices
GB2526105A (en) 2014-05-13 2015-11-18 Sensium Healthcare Ltd A method for confidence level determination of ambulatory HR algorithm based on a three-way rhythm classifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511166A (ja) * 2001-12-03 2005-04-28 メドトロニック・インコーポレーテッド 不整脈の診断および処置のための二腔の方法および装置
US20170135631A1 (en) * 2007-11-14 2017-05-18 Medasense Biometrics Ltd. System and method for pain monitoring using a multidimensional analysis of physiological signals
US20130096447A1 (en) * 2011-09-27 2013-04-18 Akshay Dhawan System and methods for serial analysis of electrocardiograms
JP2017513680A (ja) * 2014-04-25 2017-06-01 メドトロニック,インコーポレイテッド 検出されるペーシングに応答した植え込み型カーディオバータ−除細動器(icd)の頻脈性不整脈検出修正
JP2017525410A (ja) * 2014-07-07 2017-09-07 ゾール メディカル コーポレイションZOLL Medical Corporation 心電図(ecg)信号において心イベントをノイズと区別するためのシステム及び方法
WO2017060569A1 (en) * 2015-10-07 2017-04-13 Turun Yliopisto Method and apparatus for producing information indicative of cardiac condition
JP2017080026A (ja) * 2015-10-27 2017-05-18 日本電信電話株式会社 ノイズ判定装置、方法、およびプログラム
WO2017091736A1 (en) * 2015-11-23 2017-06-01 Mayo Foundation For Medical Education And Research Processing physiological electrical data for analyte assessments

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVID N. RESHEF ET AL.: "Detecting Novel Associations in Large Data Sets", SCIENCE, vol. vol. 334, Issue 6062, JPN6019014634, 16 December 2011 (2011-12-16), US, pages 1518 - 1524, ISSN: 0004255335 *
JOACHIM BEHAR ET AL.: "ECG Signal Quality During Arrhythmia and Its Application to False Alarm Reduction", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 60, no. 6, JPN6019014638, 1 June 2013 (2013-06-01), US, pages 1660 - 1666, XP011509829, ISSN: 0004255333, DOI: 10.1109/TBME.2013.2240452 *
SHERMEEN NIZAMI ET AL.: "Heart Disease Classification through HRV analysis using Parallel Cascade Identification and Fast Ort", 2010 IEEE INTERNATIONAL WORKSHOP ON MEDICAL MEASUREMENTS AND APPLICATIONS, JPN6019014630, 7 June 2010 (2010-06-07), pages 134 - 139, ISSN: 0004255332 *
石井 雅人 ほか: "グラフカットを用いた有用性と冗長性に基づく特徴選択", 画像の認識・理解シンポジウム(MIRU2011)論文集, vol. 2011, JPN6019014632, 20 July 2011 (2011-07-20), JP, pages 139 - 146, ISSN: 0004255334 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110458245A (zh) * 2019-08-20 2019-11-15 图谱未来(南京)人工智能研究院有限公司 一种多标签分类模型训练方法、数据处理方法及装置
WO2023022516A1 (ko) * 2021-08-17 2023-02-23 주식회사 메디컬에이아이 딥러닝 알고리즘을 기반으로 복수개의 표준 심전도 데이터를 생성하는 방법

Also Published As

Publication number Publication date
SG10201800886TA (en) 2019-04-29
AU2018200751A1 (en) 2019-04-04
EP3456246A1 (en) 2019-03-20
CN109522916A (zh) 2019-03-26
US20190082988A1 (en) 2019-03-21
JP6786536B2 (ja) 2020-11-18
AU2018200751B2 (en) 2020-04-02
CN109522916B (zh) 2023-04-28
US10750968B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
JP6786536B2 (ja) 単極誘導心電図(ecg)信号中の律動を識別するためのカスケード2値クラシファイア
Datta et al. Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier
Ye et al. Heartbeat classification using morphological and dynamic features of ECG signals
Kao et al. Automatic phonocardiograph signal analysis for detecting heart valve disorders
Safara et al. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification
WO2019038109A1 (en) METHOD FOR DETECTING ANOMALIES IN ECG SIGNALS
Mashrur et al. Automatic identification of arrhythmia from ECG using AlexNet convolutional neural network
Sarfraz et al. Using independent component analysis to obtain feature space for reliable ECG Arrhythmia classification
Daqrouq et al. Neural network and wavelet average framing percentage energy for atrial fibrillation classification
Choudhary et al. A novel unified framework for noise-robust ECG-based biometric authentication
Sedighian et al. Pediatric heart sound segmentation using Hidden Markov Model
Nogueira et al. Classifying heart sounds using images of MFCC and temporal features
Anas et al. Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation
Sharma et al. QRS complex detection in ECG signals using the synchrosqueezed wavelet transform
Padmavathi et al. Myocardial infarction detection using magnitude squared coherence and support vector machine
Kharshid et al. Classification of short-time single-lead ECG recordings using deep residual CNN
Pander A new approach to adaptive threshold based method for QRS detection with fuzzy clustering
Chen et al. Finger ECG based two-phase authentication using 1D convolutional neural networks
Mykoliuk et al. Machine learning methods in ECG classification
Mihandoost et al. Cyclic spectral analysis of electrocardiogram signals based on GARCH model
De Giovanni et al. A patient-specific methodology for prediction of paroxysmal atrial fibrillation onset
US20210290175A1 (en) Systems and methods for atrial fibrillation (af) and cardiac disorders detection from biological signals
Shantha Selva Kumari et al. Classification of cardiac arrhythmias based on morphological and rhythmic features
CN107909048A (zh) 一种基于s变换的心律失常多分类方法
Safie et al. Pulse Active Transform (PAT): A non-invertible transformation with application to ECG biometric authentication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250