JP2019054007A - Electrostatic chuck mechanism, and charged particle beam device - Google Patents

Electrostatic chuck mechanism, and charged particle beam device Download PDF

Info

Publication number
JP2019054007A
JP2019054007A JP2018237885A JP2018237885A JP2019054007A JP 2019054007 A JP2019054007 A JP 2019054007A JP 2018237885 A JP2018237885 A JP 2018237885A JP 2018237885 A JP2018237885 A JP 2018237885A JP 2019054007 A JP2019054007 A JP 2019054007A
Authority
JP
Japan
Prior art keywords
electrode
sample
electrostatic chuck
wafer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018237885A
Other languages
Japanese (ja)
Other versions
JP6640975B2 (en
Inventor
泰 海老塚
Yasushi Ebizuka
泰 海老塚
菅野 誠一郎
Seiichiro Sugano
誠一郎 菅野
正也 安河内
Masaya Yasukochi
正也 安河内
高橋 正和
Masakazu Takahashi
正和 高橋
直也 石垣
Naoya Ishigaki
直也 石垣
宮 豪
Takeshi Miya
豪 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2018237885A priority Critical patent/JP6640975B2/en
Publication of JP2019054007A publication Critical patent/JP2019054007A/en
Application granted granted Critical
Publication of JP6640975B2 publication Critical patent/JP6640975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide an electrostatic chuck mechanism capable of suppressing various influences of electric fields on a beam that occur near a sample edge, and a charged particle beam device.SOLUTION: An electrostatic chuck mechanism comprises: a sample suction surface (3) for sucking a sample; a first electrode (4) to which a voltage for generating suction force between the sample suction surface and the sample; a second electrode (6) having a first plane (8) below the first electrode; and a negative voltage application power source for applying a negative voltage to the second electrode. The second electrode has a second plane (9) enclosing the first plane, which is the upper most plane of the second electrode positioned below the sample suction surface. There is also provided a charged particle beam device.SELECTED DRAWING: Figure 18

Description

本発明は、静電チャック機構、及び荷電粒子線装置に係り、特に試料のエッジ近傍で発生する電界の影響を効果的に抑制し得る静電チャック機構、及び荷電粒子線装置に関する。   The present invention relates to an electrostatic chuck mechanism and a charged particle beam apparatus, and more particularly to an electrostatic chuck mechanism and a charged particle beam apparatus that can effectively suppress the influence of an electric field generated near the edge of a sample.

半導体デバイスの微細化は指数関数的に進歩しており、近年では数10nmオーダーの寸法で作られるデバイスが主流となっている。このような微細構造のデバイス製造ラインでは、微細パターンの寸法計測やデバイス上の欠陥を検査するために、走査型電子顕微鏡を応用した装置が使われている。たとえば、半導体デバイスのゲートやコンタクトホールの寸法測定には測長SEM(Critical−Dimension Scanning Electron Microscope:CD−SEM)が、欠陥検査には欠陥検査SEM等が用いられる。また、電位コントラストを利用し、配線用深穴の導通検査にも走査型電子顕微鏡が用いられるようになっている。   The miniaturization of semiconductor devices has progressed exponentially, and in recent years, devices made with dimensions on the order of several tens of nm have become mainstream. In a device manufacturing line having such a fine structure, an apparatus using a scanning electron microscope is used to measure a fine pattern and inspect defects on the device. For example, a dimension measuring SEM (Critical-Dimension Scanning Electron Microscope: CD-SEM) is used for dimension measurement of a gate or a contact hole of a semiconductor device, and a defect inspection SEM is used for defect inspection. In addition, a scanning electron microscope is used for continuity inspection of a wiring deep hole by utilizing potential contrast.

走査電子顕微鏡等に代表される荷電粒子線装置では、対象となる試料(半導体ウェハ等)を保持するための保持機構として、静電チャック機構が用いられることがある。静電チャックは、内部に設けた金属電極に電圧を印加し、被吸着物と静電チャックの表面に正・負の電荷を発生させ、この間に働くクーロン力等によって被吸着物を固定するものである。一方、電子顕微鏡等の試料保持機構として、静電チャックを採用すると、試料と静電チャックの間に形成された強い電界が、ウエハ(試料)外周部の電位分布を乱す場合があり、結果として電子ビームが曲げられることになるため、ウエハ外周部近傍の適正な位置にビームが照射できなくなる可能性がある。特許文献1では、静電チャックの吸着電極をウエハよりも大きくして、ウエハからはみ出た部分が作り出す電界でウエハエッジ近傍の電界を均一化させる方法が開示されている。また、特許文献2には、試料の外周近傍に、試料表面と同じ高さの電界補正部品を配置する静電チャック機構が説明されている。   In a charged particle beam apparatus typified by a scanning electron microscope or the like, an electrostatic chuck mechanism may be used as a holding mechanism for holding a target sample (semiconductor wafer or the like). The electrostatic chuck applies a voltage to the metal electrode provided inside, generates positive and negative charges on the surface of the object to be adsorbed and the electrostatic chuck, and fixes the object to be adsorbed by Coulomb force acting between them. It is. On the other hand, when an electrostatic chuck is used as a sample holding mechanism for an electron microscope or the like, a strong electric field formed between the sample and the electrostatic chuck may disturb the potential distribution on the outer periphery of the wafer (sample). Since the electron beam is bent, there is a possibility that the beam cannot be irradiated to an appropriate position near the outer periphery of the wafer. Patent Document 1 discloses a method in which the chucking electrode of the electrostatic chuck is made larger than the wafer, and the electric field in the vicinity of the wafer edge is made uniform by the electric field created by the portion protruding from the wafer. Patent Document 2 describes an electrostatic chuck mechanism in which an electric field correction component having the same height as the sample surface is disposed near the outer periphery of the sample.

特許第5143787号(対応米国特許公開公報US2012/0070066)Patent No. 5143787 (corresponding US Patent Publication US2012 / 0070066) 特開2009−302415号公報(対応米国特許公開公報US2009/0309043)Japanese Patent Laying-Open No. 2009-302415 (corresponding US Patent Publication US2009 / 0309043)

特許文献1に開示されたウエハ外周より大きな径を持つ電極や、特許文献2に開示された電界補正部品によれば、ウエハ外周部に発生する電位分布の乱れを抑制することが可能となる。一方、発明者らの検討によって、静電チャックに試料を搭載したときに、その接触によって試料のエッジ近傍に帯電が発生する可能性のあることが明らかになった。更に、試料のエッジ近傍にビームを照射したときに発生する二次電子等が、静電チャックに付着することによる帯電も考えられる。このような帯電によってもビームが曲げられる可能性がある。   According to the electrode having a diameter larger than the outer periphery of the wafer disclosed in Patent Document 1 and the electric field correction component disclosed in Patent Document 2, it is possible to suppress the disturbance of the potential distribution generated in the outer periphery of the wafer. On the other hand, the inventors have clarified that when a sample is mounted on the electrostatic chuck, charging may occur near the edge of the sample due to the contact. Further, it is conceivable that secondary electrons generated when a beam is irradiated near the edge of the sample adhere to the electrostatic chuck. Such charging can also bend the beam.

特許文献1、2に記載されているような補正用の電極に電圧を印加することによっても、或る程度、ビームに対する電界の影響を緩和することができるが、上述のような複数種類の電界が複合する場合に、十分にその影響を抑制し得るものではなかった。   Even by applying a voltage to the correction electrodes as described in Patent Documents 1 and 2, the influence of the electric field on the beam can be alleviated to some extent. When these compounds are combined, the effect cannot be sufficiently suppressed.

以下に、試料のエッジ近傍で発生する種々の電界のビームへの影響を効果的に抑制することを目的とする静電チャック機構、及び荷電粒子線装置を提案する。   In the following, an electrostatic chuck mechanism and a charged particle beam device for the purpose of effectively suppressing the influence of various electric fields generated near the edge of the sample on the beam are proposed.

上記目的を達成するための一態様として、試料を吸着する試料吸着面と、当該試料吸着面と前記試料との間で吸着力を発生させるための電圧が印加される第1の電極を有する静電チャック機構であって、第1の電極より下側に第1の面を有する第2の電極と、当該第2の電極に負電圧を印加する負電圧印加電源を備え、前記第2の電極は、前記第1の面を包囲すると共に前記試料吸着面より下側に位置する前記第2の電極の最上面となる第2の面を備えている静電チャック機構、及び荷電粒子線装置を提案する。   As one mode for achieving the above object, there is provided a static chuck having a sample adsorption surface for adsorbing a sample, and a first electrode to which a voltage for generating an adsorption force is applied between the sample adsorption surface and the sample. An electric chuck mechanism, comprising: a second electrode having a first surface below the first electrode; and a negative voltage application power source for applying a negative voltage to the second electrode, wherein the second electrode Includes an electrostatic chuck mechanism including a second surface that surrounds the first surface and is the uppermost surface of the second electrode located below the sample adsorption surface, and a charged particle beam device. suggest.

上記構成によれば、試料のエッジ近傍で発生する種々の電界の影響を効果的に抑制することが可能となる。   According to the above configuration, it is possible to effectively suppress the influence of various electric fields generated near the edge of the sample.

走査電子顕微鏡の概要を示す図。The figure which shows the outline | summary of a scanning electron microscope. 走査電子顕微鏡を用いた半導体ウエハの測定プロセスを示すフローチャート。The flowchart which shows the measurement process of the semiconductor wafer using a scanning electron microscope. リターディング電圧を印加したときの対物レンズ近傍の電位分布を示す図。The figure which shows the electric potential distribution of the objective lens vicinity when a retarding voltage is applied. リターディング電圧を印加したときの試料エッジ近傍の電位分布を示す図。The figure which shows the electric potential distribution of the sample edge vicinity when a retarding voltage is applied. リターディング電圧を印加したときに試料エッジ近傍で発生する電界を、静電チャックの吸着電極への電圧印加によって補正する例を示す図。The figure which shows the example which correct | amends the electric field which generate | occur | produces in the sample edge vicinity when a retarding voltage is applied by the voltage application to the adsorption | suction electrode of an electrostatic chuck. 試料と静電チャックとの接触等によって、静電チャックの吸着面に帯電が発生した様子を示す図。The figure which shows a mode that electric charge generate | occur | produced in the adsorption | suction surface of an electrostatic chuck by contact etc. of a sample and an electrostatic chuck. 試料のエッジ近傍を静電チャックの吸着面と非接触にすると共に、吸着電極への電圧印加によって生ずる電界を補正する電極を備えた静電チャックの一例を示す図。The figure which shows an example of the electrostatic chuck provided with the electrode which correct | amends the electric field produced by making the vicinity of the edge of a sample non-contact with the adsorption surface of an electrostatic chuck, and applying the voltage to an adsorption electrode. 試料のエッジ近傍を静電チャックの吸着面と非接触にすると共に、吸着電極への電圧印加によって生ずる電界を補正する電極を備えた静電チャックの他の一例を示す図。The figure which shows another example of the electrostatic chuck provided with the electrode which correct | amends the electric field produced by making the vicinity of the edge of a sample non-contact with the adsorption surface of an electrostatic chuck, and applying the voltage to an adsorption electrode. 静電チャックの吸着面で発生した帯電を、試料がシールドしている様子を示す図。The figure which shows a mode that the sample has shielded the electric charge which generate | occur | produced on the adsorption surface of the electrostatic chuck. 静電チャック内にシールド電極を設けた例を示す図。The figure which shows the example which provided the shield electrode in the electrostatic chuck. 静電チャック外にシールド電極を設けた例を示す図。The figure which shows the example which provided the shield electrode outside the electrostatic chuck. 走査電子顕微鏡を用いた半導体ウエハの測定プロセスを示すフローチャート。The flowchart which shows the measurement process of the semiconductor wafer using a scanning electron microscope. 走査電子顕微鏡を用いた半導体ウエハの測定プロセスを示すフローチャート。The flowchart which shows the measurement process of the semiconductor wafer using a scanning electron microscope. 走査電子顕微鏡の概要を示す図。The figure which shows the outline | summary of a scanning electron microscope. 走査電子顕微鏡を用いた半導体ウエハの測定プロセスを示すフローチャート。The flowchart which shows the measurement process of the semiconductor wafer using a scanning electron microscope. 電界を補正する電極への印加電圧と、試料位置との関係を示す図。The figure which shows the relationship between the voltage applied to the electrode which correct | amends an electric field, and a sample position. 静電チャック表面に段差を設け、下段側内部に補正電極を内在した例を示す図。The figure which shows the example which provided the level | step difference in the surface of an electrostatic chuck, and had the correction electrode inside the lower level side. 試料、静電チャック、及び補正電極の位置関係を説明する図。The figure explaining the positional relationship of a sample, an electrostatic chuck, and a correction electrode.

以下に説明する実施例は、主に、半導体デバイスにおける微細パターンの線幅や穴径の計測、および半導体デバイス上の欠陥検査、画像取得をおこなう走査型電子顕微鏡に関するものである。まず、走査電子顕微鏡等の電子線応用装置の基本原理を簡単に説明する。電子銃から一次電子を放出させ、電圧を印加して加速する。その後、電磁レンズによって電子ビームのビーム径を細く絞る。この電子ビームを半導体ウエハ等の試料上に2次元的に走査する。走査した電子ビームが試料に入射することにより発生する二次電子を検出器で検出する。この二次電子の強度は、試料表面の形状を反映するので、電子ビームの走査と二次電子の検出を同期させてモニタに表示することで、試料上の微細パターンが画像化できる。たとえばCD−SEMでは、ゲート電極の線幅を測定する場合には、得られた画像の明暗の変化にもとづいてパターンのエッジを判別して寸法を導き出す。欠陥検査SEMの場合には、得られた画像から欠陥を認識して自動分類する。   The embodiment described below mainly relates to a scanning electron microscope that performs measurement of line width and hole diameter of a fine pattern in a semiconductor device, defect inspection on the semiconductor device, and image acquisition. First, the basic principle of an electron beam application apparatus such as a scanning electron microscope will be briefly described. Primary electrons are emitted from the electron gun and accelerated by applying a voltage. Thereafter, the beam diameter of the electron beam is narrowed down by an electromagnetic lens. This electron beam is scanned two-dimensionally on a sample such as a semiconductor wafer. Secondary electrons generated when the scanned electron beam enters the sample are detected by a detector. Since the intensity of the secondary electrons reflects the shape of the sample surface, the fine pattern on the sample can be imaged by synchronizing the scanning of the electron beam and the detection of the secondary electrons and displaying them on the monitor. For example, in the CD-SEM, when measuring the line width of the gate electrode, the edge of the pattern is discriminated based on the change in brightness of the obtained image to derive the dimension. In the case of the defect inspection SEM, the defect is recognized from the obtained image and automatically classified.

これら電子線応用装置は、半導体製造ラインにおける寸法測定・欠陥検査に使用されるため、分解能、測長再現性といった電子顕微鏡としての性能だけでなく、スループットが非常に重要となる。   Since these electron beam application apparatuses are used for dimension measurement and defect inspection in a semiconductor manufacturing line, not only performance as an electron microscope such as resolution and length measurement reproducibility but also throughput is very important.

スループットを決定する要因は複数存在するが、特に影響が大きいのがウエハを積載しているステージの移動速度と画像を取得するときのオートフォーカスに要する時間である。   There are a plurality of factors that determine the throughput, but the effects that are particularly significant are the moving speed of the stage on which the wafer is loaded and the time required for autofocus when acquiring an image.

また、測定や検査の対象となる半導体ウエハ等を保持する機構として、静電チャック機構がある。ウエハを静電チャックで安定的に固定することができれば、ウエハがステージからズレ落ちたりすることなく高加速度、高速度で搬送することが可能となる。また、静電チャックであればウエハ全面をほぼ均等な力で反りウエハなども平坦化して固定できるため、ウエハ面内の高さ分布が均一化しフォーカス合わせをするために対物レンズのコイルに流す電流値を決定する時間、すなわちオートフォーカス時間が短縮される。   There is an electrostatic chuck mechanism as a mechanism for holding a semiconductor wafer or the like to be measured or inspected. If the wafer can be stably fixed by the electrostatic chuck, the wafer can be transferred at a high acceleration and a high speed without being displaced from the stage. Also, with an electrostatic chuck, the entire surface of the wafer can be warped with a substantially uniform force, and the wafer can be flattened and fixed, so that the current flowing through the coil of the objective lens to achieve a uniform height distribution within the wafer surface and focus adjustment. The time for determining the value, that is, the autofocus time is shortened.

また、CD−SEMや欠陥検査SEMとして重要な性能のなかに、観察可能範囲、すなわちウエハ面内のどれだけ広い範囲を観察できるかをあらわす指標がある。半導体製造ラインでは、1枚のウエハから少しでも多くのチップを製造することで製造コストを抑えたいため、ウエハ外周部まで正しくデバイスの製造が出来ているかを検査するためにも、電子線応用装置に対し観察可能範囲は厳しく求められる。   In addition, there is an index that represents the observable range, that is, how much range within the wafer surface can be observed, among important performances as a CD-SEM and defect inspection SEM. In the semiconductor manufacturing line, we want to reduce the manufacturing cost by manufacturing as many chips as possible from a single wafer. On the other hand, the observable range is strictly required.

一方、静電チャックがウエハよりも大きい場合には、静電チャック表面に帯電が形成される場合がある。静電チャックは電気絶縁性の高いセラミックスで作られるため、ウエハと静電チャックとの間の接触や摩擦、また電子線の照射によって帯電が発生する場合がある。静電チャック上のウエハエッジ付近に形成された帯電は、ウエハエッジ付近の電界を乱すため、次に搬送されるウエハでエッジ付近を観察する際に電子線へ影響を与え、観察可能範囲が制限されてしまう場合がある。   On the other hand, when the electrostatic chuck is larger than the wafer, charging may be formed on the surface of the electrostatic chuck. Since the electrostatic chuck is made of a ceramic having high electrical insulation, charging may occur due to contact or friction between the wafer and the electrostatic chuck or irradiation of an electron beam. The charge formed near the wafer edge on the electrostatic chuck disturbs the electric field near the wafer edge, which affects the electron beam when observing the vicinity of the edge on the next wafer to be transported, limiting the observable range. May end up.

ウエハエッジ近傍の電界の乱れを抑制するために、吸着機能に加えて電界均一化機能を備えた電極を用いることも考えられるが、反ったウエハの矯正やウエハと静電チャック間の熱伝達の確保といった静電チャックとしての本来の機能との両立が難しい場合がある。さらに、静電チャックの吸着電極でウエハ表面の電界を制御しようとすると、ウエハ裏面と吸着電極間の電界が非常に強くなるため、電界を均一化する機能も耐圧の限界によって制限されてしまう。   In order to suppress the disturbance of the electric field near the wafer edge, it may be possible to use an electrode with an electric field equalization function in addition to the adsorption function, but it is necessary to correct the warped wafer and ensure heat transfer between the wafer and the electrostatic chuck. In some cases, it is difficult to achieve both the original function as an electrostatic chuck. Furthermore, when the electric field on the wafer surface is controlled by the chucking electrode of the electrostatic chuck, the electric field between the wafer back surface and the chucking electrode becomes very strong, so that the function of equalizing the electric field is limited by the limit of the withstand voltage.

以下に説明する実施例では、静電チャックの内部電極および静電チャック上の帯電が電子線におよぼす影響を抑制し、かつウエハの吸着力や熱伝達との両立が容易で、耐圧による制限を受けにくい電界均一化技術を提案する。   In the embodiment described below, the influence on the electron beam of the electrostatic chuck internal electrode and the electrostatic charge on the electrostatic chuck is suppressed, and it is easy to achieve both the attractive force of the wafer and heat transfer, and is limited by the withstand voltage. We propose electric field uniformity technology that is difficult to receive.

本実施例では、静電チャックの外径をウエハよりも小さくし、静電チャックの外側に導電性部材を設け、前記導電性部材に適切な電圧を印加する静電チャック機構、及びこれを用いた荷電粒子線装置について説明する。このような構成によれば、静電チャックの外径がウエハよりも小さいため、静電チャックの吸着電極の影響、および静電チャック上の帯電が作り出す電界の影響はウエハ自身によってシールドされるため、安定して観察可能範囲を確保することが可能となる。また、電界均一化機能を吸着電極とは独立に持たせているので、静電チャック本来の機能である吸着力および熱伝達特性との両立が容易である。さらに、導電性部材は真空空間によって絶縁を確保することができるので、耐圧による制限も受けにくくなる。   In the present embodiment, an electrostatic chuck mechanism in which the outer diameter of the electrostatic chuck is made smaller than that of the wafer, a conductive member is provided outside the electrostatic chuck, and an appropriate voltage is applied to the conductive member, and this is used. The charged particle beam apparatus will be described. According to such a configuration, since the outer diameter of the electrostatic chuck is smaller than that of the wafer, the influence of the electrostatic chuck attracting electrode and the influence of the electric field generated by the electrostatic charge on the electrostatic chuck are shielded by the wafer itself. It is possible to ensure a stable observation range. In addition, since the electric field equalizing function is provided independently of the attracting electrode, it is easy to achieve both the attracting force and the heat transfer characteristics, which are the original functions of the electrostatic chuck. Further, since the conductive member can ensure insulation by the vacuum space, it is difficult to be restricted by the withstand voltage.

次に図面を用いて、静電チャック機構の具体例を説明する。また、静電チャックの外径(ウエハとの接触面)をウエハよりも小さくすることの効果の説明のため、静電チャックの外径が試料より大きい例についても併せて説明する。   Next, a specific example of the electrostatic chuck mechanism will be described with reference to the drawings. An example in which the outer diameter of the electrostatic chuck is larger than the sample will also be described in order to explain the effect of making the outer diameter of the electrostatic chuck (contact surface with the wafer) smaller than that of the wafer.

図1〜図5は、静電チャック機構を備えた荷電粒子線装置の概要を示す図である。ここではCD−SEMを例に採って説明する。図1に装置全体図を示す。基本構成は、電子線を制御するカラム101、試料を保持する静電チャック105を載せたXYステージ104を含む試料室102、およびウエハを試料室内に搬入する前に真空排気を行う予備排気室103である。試料室102は図示しない真空ポンプによって排気される。また、CD−SEMは図示しない制御装置によって制御され、後述するような条件で静電チャックや周辺の電極への印加電圧が制御される。   1 to 5 are views showing an outline of a charged particle beam apparatus provided with an electrostatic chuck mechanism. Here, a CD-SEM will be described as an example. FIG. 1 shows an overall view of the apparatus. The basic configuration is that a column 101 for controlling an electron beam, a sample chamber 102 including an XY stage 104 on which an electrostatic chuck 105 for holding a sample is mounted, and a preliminary exhaust chamber 103 for performing vacuum evacuation before the wafer is carried into the sample chamber. It is. The sample chamber 102 is evacuated by a vacuum pump (not shown). The CD-SEM is controlled by a control device (not shown), and the voltage applied to the electrostatic chuck and peripheral electrodes is controlled under the conditions described later.

図2はCD−SEMによる測定工程を示すフローチャートである。ウエハはまず予備排気室に搬入され(ステップ201)、所定の圧力まで真空排気を行った後に(ステップ202)、試料室へ搬入される(ステップ203)。試料室へ搬入されたウエハは静電チャック上に載せられ(ステップ204)、静電チャックの内部電極に所定の電圧を印加して(ステップ205)、静電チャック上に吸着される。続いて、所定のリターディング電圧を印加した後に(ステップ206)、各測定点に移動し(ステップ207)、画像取得および測長処理を行う(ステップ208)。これを全ての測定点に対し繰り返し、全ての測定点の処理が完了したらウエハを搬出する(ステップ209)。   FIG. 2 is a flowchart showing a measurement process using a CD-SEM. The wafer is first carried into the preliminary evacuation chamber (step 201), evacuated to a predetermined pressure (step 202), and then carried into the sample chamber (step 203). The wafer carried into the sample chamber is placed on the electrostatic chuck (step 204), a predetermined voltage is applied to the internal electrode of the electrostatic chuck (step 205), and the wafer is attracted onto the electrostatic chuck. Subsequently, after a predetermined retarding voltage is applied (step 206), it moves to each measurement point (step 207) and performs image acquisition and length measurement processing (step 208). This is repeated for all the measurement points, and when the processing for all the measurement points is completed, the wafer is unloaded (step 209).

図3に、ウエハ内側領域を観察している際の観察点付近の電界の様子を示す。301はウエハ、302は電子線を収束させるための電磁レンズ、破線303は等電位面である。観察中、静電チャックに内蔵された電極にリターディング電圧を印加することにより、ウエハ301はリターディング電位圧となり、対向する電磁レンズ302との間の空間は電子線の中心軸304に対し軸対称な電界が形成され、電子線は等電位面と垂直な軌道305を描いてウエハへ到達する。   FIG. 3 shows the state of the electric field near the observation point when observing the wafer inner area. Reference numeral 301 denotes a wafer, 302 denotes an electromagnetic lens for converging an electron beam, and a broken line 303 denotes an equipotential surface. During observation, by applying a retarding voltage to the electrode built in the electrostatic chuck, the wafer 301 becomes a retarding potential pressure, and the space between the opposing electromagnetic lens 302 is an axis relative to the central axis 304 of the electron beam. A symmetrical electric field is formed, and the electron beam reaches the wafer by drawing a trajectory 305 perpendicular to the equipotential surface.

ウエハ内側領域では、ウエハ自身によって周囲からの電界がシールドされており、電子線の通過する領域は軸対称なまま保たれている。一方で、図4に示すように、ウエハ外周付近では、たとえばウエハ周囲に何も構造物が無い場合、ウエハ自身の段差になぞらえるように等電位面401に段差が生じるため、電子線の通過する領域における電界の軸対称性が崩れる。このとき、電子線の軌道402は等電位面の崩れによって曲げられるので、ウエハへの到達位置が所望の位置からずれてしまう。このずれ量が大きいと、所望のパターンが画像の視野からはずれてしまい、自動での観察が困難になる。したがって、この段差による影響が無視できなくなる範囲まで観察可能領域が狭まってしまう。   In the wafer inner region, the electric field from the surroundings is shielded by the wafer itself, and the region through which the electron beam passes is kept axially symmetric. On the other hand, as shown in FIG. 4, when there is no structure around the wafer periphery, for example, when there is no structure around the wafer, a step is generated on the equipotential surface 401 so as to be compared with the step of the wafer itself, so that an electron beam passes through. The axial symmetry of the electric field in the region is broken. At this time, the trajectory 402 of the electron beam is bent due to the collapse of the equipotential surface, so that the position reaching the wafer is deviated from a desired position. If this amount of deviation is large, the desired pattern will deviate from the field of view of the image, making automatic observation difficult. Therefore, the observable region is narrowed to a range where the influence of the step cannot be ignored.

このような電界の影響を抑制すべく、図5に示すように、ウエハよりも静電チャック501の外径が大きく、ウエハからはみ出た吸着電極502が作る電界によって段差による電界の落ち込みを押し戻し、なるべく外周まで電子線軌道503における電界504が軸対称に保たれるようにすることが考えられる。しかし、静電チャックの表面は絶縁性の高いセラミックスであるため、図6に示すように、ウエハとの接触や摩擦、またウエハ外周付近を観察した際の電子線の照射により帯電601が形成される。   In order to suppress the influence of such an electric field, as shown in FIG. 5, the outer diameter of the electrostatic chuck 501 is larger than that of the wafer, and the electric field created by the adsorption electrode 502 protruding from the wafer is pushed back by the step, It is conceivable that the electric field 504 in the electron beam trajectory 503 is kept axially symmetrical as far as possible. However, since the surface of the electrostatic chuck is made of highly insulating ceramics, as shown in FIG. 6, a charge 601 is formed by contact with the wafer, friction, and irradiation of an electron beam when the vicinity of the wafer periphery is observed. The

ここでは一例として静電チャックが正に帯電した場合の電界の様子を図示している。静電チャック上の帯電が作り出す電界は、電子線軌道602上における等電位面603の軸対称性をさらに崩し、観察可能範囲を狭めてしまう。このような静電チャック上の帯電も加味して適切な電圧を印加するという方法も考えられるが、通常絶縁物上の帯電は一様ではなく、極めて局所的に発生するので、帯電の計測および補正は困難である。そのため、ウエハよりも外径が大きい静電チャックでは、静電チャック上の帯電の影響が無視できる範囲まで観察可能領域が狭まってしまう。   Here, as an example, the state of the electric field when the electrostatic chuck is positively charged is illustrated. The electric field generated by the charging on the electrostatic chuck further destroys the axial symmetry of the equipotential surface 603 on the electron beam trajectory 602 and narrows the observable range. A method of applying an appropriate voltage in consideration of the electrostatic charge on the electrostatic chuck is also conceivable. However, the charge on the insulator is usually not uniform and occurs extremely locally. Correction is difficult. Therefore, in the electrostatic chuck having an outer diameter larger than that of the wafer, the observable region is narrowed to a range where the influence of charging on the electrostatic chuck can be ignored.

そこで、図7に例示するように、静電チャック701のウエハ702との吸着面を、ウエハ702の径より小さくすることによって、上述のような帯電の影響を抑制する。図7に例示する静電チャック701はウエハ702よりも外径が小さいことを特徴としており、静電チャック表面の帯電の影響をウエハ自身でシールドする。一方、ウエハ外周付近観察時の電界の乱れは、ウエハよりも外側に導電性部材703を設け、所定の電圧Vcを印加することで補正する。導電性部材703は、ウエハの下方向と側面方向の両方を取り囲む形状とし、ウエハ側面とのすき間dおよび導電性部材の高さh1を保って設置される。   Therefore, as illustrated in FIG. 7, the influence of charging as described above is suppressed by making the suction surface of the electrostatic chuck 701 with the wafer 702 smaller than the diameter of the wafer 702. The electrostatic chuck 701 illustrated in FIG. 7 has a feature that the outer diameter is smaller than that of the wafer 702, and the influence of charging on the surface of the electrostatic chuck is shielded by the wafer itself. On the other hand, the disturbance of the electric field when observing the vicinity of the wafer periphery is corrected by providing a conductive member 703 outside the wafer and applying a predetermined voltage Vc. The conductive member 703 has a shape that surrounds both the downward direction and the lateral direction of the wafer, and is installed while maintaining a clearance d between the wafer side surface and the height h1 of the conductive member.

図18は、静電チャックを構成する構成要素の配置条件を、より詳細に説明する図である。静電チャック2の試料吸着面3は、試料1の接触側面より小さく形成されている。吸着電極4(第1の電極)は、静電チャック2内に内蔵され、クーロン力等を発生するために電圧が印加される。なお、図示していないが、吸着電極4には、試料1に照射される電子ビームを減速するためのリターディング電圧が印加される。また、試料吸着面3より相対的にZ方向に離間した位置に第1の電極面8を備え、電界補正用電源5に接続された電極6(第2の電極)が、静電チャック2に接続される。Z方向は電子ビームの光軸と同じ方向であって、この場合、試料吸着面3は、Z方向に直交するX−Y平面となる。更に試料1のエッジに接し、且つZ方向に延びる仮想直線7が通過するように、上記第1の電極面8が位置するように、電極6が形成される。   FIG. 18 is a diagram for explaining in more detail the arrangement conditions of the components constituting the electrostatic chuck. The sample adsorption surface 3 of the electrostatic chuck 2 is formed smaller than the contact side surface of the sample 1. The attracting electrode 4 (first electrode) is built in the electrostatic chuck 2, and a voltage is applied to generate a Coulomb force or the like. Although not shown, a retarding voltage for decelerating the electron beam applied to the sample 1 is applied to the adsorption electrode 4. The electrode 6 (second electrode) provided with the first electrode surface 8 at a position relatively separated from the sample adsorption surface 3 in the Z direction and connected to the electric field correction power source 5 is connected to the electrostatic chuck 2. Connected. The Z direction is the same direction as the optical axis of the electron beam. In this case, the sample adsorption surface 3 is an XY plane orthogonal to the Z direction. Further, the electrode 6 is formed so that the first electrode surface 8 is positioned so that the imaginary straight line 7 which is in contact with the edge of the sample 1 and extends in the Z direction passes.

静電チャック2の試料吸着面3の径を、試料1より小さくする理由は、上述したように、試料1のエッジ近傍で発生する帯電を抑制するためである。試料のエッジのすぐ脇に試料吸着面が存在すると、試料と試料吸着面間の摩擦等によって電荷が蓄積する可能性がある。また、試料のエッジ近傍にビームを照射することによって発生する電子等が、ランディングすることによって電荷が蓄積される可能性もある。このような電荷の蓄積を抑制すべく、試料のエッジ部分(エッジ部分の静電チャックとの接触面側)が、静電チャック搭載時に非接触となるように、試料吸着面の大きさを設定する。   The reason why the diameter of the sample attracting surface 3 of the electrostatic chuck 2 is made smaller than that of the sample 1 is to suppress charging generated near the edge of the sample 1 as described above. If there is a sample adsorption surface right next to the edge of the sample, there is a possibility that electric charges accumulate due to friction between the sample and the sample adsorption surface. In addition, there is a possibility that charges are accumulated by landing of electrons generated by irradiating a beam near the edge of the sample. In order to suppress such charge accumulation, the size of the sample adsorption surface is set so that the edge portion of the sample (contact surface side of the edge portion with the electrostatic chuck) is not in contact with the electrostatic chuck. To do.

また、試料のエッジ部を非接触とすべく、試料吸着面を小さく形成すると、吸着電極4に印加される電圧によって生ずる電界が、エッジ側に向かって漏洩することが考えられる。このようなエッジ部分における漏洩電場の影響を効果的に抑制すべく、試料1のエッジの下方(仮想直線7が通過すると共に、試料吸着面3、及び吸着電極4より相対的に試料1から離間した位置)に第1の電極面8を持つ電極6を設置する。このような電極の配置条件によれば、試料1のエッジ側に向かう漏洩電場を抑制することができる。このような構成によれば、静電チャック3を基点として形成される等電位線を電極面8に向かって引き込むことができる。即ち、エッジに向かって漏洩する電場の量を抑制することができ、結果としてエッジ部分の電界の乱れに基づく、ビーム偏向を抑制することが可能となる。   Further, if the sample adsorption surface is formed small so that the edge portion of the sample is not contacted, the electric field generated by the voltage applied to the adsorption electrode 4 may leak toward the edge side. In order to effectively suppress the influence of the leakage electric field at the edge portion, the virtual straight line 7 passes below the edge of the sample 1 (the virtual straight line 7 passes, and is separated from the sample 1 relative to the sample adsorption surface 3 and the adsorption electrode 4). The electrode 6 having the first electrode surface 8 is installed at the position). According to such electrode arrangement conditions, the leakage electric field toward the edge side of the sample 1 can be suppressed. According to such a configuration, an equipotential line formed with the electrostatic chuck 3 as a base point can be drawn toward the electrode surface 8. That is, the amount of the electric field leaking toward the edge can be suppressed, and as a result, the beam deflection based on the disturbance of the electric field in the edge portion can be suppressed.

なお、図8に示すように、導電性部材801に階段状の段差を設けるようにしても良い。図8の例では、試料吸着面との差分がh1の電極面801、差分がh2の電極面802、差分がh3の電極面803が形成されている。図示の通り、各差分の関係は、h3>h2>h1である。このような構造とすれば、段差の高さ寸法h2と側面方向のすき間寸法dを調整することにより、下方向からの電界補正と側面方向からの電界補正の寄与率を調整することが可能となり、より補正電圧の適正化が行い易くなる。   Note that a stepped step may be provided in the conductive member 801 as shown in FIG. In the example of FIG. 8, an electrode surface 801 having a difference of h1 from the sample adsorption surface, an electrode surface 802 having a difference of h2, and an electrode surface 803 having a difference of h3 are formed. As illustrated, the relationship between the differences is h3> h2> h1. With such a structure, it is possible to adjust the contribution ratio of the electric field correction from the lower side and the electric field correction from the side direction by adjusting the height dimension h2 of the step and the gap dimension d in the side direction. This makes it easier to optimize the correction voltage.

更に、図8、18に例示するように、電極面の高さが吸着電極4から離れるに従って、高くなるように補正電極を構成することによって、より正確に電界補正を行うことが可能となる。図18の例では、第2の電極面9が形成されており、電極面が、吸着電極から離れるに従って、対物レンズ側に近づくように形成されている。図8や図18の例では、試料のエッジは他部材と非接触となっており、試料表面を伝う等電位線は、X−Y方向に試料から離れるに従って、下方(対物レンズから離れる方向)に向かう。試料のエッジ近傍にビームを照射する場合、等電位線は試料表面に平行に形成されていることが望ましい。よって、等電位線を試料表面と平行にすべく、補正前の等電位線の変化に逆行する等電位線を形成する電極として、吸着電極から離れるに従って、対物レンズに電極面が近づくような構造を採用する。   Furthermore, as illustrated in FIGS. 8 and 18, the correction of the electric field can be performed more accurately by configuring the correction electrode so that the height of the electrode surface increases as the distance from the adsorption electrode 4 increases. In the example of FIG. 18, the second electrode surface 9 is formed, and the electrode surface is formed so as to approach the objective lens side as the distance from the adsorption electrode increases. In the examples of FIGS. 8 and 18, the edge of the sample is not in contact with other members, and the equipotential lines that travel on the sample surface move downward (in the direction away from the objective lens) as they move away from the sample in the XY direction. Head for. When the beam is irradiated near the edge of the sample, it is desirable that the equipotential lines are formed in parallel to the sample surface. Therefore, in order to make the equipotential line parallel to the sample surface, as an electrode for forming an equipotential line that goes against the change of the equipotential line before correction, the electrode surface approaches the objective lens as it moves away from the adsorption electrode. Is adopted.

図8、18に例示する構造によれば、エッジ部分の電位勾配を試料面と平行となるよう補正を行うことができる。また、階段状に形成するのではなく、スロープ状に形成するようにしても良い。   According to the structure illustrated in FIGS. 8 and 18, the potential gradient at the edge portion can be corrected so as to be parallel to the sample surface. Further, it may be formed in a slope shape instead of a step shape.

図9は、試料より小さな吸着面を備えた静電チャックであって、試料のエッジ下方に電界補正用の電極を設けたときの試料外周の電界分布の一例を示す図である。導電性部材901に所定の補正電圧Vcを印加することにより、ウエハ自身の段差による等電位面903の落ち込みを押し戻し、電子線軌道904における電界を軸対称に保つ。静電チャック上の帯電905は静電チャックの外径がウエハよりも小さい場合も同様に発生するが、帯電905が作り出す電界は、ウエハ自身によってシールドされるため、電子線軌道上に影響を与えることは無い。このような構成とすれば、静電チャックの帯電の影響を受けることなく、測長可能範囲を拡大することが可能となる。また、補正電圧Vcを印加する導電性部材901も、電源を介して接地されているため帯電することは無い。   FIG. 9 shows an example of the electric field distribution on the outer periphery of the sample, which is an electrostatic chuck having an attracting surface smaller than the sample, and an electrode for correcting the electric field is provided below the edge of the sample. By applying a predetermined correction voltage Vc to the conductive member 901, the drop of the equipotential surface 903 due to the step of the wafer itself is pushed back, and the electric field in the electron beam trajectory 904 is kept axially symmetric. The charge 905 on the electrostatic chuck is generated in the same manner when the outer diameter of the electrostatic chuck is smaller than that of the wafer. However, the electric field generated by the charge 905 is shielded by the wafer itself, and thus affects the electron beam trajectory. There is nothing. With such a configuration, it is possible to expand the length measurement possible range without being affected by the electrostatic chuck charging. Also, the conductive member 901 to which the correction voltage Vc is applied is not charged because it is grounded via the power source.

また、導電性部材901を試料吸着面より下方に位置させることによって、例えば、試料がずれて搬送されてきたような場合に、静電チャック構造と試料の衝突のリスクを低減することが可能となる。尚、図7から図9では導電性部材の高さがウエハよりも低い位置に図示したが、ウエハと同一高さあるいはウエハよりも高くしてさらに補正効果を高めても良い。   In addition, by positioning the conductive member 901 below the sample adsorption surface, for example, when the sample is transported out of position, the risk of collision between the electrostatic chuck structure and the sample can be reduced. Become. 7 to 9, the height of the conductive member is shown at a position lower than that of the wafer. However, the correction effect may be further enhanced by making it the same height as the wafer or higher than the wafer.

また、導電性部材は必ずしも静電チャックと別部品である必要はなく、導電性部材を静電チャック内部に埋め込んで一体化させても良い。たとえば図17に示すように、静電チャック1701のウエハ吸着部1702はウエハ外径よりも小さく保ったまま、静電チャック内部のウエハ外周部下方に、導電性部材1703を埋め込む構成とする。この時、ウエハ吸着部1702より外側の領域は該ウエハ吸着部よりも低くし、静電チャック表面とウエハとの距離1704を帯電の影響が無視できる程度に保つ。このような構成とすれば、静電チャック表面の帯電による影響を受けることなく電子線の軌道補正を行うことが可能となる。なお、本実施例では導電性部材の内径をウエハ外径よりも小さくしている。導電性部材の内径はウエハ外径より大きくても良いが、本実施例のように導電性部材の内径がウエハ外径よりも小さい場合には、第四の実施例で示すようなウエハの搬送ばらつきや電極とウエハとのすき間を考慮した電圧印加シーケンスは不要となり、より電子軌道補正が容易となる。   In addition, the conductive member is not necessarily a separate component from the electrostatic chuck, and the conductive member may be embedded and integrated in the electrostatic chuck. For example, as shown in FIG. 17, a conductive member 1703 is embedded below the outer peripheral portion of the wafer inside the electrostatic chuck while keeping the wafer suction portion 1702 of the electrostatic chuck 1701 smaller than the outer diameter of the wafer. At this time, the area outside the wafer attracting portion 1702 is made lower than the wafer attracting portion, and the distance 1704 between the electrostatic chuck surface and the wafer is kept to such an extent that the influence of charging can be ignored. With such a configuration, it becomes possible to perform electron beam trajectory correction without being affected by the electrostatic chuck surface charging. In this embodiment, the inner diameter of the conductive member is made smaller than the outer diameter of the wafer. The inner diameter of the conductive member may be larger than the outer diameter of the wafer. However, when the inner diameter of the conductive member is smaller than the outer diameter of the wafer as in this embodiment, the wafer is transferred as shown in the fourth embodiment. A voltage application sequence that takes into account variations and the gap between the electrode and the wafer is not necessary, and the electron trajectory correction becomes easier.

更に、単に試料のエッジ部分を非接触にするためだけであれば、静電チャックの吸着面側に段差を設けるだけで、吸着電極と導電性部材1703に高低差を設ける必要はない。しかしながら、クーロン力等を極力大きくするためには、吸着電極と試料との間の間隔を小さくすることが望ましい。よって、図17に例示するように、静電チャック表面側の突出部に、吸着電極を内蔵させ、結果として吸着電極と導電性部材1703に高低差を設けることが望ましい。また、高さ方向(Z方向)に2つの電極が離間することになるため、X−Y方向に2つの電極を近接させたとしても、放電のリスクが高くなることはなく、より電界補正の効果を考慮した電極配置を行うことが可能となる。   Further, if only the edge portion of the sample is made non-contact, it is not necessary to provide a difference in height between the suction electrode and the conductive member 1703 by merely providing a step on the suction surface side of the electrostatic chuck. However, in order to increase the Coulomb force and the like as much as possible, it is desirable to reduce the interval between the adsorption electrode and the sample. Therefore, as illustrated in FIG. 17, it is desirable that the adsorption electrode is built in the protruding portion on the electrostatic chuck surface side, and as a result, a height difference is provided between the adsorption electrode and the conductive member 1703. Further, since the two electrodes are separated in the height direction (Z direction), even if the two electrodes are brought close to each other in the XY direction, the risk of discharge does not increase, and the electric field correction is further improved. It is possible to perform electrode arrangement in consideration of the effect.

続いて、図10を用いて第二の実施例について説明する。第二の実施例では、第一の実施例に加え、静電チャック内部に、吸着電極1001の外側最外周にシールド電極1002(第3の電極)を設けたことを特徴とする。シールド電極1002は、ウエハと同一電圧であるリターディング電源1003に接続される。第一の実施例では、静電チャック表面の帯電の影響は、ウエハ外径よりも小さくしたことによりシールドされるが、静電チャックの吸着電極が作り出す電界もウエハ外周付近にまで多少の影響を与える。最外周の電極にウエハと同一電圧のリターディング電圧を印加すれば、吸着電極が作り出す電界1004をシールドすることが可能となる。しかし、このような構成とした場合、シールド電極の分だけ静電チャックの吸着領域が制限される。吸着領域も十分確保しつつ内部電極の影響をシールドしたい場合には、図11に示すように、静電チャックの内部ではなく、静電チャック1101と導電性部材1102の間に絶縁性部材1104を介してシールド部材1103を設けてもよい。このような構成とし、シールド部材にリターディング電圧1105を印加すれば、内部電極の電界の影響をシールドしつつ静電チャックの吸着領域を充分確保することが可能となる。尚、ここではシールド部材をESC(Electrostatic Chuck)とは別部材として説明したが、ESCの外周に導電性のコーティングを施すことでシールド部材を形成しても良い。   Subsequently, a second embodiment will be described with reference to FIG. In the second embodiment, in addition to the first embodiment, a shield electrode 1002 (third electrode) is provided on the outermost outer periphery of the attracting electrode 1001 inside the electrostatic chuck. The shield electrode 1002 is connected to a retarding power source 1003 having the same voltage as the wafer. In the first embodiment, the effect of charging on the surface of the electrostatic chuck is shielded by making it smaller than the outer diameter of the wafer, but the electric field generated by the chucking electrode of the electrostatic chuck also has a slight influence on the vicinity of the wafer periphery. give. If a retarding voltage having the same voltage as that of the wafer is applied to the outermost electrode, the electric field 1004 generated by the adsorption electrode can be shielded. However, in such a configuration, the adsorption area of the electrostatic chuck is limited by the amount of the shield electrode. When it is desired to shield the influence of the internal electrode while ensuring a sufficient suction area, an insulating member 1104 is not provided between the electrostatic chuck 1101 and the conductive member 1102, as shown in FIG. A shield member 1103 may be provided. By adopting such a configuration and applying a retarding voltage 1105 to the shield member, it is possible to secure a sufficient adsorption area of the electrostatic chuck while shielding the influence of the electric field of the internal electrode. Although the shield member has been described as a separate member from ESC (Electrostatic Chuck) here, the shield member may be formed by applying a conductive coating to the outer periphery of the ESC.

図12に、第一の実施例および第二の実施例におけるCD−SEMの測定フローを示す。まず、試料室へウエハを搬入し、静電チャックおよびリターディング電圧を印加する(ステップ1201)。その後、導電性部材に所定の電圧Vcを印加する(ステップ1202)。このとき印加するべき電圧の値Vcは、導電性部材とウエハ側面の間のすき間d、導電性部材の高さh1、また段差がある場合には段差部の高さh2によって決まる最適な電圧値Vc(d,h1,(h2))を選択する。その後、各測定点での測長処理を実施し(ステップ1203)、測長処理が完了したらウエハを搬出する(ステップ1204)。このようなフローとすれば、ウエハ観察中は常に導電性部材に適切な電圧が印加されるので、ウエハ上のどこを測長するときも測定位置を意識することなく観察可能範囲を確保することが可能となる。   FIG. 12 shows a measurement flow of CD-SEM in the first embodiment and the second embodiment. First, a wafer is carried into the sample chamber, and an electrostatic chuck and a retarding voltage are applied (step 1201). Thereafter, a predetermined voltage Vc is applied to the conductive member (step 1202). The voltage value Vc to be applied at this time is an optimum voltage value determined by the gap d between the conductive member and the wafer side surface, the height h1 of the conductive member, and the height h2 of the stepped portion when there is a step. Vc (d, h1, (h2)) is selected. Thereafter, length measurement processing is performed at each measurement point (step 1203). When the length measurement processing is completed, the wafer is unloaded (step 1204). With such a flow, an appropriate voltage is always applied to the conductive member during wafer observation, so it is possible to ensure an observable range without being aware of the measurement position when measuring anywhere on the wafer. Is possible.

次に、第三の実施例として、第一の実施例および第二の実施例に加え、さらに測長可能領域を拡大するCD−SEMの測定フローを説明する。ウエハエッジ付近の電界は、エッジに近づくにつれて段差部の電界の乱れの影響を受けやすくなる。そのため、観察位置のウエハエッジからの僅かな距離の差によって、補正電極に印加すべき最適な電圧は微妙に異なる。図13は、第三の実施例におけるCD−SEMの測定フローである。リターディング電圧印加後に一定の値として補正電圧Vcを印加するのではなく、各測定点(ビーム照射点)に移動毎にウエハ中心からの距離rを算出し、距離rに応じた最適な電圧Vc(d,h1,(h2),r)を導電性部材に印加する(ステップ1301)。こうようなフローとすることで、観察位置毎に最適な補正電圧を印加できるので、測長可能領域をさらに広げることが可能となる。また、測定毎の電圧再設定はステージ移動と並列して行うので、装置スループットを低下させることはない。   Next, as a third embodiment, a measurement flow of a CD-SEM for further expanding the length measurable region in addition to the first embodiment and the second embodiment will be described. The electric field near the wafer edge tends to be affected by the disturbance of the electric field at the stepped portion as it approaches the edge. Therefore, the optimum voltage to be applied to the correction electrode is slightly different depending on a slight difference in distance from the wafer edge at the observation position. FIG. 13 is a measurement flow of CD-SEM in the third embodiment. Rather than applying the correction voltage Vc as a constant value after applying the retarding voltage, the distance r from the wafer center is calculated for each movement to each measurement point (beam irradiation point), and the optimum voltage Vc corresponding to the distance r is calculated. (D, h1, (h2), r) is applied to the conductive member (step 1301). By adopting such a flow, an optimum correction voltage can be applied for each observation position, so that the length measurement possible region can be further expanded. In addition, since voltage resetting for each measurement is performed in parallel with stage movement, the apparatus throughput is not reduced.

続いて、第四の実施例について説明する。静電チャック上に置かれるウエハ位置は、静電チャック中心に対し搬送精度の誤差分だけばらつく。このばらつきは、ウエハエッジと静電チャック外側に設置された導電性部材のすき間に同様のばらつきを与える。導電性部材とウエハ中心がずれた場合、ウエハがずれた方向におけるウエハと導電性部材の間のすき間は比較的狭くなり、その反対側におけるすき間は比較的広くなるというように、ウエハ角度方向の場所によってすき間の大きさが異なってくる。図14および図15を用いて、このような搬送精度によるすき間のばらつきも補正できるようにしたCD−SEMおよび測定フローについて説明する。ウエハを試料室に搬入後、まず図14に示す光学式顕微鏡1401等の位置検出装置によりウエハ1402および導電性部材1403の間のすき間を複数箇所撮像し(ステップ1501)、画像処理によりウエハの位置ずれ量ΔxおよびΔyを算出する(ステップ1502)。各測定点(Xn,Yn)へ移動時(ステップ1503)は、ウエハ中心からの距離rだけでなく、位置ずれ量Δx,Δyによって決まる観察位置Xn, Yn方向のウエハと導電性部材のすき間d(Δx, Δy, Xn, Yn)に応じた最適補正電圧Vc(h1,(h2),r,d(Δx,Δy, Xn, Yn))を印加する(ステップ1504)。これら最適電圧Vcを決めるためのパラメータの位置関係を、図16に示す。   Subsequently, a fourth embodiment will be described. The position of the wafer placed on the electrostatic chuck varies from the center of the electrostatic chuck by an error in the conveyance accuracy. This variation gives the same variation between the wafer edge and the gap between the conductive members installed outside the electrostatic chuck. When the conductive member and the wafer center are displaced, the gap between the wafer and the conductive member in the direction in which the wafer is displaced is relatively narrow, and the gap on the opposite side is relatively wide. The size of the gap varies depending on the location. A CD-SEM and a measurement flow that can correct such a gap variation due to the conveyance accuracy will be described with reference to FIGS. 14 and 15. After carrying the wafer into the sample chamber, first, a plurality of gaps between the wafer 1402 and the conductive member 1403 are imaged by a position detection device such as an optical microscope 1401 shown in FIG. 14 (step 1501), and the position of the wafer is obtained by image processing. Deviation amounts Δx and Δy are calculated (step 1502). When moving to each measurement point (Xn, Yn) (step 1503), not only the distance r from the wafer center but also the gap d between the wafer and the conductive member in the observation position Xn, Yn direction determined by the positional deviation amounts Δx, Δy. An optimum correction voltage Vc (h1, (h2), r, d (Δx, Δy, Xn, Yn)) corresponding to (Δx, Δy, Xn, Yn) is applied (step 1504). FIG. 16 shows the positional relationship of parameters for determining these optimum voltages Vc.

ウエハ1601の位置ずれΔx,Δyおよび観察位置Xn,Ynによってきまるすき間d(Δx,Δy, Xn, Yn)と、ウエハ中心からの距離r、および導電性部材1602の高さh1,(h2)によって最適電圧Vcを決定する。このようなフローとすることで、ウエハ搬送ばらつきも考慮した補正が可能となり、観察可能範囲をさらに拡大させることが可能となる。尚、ここではウエハの位置ずれを光学式顕微鏡で行ったが、ラインセンサによって行っても良い。   The gap d (Δx, Δy, Xn, Yn) determined by the positional deviations Δx, Δy of the wafer 1601 and the observation positions Xn, Yn, the distance r from the center of the wafer, and the heights h1, (h2) of the conductive members 1602 The optimum voltage Vc is determined. By adopting such a flow, it is possible to perform correction in consideration of wafer conveyance variation, and it is possible to further expand the observable range. In this case, the wafer is displaced by an optical microscope, but may be performed by a line sensor.

上述のような構成によれば、静電チャックを適用した走査型電子顕微鏡において、静電チャックの内部電極の影響、および装置運用中に蓄積した静電チャック上の帯電の影響を受けることなく、安定して観察可能範囲を確保することが可能となる。   According to the configuration as described above, in the scanning electron microscope to which the electrostatic chuck is applied, without being affected by the internal electrode of the electrostatic chuck and the influence of charging on the electrostatic chuck accumulated during operation of the apparatus, It becomes possible to ensure a stable observation range.

1 試料
2 静電チャック
3 試料吸着面
4 吸着電極
5 電界補正用電源
6 電極
7 仮想直線
8 第1の面
9 第2の面
1 Sample 2 Electrostatic Chuck 3 Sample Adsorption Surface 4 Adsorption Electrode 5 Electric Field Correction Power Supply 6 Electrode 7 Virtual Straight Line 8 First Surface 9 Second Surface

Claims (9)

試料を吸着する試料吸着面と、当該試料吸着面と前記試料との間で吸着力を発生させるための電圧が印加される第1の電極を有する静電チャック機構において、
前記第1の電極より下側に第1の面を有する第2の電極と、当該第2の電極に負電圧を印加する負電圧印加電源を備え、前記第2の電極は、前記第1の面を包囲すると共に前記試料吸着面より下側に位置する前記第2の電極の最上面となる第2の面を備えていることを特徴とする静電チャック機構。
In an electrostatic chuck mechanism having a sample adsorption surface for adsorbing a sample, and a first electrode to which a voltage for generating an adsorption force is applied between the sample adsorption surface and the sample.
A second electrode having a first surface below the first electrode; and a negative voltage application power source for applying a negative voltage to the second electrode, wherein the second electrode includes the first electrode An electrostatic chuck mechanism comprising a second surface surrounding the surface and serving as the uppermost surface of the second electrode positioned below the sample adsorption surface.
請求項1において、
前記第2の電極は、前記試料吸着面に直交する方向に異なる高さの面を持ち、当該異なる高さの面は前記第1の電極から離れるほど、高くなることを特徴とする静電チャック機構。
In claim 1,
The electrostatic chuck characterized in that the second electrode has surfaces with different heights in a direction orthogonal to the sample adsorption surface, and the surfaces with the different heights become higher as the distance from the first electrode increases. mechanism.
請求項2において、
前記第2の電極は、階段状、或いはスロープ状に形成されることを特徴とする静電チャック機構。
In claim 2,
The electrostatic chuck mechanism, wherein the second electrode is formed in a step shape or a slope shape.
請求項1において、
前記第1の電極と前記第2の電極との間に第3の電極を配置したことを特徴とする静電チャック機構。
In claim 1,
An electrostatic chuck mechanism, wherein a third electrode is disposed between the first electrode and the second electrode.
請求項4において、
前記第1の電極と前記第3の電極には同じ電圧が印加されることを特徴とする静電チャック機構。
In claim 4,
The electrostatic chuck mechanism, wherein the same voltage is applied to the first electrode and the third electrode.
請求項1において、
前記第2の電極は、前記第1の電極を包囲するように配置されることを特徴とする静電チャック機構。
In claim 1,
The electrostatic chuck mechanism, wherein the second electrode is disposed so as to surround the first electrode.
荷電粒子ビームを照射するためのビームカラムと、前記荷電粒子線が照射される試料を移動する試料ステージを備えた荷電粒子線装置において、
前記試料を吸着する試料吸着面と、当該試料吸着面と前記試料との間で吸着力を発生するための電圧が印加される第1の電極を有する静電チャック機構を備え、当該静電チャック機構は、前記第1の電極より下側に第1の面を有する第2の電極と、当該第2の電極に負電圧を印加する負電圧印加電源を備え、前記第2の電極は、前記第1の面を包囲すると共に前記試料吸着面より下側に位置する前記第2の電極の最上面となる第2の面を備えていることを特徴とする荷電粒子線装置。
In a charged particle beam apparatus comprising a beam column for irradiating a charged particle beam and a sample stage for moving a sample irradiated with the charged particle beam,
An electrostatic chuck mechanism comprising: a sample adsorption surface for adsorbing the sample; and a first electrode to which a voltage for generating an adsorption force is applied between the sample adsorption surface and the sample. The mechanism includes a second electrode having a first surface below the first electrode, and a negative voltage application power source that applies a negative voltage to the second electrode. A charged particle beam apparatus comprising: a second surface surrounding the first surface and serving as the uppermost surface of the second electrode located below the sample adsorption surface.
請求項7において、
前記荷電粒子ビームが照射される個所に応じて、前記第2の電極に印加する電圧を調整する制御装置を備えたことを特徴とする荷電粒子線装置。
In claim 7,
A charged particle beam apparatus comprising: a control device that adjusts a voltage to be applied to the second electrode in accordance with a location irradiated with the charged particle beam.
請求項8において、
前記試料の位置を検出する位置検出装置を備え、前記制御装置は、当該位置検出装置の位置検出結果に基づいて、前記第2の電極に印加する電圧を調整することを特徴とする荷電粒子線装置。
In claim 8,
A charged particle beam comprising a position detection device for detecting the position of the sample, wherein the control device adjusts a voltage applied to the second electrode based on a position detection result of the position detection device. apparatus.
JP2018237885A 2018-12-20 2018-12-20 Electrostatic chuck mechanism and charged particle beam device Active JP6640975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018237885A JP6640975B2 (en) 2018-12-20 2018-12-20 Electrostatic chuck mechanism and charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237885A JP6640975B2 (en) 2018-12-20 2018-12-20 Electrostatic chuck mechanism and charged particle beam device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014050971A Division JP2015176683A (en) 2014-03-14 2014-03-14 Electrostatic chuck mechanism, and charged particle beam device

Publications (2)

Publication Number Publication Date
JP2019054007A true JP2019054007A (en) 2019-04-04
JP6640975B2 JP6640975B2 (en) 2020-02-05

Family

ID=66013746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237885A Active JP6640975B2 (en) 2018-12-20 2018-12-20 Electrostatic chuck mechanism and charged particle beam device

Country Status (1)

Country Link
JP (1) JP6640975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767446A (en) * 2019-04-10 2021-12-07 Asml荷兰有限公司 Gantry device suitable for particle beam device
US11270866B2 (en) 2019-11-07 2022-03-08 Nuflare Technology, Inc. Electron beam inspection apparatus and electron beam inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054094A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Scanning electron microscope
WO2006093268A1 (en) * 2005-03-03 2006-09-08 Ebara Corporation Projection electron beam apparatus and defect inspection system using the apparatus
JP2007189238A (en) * 1998-04-20 2007-07-26 Hitachi Ltd Semiconductor manufacturing apparatus and semiconductor testing apparatus
JP2009302415A (en) * 2008-06-17 2009-12-24 Hitachi High-Technologies Corp Charged-particle beam device, test piece holding system, method for holding test piece, and method for detaching test piece
WO2011071073A1 (en) * 2009-12-10 2011-06-16 東京エレクトロン株式会社 Electrostatic chuck apparatus
JP2013101974A (en) * 2008-06-25 2013-05-23 Hitachi High-Technologies Corp Semiconductor inspecting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189238A (en) * 1998-04-20 2007-07-26 Hitachi Ltd Semiconductor manufacturing apparatus and semiconductor testing apparatus
JP2006054094A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Scanning electron microscope
WO2006093268A1 (en) * 2005-03-03 2006-09-08 Ebara Corporation Projection electron beam apparatus and defect inspection system using the apparatus
JP2009302415A (en) * 2008-06-17 2009-12-24 Hitachi High-Technologies Corp Charged-particle beam device, test piece holding system, method for holding test piece, and method for detaching test piece
JP2013101974A (en) * 2008-06-25 2013-05-23 Hitachi High-Technologies Corp Semiconductor inspecting apparatus
WO2011071073A1 (en) * 2009-12-10 2011-06-16 東京エレクトロン株式会社 Electrostatic chuck apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767446A (en) * 2019-04-10 2021-12-07 Asml荷兰有限公司 Gantry device suitable for particle beam device
US11270866B2 (en) 2019-11-07 2022-03-08 Nuflare Technology, Inc. Electron beam inspection apparatus and electron beam inspection method

Also Published As

Publication number Publication date
JP6640975B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP2015176683A (en) Electrostatic chuck mechanism, and charged particle beam device
JP4905504B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
JP5662992B2 (en) Sample surface inspection method and inspection apparatus
KR101280162B1 (en) Semiconductor inspecting apparatus
JP5174750B2 (en) Charged particle beam apparatus and method for stably acquiring charged particle beam image
JP4305421B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
JP5914020B2 (en) Charged particle beam equipment
JP5412270B2 (en) Scanning electron microscope
JP6640975B2 (en) Electrostatic chuck mechanism and charged particle beam device
JP4506588B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP6151028B2 (en) Charged particle beam equipment
TWI687648B (en) Method for automated critical dimension measurement on a substrate for display manufacturing, method of inspecting a large area substrate for display manufacturing, apparatus for inspecting a large area substrate for display manufacturing and method of operating thereof
JP2009170150A (en) Inspection and measurement device and inspection and measurement method
JP5058489B2 (en) Sample surface inspection apparatus and inspection method
JP6411799B2 (en) Charged particle beam equipment
JP5205515B2 (en) Sample potential measuring method and charged particle beam apparatus
JP5548244B2 (en) Inspection measurement device and inspection measurement method
JP7394599B2 (en) Electron beam inspection equipment using retarding voltage
JP2014216183A (en) Semiconductor inspection device, and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350