JP2019052271A - Manufacturing method of fluorescent material - Google Patents

Manufacturing method of fluorescent material Download PDF

Info

Publication number
JP2019052271A
JP2019052271A JP2017178887A JP2017178887A JP2019052271A JP 2019052271 A JP2019052271 A JP 2019052271A JP 2017178887 A JP2017178887 A JP 2017178887A JP 2017178887 A JP2017178887 A JP 2017178887A JP 2019052271 A JP2019052271 A JP 2019052271A
Authority
JP
Japan
Prior art keywords
shell
fluorescent material
firing
atmosphere
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017178887A
Other languages
Japanese (ja)
Inventor
今井 敏夫
Toshio Imai
敏夫 今井
純男 海崎
Sumio Kaizaki
純男 海崎
亜也子 日置
Ayako Hioki
亜也子 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Taiheiyo Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Osaka University NUC, Osaka Research Institute of Industrial Science and Technology filed Critical Taiheiyo Cement Corp
Priority to JP2017178887A priority Critical patent/JP2019052271A/en
Publication of JP2019052271A publication Critical patent/JP2019052271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

To provide a manufacturing method of a fluorescent material capable of providing similar effect to burning in reduction atmosphere even under ambient air environment, and capable of manufacturing a fluorescent material emitting fluorescence from blue to green by ultraviolet irradiation.SOLUTION: A manufacturing method includes a process for accommodating a shell in a sealed container so that space volume based on weight of the shell of 100 g is 500 ml or less, and a process for burning the sealed container accommodating the shell in ambient air environment at a temperature of 700°C to 1000°C. Thereby, a fluorescent material having similar fluorescence property by burning in reduction atmosphere even by burning in the ambient air environment can be manufactured and similar effect to reduction burning can be obtained with a simple method. Since a raw material is shell to be wasted, waste can be effectively utilized.SELECTED DRAWING: Figure 6

Description

本発明は、貝殻を焼成して製造する蛍光材の製造方法に関する。   The present invention relates to a method for producing a fluorescent material produced by firing a shell.

貝にはホタテ、カキ、アサリ等様々あるが、これらの貝殻の発生量に関する正確な統計は乏しい。これらのうち、ホタテおよびカキの貝殻の発生量は、それぞれ約35万トンおよび約20万トンと見積もられている。貝殻の主成分は炭酸カルシウム(カルサイトまたはアラゴナイト)であり、多孔質の骨格構造を有している。これまでに実用化されている有効利用には、チョーク、融雪材、土壌改良材、白線塗料の混合材、VOC除去材、脱硫・脱リン材、抗菌・消臭材、肥料など多岐にわたっている。近年では、蛍光材料への応用も検討されている。   There are various scallops, oysters, clams, etc., but accurate statistics on the amount of these shells are scarce. Of these, scallop and oyster shells are estimated to be about 350,000 tons and about 200,000 tons, respectively. The main component of the shell is calcium carbonate (calcite or aragonite) and has a porous skeleton structure. The effective use that has been put to practical use so far includes a wide variety of materials such as chalk, snow melting material, soil improvement material, white line paint mixture, VOC removal material, desulfurization / dephosphorization material, antibacterial / deodorant material, and fertilizer. In recent years, application to fluorescent materials has also been studied.

特許文献1は、ホタテの貝殻を100℃を超える温度で焼成することで蛍光体を製造できること、および、焼成温度をコントロールすることで蛍光体の色が変わることが開示されている。特許文献2は、貝殻を焼成することで得た炭酸カルシウムを主成分とする粉末に、励起エネルギーを加えることで1以上の発光帯で発光すること、および、これを標識として利用する食品添加物が開示されている。   Patent Document 1 discloses that a phosphor can be produced by firing a scallop shell at a temperature exceeding 100 ° C., and that the color of the phosphor changes by controlling the firing temperature. Patent Document 2 discloses that a powder containing calcium carbonate as a main component obtained by baking shells emits light in one or more emission bands by adding excitation energy, and a food additive that uses this as a label. Is disclosed.

特許文献3は、貝殻の焼成粉末を水で抽出した抽出液を水性蛍光塗料用蛍光材料として使用する技術が開示されている。特許文献4は、CaAlを母結晶とする蛍光体のCa源の材料として、貝殻粉末を使用する技術が開示されている。 Patent Document 3 discloses a technique in which an extract obtained by extracting a fired powder of shells with water is used as a fluorescent material for an aqueous fluorescent paint. Patent Document 4 discloses a technique in which shell powder is used as a Ca source material of a phosphor having CaAl 2 O 4 as a mother crystal.

特開2004−359923号公報JP 2004-359923 A 特開2011−227066号公報JP 2011-227066 A 特開2011−162728号公報JP 2011-162728 A 特開2007−131773号公報JP 2007-131773 A

貝殻は焼成するだけで紫外線照射により蛍光を発するが、焼成雰囲気によって蛍光の波長範囲や発光強度が異なる。これらのうち、青から緑の蛍光を強く発する蛍光材を得るためには、還元雰囲気による焼成が必要であった。   Shells emit fluorescence only by firing, and the fluorescence wavelength range and emission intensity differ depending on the firing atmosphere. Of these, firing in a reducing atmosphere is necessary to obtain a fluorescent material that emits strong blue to green fluorescence.

しかし、還元雰囲気による焼成をするためにはそのための設備が必要であり、大気雰囲気による焼成に比べて手間もコストもかかっていた。特許文献1から特許文献3は、いずれも還元雰囲気による焼成は考慮していない。また、特許文献4は、貝殻自体を焼成する技術ではなく、還元雰囲気の記載はあるが、通常の方法による還元雰囲気の焼成のみ考慮されている。   However, in order to perform firing in a reducing atmosphere, equipment for that is required, and it takes much time and cost compared to firing in an air atmosphere. None of Patent Documents 1 to 3 considers firing in a reducing atmosphere. Further, Patent Document 4 is not a technique for firing the shell itself, but there is a description of a reducing atmosphere, but only firing in a reducing atmosphere by a normal method is considered.

本発明は、このような事情に鑑みてなされたものであり、大気雰囲気下でも還元雰囲気での焼成と同様の効果を得られ、紫外線照射により、青から緑の蛍光を発する蛍光材を作製することができる蛍光材の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can obtain the same effect as firing in a reducing atmosphere even in an air atmosphere, and produce a fluorescent material that emits blue to green fluorescence by ultraviolet irradiation. An object of the present invention is to provide a method for producing a fluorescent material that can be used.

(1)上記の目的を達成するため、本発明の蛍光材の製造方法は、貝殻の重量100gに対して空間容積が500ml以下となるように密封容器に前記貝殻を収容する工程と、前記貝殻を収容した密封容器を大気雰囲気、700℃以上1000℃以下の温度で焼成する工程と、を含むことを特徴としている。   (1) In order to achieve the above object, the method for producing a fluorescent material according to the present invention includes a step of housing the shell in a sealed container so that a space volume is 500 ml or less with respect to a weight of 100 g of the shell, and the shell And a step of firing the sealed container containing the material at an air atmosphere at a temperature of 700 ° C. or higher and 1000 ° C. or lower.

これにより、大気雰囲気による焼成でも還元雰囲気による焼成と同様の蛍光特性を有する蛍光材を作製することができ、簡易な方法で還元焼成と同様の効果を得ることができる。また、原材料が廃棄される貝殻であることから、廃棄物を有効利用できる。   As a result, a fluorescent material having the same fluorescence characteristics as firing in a reducing atmosphere can be produced even in firing in an air atmosphere, and the same effects as in reducing firing can be obtained by a simple method. In addition, since the raw material is a shell that is discarded, the waste can be effectively used.

(2)また、本発明の蛍光材の製造方法は、前記貝殻を収容する工程において、前記貝殻の重量100gに対して空間容積が200ml以下となるように収容することを特徴としている。これにより、還元焼成で得られるものにより近い蛍光材を作製することができる。   (2) Moreover, the manufacturing method of the fluorescent material of the present invention is characterized in that in the step of storing the shell, the space is stored so that the space volume is 200 ml or less with respect to 100 g of the weight of the shell. Thereby, a fluorescent material closer to that obtained by reduction firing can be produced.

(3)また、本発明の蛍光材の製造方法は、前記密封容器の空間容積は、前記貝殻の重量およびあらかじめ測定した貝の種類ごとの貝殻の密度を用いて算出することを特徴としている。これにより、収容する貝殻の体積をそのつど測定する必要がなくなり、密封容器の空間容積を容易に所定の値にすることができる。   (3) Moreover, the manufacturing method of the fluorescent material of the present invention is characterized in that the space volume of the sealed container is calculated using the weight of the shell and the density of the shell for each shell type measured in advance. Thereby, it is not necessary to measure the volume of the shell to be accommodated, and the space volume of the sealed container can be easily set to a predetermined value.

本発明によれば、大気雰囲気下でも還元雰囲気での焼成と同様の効果を得られ、紫外線照射により、青から緑の蛍光を発する蛍光材を作製することができる。また、原材料が廃棄される貝殻であることから、廃棄物を有効利用できる。   According to the present invention, it is possible to obtain the same effect as firing in a reducing atmosphere even in an air atmosphere, and to produce a fluorescent material that emits blue to green fluorescence by ultraviolet irradiation. In addition, since the raw material is a shell that is discarded, the waste can be effectively used.

本発明の蛍光材の製造方法の概念図である。It is a conceptual diagram of the manufacturing method of the fluorescent material of this invention. ホタテの貝殻を、焼成雰囲気を変えて焼成した蛍光材の発光波長を表すグラフである。It is a graph showing the light emission wavelength of the fluorescent material which baked the scallop shell by changing the firing atmosphere. カキの貝殻を、焼成雰囲気を変えて焼成した蛍光材の発光波長を表すグラフである。It is a graph showing the light emission wavelength of the fluorescent material which fired the oyster shell by changing the firing atmosphere. ハマグリの貝殻を、焼成雰囲気を変えて焼成した蛍光材の発光波長を表すグラフである。It is a graph showing the light emission wavelength of the fluorescent material which fired the clam shell by changing the firing atmosphere. シジミの貝殻を、焼成雰囲気を変えて焼成した蛍光材の発光波長を表すグラフである。It is a graph showing the light emission wavelength of the fluorescent material which baked the sea shell of Shijimi by changing baking atmosphere. ホタテの貝殻を、こう鉢に収容して大気雰囲気で焼成して作製した蛍光材の発光波長を表すグラフである。It is a graph showing the light emission wavelength of the fluorescent material produced by housing scallop shells in a mortar and firing them in an air atmosphere.

本発明者らは、鋭意研究の結果、貝殻を密封容器に収容し、焼成することで、大気雰囲気下でも還元雰囲気での焼成と同様の効果を得られ、紫外線照射により、青から緑の蛍光を発する蛍光材を作製することができることを見出し、本発明を完成させた。以下に、本発明の実施形態について説明する。   As a result of diligent research, the inventors of the present invention can obtain the same effect as firing in a reducing atmosphere even in an air atmosphere by storing the shell in a sealed container and firing it. The present inventors have found that a fluorescent material that emits light can be produced. Hereinafter, embodiments of the present invention will be described.

蛍光やりん光は基底状態にある元素が特定の波長の電磁波(紫外線、X線、電子線)の照射により励起し、元の基底状態に戻る際に発光を生じる現象である。その他に酸化物発光体などで観測される入射エネルギー(励起光)が途絶した後も発光が持続する現象(蓄光)があり、本発明に係る蛍光材には、蛍光性を有するもののみならず蓄光性を有するものも含まれる。   Fluorescence or phosphorescence is a phenomenon in which an element in a ground state is excited by irradiation with an electromagnetic wave (ultraviolet ray, X-ray, electron beam) having a specific wavelength and emits light when returning to the original ground state. In addition, there is a phenomenon (luminescence) in which light emission continues even after the incident energy (excitation light) observed in the oxide light emitter is interrupted, and the fluorescent material according to the present invention includes not only fluorescent materials. Those having phosphorescent properties are also included.

[蛍光材の製造方法]
本発明の蛍光材の製造方法を説明する。図1は、蛍光材の製造方法の概念図である。まず、貝殻の重量100gに対して空間容積が500ml以下となるように密封容器に貝殻を収容する。空間容積とは、密封容器の容積から収容する貝殻の体積を引いた差である。収容する貝殻の体積は、そのつど測定してもよいが、収容する貝殻の重量およびあらかじめ測定した貝の種類ごとの貝殻の密度を用いて算出してもよい。また、貝殻の密度は、測定値ではなく、文献等に記載された値を参照してもよい。貝殻の重量を貝殻の密度で割ることで、貝殻の体積を算出することができる。こうすることで、収容する貝殻の体積をその都度測定する必要がなくなり、密封容器の空間容積を容易に所定の値にすることができる。例えば、ホタテ貝の貝殻の密度は、粒度分布によっても異なるが、2.5g/cm〜3.2g/cm程度である。
[Method for producing fluorescent material]
A method for producing the fluorescent material of the present invention will be described. FIG. 1 is a conceptual diagram of a method for manufacturing a fluorescent material. First, a shell is accommodated in a sealed container so that a space volume is 500 ml or less with respect to a weight of 100 g of the shell. The space volume is a difference obtained by subtracting the volume of the shell to be accommodated from the volume of the sealed container. The volume of the shells to be accommodated may be measured each time, but may be calculated by using the weight of the shells to be accommodated and the density of the shells for each kind of shells measured in advance. Further, the density of the shell may be referred to a value described in a document or the like instead of a measured value. By dividing the weight of the shell by the density of the shell, the volume of the shell can be calculated. By doing so, it is not necessary to measure the volume of the shell to be accommodated each time, and the space volume of the sealed container can be easily set to a predetermined value. For example, the density of the shells of scallops, varies depending particle size distribution is 2.5g / cm 3 ~3.2g / cm 3 order.

空間容積は、貝殻の重量100gに対して200ml以下であることが好ましく、100ml以下であることがさらに好ましい。空間容積が小さいと、焼成時に密封容器内がより早く還元雰囲気となり、得られる蛍光材の蛍光特性がより還元焼成のものに近くなるからである。   The space volume is preferably 200 ml or less, more preferably 100 ml or less, with respect to 100 g of the weight of the shell. This is because if the space volume is small, the inside of the sealed container becomes a reducing atmosphere earlier at the time of firing, and the fluorescent property of the obtained fluorescent material becomes closer to that of the reduced firing.

密封容器は、貝殻を収容し、密封した状態で焼成したときに、外気が容器内部に入らず、焼成温度に耐えられる必要がある。そのため、密封容器は、蓋付の磁製のるつぼ(こう鉢)であることが好ましい。   When a sealed container contains shells and is fired in a sealed state, it is necessary that outside air does not enter the container and can withstand the firing temperature. Therefore, the sealed container is preferably a magnetic crucible with a lid.

貝殻は、粉砕して収容してもよい。また、粉砕せずに収容できる場合は、そのまま収容してもよいし、粗破砕して収容してもよい。また、貝殻の種類は、1種類でも2種類以上でもよい。   The shell may be crushed and stored. Moreover, when it can accommodate without grind | pulverizing, it may be accommodated as it is or may be roughly crushed and accommodated. Further, the type of the shell may be one type or two or more types.

また、焼成時に密封容器内をさらに早く還元雰囲気にするため、貝殻の重量100gに対して1wt%以下の有機物を貝殻と混合して、密封容器に収容してもよい。貝殻の重量100gに対して1wt%を超える有機物を混合して焼成すると、有機物がチャーやタールなどの状態で残存してしまい、蛍光体が黒色に汚れてしまうほか、蛍光材の蛍光特性に影響を与える場合がある。貝殻に有機物を混合する場合、蛍光材の性質を均一にするため、貝殻と有機物とをいずれも粉砕し、ボールミル等で混合することが好ましい。混合する有機物は、木くずや草木などの植物体由来のものが好ましい。また、混合する有機物に微量のMn、Cl、F、Ni、Cu、ZnおよびSrなどが含まれていてもよい。   Moreover, in order to make the inside of a sealed container into a reducing atmosphere earlier at the time of baking, 1 wt% or less of organic matter may be mixed with shells and stored in the sealed container with respect to 100 g of shell weight. When an organic substance exceeding 1 wt% is mixed and baked with respect to the weight of 100 g of the shell, the organic substance remains in the state of char, tar, etc., and the phosphor becomes dirty in black and affects the fluorescence characteristics of the fluorescent material. May give. When mixing an organic substance with a shell, in order to make the properties of the fluorescent material uniform, it is preferable to pulverize both the shell and the organic substance and mix them with a ball mill or the like. The organic matter to be mixed is preferably derived from a plant body such as wood chips or vegetation. The organic substance to be mixed may contain a trace amount of Mn, Cl, F, Ni, Cu, Zn, Sr, and the like.

次に、所定の焼成条件で焼成する。焼成雰囲気は、生産コストの観点から大気雰囲気であるが、貝殻自体は密封容器に収容されているため、どのような雰囲気でも問題ない。焼成温度は、700℃以上1000℃以下である。700℃より低い温度または1000℃より高い温度で焼成すると、蛍光材の蛍光特性が変化する。焼成時間は、特に限定されないが、10分以上2時間以下であることが好ましく、30分以上1時間以下であることがより好ましい。   Next, firing is performed under predetermined firing conditions. The firing atmosphere is an air atmosphere from the viewpoint of production cost, but the shell itself is accommodated in a sealed container, so any atmosphere is acceptable. The firing temperature is 700 ° C. or higher and 1000 ° C. or lower. When firing at a temperature lower than 700 ° C. or higher than 1000 ° C., the fluorescent properties of the fluorescent material change. The firing time is not particularly limited, but is preferably 10 minutes or longer and 2 hours or shorter, and more preferably 30 minutes or longer and 1 hour or shorter.

焼成後の密封容器は、全体が冷却されてから開封することが好ましい。また、冷却後の蛍光材をさらに使用目的に合わせた平均粒径D50に粉砕してもよい。粉砕は、ボールミル等を用いて行なうことができる。なお、平均粒子径D50の測定は、レーザー回折・散乱法により行なうことができる。   The sealed container after firing is preferably opened after the whole is cooled. Moreover, you may grind | pulverize the fluorescent material after cooling to the average particle diameter D50 further match | combined with the intended purpose. The pulverization can be performed using a ball mill or the like. The average particle diameter D50 can be measured by a laser diffraction / scattering method.

以上の工程によって、大気雰囲気下でも還元雰囲気での焼成と同様の効果を得られ、紫外線照射により、青から緑の蛍光を発する蛍光材を作製することができる。また、原材料が廃棄される貝殻であることから、廃棄物を有効利用できる。例えば、型枠にセメントペーストまたはセメントモルタルを充填し、固まらないうちにその表面に蛍光材を埋め込むことで、蛍光材がセメント硬化体に埋設された蛍光コンクリート部材とすることができる。また、励起波長の光が透過できる樹脂材料に練り込んで用いることもできる。   Through the above steps, the same effect as that obtained by firing in a reducing atmosphere can be obtained even in an air atmosphere, and a fluorescent material that emits blue to green fluorescence can be produced by ultraviolet irradiation. In addition, since the raw material is a shell that is discarded, the waste can be effectively used. For example, by filling a mold with cement paste or cement mortar and embedding a fluorescent material on the surface of the mold before it is hardened, a fluorescent concrete member in which the fluorescent material is embedded in a hardened cement body can be obtained. Further, it can be used by being kneaded into a resin material that can transmit light having an excitation wavelength.

[実験]
最初に、ホタテ、カキ、ハマグリ、シジミの貝殻を、焼成雰囲気を変えて焼成した。焼成条件は、雰囲気をそれぞれ大気雰囲気、COフロー、Hフロー(3vol%、バランスはN)とし、焼成温度を1000℃、焼成時間を1時間とした。冷却後、作製した蛍光材に254nmの短波紫外線を照射し、発光波長を調べた。図2から図5は、それぞれホタテ、カキ、ハマグリ、シジミの貝殻を、焼成雰囲気を変えて焼成した蛍光材の発光波長を表すグラフである。
[Experiment]
First, scallops, oysters, clams and swordfish shells were fired under different firing atmospheres. The firing conditions were an air atmosphere, a CO 2 flow, and an H 2 flow (3 vol%, balance N 2 ), a firing temperature of 1000 ° C., and a firing time of 1 hour. After cooling, the produced fluorescent material was irradiated with short-wave ultraviolet light of 254 nm, and the emission wavelength was examined. 2 to 5 are graphs showing emission wavelengths of fluorescent materials obtained by firing scallops, oysters, clams and swordfish shells by changing the firing atmosphere.

全体的な傾向としては、大気焼成したものは赤色の蛍光が、CO焼成(非酸化焼成)およびH焼成(還元焼成)したものは青色の蛍光が見られた。それぞれの種類の貝殻ごとの特徴は以下のとおりである。 As a general tendency, red fluorescence was observed in the air-fired product, and blue fluorescence was observed in the CO 2 fired (non-oxidized fired) and H 2 fired (reduced fired). The characteristics of each type of shell are as follows.

ホタテの貝殻は、大気焼成したもので600nmの赤色の蛍光が認められた。CO、Hと還元が強くなると次第に450nmの青色の蛍光に変化した。カキの貝殻は、ホタテの貝殻と似た挙動を示したが、Hで還元焼成したものは480nmの緑青色が強くなった。ハマグリの貝殻は、大気焼成したものであっても赤色の蛍光が弱かった。ハマグリの貝殻は、雰囲気の違いが蛍光特性に及ぼす影響が小さいことが分かった。シジミの貝殻は、大気およびCO焼成したもので600nmの赤色の蛍光が認められた。H焼成したものは500nmの緑青色の蛍光が顕著になった。シジミの貝殻は、他の貝殻よりもMn含有率が高く、還元が遅いためであると考えられる。 The scallop shell was fired in the atmosphere and a red fluorescence of 600 nm was observed. When the reduction with CO 2 and H 2 became stronger, the fluorescence gradually changed to 450 nm blue fluorescence. The oyster shell showed a behavior similar to that of the scallop shell, but the green-blue color of 480 nm became stronger when it was reduced and fired with H 2 . The clam shells had weak red fluorescence even when fired in the air. Clam shells were found to have little effect on fluorescence properties due to the difference in atmosphere. The sea urchin shell was fired in air and CO 2 , and red fluorescence of 600 nm was observed. The one fired with H 2 showed a remarkable green-blue fluorescence of 500 nm. It is thought that the seashell of Shijimi has a higher Mn content than other shells and is slow to reduce.

次に、かさ密度1.33g/mlに粉砕したホタテの貝殻200gを内容積290mlの蓋付の磁製のるつぼ(こう鉢)に収容し、大気雰囲気、1000℃で1時間の条件で焼成した。空間容積は、貝殻100gに対して113mlであった。冷却後、作製した蛍光材に254nmの短波紫外線を照射し、発光波長を調べた。図6は、そのときの蛍光材の発光波長を表すグラフである。比較のため、るつぼに収容しない通常の大気雰囲気焼成、CO雰囲気(非酸化雰囲気)焼成およびH雰囲気(還元雰囲気)焼成の蛍光材の発光波長も記載している。 Next, 200 g of scallop shells crushed to a bulk density of 1.33 g / ml were placed in a magnetic crucible with a lid of 290 ml and then fired at 1000 ° C. for 1 hour. . The space volume was 113 ml with respect to 100 g of shells. After cooling, the produced fluorescent material was irradiated with short-wave ultraviolet light of 254 nm, and the emission wavelength was examined. FIG. 6 is a graph showing the emission wavelength of the fluorescent material at that time. For comparison, the emission wavelengths of fluorescent materials of normal air atmosphere firing, CO 2 atmosphere (non-oxidizing atmosphere) firing and H 2 atmosphere (reducing atmosphere) firing that are not accommodated in the crucible are also described.

るつぼ内で焼成した蛍光材の発光波長は、CO雰囲気焼成の発光波長とH雰囲気焼成の発光波長との中間に位置していることが分かった。この結果、るつぼ内での焼成は、CO雰囲気焼成よりも還元が強いことが分かった。これは、貝殻表面の有機物が熱分解され、その熱分解ガスによりるつぼ内部が還元雰囲気になるためと考えられる。そのため、空間容積が小さいときは、るつぼ内の酸素量も少なくなるので、貝殻表面の有機物が燃焼しにくくなり、るつぼ内がより早く還元雰囲気になると考えられる。 It was found that the emission wavelength of the fluorescent material fired in the crucible is located between the emission wavelength of CO 2 atmosphere firing and the emission wavelength of H 2 atmosphere firing. As a result, it was found that calcination in the crucible was more reduced than CO 2 atmosphere calcination. This is presumably because the organic matter on the surface of the shell is thermally decomposed, and the inside of the crucible becomes a reducing atmosphere by the pyrolysis gas. For this reason, when the space volume is small, the amount of oxygen in the crucible also decreases, so that the organic matter on the surface of the shell becomes difficult to burn, and the crucible is considered to be in a reducing atmosphere more quickly.

次に、貝殻表面の有機物の量を測定するため、粉砕したホタテの貝殻の600℃までの加熱重量減少を調べた。その結果、重量減少はほとんどないことが確認された。そのため、貝殻表面の有機物は、貝殻の重量に対して、最大で1.5wt%、最小で0.2wt%程度であると考えられる。この有機物を完全燃焼させるのに必要なOの量を考慮すると、貝殻の重量100gに対して空間容積が500ml以下であれば、焼成時に貝殻表面の有機物が完全燃焼しないため、密封容器内を還元雰囲気にできる。 Next, in order to measure the amount of organic matter on the surface of the shell, the weight loss of the ground scallop shell up to 600 ° C. was examined. As a result, it was confirmed that there was almost no weight reduction. Therefore, it is considered that the organic matter on the surface of the shell is about 1.5 wt% at the maximum and about 0.2 wt% at the minimum with respect to the weight of the shell. Considering the amount of O 2 required to completely burn the organic matter, if the space volume is 500 ml or less with respect to the shell weight of 100 g, the organic matter on the shell surface will not be completely burned at the time of firing. It can be a reducing atmosphere.

以上から、本発明の蛍光材の製造方法は、大気雰囲気による焼成でも還元雰囲気による焼成と同様の蛍光特性を有する蛍光材を作製することができ、簡易な方法で還元焼成と同様の効果を得ることができることが確認された。   From the above, the method for producing a fluorescent material according to the present invention can produce a fluorescent material having the same fluorescence characteristics as that of firing in a reducing atmosphere even when firing in an air atmosphere, and obtains the same effect as reduction firing in a simple method. It was confirmed that it was possible.

Claims (3)

貝殻の重量100gに対して空間容積が500ml以下となるように密封容器に前記貝殻を収容する工程と、
前記貝殻を収容した密封容器を大気雰囲気、700℃以上1000℃以下の温度で焼成する工程と、を含むことを特徴とする蛍光材の製造方法。
Storing the shell in a sealed container so that the space volume is 500 ml or less with respect to a weight of 100 g of the shell;
And baking the sealed container containing the shell at a temperature of 700 ° C. to 1000 ° C. in an air atmosphere.
前記貝殻を収容する工程は、前記貝殻の重量100gに対して空間容積が200ml以下となるように収容することを特徴とする請求項1記載の蛍光材の製造方法。   The method for producing a fluorescent material according to claim 1, wherein the step of housing the shell includes housing the shell so that a space volume is 200 ml or less with respect to a weight of 100 g of the shell. 前記密封容器の空間容積は、前記貝殻の重量およびあらかじめ測定した貝の種類ごとの貝殻の密度を用いて算出することを特徴とする請求項1または請求項2記載の蛍光材の製造方法。   The method for producing a fluorescent material according to claim 1, wherein the space volume of the sealed container is calculated using a weight of the shell and a density of the shell for each kind of shell measured in advance.
JP2017178887A 2017-09-19 2017-09-19 Manufacturing method of fluorescent material Pending JP2019052271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017178887A JP2019052271A (en) 2017-09-19 2017-09-19 Manufacturing method of fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178887A JP2019052271A (en) 2017-09-19 2017-09-19 Manufacturing method of fluorescent material

Publications (1)

Publication Number Publication Date
JP2019052271A true JP2019052271A (en) 2019-04-04

Family

ID=66014263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178887A Pending JP2019052271A (en) 2017-09-19 2017-09-19 Manufacturing method of fluorescent material

Country Status (1)

Country Link
JP (1) JP2019052271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001330T5 (en) 2019-03-20 2021-12-02 Sugatsune Kogyo Co., Ltd. Two-way coupling
CN114907851A (en) * 2022-06-20 2022-08-16 苏州北美国际高级中学 Red fluorescent powder and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001330T5 (en) 2019-03-20 2021-12-02 Sugatsune Kogyo Co., Ltd. Two-way coupling
CN114907851A (en) * 2022-06-20 2022-08-16 苏州北美国际高级中学 Red fluorescent powder and preparation method thereof

Similar Documents

Publication Publication Date Title
Tshabalala et al. Generation of white-light from Dy3+ doped Sr2SiO4 phosphor
Chawla et al. Broad yellow orange emission from SrAl2O4: Pr3+ phosphor with blue excitation for application to white LEDs
Luitel et al. Photoluminescence properties of a novel orange red emitting Sr4Al14O25: Sm3+ phosphor and PL enhancement by Bi3+ co-doping
Li et al. Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation
CN103911147A (en) Near-infrared long-afterglow fluorescent powder and preparation method thereof
CN107384381A (en) A kind of double-colored long after glow luminous material of gallic acid zinc-base and preparation method thereof
CN105018080A (en) Method for preparing high-efficiency phosphor powder
CN103160278A (en) Red long-lasting phosphor material and preparation method thereof
JP2019052271A (en) Manufacturing method of fluorescent material
Tiwari et al. Retracted Article: A study on the luminescence properties of gamma-ray-irradiated white light emitting Ca 2 Al 2 SiO 7: Dy 3+ phosphors fabricated using a combustion-assisted method
CN102108297B (en) Red fluorescent powder, preparation method thereof and luminescent device prepared therefrom
CN102585812B (en) Dark red fluorescent powder and preparation method thereof
Sehrawat et al. Near unity green emission with radiative and non-radiative itemization into novel energy-efficient Sr6Al4Y2O15: Er3+ nanomaterials for WLEDs
Jiayue et al. Luminescence properties of SrB4O7: Sm2+ for light conversion agent
CN104449660A (en) Preparation method of photochromic paint
Schwung et al. KYW2O8: Eu3+–a closer look on its photoluminescence and structure
Yuan et al. Tuning emission color and improving the warm-white persistent luminescence of phosphor BaLu 2 Al 2 Ga 2 SiO 12: Pr 3+ via Zn 2+ co-doping
JP5780573B1 (en) Phosphorescent phosphor
CN104804736B (en) A kind of long after glow luminous material with defect as the centre of luminescence and preparation method thereof
Xu et al. Novel quantum dots: Water-based CdTeSe/ZnS and YAG hybrid phosphor for white light-emitting diodes
Zamiri et al. Upconversion properties of the Er-doped Y2O3, Bi2O3 and Sb2O3 nanoparticles fabricated by pulsed laser ablation in liquid media
JP2019056094A (en) Method for producing light accumulation material
CN103827260B (en) The manufacture method of fluor, fluor and light-emitting device
JP2012097043A (en) Radical generation agent and method for producing the same
CN102161891B (en) Synergetic photoluminescence chemical material with up-and-down conversions and preparation method thereof