JP2019050409A - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
JP2019050409A
JP2019050409A JP2018211533A JP2018211533A JP2019050409A JP 2019050409 A JP2019050409 A JP 2019050409A JP 2018211533 A JP2018211533 A JP 2018211533A JP 2018211533 A JP2018211533 A JP 2018211533A JP 2019050409 A JP2019050409 A JP 2019050409A
Authority
JP
Japan
Prior art keywords
composite material
material molded
molded body
parting line
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018211533A
Other languages
English (en)
Other versions
JP6525225B2 (ja
Inventor
慎太郎 南原
Shintaro Nanbara
慎太郎 南原
崇志 高田
Takashi Takada
崇志 高田
和嗣 草別
Kazutsugu Kusabetsu
和嗣 草別
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2018211533A priority Critical patent/JP6525225B2/ja
Publication of JP2019050409A publication Critical patent/JP2019050409A/ja
Application granted granted Critical
Publication of JP6525225B2 publication Critical patent/JP6525225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

【課題】低損失なリアクトルを構築できる複合材料成形体を提供する。【解決手段】軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体10であって、複合材料成形体10を成形する金型の分割面に対応したパーティングライン15と、コイルの内側に配置される内側コア部11とを備える。内側コア部11の表面うち、コイルで内側コア部11に励磁した磁束の周方向に沿った面を周回面とするとき、パーティングライン15は、周回面の周方向を分断するように形成されている。【選択図】図1

Description

本発明は、リアクトルなどの磁気部品の構成部材に適した複合材料成形体、及びこの複合材料成形体を備えるリアクトルに関する。特に、低損失なリアクトルを構築できる複合材料成形体に関する。
自動車、電気機器、産業機械などの各種製品の部品として、磁気部品が使用されている。磁気部品は、巻線を巻回してなるコイルと、コイルが配置される磁性コアとを備える。磁気部品の具体例としては、例えば、リアクトル、チョークコイル、トランス、モータなどが挙げられる。
上記磁性コアの少なくとも一部として、例えば、特許文献1に示すリアクトルでは、磁性体粉末と樹脂とを含む複合材料(複合材料成形体)で構成されるコア片が用いられている。このコア片は、コイルの内側に挿通されるコイル配置部(内側コア部)と、コイル配置部に一体に成形され、コイルの端面の少なくとも一部を覆うようにコイルの外側に配置される露出部(外側コア部)とを備える。このコア片の製造は、磁性体粉末と樹脂との混合物を金型に充填し、樹脂を固化(硬化)して行われる。金型には、コア片の型抜方向がコイル配置部の長手方向に沿った方向、即ちコイルで励磁される磁束に平行な方向となる金型を用いる。
特開2014−239120号公報
複合材料成形体で構成されるコアを備えるリアクトルの更なる低損失化が望まれている。
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、低損失なリアクトルを構築できる複合材料成形体を提供することにある。
本発明の他の目的は、上記複合材料成形体を備えるリアクトルを提供する。
本発明の一態様に係る複合材料成形体は、軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む。複合材料成形体は、複合材料成形体を成形する金型の分割面に対応したパーティングラインと、コイルの内側に配置される内側コア部とを備える。内側コア部の表面のうち、コイルで内側コア部に励磁した磁束の周方向に沿った面を周回面とするとき、パーティングラインは、周回面の周方向を分断するように形成されている。
本発明の一態様に係るリアクトルは、巻線を巻回してなるコイルと、コイルが配置される磁性コアとを備える。磁性コアの少なくとも一部は、上記本発明の一態様に係る複合材料成形体を備える。
上記複合材料成形体は、低損失なリアクトルを構築できる。
上記リアクトルは、低損失である。
実施形態1に係る複合材料成形体を示し、左図は外端面側から見た概略斜視図であり、右図は鎖交面側から見た概略斜視図である。 実施形態1に係るリアクトルを示し、上図は概略斜視図であり、下図は分解斜視図である。
《本発明の実施形態の説明》
本発明者らは、コア片の型抜方向が内側コア部の長手方向に沿う金型を用いて製造した従来の複合材料成形体において、低損失化の阻害要因を調べた。その結果、以下の知見を得た。
(i)複合材料成形体における型抜時の金型内面との摺接領域には、軟磁性粒子が展延して磁性粒子同士が導通する膜状の導通部が形成される。
一般に、複合材料成形体の樹脂の含有量は、軟磁性粉末を加圧成形してなる圧粉成形体に比べて多いため、型抜時に金型の内面との摺接により軟磁性粒子が展延し難く、圧粉成形体のような軟磁性粒子同士が導通する膜状の導通部が形成され難いと考えられていた。しかし、その複合材料成形体であっても導通部が形成される。
(ii)複合材料成形体の型抜方向は、コイルで励磁される磁束に平行な方向であるため、複合材料成形体の磁束と平行な全ての面には、導通部が形成され、磁束を中心とする周方向に沿って渦電流が流れる。
(iii)導通部の形成は、損失増加に影響を及ぼさず実質的に無視できる程度ではなく、損失増加に大きく影響を及ぼす、即ち、多大な渦電流損を生じさせるほどである。
(iv)導通部は、純鉄に比較して硬くて展延し難いFe基合金粒子を備える軟磁性粉末の場合であっても形成される。
本発明者らは、これらの知見に基いて、複合材料成形体の製造方法、具体的には型抜方向を鋭意検討することで、本発明を完成するに至った。最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る複合材料成形体は、軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む。複合材料成形体は、複合材料成形体を成形する金型の分割面に対応したパーティングラインと、コイルの内側に配置される内側コア部とを備える。内側コア部の表面のうち、コイルで内側コア部に励磁した磁束の周方向に沿った面を周回面とするとき、パーティングラインは、周回面の周方向を分断するように形成されている。
上記の構成によれば、低損失なリアクトルを構築できる。磁束の周方向に沿った周回面にその周方向に沿って流れる渦電流を流れ難く、ひいては遮断できて、渦電流損を低減できるからである。型抜方向が磁束と平行である内側コア部は、その周回面の全面が金型の内面との摺接領域である。そのため、軟磁性粒子が展延して軟磁性粒子同士が導通する膜状の導通部が周回面の全面に形成される。その導通部により、周回面の周方向に沿って渦電流が流れるため、渦電流損が増大していた。これに対して、上記の構成では、周回面の周方向を分断するようにパーティングラインが形成されているため、周回面の全面が摺接領域にならず、パーティングラインを挟んで一方と他方の各々には摺接領域とならない非摺接領域が形成される。型抜方向は、パーティングラインと直交する方向だからである。この非摺接領域は、実質的に導通部が形成されておらず、周回面の周方向に沿って流れる渦電流を分断できるため、渦電流損を低減できる。
(2)上記複合材料成形体の一形態として、パーティングライン上の少なくとも一部に形成された樹脂の再溶融痕を備えることが挙げられる。
上記の構成によれば、複合材料成形体をコイルに組み付けてリアクトルを構築した際、再溶融痕とコイルとの接触を抑制し易い。そのため、その接触に伴うコイルの巻線の導体やその表面に被覆されることがある絶縁被覆の損傷を抑制し易い。その上、再溶融痕とコイルとの間の間隔を十分に保つことができ、複合材料成形体とコイルとの間を絶縁し易い。再溶融痕は、パーティングラインに熱処理して形成されるため、複合材料成形体の表面から外側に向かって突出しているパーティングラインの突出高さに比較して低いからである。
また、上記の構成によれば、複合材料成形体の表面を覆う樹脂との密着性(接合性)を高め易い。再溶融痕は熱処理して形成するため、その表面粗さは熱処理前に比べて粗くなり易く、再溶融痕に対する樹脂の接触面積を大きくできるからである。リアクトルの磁性コアとして複合材料成形体を用いる場合、複合材料成形体の表面にコイルとの間の絶縁性を高めるためにその表面に樹脂モールド部を形成することがある。
更に、上記の構成によれば、軟磁性粉末の錆を抑制できる。仮に、パーティングラインにおいて軟磁性粉末が露出していても、再溶融痕の形成時のパーティングラインへの熱処理により、樹脂を流動させることができて、その露出した軟磁性粉末を樹脂に埋め込ませることができるからである。
(3)上記複合材料成形体の一形態として、パーティングライン上の少なくとも一部に形成された破断痕を備えることが挙げられる。
上記の構成によれば、複合材料成形体をコイルに組み付けてリアクトルを構築した際、コイル又はコイルの絶縁被覆の損傷を抑制し易い上に、複合材料成形体とコイルとの間を絶縁し易い。また、複合材料成形体の表面を覆う樹脂との密着性(接合性)を高め易い。
(4)上記複合材料成形体の一形態として、並列して位置される一対の内側コア部と、コイルの外側に配置され、これら両内側コア部をつなぐ外側コア部とを備えることが挙げられる。この場合、パーティングラインが形成される周回面は、一対の内側コア部の並列方向に直交している。
上記の構成によれば、渦電流が流れ難く、低損失なリアクトルを構築できる。
(5)上記複合材料成形体の一形態として、軟磁性粉末が、Siを1.0質量%以上8.0質量%以下含むFe基合金の軟磁性粒子を含むことが挙げられる。
Siを1.0質量%以上含むFe基合金は、電気抵抗率が高く渦電流損を低減し易い。その上に、純鉄に比較して硬いため、製造過程で歪が導入され難いためヒステリシス損を低減し易いことから、鉄損をより低減できる。Siを8.0質量%以下含むFe基合金は、Siの量が過度に多すぎず、低損失と高飽和磁化とを両立させ易い。
(6)上記複合材料成形体の一形態として、軟磁性粉末の複合材料成形体全体に対する含有量が、30体積%以上80体積%以下であることが挙げられる。
上記含有量が30体積%以上であれば、磁性成分の割合が十分に高いため、この複合材料成形体を用いてリアクトルを構築した場合、飽和磁化を高め易い。上記含有量が多いほど樹脂の含有量が少ないため、上記摺接領域では粒子同士が導通した導通部を形成し易い。しかし、上記非摺接領域を有することで、渦電流損を低減できる。上記含有量が80体積%以下であれば、磁性成分の割合が過度に高過ぎないため、軟磁性粒子同士の絶縁性を高められ、渦電流損を低減できる。
(7)上記複合材料成形体の一形態として、軟磁性粉末の平均粒径が、5μm以上300μm以下であることが挙げられる。
軟磁性粉末の平均粒径が5μm以上であれば、凝集し難く粉末粒子間に十分に樹脂を介在させ易いため渦電流損を低減し易い。軟磁性粉末の平均粒径が300μm以下であれば、過度に大きくないため、粉末粒子自体の渦電流損を低減でき、ひいては複合材料成形体の渦電流損を低減できる。その上、充填率を高められて複合材料成形体の飽和磁化を高め易い。
(8)本発明の一態様に係るリアクトルは、巻線を巻回してなるコイルと、コイルが配置される磁性コアとを備える。磁性コアの少なくとも一部は、上記(1)〜(7)のいずれか1つに記載の複合材料成形体を備える。
上記の構成によれば、渦電流損を効果的に低減できる上記複合材料成形体を備えるため、低損失である。
《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。
《実施形態1》
〔複合材料成形体〕
主に図1を参照して実施形態1に係る複合材料成形体10を説明する。複合材料成形体10は、軟磁性粉末と樹脂とを含む未固化の混合物の樹脂を固化(硬化)したものであり、代表的にはリアクトルに備わる磁性コアの少なくとも一部を構成する。リアクトルは、詳しくは後述するが、例えば、図2に示すコイル2と磁性コア3とを備える。ここでは、コイル2は、巻線2wを螺旋状に巻回した一対の巻回部2a、2bを互いに並列状態で接続してなる。磁性コア3は、同一の形状を有する二つのコア部材30を組み合わせて環状に構成される。この両コア部材30はいずれも、複合材料成形体10で構成される。複合材料成形体10は、金型のキャビティ内にゲートから流動性のある状態の複合材料を充填して樹脂を固化して作製する。複合材料成形体10の主たる特徴とするところは、コイル2の内側に配置される内側コア部11の磁束の周方向に沿った周回面を分断するようにパーティングライン15が形成されている点にある。即ち、この複合材料成形体10は、磁束に平行な分割面を有する金型、即ち型抜方向が磁束と直交する方向となる金型を用いて製造できる。以下、詳細を説明する。ここでは、コア部材30をコイル2に組み付けてリアクトル1を構築し、リアクトル1を冷却ベースなどの設置対象に設置した際の設置対象側を下、設置対象の反対側を上として説明する。図中の同一符号は同一名称物を示す。
[全体構成]
複合材料成形体10は、一対の内側コア部11と、一対の内側コア部11の一端側で両内側コア部11をつなぐ外側コア部12とで構成されている。複合材料成形体10の上方から見た形状は、略U字状である。一対の内側コア部11は、複合材料成形体10を有するコア部材30をコイル2(図2)に組み付けた際、一対の巻回部2a、2b内にそれぞれ配置される。外側コア部12は、同様に複合材料成形体10を有するコア部材30をコイル2(図2)に組み付けた際、コイル2の端面から突出される。内側コア部11と外側コア部12の上面11U,12uは略面一である。一方、外側コア部12の下面12dは、内側コア部11の下面11Dよりも突出して、複合材料成形体10をコイル2と組み合わせた際、コイル2の下面と略面一になるように外側コア部12の大きさを調整している。一対の内側コア部11と外側コア部12とには、パーティングライン15が略全周に亘って形成されている。
(内側コア部)
各内側コア部11の形状は、コイル2の形状(コイル2の内部空間)に合わせた形状とすることが好ましい。ここでは、直方体状であり、その角部を巻回部2a,2b(図2)の内周面に沿うように丸めている。内側コア部11の表面のうち磁束の周方向に沿った周回面(巻回部2a、2bの周方向に沿った面)は、内側コア部11の磁束に平行な平行面であり、周回面の周方向を分断するようにパーティングライン15が形成されている。ここでは、周回面は、上下左右面11U,11D,11L,11Rの4つの平面と隣り合う平面同士を連結する四つの曲面とで構成されていて、左右面11L,11Rにパーティングライン15が形成されている。内側コア部11の端面11Eは、側面に連続して形成され、磁束に交差(ここでは直交)する。
左右面11L,11Rには、磁束と平行にその面の一端から他端に亘ってパーティングライン15が形成されている。上下面11U,11Dは、パーティングライン15を挟んで互いに対向し、左右面11L,11Rに直交している。パーティングライン15は、詳しくは後述するが、金型の分割面に対応する。即ち、左右面11L,11Rのうち、パーティングライン15を除く領域は金型の内面と摺接する摺接領域であり、上下面11U,11Dは、金型の内面と摺接しない領域である。パーティングライン15と直交する方向が複合材料成形体10の成形時の型抜方向になるからである。
左右面11L,11Rの摺接領域は、軟磁性粒子が展延して軟磁性粒子同士が導通する膜状の導通部が形成される。そのため、低電気抵抗な領域(以下、低抵抗領域)である。一方、上下面11U,11Dは、上記導通部が実質的に形成されない高電気抵抗な領域(以下、高抵抗領域)である。即ち、内側コア部11の周回面にその周方向に沿って流れる渦電流を高抵抗領域(上下面11U,11D)で流れ難く、ひいては遮断できる。従って、上下左右の全ての面が摺接領域で構成される複合材料成形体に比較して、渦電流損を低減できる。
左右面11L,11Rの摺接領域(低抵抗領域)と上下面11U,11D(高抵抗領域)の表面粗さの比率は、左右面の表面粗さ:上下面の表面粗さ=8〜15:1程度である。この表面粗さとは、算術平均粗さRaである。この点は、以降の表面粗さでも同様である。
内側コア部11の端面11Eには、左右面11L,11Rに形成されるパーティングライン15に連続するパーティングライン15が形成されている。端面11Eのうち、パーティングライン15を除く領域は、左右面11L,11Rの摺接領域と同様、金型の内面と摺接する摺接領域である。端面11Eにおける摺接領域の表面粗さは、上述の左右面11L,11Rおける摺接領域と同様である。端面11Eにパーティングライン15が形成されることで、内側コア部11の端面11E上に磁束を中心とする周方向に沿って流れる渦電流をパーティングライン15で遮断できるため、渦電流損を低減できる。
(外側コア部)
外側コア部12の形状は、略台形柱状である。外側コア部12は、磁束と平行な上下面12u,12dと、上下面12u,12dを繋ぎ磁束と平行な外端面12o(内側コア部11の端面11Eとの反対側)とを備える。外端面12oには、磁束と平行にその面の一端から他端に亘ってパーティングライン15が形成されている。外端面12oのパーティングライン15と内側コア部11のパーティングライン15とは、連続して形成されている。
外端面12oのうち、パーティングライン15を除く領域は、左右面11L,11Rの摺接領域と同様、金型の内面と摺接する摺接領域である。外側コア部12の上下面12u,12dは、内側コア部11の上下面11U,11Dと同様、金型の内面と摺接しない領域である。外端面12oの摺接領域の表面粗さは、上述の左右面11L,11Rおける摺接領域と同様であり、外側コア部12の上下面12u,12dの表面粗さは、内側コア部11の上下面11U,11Dと同様である。
(パーティングライン)
パーティングライン15は、金型の分割面に対応する。パーティングライン15は、複合材料成形体10の表面から外側に突出して形成される。パーティングライン15の横断面形状は、パーティングライン15の根元側の幅が最も広く、先端側に向かって徐々に幅が狭くなっている。パーティングライン15の突出高さや根元の幅は、金型の分割面の形状や成形条件によるが、例えば、パーティングライン15の突出高さは、0.05mm以上10mm以下が挙げられ、パーティングライン15の根元の幅は、0.05mm以上1mm以下が挙げられる。なお、図1では、説明の便宜上、パーティングライン15を強調して突出した状態に示している。パーティングライン15は、実質的に樹脂で構成される。そのため、上述のように内側コア部11の端面11Eに形成される場合、その端面11Eを流れる渦電流を遮断し易い。
パーティングライン15の内側コア部11の左右面11L,11Rにおける形成箇所は、上端(上面11U側の曲面との境界)、下端(下面11D側の曲面との境界)、又は途中(上下端の間)のいずれでもよい。パーティングライン15の内側コア部11の端面11Eにおける形成箇所、及び外側コア部12の外端面12oにおける形成箇所は、内側コア部11の左右面11L,11Rにおける形成箇所に沿った箇所とすることが挙げられる。ここでは、内側コア部11の左右面11L,11Rにおけるパーティングライン15の形成箇所は、左右面11L,11Rの途中としており、内側コア部11の端面11Eと外側コア部12の外端面12oにおける形成箇所は、左右面11L,11Rに形成されるパーティングライン15に沿った箇所である。即ち、パーティングライン15で囲まれる仮想面は、磁束と平行(一対の内側コア部11の並列方向と平行)となる平面に形成されており、パーティングライン15は、複合材料成形体10を磁束と直交方向に分離するように形成されている。なお、ここでは、パーティングライン15は、直線状に形成されていて一つの平面上に存在するが、一部が段差状に形成された段差部や曲線状に形成された曲線部を有していてもよい。
複合材料成形体10は、パーティングライン15上の少なくとも一部に形成された樹脂の再溶融痕、及び破断痕の少なくとも一方を備えていてもよい(いずれも図示略)。再溶融痕は、後述する熱処理により形成できる。破断痕は、例えば、バリ取りブラシでパーティングライン15を折り取ることで形成できる。
再溶融痕の形態は、(1)パーティングライン15に比較して突出高さが低いものの複合材料成形体10の表面から外側に向かって突出している場合、(2)パーティングライン15に隣接する摺接領域と略面一である場合、或いは、(3)その摺接領域よりも凹んでいる場合が挙げられる。再溶融痕における表面粗さは、再溶融痕の形成手法や形態などによる。例えば、レーザーにより形成された再溶融痕の形状が表面から突出している場合、上下面11U,11Dと左右面11L,11Rの摺接領域と再溶融痕とにおける表面粗さの比率は、1:8〜15:16〜30程度であることが挙げられる。
一方、破断痕の形態は、パーティングライン15に隣接する摺接領域と略面一であることが多い。破断痕の表面粗さは、パーティングライン15に隣接する面よりも粗い。上下面11U,11Dと左右面11L,11Rの摺接領域と破断痕とにおける表面粗さの比率は、例えば、1:8〜15:16〜35程度であることが挙げられる。
再溶融痕や破断痕を備えることで、複合材料成形体10のコア部材30をコイル2に組み付けてリアクトル1を構築した際(図2)、再溶融痕や破断痕とコイル2との接触を抑制し易い。そのため、その接触に伴うコイル2の巻線2wの導体やその表面に被覆される絶縁被覆の損傷を抑制し易い。その上、再溶融痕や破断痕とコイル2との間の間隔を十分に保つことができ、複合材料成形体10とコイル2との間の絶縁性を高め易い。再溶融痕や破断痕は、上述のようにパーティングライン15の突出高さに比較して低いからである。また、複合材料成形体10の表面を覆う樹脂(例えば、後述する樹脂モールド部)との密着性(接合性)を高め易い。再溶融痕や破断痕の表面粗さは、パーティングライン15に比べて粗くなり易く、再溶融痕や破断痕に対する樹脂の接触面積を大きくし易いからである。特に、再溶融痕を備える場合には、軟磁性粉末の錆を抑制できる。仮に、パーティングライン15において軟磁性粉末が露出していても、再溶融痕の形成時の熱処理により、樹脂を流動させることができて、その露出した軟磁性粉末を樹脂に埋め込ませることができるからである。
再溶融痕を形成する熱処理としては、加熱媒体を直接接触させる接触式と、その加熱媒体を接触させない間接式とがある。接触式の手法としては、例えば、超音波加熱、熱板加熱、及びインパルスウェルダーなどが挙げられる。超音波加熱は、超音波発生器と超音波振動子によって発生させた超音波振動をホーン(加熱媒体)によりパーティングライン15の表面に伝達させて発生する摩擦熱で加熱する手法である。熱板加熱は、加熱した金属板(加熱媒体)をパーティングライン15に接触させることで加熱する手法である。インパルスウェルダーは、加圧したヒーター線(加熱媒体)をパーティングライン15に設置し、ヒーター線に瞬間的な大電流を流して発熱させた熱でパーティングライン15を加熱する手法である。一方、間接式の手法としては、例えば、光加熱などが挙げられる。光加熱は、レーザー加熱や、温度放射を利用した赤外線加熱が挙げられる。レーザーの加工幅は、パーティングライン15の幅にもよるが、例えば、0.1mm以上10mm以下が挙げられる。レーザーのエネルギー密度U(W/mm)は、レーザーの平均出力をP(W)、レーザーの照射面積をS(mm)とするとき、U=P/Sで表され、このエネルギー密度Uは、2W/mm≦U≦450W/mmを満たすことが好ましい。エネルギー密度Uを2W/mm以上とすることで、パーティングライン15の樹脂を十分に再溶融できる。一方、エネルギー密度Uを450W/mm以下とすることで、過剰溶融による軟磁性粒子同士の接触を十分に抑制できる。
[構成材料]
(軟磁性粉末)
軟磁性粉末の材質は、鉄族金属やFeを主成分とするFe基合金、フェライト、アモルファス金属などの軟磁性材料が挙げられる。軟磁性粉末の材質は、渦電流損や飽和磁化の点から鉄族金属やFe基合金が好ましい。鉄族金属は、Fe,Co,Niが挙げられる。特に、Feは純鉄(不可避的不純物を含む)であるとよい。Feは飽和磁化が高いため、Feの含有量を高くするほど複合材料の飽和磁化を高められる。Fe基合金は、添加元素としてSi,Ni,Al,Co,及びCrから選択される1種以上の元素を合計で1.0質量%以上20.0質量%以下含有し、残部がFe及び不可避的不純物からなる組成を有することが挙げられる。Fe基合金は、例えば、Fe−Si系合金,Fe−Ni系合金,Fe−Al系合金,Fe−Co系合金,Fe−Cr系合金,Fe−Si−Al系合金(センダスト)などが挙げられる。特に、Fe−Si系合金やFe−Si−Al系合金といったSiを含有するFe基合金は、電気抵抗率が高く、渦電流損を低減し易い上に、ヒステリシス損も小さく、複合材料成形体10の低鉄損化を図れる。例えば、Fe−Si系合金の場合、Siの含有量は1.0質量%以上8.0質量%以下が挙げられ、3.0質量%以上7.0質量%以下が好ましい。軟磁性粉末は、材質の異なる複数種の粉末が混合されていても良い。例えば、FeとFe基合金との両方の種類の粉末を混合したものが挙げられる。
軟磁性粉末の平均粒径は、5μm以上300μm以下、特に10μm以上100μm以下とすることが好ましい。軟磁性粉末の平均粒径が5μm以上であれば、凝集し難く粉末粒子間に十分に樹脂を介在させ易いため渦電流損を低減し易い。軟磁性粉末の平均粒径が300μm以下であれば、過度に大きくないため、粉末自体の渦電流損を低減でき、ひいては複合材料成形体10の渦電流損を低減できる。その上、充填率を高められて複合材料成形体10の飽和磁化を高め易い。軟磁性粉末は、粒径が異なる複数種の粉末が混合されたものでも良い。微細な粉末と粗大な粉末とを混合した軟磁性粉末を複合材料成形体10の材料に用いた場合、飽和磁束密度が高く、低損失なリアクトル1が得られ易い。微細な粉末と粗大な粉末を混合した軟磁性粉末を用いる場合、一方をFe、他方をFe基合金とするように異種材質とすることが好ましい。このように両粉末の材質を異種とすれば、Feの特性(飽和磁化が高い)とFe基合金の特性(電気抵抗が高く渦電流損を低減し易い)の両方の特性を兼ね備えられ、飽和磁化の向上効果と鉄損のバランスが良い。両粉末の材質を異種とする場合、粗粒粉末と微粒粉末のどちらをFe(Fe基合金)としてもよいが、微粒粉末をFeとすることが好ましい。即ち、粗粒粉末をFe基合金とすることが好ましい。そうすれば、微粒粉末がFe基合金で、粗粒粉末がFeである場合に比べて、低鉄損である。軟磁性粉末は、絶縁性を向上するために粒子表面に絶縁被覆を備えていてもよい。軟磁性粉末は、樹脂との馴染み性や樹脂に対する分散性を高めるための表面処理(例えば、シランカップリング処理など)を施したものでもよい。
複合材料成形体10中の軟磁性粉末の含有量は、複合材料成形体10を100体積%とするとき、30体積%以上80体積%以下が好ましい。軟磁性粉末が30体積%以上であることで、磁性成分の割合が十分に高いため、この複合材料成形体10を用いてリアクトル1を構築した場合、飽和磁化を高め易い。この含有量が多いほど相対的に樹脂の含有量が少ないので、上記摺接領域では粒子同士が導通した導通部を形成し易い。しかし、複合材料成形体10は上記高抵抗領域(上下面11U,11D)を有するため、軟磁性粉末の含有量が多くても渦電流損を低減できる。軟磁性粉末が80体積%以下であると、磁性成分の割合が過度に高過ぎないため、軟磁性粒子同士の絶縁性を高められ、渦電流損を低減できる。また、軟磁性粉末と樹脂との混合物の流動性に優れ、複合材料成形体10の製造性に優れる。軟磁性粉末の含有量は、50体積%以上、更に55体積%以上、特に60体積%以上が挙げられる。軟磁性粉末の含有量は、75体積%以下、特に70体積%以下が挙げられる。
(樹脂)
樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、ポリアミド樹脂(例えば、ナイロン6、ナイロン66、ナイロン9T)、液晶ポリマー(LCP)、ポリイミド樹脂、フッ素樹脂などの熱可塑性樹脂が挙げられる。その他、常温硬化性樹脂、不飽和ポリエステルに炭酸カルシウムやガラス繊維が混合されたBMC(Bulk molding compound)、ミラブル型シリコーンゴム、ミラブル型ウレタンゴムなどを用いることもできる。
(その他)
複合材料成形体10には、軟磁性粉末及び樹脂に加えて、アルミナやシリカなどのセラミックスといった非磁性材料からなる粉末(フィラー)が含有されていても良い。フィラーは、放熱性の向上、軟磁性粉末の偏在の抑制(均一的な分散)に寄与する。また、フィラーが微粒であり、軟磁性粒子間に介在すれば、フィラーの含有による軟磁性粉末の割合の低下を抑制できる。フィラーの含有量は、複合材料を100質量%とするとき、0.2質量%以上20質量%以下が好ましく、更に0.3質量%以上15質量%以下が好ましく、特に0.5質量%以上10質量%以下が好ましい。
[製造方法]
複合材料成形体10の製造は、射出成形、熱プレス成形、MIMで行える。この製造に使用する金型は、図示は省略するが、分割面が複合材料成形体10の磁束に平行であり、型抜方向が磁束と直交する方向となる金型を使用する。
〔複合材料成形体の作用効果〕
上述の複合材料成形体10によれば、内側コア部11における磁束と平行な上下面11U,11Dに磁束方向に沿った高抵抗領域を備えることで、内側コア部11の側面に磁束を中心とする周方向に沿って流れる渦電流をその高抵抗領域で流れ難くできる。従って、渦電流損を低減でき、低損失なリアクトルを構築できる。
〔リアクトル〕
上述の複合材料成形体10は図2に示すリアクトル1の磁性コア3の少なくとも一部に好適に利用できる。リアクトル1は、実施形態1の冒頭で説明したように、一対の巻回部2a、2bを備えるコイル2と、同一の形状を有する二つのコア部材30で構成される磁性コア3とを備える。このコア部材30は、上述の複合材料成形体10で構成される。
[コイル]
一対の巻回部2a、2bは、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなり、連結部2rを介して連結されている。巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線を好適に利用できる。本例では、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線を利用している。各巻回部2a,2bは、この被覆平角線をエッジワイズ巻きにしたエッジワイズコイルで構成している。巻回部2a、2bの配置は、各軸方向が平行するように並列(横並び)した状態としている。巻回部2a、2bの形状は、互いに同一の巻数の中空の筒状体(四角筒)である。巻回部2a、2bの端面形状は、矩形枠の角部を丸めた形状である。連結部2rは、コイル2の一端側(図2紙面右側)において巻線の一部をU字状に屈曲して構成している。連結部2rの上面は、コイル2のターン形成部分の上面と略面一である。巻回部2a、2bの巻線2wの両端部2eは、ターン形成部から引き延ばされている。両端部2eは、図示しない端子部材に接続され、この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置(図示せず)が接続される。
[磁性コア]
各コア部材30の一対の内側コア部11は、コイル2に組み付けた際、一対の巻回部2a,2bの内側に配置される。各コア部材30の外側コア部12は、同様にコア部材30をコイル2に組み付けた際、コイル2から突出するように配置される。一方と他方のコア部材30の内側コア部11の端面11E(鎖交面)同士を巻回部2a,2b内で連結することで環状の磁性コア3が形成される。このコア部材30同士の連結により、コイル2を励磁したとき、閉磁路を形成し、磁束は内側コア部11の長手方向に平行となって鎖交面に直交する。コア部材30同士は、内側コア部11の鎖交面同士の間にギャップ材を介在させることなく連結されていてもよいし、ギャップ材を介在させて連結させてもよい。コア部材30同士の連結には、接着剤を利用できる。コア部材30同士の間には、隙間(エアギャップ)を設けていてもよい。ギャップ材の材質は、コア部材30よりも低透磁率な材質が挙げられ、例えば、アルミナや不飽和ポリエステルなどの非磁性材料、PPS樹脂などの非磁性材料と磁性材料(鉄粉など)とを含む混合物などが挙げられる。
[その他]
(樹脂モールド部)
磁性コア3は、更に、コア部材30の表面を覆う樹脂モールド部を備えていてもよい。コア部材30のパーティングライン15が再溶融痕や破断痕を有していれば、樹脂モールド部のコア部材30への密着性を向上できる。樹脂モールド部の被覆領域は、例えば、コア部材30の表面全域とすることができる。樹脂モールド部の構成材料は、例えば、上述の複合材料成形体10の樹脂と同様の熱可塑性樹脂(例えば、PPS樹脂など)や熱硬化性樹脂の他、次の熱可塑性樹脂や熱硬化性樹脂が挙げられる。その熱可塑性樹脂としては、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などが挙げられ、熱硬化性樹脂としては、不飽和ポリエステル樹脂などが挙げられる。この構成樹脂には、アルミナやシリカなどのセラミックスフィラーなどを含有していてもよい。そうすれば、熱伝導性に優れる樹脂モールド部となり、リアクトル1の放熱性を高められる。
〔リアクトルの作用効果〕
上述のリアクトル1によれば、コア部材が磁束と平行な面に磁束に沿った高抵抗領域を有する複合材料成形体を備えることで、渦電流を高抵抗領域で流れ難くできるため低損失である。
《試験例》
軟磁性粉末とこの軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体の試料を作製し、その試料の磁気特性を評価した。各試料は全て同じ構成材料を用いた。軟磁性粉末には、平均粒径が80μmで、Siを6.5質量%含み、残部がFe及び不可避的不純物からなる組成を有するFe−Si合金の粉末を用いた。一方、樹脂には、PPS樹脂を用いた。この軟磁性粉末と樹脂とを混合し、樹脂を溶融状態で軟磁性粉末を練り合わせて混合物を作製した。混合物中の軟磁性粉末の含有量は、70体積%とした。
〔試料No.1−1〕
試料No.1−1の複合材料成形体として、図1に示す一対の内側コア部11と外側コア部12とを備えるU字状の複合材料成形体10を射出成形により作製した。複合材料成形体の作製は、磁束に平行な分割面を有する金型、即ち型抜方向が磁束と直交する方向となる金型を用い、その金型に上記混合物を充填し冷却固化することで行った。金型の分割面は、内側コア部11の上面11Uと下面11Dとの間のほぼ中間となるようにした。試料No.1−1の複合材料成形体10のパーティングライン15は、内側コア部11の左右面11L,11R及び端面11Eと、外側コア部12の外端面12oとに形成されている。この試料No.1−1の複合材料成形体は、金型から取り出した状態のまま、即ち、パーティングライン15が形成された状態のままとした。
〔試料No.1−2〕
試料No.1−2の複合材料成形体は、試料No.1−1の複合材料成形体10のパーティングライン15にレーザー処理を施すことで作製した。即ち、試料No.1−2の複合材料成形体は、パーティングライン上に形成された樹脂の再溶融痕を備える点が、試料No.1−1と相違する。ここでは、レーザー処理は、左側の内側コア部11において、左面11Lのパーティングライン15の全長と端面11Eのパーティングライン15の全長とに亘って施し、右側の内側コア部11において、右面11Rのパーティングライン15の全長と端面11Eのパーティングライン15の全長とに亘って施した。レーザー処理条件は、加工幅を3mmとし、レーザーのエネルギー密度Uを5.5W/mmとした。試料No.1−2の複合材料成形体は、右側の内側コア部11の右面11Rのパーティングライン15上と、左側の内側コア部11の左面11Lのパーティングライン15上とに、樹脂の再溶融痕が形成されている。
〔試料No.1−101〕
試料No.1−101の複合材料成形体は、試料No.1−1とは金型の分割面の位置が異なる、即ち型抜方向の異なる金型を用いて作製した。具体的には、分割面が磁束に直交する金型、即ち型抜方向が磁束と平行となる金型を用いた。ここでは、分割面は、一対の内側コア部と外側コア部との境界とした。試料No.1−101の複合材料成形体のパーティングラインは、両内側コア部における外側コア部との境界の全周(全域)に亘って形成されている。
〔磁気特性〕
各試料の複合材料成形体を二つ組み合わせた環状の試験片に、銅線を巻回して、一次巻きコイル:300ターン、二次巻きコイル:20ターンを備える測定用部材を作製した。各測定部材について、AC−BHカーブトレーサを用いて、励起磁束密度Bm:4kG(=0.4T)、測定周波数:20kHzにおける鉄損W4/20k(W)を測定した。その結果を表1に示す。
Figure 2019050409
表1に示すように、試料No.1−1,1−2の鉄損はそれぞれ8.9W、8.5Wであり、試料No.1−101の鉄損は9.8Wであった。このように、試料No.1−1,1−2は、試料No.1−101に比較して低鉄損となり、試料No.1−2は、試料No.1−1に比較して低鉄損となった。
試料No.1−1,1−2が試料No.1−101よりも低鉄損な結果となったのは、試料No.1−1,1−2の複合材料成形体は、試料No.1−101に比較して渦電流損を効果的に低減できたからだと考えられる。試料No.1−1,1−2の複合材料成形体は、分割面が磁束と平行な金型、即ち型抜方向を磁束と直交する方向とする金型を用いて作製したことで、磁束と平行な上下面に導通部の形成されない高抵抗領域を形成できた。そのため、内側コア部の側面に磁束を中心とする周方向に沿って流れる渦電流を高抵抗領域で流れ難くできた。一方、試料No.1−101の複合材料成形体は、分割面が磁束と直交する金型、即ち型抜方向を磁束と平行な方向とする金型を用いて作製したことで、磁束と平行な面の全てが金型の内面との摺接領域となり、その平行な面の全てに低抵抗な導通部が形成された。そのため、内側コア部の側面に磁束を中心とする周方向に沿って渦電流が流れ易く、渦電流の流れを抑制できなかった。
試料No.1−2が試料No.1−1よりも低鉄損な結果となったのは、試料No.1−2の複合材料成形体は、試料No.1−1よりも左右の内側コア部11の端面11Eでの渦電流損を効果的に低減できたからだと考えられる。試料No.1−2の複合材料は、左右の内側コア部11の端面11Eにおけるパーティングライン15の全長にもレーザー処理を施したことで、この端面11Eに流れる渦電流を試料No.1−1よりも流れ難くできた。
本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、コア部材の形状は磁性コアの複数のコア部材の組み合わせにより適宜選択できる。複数のコア部材の組み合わせを、上述のU−U型コアの他、外側コア部に一つの内側コア部が一体化されたL−L(J−J)型コアなどと呼ばれる形態とすることができる。また、巻回部が一つのみであるコイルと、E−E型コアやE−I型コアなどと呼ばれる磁性コアとを備えるリアクトルとすることができる。
本発明の複合材料成形体は、各種の磁気部品(リアクトル、チョークコイル、トランス、モータなど)の磁性コアやその素材に好適に利用できる。本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC−DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に好適に利用できる。
10 複合材料成形体
11 内側コア部
11U 上面 11D 下面 11L 左面 11R 右面
11E 端面
12 外側コア部
12u 上面 12d 下面
12o 外端面
15 パーティングライン
1 リアクトル
2 コイル
2a、2b 巻回部 2r 連結部 2w 巻線 2e 端部
3 磁性コア
30 コア部材

Claims (8)

  1. 軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体であって、
    前記複合材料成形体を成形する金型の分割面に対応したパーティングラインと、
    コイルの内側に配置される内側コア部とを備え、
    前記内側コア部の表面のうち、前記コイルで前記内側コア部に励磁した磁束の周方向に沿った面を周回面とするとき、
    前記パーティングラインは、前記周回面の周方向を分断するように形成されている複合材料成形体。
  2. 前記パーティングライン上の少なくとも一部に形成された前記樹脂の再溶融痕を備える請求項1に記載の複合材料成形体。
  3. 前記パーティングライン上の少なくとも一部に形成された破断痕を備える請求項1又は請求項2に記載の複合材料成形体。
  4. 並列して位置される一対の前記内側コア部と、
    前記コイルの外側に配置され、これら両内側コア部をつなぐ外側コア部とを備え、
    前記パーティングラインが形成される前記周回面は、前記一対の内側コア部の並列方向に直交している請求項1〜請求項3のいずれか1項に記載の複合材料成形体。
  5. 前記軟磁性粉末が、Siを1.0質量%以上8.0質量%以下含むFe基合金の軟磁性粒子を含む請求項1〜請求項4のいずれか1項に記載の複合材料成形体。
  6. 前記軟磁性粉末の前記複合材料成形体全体に対する含有量が、30体積%以上80体積%以下である請求項1〜請求項5のいずれか1項に記載の複合材料成形体。
  7. 前記軟磁性粉末の平均粒径が、5μm以上300μm以下である請求項1〜請求項6のいずれか1項に記載の複合材料成形体。
  8. 巻線を巻回してなるコイルと、前記コイルが配置される磁性コアとを備えるリアクトルであって、
    前記磁性コアの少なくとも一部は、請求項1〜請求項7のいずれか1項に記載の複合材料成形体を備えるリアクトル。
JP2018211533A 2018-11-09 2018-11-09 リアクトル Active JP6525225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211533A JP6525225B2 (ja) 2018-11-09 2018-11-09 リアクトル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211533A JP6525225B2 (ja) 2018-11-09 2018-11-09 リアクトル

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015163251A Division JP6436016B2 (ja) 2015-08-20 2015-08-20 複合材料成形体、及びリアクトル

Publications (2)

Publication Number Publication Date
JP2019050409A true JP2019050409A (ja) 2019-03-28
JP6525225B2 JP6525225B2 (ja) 2019-06-05

Family

ID=65906118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211533A Active JP6525225B2 (ja) 2018-11-09 2018-11-09 リアクトル

Country Status (1)

Country Link
JP (1) JP6525225B2 (ja)

Also Published As

Publication number Publication date
JP6525225B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
CN102714091B (zh) 电抗器
JP5561536B2 (ja) リアクトル、及びコンバータ
JP6198166B2 (ja) 複合材料、磁気部品、及びリアクトル
CN103430249B (zh) 复合材料、电抗器用磁芯、电抗器、转换器和功率转换器装置
JP2011205052A (ja) リアクトル
JP6403093B2 (ja) 複合材料、磁気部品用の磁性コア、リアクトル、コンバータ、及び電力変換装置
JPWO2015199044A1 (ja) コア部材、リアクトル、及びコア部材の製造方法
WO2017119439A1 (ja) 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
JP2011124245A (ja) リアクトル装置
JP6436016B2 (ja) 複合材料成形体、及びリアクトル
WO2017110567A1 (ja) 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
JP6525225B2 (ja) リアクトル
JP6684451B2 (ja) リアクトル
US20230120688A1 (en) Magnetic component and electric device
WO2017051818A1 (ja) 複合材料成形体、及びリアクトル
US8618899B2 (en) Converter and power conversion device
JP6809440B2 (ja) リアクトル
JP2012015382A (ja) リアクトル

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6525225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250