JP2019048946A - Cooling medium, cooling method, and wire cooling device - Google Patents

Cooling medium, cooling method, and wire cooling device Download PDF

Info

Publication number
JP2019048946A
JP2019048946A JP2017174186A JP2017174186A JP2019048946A JP 2019048946 A JP2019048946 A JP 2019048946A JP 2017174186 A JP2017174186 A JP 2017174186A JP 2017174186 A JP2017174186 A JP 2017174186A JP 2019048946 A JP2019048946 A JP 2019048946A
Authority
JP
Japan
Prior art keywords
cooling medium
cooling
boron nitride
wire
nitride particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174186A
Other languages
Japanese (ja)
Other versions
JP6894613B2 (en
Inventor
昌英 田中
Masahide Tanaka
昌英 田中
和孝 平山
Kazutaka Hirayama
和孝 平山
誠司 山下
Seiji Yamashita
誠司 山下
英紀 北
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Yazaki Corp
Original Assignee
Nagoya University NUC
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Yazaki Corp filed Critical Nagoya University NUC
Priority to JP2017174186A priority Critical patent/JP6894613B2/en
Publication of JP2019048946A publication Critical patent/JP2019048946A/en
Application granted granted Critical
Publication of JP6894613B2 publication Critical patent/JP6894613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a cooling medium having high cooling performance, a cooling method using the cooling medium, and a wire cooling device using the cooling medium.SOLUTION: Due to that boron nitride is dispersed in water in a cooling medium L, it is possible to improve a heat transfer coefficient compared to water, and it is possible to efficiently cool a coated wire 100 by using the cooling medium L. Therefore, it is not necessary to enlarge a container 2 for storing the cooling medium L, or to complicatedly move (meandering move or the like) the coated wire 100 in the cooling medium L.SELECTED DRAWING: Figure 1

Description

本発明は、冷却媒体、冷却方法および電線冷却装置に関するものである。   The present invention relates to a cooling medium, a cooling method, and a wire cooling device.

一般に、導体を樹脂によって被覆した被覆電線を製造する製造ラインでは、溶融させた樹脂によって導体を覆って被覆を形成する工程の後、さらにこの被覆を冷却する工程が実施される。この冷却工程では、被覆電線を冷却水中で移動させることにより冷却する。被覆電線を充分に冷却するためには冷却時間を確保する必要があり、生産性向上のために被覆電線の移動速度を上昇させると、被覆電線が冷却水中を通過する距離を長くしなければならず、装置が大型化してしまうという不都合があった。   Generally, in a production line for producing a coated electric wire in which a conductor is coated with a resin, a step of covering the conductor with a molten resin to form a coating, and then a step of cooling the coating is further performed. In this cooling step, the coated wire is cooled by moving it in the cooling water. In order to sufficiently cool the coated wire, it is necessary to secure a cooling time, and if the moving speed of the coated wire is increased to improve productivity, the distance for the coated wire to pass through the cooling water must be increased. As a result, there is a disadvantage that the size of the device is increased.

そこで、被覆電線を冷却水中で蛇行移動させる電線被覆装置が提案されている(例えば特許文献1参照)。特許文献1に記載された電線被覆装置では、被覆電線を冷却水中で蛇行移動させ(即ち所定の領域で複数回往復移動させ)つつ冷却することにより、被覆電線が冷却水中を通過する距離を長くしつつ、装置の大型化を抑制している。   Then, the electric wire coating apparatus which moves a covered electric wire meanderingly in cooling water is proposed (for example, refer patent document 1). In the wire covering device described in Patent Document 1, cooling is performed while meanwhile moving the coated wire in the cooling water (that is, reciprocating a plurality of times in a predetermined region), thereby increasing the distance for the coated wire to pass through the cooling water. While suppressing the increase in size of the device.

特開平8−153428号公報JP-A-8-153428

しかしながら、特許文献1に記載された電線被覆装置では、被覆電線を蛇行移動させるための機構が必要となり、装置が複雑化しやすかった。そこで、被覆電線を冷却する際に、冷却性能の高い冷却媒体を用いることが望まれていた。また、電線以外の対象物を冷却する場合や、対象物を移動させない場合にも、冷却効率を向上させるために、冷却性能の高い冷却媒体を用いることが望まれていた。   However, in the wire covering device described in Patent Document 1, a mechanism for meandering movement of the coated wire is required, and the device is likely to be complicated. Therefore, when cooling the coated wire, it has been desired to use a cooling medium having high cooling performance. In addition, in the case of cooling an object other than the electric wire or in the case of not moving the object, it has been desired to use a cooling medium having high cooling performance in order to improve the cooling efficiency.

本発明の目的は、冷却性能の高い冷却媒体、この冷却媒体を用いた冷却方法、及び、この冷却媒体を用いた電線冷却装置を提供することにある。   An object of the present invention is to provide a cooling medium having high cooling performance, a cooling method using the cooling medium, and a wire cooling device using the cooling medium.

本願の発明の冷却媒体は、水中で窒化ホウ素粒子が分散していることを特徴とする。   The cooling medium of the present invention is characterized in that boron nitride particles are dispersed in water.

本願の発明の冷却方法は、上記の冷却媒体と、冷却対象物と、を相対移動させることを特徴とする。   The cooling method of the present invention is characterized in that the above-mentioned cooling medium and the object to be cooled are moved relative to each other.

本願の発明の電線冷却装置は、上記の冷却媒体を収容する容器と、被覆電線を移動させる移動手段と、を備え、前記移動手段によって、被覆電線を前記冷却媒体中で長手方向に沿って移動させることを特徴とする。   The wire cooling device according to the present invention comprises a container for containing the above-mentioned cooling medium, and moving means for moving the coated electric wire, and the moving means moves the coated electric wire along the longitudinal direction in the cooling medium by the moving means. It is characterized by

上記のような本願の発明の冷却媒体によれば、水中で窒化ホウ素が分散していることにより、水と比較して熱伝達率を向上させることができ、冷却対象物を冷却する際の冷却性能を向上させることができる。   According to the cooling medium of the present invention as described above, the dispersion of boron nitride in water makes it possible to improve the heat transfer coefficient as compared to water, and it is possible to cool the object to be cooled Performance can be improved.

上記のような本願の発明の冷却方法によれば、上記のように冷却性能が高い冷却媒体を用いることにより、冷却媒体と冷却対象物とを相対移動させる場合においても、冷却対象物を冷却する際の効率を向上させることができる。   According to the cooling method of the present invention as described above, by using the cooling medium having high cooling performance as described above, even when the cooling medium and the cooling object are relatively moved, the cooling object is cooled. Efficiency can be improved.

上記のような本願の発明の電線冷却装置によれば、上記のように冷却性能が高い冷却媒体を用いることにより、電線を効率よく冷却することができる。   According to the electric wire cooling device of the invention of the present application as described above, the electric wire can be efficiently cooled by using the cooling medium having high cooling performance as described above.

本発明の第1実施形態に係る電線冷却装置を模式的に示す側面図である。It is a side view showing typically the electric wire cooling device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る冷却装置を模式的に示す側面図である。It is a side view which shows typically the cooling device concerning a 2nd embodiment of the present invention. 実施例の冷却媒体における窒化ホウ素粒子の粒径の分布を示すグラフである。It is a graph which shows distribution of the particle size of the boron nitride particle in the cooling medium of an Example. 他の実施例の冷却媒体における窒化ホウ素粒子の粒径の分布を示すグラフである。It is a graph which shows distribution of the particle size of the boron nitride particle in the cooling medium of another Example. 他の実施例の冷却媒体における窒化ホウ素粒子の粒径の分布を示すグラフである。It is a graph which shows distribution of the particle size of the boron nitride particle in the cooling medium of another Example. 実施例および比較例の冷却媒体の粘度を示すグラフである。It is a graph which shows the viscosity of the cooling medium of an Example and a comparative example. 実施例および比較例の冷却媒体の熱伝導率を示すグラフである。It is a graph which shows the heat conductivity of the cooling medium of an Example and a comparative example. 実施例および比較例の冷却媒体の熱伝達率を測定するための測定装置を示す概略図である。It is the schematic which shows the measuring apparatus for measuring the heat transfer coefficient of the cooling medium of an Example and a comparative example. 実施例および比較例の冷却媒体の熱伝達率を示すグラフである。It is a graph which shows the heat transfer coefficient of the cooling medium of an Example and a comparative example.

以下、本発明の各実施形態を図面に基づいて説明する。尚、第2実施形態においては、第1実施形態で説明する構成部材と同じ構成部材及び同様な機能を有する構成部材には、第1実施形態と同じ符号を付すとともに説明を省略する。   Hereinafter, embodiments of the present invention will be described based on the drawings. In the second embodiment, the same components as those described in the first embodiment and components having the same functions as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.

[第1実施形態]
本実施形態の電線冷却装置1は、図1に示すように、電線製造装置10において被覆形成部20の下流側に設けられるものであって、冷却媒体Lを収容する容器2と、被覆電線100を長手方向に沿って移動させる移動手段と、を備える。
First Embodiment
The wire cooling device 1 of the present embodiment is, as shown in FIG. 1, provided on the downstream side of the coating forming portion 20 in the wire manufacturing apparatus 10, and is a container 2 for containing a cooling medium L; Moving means for moving the head along the longitudinal direction.

電線製造装置10は、線状の導体101を所定の移動方向に移動させつつ、被覆形成部20によって導体101の外側に被覆102を形成して被覆電線100を製造した後、電線冷却装置1によって被覆電線100を冷却するものである。電線製造装置10において導体101を移動させる機構が、電線冷却装置1において被覆電線100を移動させる移動手段としても機能する。   The electric wire manufacturing apparatus 10 forms the coating 102 on the outer side of the conductor 101 by the coating forming portion 20 while moving the linear conductor 101 in a predetermined moving direction, and manufactures the coated electric wire 100. The coated wire 100 is to be cooled. The mechanism for moving the conductor 101 in the wire manufacturing apparatus 10 also functions as a moving means for moving the coated wire 100 in the wire cooling device 1.

容器2は、電線の長手方向に沿って延びるとともに上方側に開口した樋状に形成されている。容器2は、上流側端部から被覆電線100がその内側に導入され、下流側端部から被覆電線100がその外側に導出されるとともに、冷却媒体Lが漏れないように両端が塞がれている。尚、容器2に対して新たな冷却媒体Lを供給する供給手段と、容器2から冷却媒体Lを排出する排出手段と、が設けられていてもよい。   The container 2 is formed in a bowl shape extending along the longitudinal direction of the wire and opening upward. The container 2 is such that the coated wire 100 is introduced into the inside from the upstream end and the coated wire 100 is drawn out from the downstream end, and both ends are closed so that the cooling medium L does not leak There is. A supply unit that supplies a new cooling medium L to the container 2 and a discharge unit that discharges the cooling medium L from the container 2 may be provided.

電線冷却装置1は、冷却媒体Lを収容した容器2を複数備えていてもよいし、容器2の上流側又は下流側に、冷却水を収容した他の容器をさらに備えていてもよい。   The electric wire cooling device 1 may include a plurality of containers 2 containing the cooling medium L, and may further include another container containing cooling water on the upstream side or the downstream side of the container 2.

ここで、電線製造装置10における導体101(及び被覆電線100)の動きについて説明する。被覆形成部20に送り込まれた導体101は、その外側が溶融した絶縁樹脂(例えばPPやPVC)によって覆われることにより、被覆102が形成される。これにより被覆電線100が形成されるが、この状態では被覆102の温度が高く、変形可能となっている。そこで、電線冷却装置1によって被覆102を冷却定着させる。   Here, the movement of the conductor 101 (and the covered wire 100) in the wire manufacturing apparatus 10 will be described. The conductor 101 fed to the coating forming portion 20 is covered with a molten insulating resin (for example, PP or PVC) to form the coating 102. Thereby, the coated electric wire 100 is formed, but in this state, the temperature of the coating 102 is high and is deformable. Therefore, the coating 102 is cooled and fixed by the wire cooling device 1.

被覆形成部20から電線冷却装置1に送り込まれた被覆電線100は、容器2内の冷却媒体L中で長手方向に沿って移動することにより、被覆102が冷却される。冷却媒体L中における被覆電線100の移動速度は、電線冷却装置1によって被覆102を充分に冷却できるような速度であればよく、樹脂の融点や一次冷却時間、容器2の長手方向寸法等に応じて設定される。電線冷却装置1において冷却された被覆電線100は、後工程を実施する装置に送り込まれる。   The sheathed electric wire 100 fed from the sheath forming portion 20 to the electric wire cooling device 1 is cooled along the longitudinal direction in the cooling medium L in the container 2 so that the sheath 102 is cooled. The moving speed of the coated electric wire 100 in the cooling medium L may be a speed that can sufficiently cool the coating 102 by the electric wire cooling device 1, depending on the melting point of the resin, the primary cooling time, the longitudinal dimension of the container 2, etc. Is set. The coated wire 100 cooled in the wire cooling device 1 is fed to a device for performing the post process.

ここで、冷却媒体Lの詳細について説明する。冷却媒体Lは、水中で窒化ホウ素粒子が分散したものであり、分散剤を含む。冷却媒体L中の窒化ホウ素粒子の濃度は、例えば1体積%である。冷却媒体L中の窒化ホウ素粒子の濃度は、0.05〜15体積%であることが好ましく、0.1〜10体積%であることがより好ましい。窒化ホウ素粒子の濃度が0.05〜15体積%の範囲内であれば、冷却媒体の熱伝達率を向上させやすく、且つ、粘度が高くなりにくい。また、被覆電線100の表面に窒化ホウ素粒子が残りにくく、洗浄等の後工程を実施する必要がない。一方、窒化ホウ素粒子の濃度が低すぎると、冷却媒体の熱伝達率を向上させにくい。また、窒化ホウ素粒子の濃度が高すぎると、冷却媒体の粘度が高くなりやすい。   Here, the details of the cooling medium L will be described. The cooling medium L is a dispersion of boron nitride particles in water and contains a dispersant. The concentration of boron nitride particles in the cooling medium L is, for example, 1% by volume. The concentration of boron nitride particles in the cooling medium L is preferably 0.05 to 15% by volume, and more preferably 0.1 to 10% by volume. If the concentration of the boron nitride particles is in the range of 0.05 to 15% by volume, it is easy to improve the heat transfer coefficient of the cooling medium, and the viscosity does not easily increase. Further, the boron nitride particles are unlikely to remain on the surface of the coated electric wire 100, and there is no need to carry out post-processing such as cleaning. On the other hand, when the concentration of boron nitride particles is too low, it is difficult to improve the heat transfer coefficient of the cooling medium. Also, if the concentration of boron nitride particles is too high, the viscosity of the cooling medium tends to be high.

窒化ホウ素粒子の平均粒径は、例えば0.7μmである。窒化ホウ素粒子の平均粒径は、0.03〜5μmであることが好ましく、0.05〜3μmであることがより好ましい。ここで、窒化ホウ素粒子は、円盤状となっており、その平均粒径とは、円盤の直径を意味する。窒化ホウ素粒子の平均粒径が0.03〜5μmの範囲内であれば、窒化ホウ素粒子の濃度を上記のような範囲内の値とした際に、粒子数を適切な値とすることができ、冷却媒体の熱伝達率を向上させやすく、且つ、粘度が高くなりにくい。一方、窒化ホウ素粒子の平均粒径が小さすぎると、窒化ホウ素粒子の濃度を上記のような範囲内の値とした際に粒子数が多くなりすぎるため、冷却媒体の粘度が高くなりやすい。また、窒化ホウ素粒子の平均粒径が大きすぎると、窒化ホウ素粒子の濃度を上記のような範囲内の値とした際に粒子数が少なくなりすぎるため、熱伝達率を向上させにくい。   The average particle size of the boron nitride particles is, for example, 0.7 μm. The average particle diameter of the boron nitride particles is preferably 0.03 to 5 μm, and more preferably 0.05 to 3 μm. Here, the boron nitride particles have a disk shape, and the average particle diameter means the diameter of the disk. When the average particle size of the boron nitride particles is in the range of 0.03 to 5 μm, the number of particles can be made an appropriate value when the concentration of the boron nitride particles is set to a value within the above range. It is easy to improve the heat transfer coefficient of the cooling medium, and the viscosity does not easily increase. On the other hand, when the average particle diameter of the boron nitride particles is too small, the viscosity of the cooling medium tends to be high because the number of particles is too large when the concentration of the boron nitride particles is set to a value within the above range. In addition, when the average particle diameter of the boron nitride particles is too large, the number of particles is too small when the concentration of the boron nitride particles is set to a value within the above range, so it is difficult to improve the heat transfer coefficient.

分散剤は、窒化ホウ素結晶のエッジ部と反応する官能基を有するものである。窒化ホウ素結晶は、エッジ部に、アミノ基とヒドロキシ基とを有しており、それぞれ酸および塩基と反応しやすい。分散剤として、例えばアミノ基と反応するカルボキシル基を有する高分子化合物(ポリカルボン酸アンモニア塩やカルボキシメチルセルロース)を用いてもよいし、ヒドロキシ基と反応するアミノ基を有する高分子化合物(ポリエチレンイミン)を用いてもよい。このような分散剤を含む冷却媒体Lに対して超音波を放射することにより、窒化ホウ素粒子を解砕し、水中で分散させる。   The dispersant has a functional group that reacts with the edge of the boron nitride crystal. The boron nitride crystal has an amino group and a hydroxy group at the edge, and easily reacts with an acid and a base, respectively. As the dispersant, for example, a polymer compound (polycarboxylic acid ammonia salt or carboxymethyl cellulose) having a carboxyl group that reacts with an amino group may be used, or a polymer compound having an amino group that reacts with a hydroxy group (polyethyleneimine) May be used. By emitting ultrasonic waves to a cooling medium L containing such a dispersant, the boron nitride particles are crushed and dispersed in water.

このような本実施形態によれば、以下のような効果がある。即ち、冷却媒体Lにおいて水中で窒化ホウ素が分散していることにより、水と比較して熱伝達率を向上させることができ、このような冷却媒体Lを用いることで被覆電線100を効率よく冷却することができる。従って、冷却媒体Lを収容する容器2を大型化したり、被覆電線100を冷却媒体L中で複雑に移動(蛇行移動等)させたりする必要がない。   According to such an embodiment, the following effects can be obtained. That is, by dispersing boron nitride in water in the cooling medium L, the heat transfer coefficient can be improved compared to water, and by using such a cooling medium L, the coated electric wire 100 can be efficiently cooled. can do. Therefore, it is not necessary to enlarge the container 2 which accommodates the cooling medium L, or to move the coated wire 100 in the cooling medium L complicatedly (for example, meandering movement).

また、冷却媒体Lが分散剤を含んでいることで、窒化ホウ素粒子を水中で分散させやすく、冷却媒体Lの熱伝達率を向上させやすい。   Further, since the cooling medium L contains a dispersant, the boron nitride particles can be easily dispersed in water, and the heat transfer coefficient of the cooling medium L can be easily improved.

[第2実施形態]
本実施形態の冷却装置200は、図2に示すように、冷却媒体Lを収容する容器によって構成されたものである。冷却媒体L中に冷却対象物300を浸漬することにより、冷却対象物300が冷却される。尚、冷却媒体Lは、前記第1実施形態と同様のものである。図示の例では、冷却対象物300が直方体状であるが、冷却対象物300は、球状であってもよいし、前記第1実施形態と同様に被覆電線であってもよく、適宜な形状を有していればよい。冷却対象物300は、冷却媒体L中で静止しているが、冷却前の冷却対象物300の温度が冷却媒体Lの温度よりも高いことから、図中に矢印で示すような自然対流が生じる。
Second Embodiment
The cooling device 200 of this embodiment is comprised by the container which accommodates the cooling medium L, as shown in FIG. By immersing the object to be cooled 300 in the cooling medium L, the object to be cooled 300 is cooled. The cooling medium L is the same as that in the first embodiment. In the illustrated example, the object to be cooled 300 has a rectangular parallelepiped shape, but the object to be cooled 300 may be spherical or may be a coated electric wire as in the first embodiment, and an appropriate shape may be provided. As long as it has it. The object to be cooled 300 is stationary in the cooling medium L, but the temperature of the object to be cooled 300 before cooling is higher than the temperature of the cooling medium L, so natural convection occurs as shown by the arrows in the figure. .

このような本実施形態によれば、以下のような効果がある。即ち、前記第1実施形態と同様に、水中で窒化ホウ素が分散した冷却媒体Lを用いることにより、冷却対象物300を効率よく冷却することができる。   According to such an embodiment, the following effects can be obtained. That is, as in the first embodiment, by using the cooling medium L in which boron nitride is dispersed in water, the object to be cooled 300 can be cooled efficiently.

なお、本発明は、前記第1実施形態および前記第2実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。   The present invention is not limited to the first embodiment and the second embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention. included.

例えば、前記第1実施形態では、窒化ホウ素粒子の濃度が0.05〜15体積%であることが好ましく、窒化ホウ素粒子の平均粒径が0.03〜5μmであることが好ましいとしたが、窒化ホウ素粒子の濃度や平均粒径はこれらの範囲に限定されない。窒化ホウ素粒子の濃度や平均粒径は、被覆電線100の移動速度や容器2の寸法、冷却媒体Lの量(水位)等に応じた適宜な値であればよい。   For example, in the first embodiment, the concentration of the boron nitride particles is preferably 0.05 to 15% by volume, and the average particle diameter of the boron nitride particles is preferably 0.03 to 5 μm, The concentration and average particle size of the boron nitride particles are not limited to these ranges. The concentration and average particle diameter of the boron nitride particles may be any suitable value according to the moving speed of the coated wire 100, the dimensions of the container 2, the amount (water level) of the cooling medium L, and the like.

また、前記第1実施形態では、冷却媒体Lが分散剤を含むものとしたが、例えば窒化ホウ素粒子の濃度が低い場合や、被覆電線100の移動速度が高く冷却媒体に流れが生じやすい場合等、窒化ホウ素粒子が分散しやすい条件においては、冷却媒体は分散剤を含んでいなくてもよい。   In the first embodiment, the cooling medium L contains the dispersant. However, for example, when the concentration of the boron nitride particles is low, or when the moving speed of the coated wire 100 is high and the flow tends to occur in the cooling medium The cooling medium may not contain the dispersing agent under the condition that the boron nitride particles are easily dispersed.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   Besides, the best configuration, method and the like for carrying out the present invention are disclosed in the above description, but the present invention is not limited to this. That is, although the present invention has been particularly illustrated and described primarily with respect to particular embodiments, it should be understood that the present invention may be configured relative to the above-described embodiments without departing from the scope of the inventive concept and object. Those skilled in the art can make various modifications in materials, quantities, and other detailed configurations. Therefore, the description with the above-described disclosure of the shape, the material, etc. is exemplarily described for facilitating the understanding of the present invention, and is not intended to limit the present invention. The description in the name of a member from which some or all of the limitations such as the limitation have been removed is included in the present invention.

[粒径の評価]
窒化ホウ素粒子の平均粒径については、堀場製作所製の散乱式粒度分布測定装置を用いて評価した。後述する各実施例には、ジクス工業製のZSA−200(粒径0.05μm)、ZSA−20(粒径0.7μm)、ZSA−5(粒径3μm)を用いた。これらの粒径の測定結果(粒度分布)を図3〜5に示す。
[Evaluation of particle size]
The average particle diameter of the boron nitride particles was evaluated using a scattering particle size distribution analyzer manufactured by Horiba, Ltd. For each example described later, ZSA-200 (particle diameter 0.05 μm), ZSA-20 (particle diameter 0.7 μm), and ZSA-5 (particle diameter 3 μm) manufactured by Zix Industrial Co., Ltd. were used. The measurement results (particle size distribution) of these particle sizes are shown in FIGS.

[粘度測定結果]
実施例及び比較例の冷却媒体の粘度を測定した。測定には、英弘精機製のB型粘度計を用いた。水中で1体積%の窒化ホウ素粒子が分散したものを実施例1の冷却媒体とし、水中で0.1体積%の窒化ホウ素粒子が分散したものを実施例2の冷却媒体とし、水中で1体積%のアルミナ粒子が分散したものを比較例1の冷却媒体とし、水中で0.1体積%のアルミナ粒子が分散したものを比較例2の冷却媒体とし、蒸留水を比較例3の冷却媒体とした。
[Viscosity measurement result]
The viscosities of the cooling media of Examples and Comparative Examples were measured. For measurement, a B-type viscometer manufactured by Eiko Seiki Co., Ltd. was used. A dispersion of 1% by volume of boron nitride particles in water is used as a cooling medium of Example 1, and a dispersion of 0.1% by volume of boron nitride particles in water is set as a cooling medium of Example 2, 1 volume in water % Dispersed in alumina particles is used as the cooling medium of Comparative Example 1, and 0.1% by volume of alumina particles dispersed in water is used as the cooling medium in Comparative Example 2, and distilled water is used as the cooling medium in Comparative Example 3 did.

このとき、実施例1、2の冷却媒体は、分散剤としてポリカルボン酸アンモニウムを含んでおり、超音波放射による解砕処理が行われたものである。これは以下の実施例についても同様である。また、実施例1、2の冷却媒体における窒化ホウ素粒子の平均粒径は、3μmである。粘度の測定結果を図6に示す。図6のグラフでは、横軸がずり速度となっており、動粘度のずり速度特性を示す。   At this time, the cooling medium of Examples 1 and 2 contains ammonium polycarboxylate as a dispersing agent, and is crushed by ultrasonic radiation. The same applies to the following embodiments. Moreover, the average particle diameter of the boron nitride particle | grains in the cooling medium of Example 1, 2 is 3 micrometers. The measurement results of the viscosity are shown in FIG. In the graph of FIG. 6, the horizontal axis represents the shear rate, and shows the shear rate characteristic of the kinematic viscosity.

実施例1、2の冷却媒体では、比較例3の冷却媒体(蒸留水)よりも粘度が多少高くなったが、それぞれ同濃度のアルミナ粒子を含む比較例1、2の冷却媒体よりも粘度が低くなった。   Although the viscosity of the coolant of Examples 1 and 2 was slightly higher than that of the coolant of Comparative Example 3 (distilled water), the viscosity was higher than that of the coolant of Comparative Examples 1 and 2 containing alumina particles of the same concentration. It got lower.

[熱伝導率測定結果]
実施例及び比較例の冷却媒体の熱伝導率を測定した。実施例3A〜3Dの冷却媒体は、それぞれ、水中で0.001体積%、0.01体積%、0.2体積%、2体積%の窒化ホウ素粒子が分散したものである。実施例3A〜3Dの冷却媒体における窒化ホウ素粒子の平均粒径は、3μmである。比較例4A〜4Dの冷却媒体は、水中で0.001体積%、0.01体積%、0.2体積%、2体積%のアルミナ粒子が分散したものである。熱伝導率の測定結果を図7に示す。
[Thermal conductivity measurement result]
The thermal conductivity of the cooling media of Examples and Comparative Examples was measured. The cooling media of Examples 3A to 3D are respectively dispersions of 0.001% by volume, 0.01% by volume, 0.2% by volume, and 2% by volume of boron nitride particles in water. The average particle diameter of the boron nitride particles in the cooling medium of Examples 3A to 3D is 3 μm. The cooling media of Comparative Examples 4A to 4D are obtained by dispersing 0.001% by volume, 0.01% by volume, 0.2% by volume, and 2% by volume of alumina particles in water. The measurement results of the thermal conductivity are shown in FIG.

実施例3A〜3Dの冷却媒体では、それぞれ同濃度の比較例4A〜4Dの冷却媒体よりも熱伝導率が高くなった。   In the cooling media of Examples 3A to 3D, the thermal conductivity was higher than the cooling media of Comparative Examples 4A to 4D having the same concentration.

[強制対流熱伝達率測定結果]
実施例及び比較例の冷却媒体の熱伝導率を測定した。実施例4の冷却媒体は、水中で1体積%の窒化ホウ素粒子が分散したものであり、窒化ホウ素粒子の平均粒径は、0.7μmである。比較例5の冷却媒体は蒸留水である。実施例4及び比較例5の冷却媒体について、図8に示す測定装置400を用いて熱伝達率を測定した。
[Result of measurement of forced convection heat transfer coefficient]
The thermal conductivity of the cooling media of Examples and Comparative Examples was measured. The cooling medium of Example 4 is a dispersion of 1% by volume of boron nitride particles in water, and the average particle diameter of the boron nitride particles is 0.7 μm. The cooling medium of Comparative Example 5 is distilled water. The heat transfer coefficients of the cooling media of Example 4 and Comparative Example 5 were measured using the measuring device 400 shown in FIG.

測定装置400は、測定部401と、恒温槽402と、ダイアフラム式の送液ポンプ403と、流量計404と、ヒータ電源405と、を備える。測定部401は、長さ1000mm且つ内径35mmのアクリル管406と、アクリル管406に収容された疑似電線407と、により構成される。疑似電線407は、両端がヒータ電源405に接続された外径1.6mmのヒータ線408と、ヒータ線408の外側に設けられた外径7mmのPVCチューブ被覆409と、により構成される。疑似電線407において、ヒータ線408とPVCチューブ被覆409との間、及び、PVCチューブ被覆409の外側から1mmの位置において熱電対によって温度を測定した。   The measuring device 400 includes a measuring unit 401, a thermostatic bath 402, a diaphragm type liquid feed pump 403, a flow meter 404, and a heater power supply 405. The measuring unit 401 is configured of an acrylic tube 406 having a length of 1000 mm and an inner diameter of 35 mm, and a pseudo electric wire 407 accommodated in the acrylic tube 406. The pseudo electric wire 407 is constituted of a heater wire 408 with an outer diameter of 1.6 mm, both ends of which are connected to the heater power supply 405, and a PVC tube coating 409 with an outer diameter of 7 mm provided outside the heater wire 408. In the dummy wire 407, the temperature was measured by a thermocouple between the heater wire 408 and the PVC tube coating 409 and at a position of 1 mm from the outside of the PVC tube coating 409.

測定装置400において、送液ポンプ403によって冷却媒体を送液させ、アクリル管406の内側かつ疑似電線407の外側に冷却媒体を通過させた。このとき、ヒータ電源405によってヒータ線408に電圧を印加して通電させることにより、疑似電線407を所定の温度まで加熱した。アクリル管406を通過した冷却媒体は、恒温槽402によって所定温度まで冷却されて再び送液ポンプ403に戻る。   In the measuring device 400, the cooling medium is fed by the liquid feeding pump 403, and the cooling medium is passed inside the acrylic pipe 406 and outside the dummy wire 407. At this time, by applying a voltage to the heater wire 408 by the heater power supply 405 and energizing the same, the pseudo electric wire 407 was heated to a predetermined temperature. The cooling medium that has passed through the acrylic pipe 406 is cooled to a predetermined temperature by the thermostatic bath 402 and returns to the liquid feed pump 403 again.

前記第1実施形態の電線冷却装置1では被覆電線100が移動するのに対し、測定装置400では冷却媒体を送液する(移動させる)ことにより、電線と冷却媒体とが相対移動する状態を模擬した。送液ポンプ403を制御して冷却媒体の主流速度を変化させることにより、レイノルズ数を変化させて熱伝達率を測定した。この結果を図9に示す。尚、図9では横軸をレイノルズ数から流速に換算して示している。   The coated wire 100 moves in the electric wire cooling device 1 according to the first embodiment, while the measuring device 400 simulates a state in which the electric wire and the cooling medium move relative to each other by sending (moving) the cooling medium. did. By controlling the feed pump 403 to change the main flow velocity of the cooling medium, the Reynolds number was changed to measure the heat transfer coefficient. The results are shown in FIG. In FIG. 9, the horizontal axis is shown by converting the Reynolds number into the flow velocity.

実施例4及び比較例5の冷却媒体のいずれにおいても、流速の上昇に伴い熱伝達率も上昇した。また、いずれの流速においても、実施例4の冷却媒体の方が、比較例5の冷却媒体よりも熱伝達率が高くなる傾向が見られた。即ち、実施例4の冷却媒体について、強制対流において冷却性能の向上が見られた。   In any of the cooling media of Example 4 and Comparative Example 5, the heat transfer coefficient also increased as the flow velocity increased. Moreover, the heat transfer coefficient tended to be higher in the cooling medium of Example 4 than in the cooling medium of Comparative Example 5 at any flow rate. That is, for the cooling medium of Example 4, the improvement of the cooling performance was observed in forced convection.

[低レイノルズ数における熱伝達率測定結果]
実施例及び比較例の冷却媒体の熱伝導率を測定した。実施例5A〜5Dの冷却媒体は、それぞれ水中で0.001、0.01、0.2、0.25体積%の窒化ホウ素粒子が分散したものであり、窒化ホウ素粒子の平均粒径は、3μmである。比較例6A〜6Dの冷却媒体は、それぞれ水中で0.001、0.01、0.2、0.25体積%のアルミナ粒子が分散したものである。比較例7の冷却媒体は蒸留水である。実施例5A〜5D及び比較例6A〜6Dの冷却媒体を500mLのビーカーに収容するとともに、この中に100℃に加熱したポリプロピレン試験片(20×20×20mm)を入れ、マグネチックスターラーを低速で動作させて撹拌した。このときのポリプロピレン試験片の温度変化から熱伝達係数を求めた。流速及びレイノルズ数に関しては、比較例7の冷却媒体(蒸留水)を用いて同様の実験を行い、その結果から決定した。このとき、冷却媒体の流速は0.211×10-4 m/sとした。これにより、前記実施形態2のように自然対流により冷却対象物を冷却する状態を模擬した。この結果を表1に示す。
[Heat transfer coefficient measurement result at low Reynolds number]
The thermal conductivity of the cooling media of Examples and Comparative Examples was measured. The cooling media of Examples 5A to 5D were obtained by dispersing 0.001, 0.01, 0.2, and 0.25% by volume of boron nitride particles in water, respectively, and the average particle diameter of the boron nitride particles was as follows: It is 3 μm. The cooling media of Comparative Examples 6A to 6D are respectively dispersions of 0.001, 0.01, 0.2, and 0.25% by volume of alumina particles in water. The cooling medium of Comparative Example 7 is distilled water. The cooling mediums of Examples 5A to 5D and Comparative Examples 6A to 6D are placed in a 500 mL beaker, and a polypropylene test piece (20 × 20 × 20 mm) heated to 100 ° C. is placed therein, and the magnetic stirrer is operated at low speed. It was operated and stirred. The heat transfer coefficient was determined from the temperature change of the polypropylene test piece at this time. The flow rate and the Reynolds number were determined from the results of the same experiment using the cooling medium (distilled water) of Comparative Example 7. At this time, the flow velocity of the cooling medium was 0.211 × 10 −4 m / s. This simulates the state of cooling the object to be cooled by natural convection as in the second embodiment. The results are shown in Table 1.

Figure 2019048946
Figure 2019048946

実施例5A〜5Dの冷却媒体では、同濃度のアルミナ粒子が分散した比較例6A〜6Dの冷却媒体よりも熱伝達率が高くなり、比較例7の冷却媒体(蒸留水)よりも熱伝達率が高くなった。即ち、実施例5A〜5Dの冷却媒体について、自然対流を模擬した状態において冷却性能の向上が見られた。   The heat transfer coefficient of the cooling media of Examples 5A to 5D is higher than that of the cooling media of Comparative Examples 6A to 6D in which the alumina particles having the same concentration are dispersed, and the heat conductivity is higher than that of the cooling medium (distilled water) of Comparative Example 7 Became high. That is, for the cooling media of Examples 5A to 5D, the improvement of the cooling performance was observed in a state where natural convection was simulated.

L 冷却媒体
100 被覆電線
300 冷却対象物
1 電線冷却装置
2 容器
L Cooling medium 100 Coated electric wire 300 Cooling object 1 Electric wire cooling device 2 container

Claims (7)

水中で窒化ホウ素粒子が分散していることを特徴とする冷却媒体。   A cooling medium characterized in that boron nitride particles are dispersed in water. 前記窒化ホウ素粒子の濃度が0.05〜15体積%であることを特徴とする請求項1に記載の冷却媒体。   The cooling medium according to claim 1, wherein the concentration of the boron nitride particles is 0.05 to 15% by volume. 前記窒化ホウ素粒子の平均粒径が0.03〜5μmであることを特徴とする請求項1又は2に記載の冷却媒体。   The average particle diameter of the said boron nitride particle | grains is 0.03-5 micrometers, The cooling medium of Claim 1 or 2 characterized by the above-mentioned. 前記窒化ホウ素粒子を水中に分散させるための分散剤を含み、
前記分散剤は、窒化ホウ素結晶のエッジ部と反応する官能基を有することを特徴とする請求項1〜3のいずれか1項に記載の冷却媒体。
A dispersant for dispersing the boron nitride particles in water;
The said dispersing agent has a functional group which reacts with the edge part of a boron nitride crystal | crystallization, The cooling medium of any one of the Claims 1-3 characterized by the above-mentioned.
請求項1〜4のいずれか1項に記載の冷却媒体と、冷却対象物と、を相対移動させることを特徴とする冷却方法。   A cooling method characterized by relatively moving the cooling medium according to any one of claims 1 to 4 and an object to be cooled. 前記冷却対象物としての被覆電線を、前記冷却媒体中で長手方向に沿って移動させることを特徴とする請求項5に記載の冷却方法。   The cooling method according to claim 5, wherein the coated electric wire as the object to be cooled is moved along the longitudinal direction in the cooling medium. 請求項1〜4のいずれか1項に記載の冷却媒体を収容する容器と、被覆電線を移動させる移動手段と、を備え、
前記移動手段によって、被覆電線を前記冷却媒体中で長手方向に沿って移動させることを特徴とする電線冷却装置。
A container containing the cooling medium according to any one of claims 1 to 4 and moving means for moving a coated wire.
A wire cooling device characterized in that the coated wire is moved along the longitudinal direction in the cooling medium by the moving means.
JP2017174186A 2017-09-11 2017-09-11 Cooling medium, cooling method and wire cooling device Active JP6894613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174186A JP6894613B2 (en) 2017-09-11 2017-09-11 Cooling medium, cooling method and wire cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174186A JP6894613B2 (en) 2017-09-11 2017-09-11 Cooling medium, cooling method and wire cooling device

Publications (2)

Publication Number Publication Date
JP2019048946A true JP2019048946A (en) 2019-03-28
JP6894613B2 JP6894613B2 (en) 2021-06-30

Family

ID=65904869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174186A Active JP6894613B2 (en) 2017-09-11 2017-09-11 Cooling medium, cooling method and wire cooling device

Country Status (1)

Country Link
JP (1) JP6894613B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153428A (en) * 1994-11-29 1996-06-11 Yazaki Corp Wire covering device
US20140339780A1 (en) * 2012-02-02 2014-11-20 Baker Hughes Incorporated Thermally conductive nanocomposition and method of maiking the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153428A (en) * 1994-11-29 1996-06-11 Yazaki Corp Wire covering device
US20140339780A1 (en) * 2012-02-02 2014-11-20 Baker Hughes Incorporated Thermally conductive nanocomposition and method of maiking the same

Also Published As

Publication number Publication date
JP6894613B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
Aghahadi et al. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids
Dey et al. A review of nanofluid preparation, stability, and thermo‐physical properties
Salimpour et al. An experimental study on deposited surfaces due to nanofluid pool boiling: Comparison between rough and smooth surfaces
Chougule et al. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts–a comparative study
Aghayari et al. Heat transfer of nanofluid in a double pipe heat exchanger
Colangelo et al. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids
Sundar et al. Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow
Abbasian Arani et al. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube
Srinivas et al. Heat transfer enhancement using CuO/water nanofluid in a shell and helical coil heat exchanger
Bhimani et al. Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators
Raja et al. Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert
Chougule et al. Experimental study on laminar forced convection of Al2O3/water and multiwall carbon nanotubes/water nanofluid of varied particle concentration with helical twisted tape inserts in pipe flow
Qamar et al. Preparation and dispersion stability of aqueous metal oxide nanofluids for potential heat transfer applications: a review of experimental studies
Farzin et al. Laminar convective heat transfer and pressure drop of TiO 2/turbine oil nanofluid
Ahmed Nanofluid: new fluids by nanotechnology
JP2019048946A (en) Cooling medium, cooling method, and wire cooling device
Mishra et al. Thermal conductivity of nanofluids-A comprehensive review
Ravisankar et al. Thermal performance improvement of tractor radiator using CuO/Water nanofluid
Gürdal et al. An innovative approach of alternating magnetic field diversified with different wave types and magnet positions for ferrofluid flow in dimpled tube
Salman et al. Comparative studies on thermal performance of conic cut twist tape inserts with SiO 2 and TiO 2 nanofluids
Kumar et al. Heat transfer and pressure drop of Al2O3 nanofluid as coolant in shell and helically coiled tube heat exchanger
Perarasu et al. Heat transfer characteristics of TiO2/water nanofluid in a coiled agitated vessel provided with disk turbine agitator
Shanthi et al. Performance of two phase gravity assisted thermosyphon using nanofluids
Chen et al. Performance analysis of Al 2 O 3/water nanofluid with cationic chitosan dispersant
Atofarati et al. Pulsating nanofluid-jet impingement cooling and its hydrodynamic effects on heat transfer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6894613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350