JP2019047649A - Driving device and robot - Google Patents

Driving device and robot Download PDF

Info

Publication number
JP2019047649A
JP2019047649A JP2017169426A JP2017169426A JP2019047649A JP 2019047649 A JP2019047649 A JP 2019047649A JP 2017169426 A JP2017169426 A JP 2017169426A JP 2017169426 A JP2017169426 A JP 2017169426A JP 2019047649 A JP2019047649 A JP 2019047649A
Authority
JP
Japan
Prior art keywords
motor shaft
power transmission
transmission system
output shaft
type actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017169426A
Other languages
Japanese (ja)
Inventor
森 敬夫
Takao Mori
敬夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017169426A priority Critical patent/JP2019047649A/en
Publication of JP2019047649A publication Critical patent/JP2019047649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a small-scaled lightweight driving device capable of obtaining large gripping force and of high-speed and high-accuracy driving of a holding part.SOLUTION: A driving device 1 comprises: a vibration type actuator 2; a motor shaft part 3a rotated by the vibration type actuator 2; an output shaft part 3b outputting rotational driving force generated by the motor shaft part 3a to outside; and a first power transmission system and a second power transmission system transmitting the rotational driving force generated by the motor shaft part 3a to the output shaft part 3b. The route for transmitting the rotational driving force generated by the motor shaft part 3a to the output shaft part 3b is switched between the first power transmission system and the second power transmission system in accordance with the torque generated by the rotative direction of the motor shaft part 3a and the vibration type actuator 2.SELECTED DRAWING: Figure 1

Description

本発明は、産業用ロボット等を構成するハンド装置の駆動装置と、駆動装置を備えるロボットに関する。   The present invention relates to a drive device of a hand device constituting an industrial robot or the like, and a robot including the drive device.

産業用ロボット等のエンドエフェクタの1つとして、複数の指部で部品等の把持対象物を把持するハンド装置が用いられている。ここで、ハンド装置には、2指又は3指がスライドして把持対象物を挟み込むようにして把持する比較的単純な動きをするものもあれば、関節のある指で把持対象物を包み込むように把持するものまで、様々な構造のものが知られている。近年では、ハンド装置の多機能化が進んでおり、例えば、柔らかい把持対象物や複雑な形状の把持対象物を確実に把持することができるものが登場している。また、ハンド装置において把持対象物に接触する部位を交換することなく、大きさや重さの異なる把持対象物を器用に把持することができるものも登場している。   As one of end effectors of industrial robots and the like, a hand device is used which holds a gripping target such as a part with a plurality of finger portions. Here, some hand devices perform a relatively simple movement in which two or three fingers slide to grip and hold an object to be gripped, such that an articulating finger wraps the object to be gripped A variety of structures are known up to what is gripped. In recent years, multifunctionalization of the hand device has been advanced, and for example, a device capable of reliably gripping a soft gripping object or a gripping object having a complicated shape has appeared. In addition, there has also appeared a device capable of grasping an object to be grasped having different sizes and weights dexterously without replacing a portion in contact with the object to be grasped in the hand device.

このようなハンド装置の多機能化に伴い、ハンド装置の指関節や手首関節には、従来よりも多数の駆動装置を搭載するものが増えている。しかしながら、駆動装置が増えてハンド装置の質量が増大すると、ハンド装置を装着した産業用ロボットの動作性能が低下してしまう。そこで、ハンド装置を駆動する駆動装置については、小型軽量でありながら、大きいトルクを発生することが可能なものが求められている。   With the multi-functionalization of such a hand device, more and more finger drive and wrist joints of the hand device are equipped with a larger number of drive devices than ever before. However, if the number of driving devices increases and the mass of the hand device increases, the operation performance of the industrial robot equipped with the hand device will deteriorate. Therefore, a driving device for driving the hand device is required to be small in size and light in weight and capable of generating a large torque.

その一例として、特許文献1は、モータと複数の小型の波動歯車減速機を組み合わせることにより駆動系の高トルク化と小型化を実現した指関節機構を提案している。具体的には、特許文献1に記載された指関節機構では、2台の小型の波動歯車減速機を用いることで、型番の大きな1台の減速機を用いる場合に比べて、設置スペースの増加割合に対するトルク容量の増加割合を高めている。また、特許文献1には、減速機として構成部品の数が少ない波動歯車減速機を用いることにより、他の形式の減速機を用いる場合よりも小型化が容易になることが記載されている。   As an example, Patent Document 1 proposes a finger joint mechanism that realizes high torque and small drive system by combining a motor and a plurality of small wave gear reducers. Specifically, in the finger joint mechanism described in Patent Document 1, by using two small wave gear reducers, the installation space is increased as compared with the case where one large reducer is used. Increases the rate of increase in torque capacity to the rate. Further, Patent Document 1 describes that the use of a wave gear reducer having a small number of components as a reducer facilitates downsizing as compared with the case where other types of reducers are used.

特許第4737695号公報Patent No. 4737695 gazette

ハンド装置には、大きな把持力が求められる一方で、工程時間短縮のために動作速度を上げることが望まれている。つまり、低速高トルク駆動と高速低トルク駆動との切り替えが可能な機構が求められている。しかし、上記特許文献1に記載された指関節機構は、低速高トルク駆動に適しているが、高速低トルク駆動には適していない。   While the hand device is required to have a large gripping force, it is desirable to increase the operating speed to reduce the process time. That is, a mechanism capable of switching between low speed high torque drive and high speed low torque drive is required. However, although the finger joint mechanism described in Patent Document 1 is suitable for low-speed high-torque driving, it is not suitable for high-speed low-torque driving.

低速高トルク駆動と高速低トルク駆動との切り替えが可能な構成として、減速比が比較的小さな新しいギア列を並列に設け、ギア列を切り替え可能な構成が考えられる。しかし、このような構成では、駆動停止時の保持力を得るためのブレーキ装置が必要になり、また、サイズの大きな波動歯車減速機を避けるように新しいギア列を配置する必要がある等の新たな問題が生じてしまい、ハンド装置全体の小型化は容易でない。   As a configuration capable of switching between low-speed high-torque driving and high-speed low-torque driving, a new gear train having a relatively small reduction ratio may be provided in parallel to switch the gear train. However, such a configuration requires a brake device to obtain holding power at the time of drive stop, and also needs to arrange a new gear train so as to avoid a large-size wave gear reducer. Problems, and it is not easy to miniaturize the entire hand device.

また、ハンド装置は、把持部が高い精度で把持対象物に接触した後に把持対象物を把持する性能を備えている必要がある。例えば、リング状の部品を外周側から中心に向かって3指の把持部で把持する場合、各把持部がリング状部品に接触する瞬間に時間のずれが生じると、リング状部品がスライドし又は傾いてしまい、重心位置がずれた状態で把持されてしまうことがある。この場合、後工程の組立て作業で位置合わせができずにエラーが生じ、生産性が低下するおそれがある。そして、上記特許文献1に記載されているような減速機を介した動力伝達系では、把持部の把持対象物への接触が開始された時点での位置精度がバックラッシの発生によって低下しやすいという問題がある。   In addition, the hand device needs to have the ability to grip the object to be grasped after the grasping portion comes into contact with the object to be grasped with high accuracy. For example, in the case of gripping a ring-shaped part with a three-fingered grip from the outer peripheral side toward the center from the outer peripheral side, the ring-shaped part slides when time lag occurs at the moment each grip unit contacts the ring-shaped part It may be tilted and gripped with the center of gravity shifted. In this case, an error may occur due to an inability to perform alignment in a post-stage assembly operation, which may lower productivity. And, in the power transmission system via the reduction gear as described in Patent Document 1 mentioned above, it is said that the positional accuracy at the time when the contact of the grip portion with the object to be gripped is started is easily deteriorated due to the occurrence of backlash. There's a problem.

更に、減速比の大きな減速機を用いた把持機構では、慣性モーメントが大きいため、把持対象物に対する把持部の接触が開始した時点での把持力に慣性力による誤差が生じやすく、よって、把持力の管理が難しくなるという問題がある。また、把持部を駆動するモータのトルク制御における誤差が減速比の分だけ増幅されてしまうという問題もある。   Furthermore, in a gripping mechanism using a reduction gear having a large reduction ratio, since the moment of inertia is large, an error due to the inertial force is likely to occur in the gripping force when contact of the gripping portion with the gripping object starts. Management is difficult. In addition, there is also a problem that an error in torque control of the motor for driving the grip portion is amplified by the reduction ratio.

本発明は、大きな把持力を得ることができると共に把持部の高速駆動と高精度な駆動が可能な小型軽量の駆動装置を提供することを目的とする。   An object of the present invention is to provide a small and lightweight drive device capable of obtaining a large gripping force and capable of high-speed drive and high-precision drive of a grip portion.

本発明に係る駆動装置は、振動型アクチュエータと、前記振動型アクチュエータの駆動により回転するモータ軸部と、前記モータ軸部の回転駆動力を外部に出力する出力軸部と、前記モータ軸部の回転駆動力を前記出力軸部へ伝達する第一動力伝達系および第二動力伝達系と、を有し、前記モータ軸部の回転方向と前記振動型アクチュエータで発生するトルクに応じて前記モータ軸部の回転駆動力が前記出力軸部へ伝達される経路が前記第一動力伝達系と前記第二動力伝達系とで切り替わることを特徴とする。   The drive device according to the present invention includes a vibration type actuator, a motor shaft that rotates by driving the vibration type actuator, an output shaft that outputs the rotational driving force of the motor shaft to the outside, and the motor shaft. A first power transmission system and a second power transmission system for transmitting a rotational drive force to the output shaft, and the motor shaft according to the rotational direction of the motor shaft and the torque generated by the vibration-type actuator It is characterized in that a path through which the rotational driving force of the unit is transmitted to the output shaft unit is switched between the first power transmission system and the second power transmission system.

本発明によれば、大きな把持力を得ることができると共に把持部の高速駆動と高精度な駆動が可能な小型軽量の駆動装置を実現することができる。   According to the present invention, it is possible to realize a small and lightweight drive device capable of obtaining a large gripping force and capable of high-speed drive and high-precision drive of the grip portion.

本発明の実施形態に係る駆動装置の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a drive concerning an embodiment of the present invention. 図1の駆動装置の平面図である。It is a top view of the drive device of FIG. 図1の駆動装置の把持部の動作パターンを説明する図である。It is a figure explaining the operation | movement pattern of the holding part of the drive device of FIG. 図1の駆動装置を備える指ユニットの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a finger unit provided with the drive device of FIG.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。図1は、本発明の実施形態に係る駆動装置1の概略構成を示す斜視図である。図2は、駆動装置1の平面図である。駆動装置1は、振動型アクチュエータ2、モータ軸部3a、出力軸部3b、駆動軸部4a、従動軸部4b、トルクリミッタ5、噛み合いクラッチ6、一方向クラッチ7、第一ギア8及び第二ギア9を備える。   Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. FIG. 1 is a perspective view showing a schematic configuration of a drive device 1 according to an embodiment of the present invention. FIG. 2 is a plan view of the drive device 1. The driving device 1 includes a vibration type actuator 2, a motor shaft 3a, an output shaft 3b, a drive shaft 4a, a driven shaft 4b, a torque limiter 5, a meshing clutch 6, a one-way clutch 7, a first gear 8 and a second gear. A gear 9 is provided.

モータ軸部3a及び出力軸部3bは、トルクリミッタ5を介して同軸に配置されている。駆動軸部4a及び従動軸部4bは同軸に配置されており、モータ軸部3a及び出力軸部3bと駆動軸部4a及び従動軸部4bは、実質的に平行となるように配置されている。モータ軸部3aは、振動型アクチュエータ2を貫通し、振動型アクチュエータ2を駆動することによって回転する。出力軸部3bは、モータ軸部3aの回転を外部に出力する。   The motor shaft 3 a and the output shaft 3 b are coaxially disposed via the torque limiter 5. The drive shaft 4a and the driven shaft 4b are coaxially arranged, and the motor shaft 3a and the output shaft 3b, and the drive shaft 4a and the driven shaft 4b are arranged substantially parallel to each other. . The motor shaft portion 3 a penetrates the vibration type actuator 2 and is rotated by driving the vibration type actuator 2. The output shaft 3b outputs the rotation of the motor shaft 3a to the outside.

振動型アクチュエータ2は、振動体に高周波振動を励起することにより振動体に接触する被駆動体を摩擦駆動することで被駆動体と振動体とを相対的に回転させ、発生させた回転駆動力をモータ軸部3aを通して外部に取り出す回転式モータの1種である。一般的に、振動型アクチュエータ2は、電磁モータに比べて、低速域でのトルクが大きく、また、高トルク密度である(単位体積あたりのトルクが大きい)という特徴を有する。本実施形態では、振動型アクチュエータ2として、例えば、外径がφ15、軸方向長さが20mmの円柱状の形状を有し、0.1N・m以上のトルクを出すことが可能なものが好適に用いられる。なお、同程度の大きさのブラシレスDCモータのトルクは0.005N・m程度であるから、トルク密度の観点から、振動型アクチュエータ2を用いた構成には、ブラシレスDCモータを用いた構成よりも優位性がある。   The vibration type actuator 2 rotates a driven body and a vibrating body relative to each other by frictionally driving the driven body in contact with the vibrating body by exciting high frequency vibration to the vibrating body, and generates the generated rotational driving force. Is a type of rotary motor that takes out to the outside through the motor shaft 3a. Generally, the vibration-type actuator 2 is characterized in that the torque in the low speed region is large and the torque density is high (the torque per unit volume is large) as compared with the electromagnetic motor. In the present embodiment, as the vibration type actuator 2, for example, one having a cylindrical shape having an outer diameter of φ 15 and an axial length of 20 mm is preferable which can give a torque of 0.1 N · m or more. Used for Since the torque of the brushless DC motor of the same size is about 0.005 N · m, in terms of torque density, the configuration using the vibration type actuator 2 is more than the configuration using the brushless DC motor There is an advantage.

トルクリミッタ5は、バネ力を付与して得られる機械的な摩擦によって駆動力を伝達し、トルクが所定の大きさ以上になると摩擦滑りにより駆動力を遮断する。なお、トルクリミッタ5は、静摩擦力でグリップしているトルクレンジでは、滑ることなく回転が伝達されると考えても支障はなく、モータ軸部3aの回転はダイレクトに出力軸部3bへ伝達される。   The torque limiter 5 transmits the driving force by mechanical friction obtained by applying a spring force, and cuts off the driving force by friction slip when the torque exceeds a predetermined magnitude. In the torque range gripped by static friction, there is no problem even if it is considered that the rotation is transmitted without slipping, and the rotation of the motor shaft 3a is directly transmitted to the output shaft 3b. Ru.

振動型アクチュエータ2の回転駆動力の出力経路には、第一動力伝達系と第二動力伝達系の2つの経路がある。第一動力伝達系は、モータ軸部3aからトルクリミッタ5を介して出力軸部3bからダイレクトに出力される経路である。第二動力伝達系は、モータ軸部3a、第一ギア8、駆動軸部4a、噛み合いクラッチ6、従動軸部4b、一方向クラッチ7、第二ギア9及び出力軸部3bを通じて出力される経路である。出力軸部3bは、第一動力伝達系と第二動力伝達系に共通する部位であり、出力軸部3bにハンド装置の把持部(不図示)が取り付けられる。   The output path of the rotational drive force of the vibration-type actuator 2 has two paths of a first power transmission system and a second power transmission system. The first power transmission system is a path that is directly output from the output shaft 3b via the torque limiter 5 from the motor shaft 3a. The second power transmission system is a path output through the motor shaft 3a, the first gear 8, the drive shaft 4a, the meshing clutch 6, the driven shaft 4b, the one-way clutch 7, the second gear 9, and the output shaft 3b. It is. The output shaft portion 3b is a portion common to the first power transmission system and the second power transmission system, and the grip portion (not shown) of the hand device is attached to the output shaft portion 3b.

第一ギア8は、モータ軸部3aに取り付けられた第一小ギア部8aと、駆動軸部4aに取り付けられた第一大ギア部8bを有する。第二ギア9は、出力軸部3bに取り付けられた第二大ギア部9aと、従動軸部4bに配置された一方向クラッチ7に取り付けられた第二小ギア部9bを有する。第一小ギア部8aと第一大ギア部8bとが噛み合い、且つ、第二小ギア部9bと第二大ギア部9aとが噛み合っており、第一ギア8と第二ギア9とを介して第一動力伝達系と第二動力伝達系との間での駆動力の伝達が可能となっている。   The first gear 8 has a first small gear portion 8a attached to the motor shaft portion 3a and a first large gear portion 8b attached to the drive shaft portion 4a. The second gear 9 has a second large gear portion 9a attached to the output shaft portion 3b and a second small gear portion 9b attached to the one-way clutch 7 disposed on the driven shaft portion 4b. The first small gear portion 8a and the first large gear portion 8b mesh with each other, and the second small gear portion 9b and the second large gear portion 9a mesh with each other, with the first gear 8 and the second gear 9 interposed therebetween. Thus, it is possible to transmit the driving force between the first power transmission system and the second power transmission system.

噛み合いクラッチ6は、駆動軸部4aと従動軸部4bとを機械的な噛み合いによって連結するクラッチである。本実施形態では図1に示すように、円筒端面の鋸歯状の凹凸がかみ合う移動部材6aと固定部材6bとが噛み合うジョークラッチを用いている。噛み合いクラッチ6では、固定部材6bが停止又は実質的に停止しているときに駆動軸部4aが図1中の矢印CCW方向(反時計回り)に回転すると、移動部材6aが固定部材6b側へスライドし、移動部材6aと固定部材6bとが係合する。駆動軸部4aが図1中の矢印CW方向(時計回り)に回転すると、移動部材6aは第一大ギア部8b側へスライドして固定部材6bとの係合が解除された状態となる。   The meshing clutch 6 is a clutch that couples the drive shaft 4a and the driven shaft 4b by mechanical meshing. In the present embodiment, as shown in FIG. 1, a jaw clutch is used in which the moving member 6a and the fixing member 6b are engaged with each other. In the meshing clutch 6, when the drive shaft 4a rotates in the direction of arrow CCW (counterclockwise) in FIG. 1 when the fixed member 6b is stopped or substantially stopped, the moving member 6a moves to the fixed member 6b side. The sliding member 6 a and the fixing member 6 b are engaged with each other. When the drive shaft 4a rotates in the direction of the arrow CW (clockwise) in FIG. 1, the moving member 6a slides toward the first large gear portion 8b, and the engagement with the fixing member 6b is released.

一方向クラッチ7は、同軸に配置される内輪と外輪の間で一方向の駆動力を伝達し、内輪と外輪とが同じ方向に回転している場合であっても、それらの角速度差に応じて、連結と解放とが切り替わる。一方向クラッチ7の内輪は従動軸部4bと一体となっており、且つ、一方向クラッチ7の外輪は第二小ギア部9bとが一体となっている。一方向クラッチ7の連結と解放は、内輪(従動軸部4b)と外輪(第二小ギア部9b)との角速度差の大きさと正負に応じて定まる。   The one-way clutch 7 transmits the driving force in one direction between the inner ring and the outer ring coaxially arranged, and even if the inner ring and the outer ring are rotating in the same direction, the angular velocity difference between them is Switch between connection and release. The inner ring of the one-way clutch 7 is integrated with the driven shaft 4b, and the outer ring of the one-way clutch 7 is integrated with the second small gear 9b. The connection and release of the one-way clutch 7 is determined according to the magnitude and the positive / negative of the angular velocity difference between the inner ring (follower shaft 4b) and the outer ring (second small gear portion 9b).

次に、駆動装置1による把持部の動作パターンを説明する。図3は、把持部の動作パターンごとに各部の動作をまとめた図である。動作パターンAの「閉」は、把持部が把持対象物を把持するために把持対象物と接触するまで閉じる動作を指す。動作パターンBの「把持」は、把持部を閉じる動作パターンAが終了し、把持対象物を把持するトルクを高めて把持対象物を把持した状態を保持する動作を指す。動作パターンCの「開」は、把持部が把持した把持対象物を離すために開く動作を指す。なお、図3中の「CW」及び「CCW」はそれぞれ、図1中に示す矢印CW及び矢印CCWと対応している。つまり、図1において振動型アクチュエータ2からトルクリミッタ5を見たときの時計回りの回転方向がCWであり、反時計回りの回転方向がCCWである。   Next, an operation pattern of the grip unit by the drive device 1 will be described. FIG. 3 is a diagram summarizing the operation of each part for each operation pattern of the gripping part. “Closed” of the movement pattern A refers to a movement that closes until the gripping portion contacts the gripping object to grip the gripping object. The “gripping” of the movement pattern B refers to an operation in which the movement pattern A for closing the holding portion is finished, and the torque for holding the object to be held is increased to hold the object to be held. The “open” of the movement pattern C refers to an opening movement for releasing the object to be held held by the holding unit. Note that “CW” and “CCW” in FIG. 3 correspond to the arrows CW and CCW shown in FIG. 1, respectively. That is, the clockwise rotation direction when the torque limiter 5 is viewed from the vibration type actuator 2 in FIG. 1 is CW, and the counterclockwise rotation direction is CCW.

把持部の動作パターンA〜Cは、トルクリミッタ5、噛み合いクラッチ6及び一方向クラッチ7のそれぞれでの上述した連結/解放の状態の組み合わせによって実現される。つまり、摩擦力の大きさに応じてトルクリミッタ5の連結/解放が、角速度差の大きさと正負に応じて一方向クラッチの連結/解放が、回転方向に応じて噛み合いクラッチの連結/解放がそれぞれ切り替わることで、動作パターンA〜Cの実現が可能となっている。   The operation patterns A to C of the grip portion are realized by a combination of the above-described connection / release states of the torque limiter 5, the meshing clutch 6 and the one-way clutch 7. That is, the connection / release of the torque limiter 5 according to the magnitude of the frictional force, the connection / release of the one-way clutch according to the magnitude and the positive / negative of the angular velocity difference, and the connection / release of the meshing clutch according to the rotational direction By switching, operation patterns A to C can be realized.

先ず、動作パターンAについて説明する。本実施形態では、把持部を閉じる動作を行うためには、振動型アクチュエータ2はモータ軸部3aがCW方向に回転するように駆動されるものとする。動作パターンAでは、振動型アクチュエータ2で発生した回転駆動力は、第一動力伝達系(モータ軸部3a及びトルクリミッタ5)を通じて出力軸部3bからダイレクトに出力され、第二動力伝達系は空転する。より詳しくは、動作パターンAの実行時には把持部は把持対象物に接触しておらず、把持部には把持力が発生していないため、トルクリミッタ5では、モータ軸部3aが静摩擦力によって出力軸部3bに連結した状態となっている。その結果、モータ軸部3aの回転は、出力軸部3bへダイレクトに伝達される。   First, the operation pattern A will be described. In the present embodiment, in order to perform the operation of closing the grip portion, the vibration type actuator 2 is driven so that the motor shaft portion 3a is rotated in the CW direction. In the operation pattern A, the rotational drive force generated by the vibration type actuator 2 is directly output from the output shaft 3b through the first power transmission system (motor shaft 3a and torque limiter 5), and the second power transmission system is idle. Do. More specifically, at the time of execution of the operation pattern A, the grip portion is not in contact with the grip target object, and no grip force is generated in the grip portion. Therefore, in the torque limiter 5, the motor shaft portion 3a is output by static friction force It is in a state of being connected to the shaft 3b. As a result, the rotation of the motor shaft 3a is directly transmitted to the output shaft 3b.

モータ軸部3aがCW方向に回転すると、モータ軸部3aに取り付けられた第一ギア8の第一小ギア部8aがCW方向に回転し、第一小ギア部8aと噛み合っている第一大ギア部8bは、回転速度が減速されてCCW方向に回転する。噛み合いクラッチ6は、前述の通り、CCW方向の回転によって移動部材6aが固定部材6b側へスライドして固定部材6bと係合し、これにより、駆動軸部4a、従動軸部4b及び一方向クラッチ7の内輪が一体的にCCW方向に回転する。ここで、第二ギア9の第二大ギア部9aは出力軸部3bと共にCW方向に回転しており、第二大ギア部9aと噛み合っている第二小ギア部9bは増速されてCCW方向に回転する。よって、一方向クラッチ7では、内輪と外輪の双方がCCW方向に回転する。このとき、第二小ギア部9bと一体となっている一方向クラッチ7の外輪の角速度は、一方向クラッチ7の内輪の角速度よりも大きい。よって、一方向クラッチ7は、外輪が内輪に対して相対的にCCW方向に回転する(図3に「外CCW」と記す)解除状態となって、第二動力伝達系は空転する。   When the motor shaft portion 3a rotates in the CW direction, the first small gear portion 8a of the first gear 8 attached to the motor shaft portion 3a rotates in the CW direction, and the first large gear meshes with the first small gear portion 8a. The gear portion 8 b is decelerated in rotational speed and rotates in the CCW direction. In the meshing clutch 6, as described above, the movable member 6a slides toward the fixed member 6b by rotation in the CCW direction and engages with the fixed member 6b, whereby the drive shaft 4a, the driven shaft 4b and the one-way clutch The inner ring of 7 rotates integrally in the CCW direction. Here, the second large gear portion 9a of the second gear 9 rotates in the CW direction together with the output shaft portion 3b, and the second small gear portion 9b meshing with the second large gear portion 9a is accelerated to CCW. Rotate in the direction. Therefore, in the one-way clutch 7, both the inner ring and the outer ring rotate in the CCW direction. At this time, the angular velocity of the outer ring of the one-way clutch 7 integrated with the second small gear portion 9 b is larger than the angular velocity of the inner ring of the one-way clutch 7. Therefore, in the one-way clutch 7, the outer ring rotates in the CCW direction relative to the inner ring (referred to as "outside CCW" in FIG. 3), and the second power transmission system slips.

続いて、動作パターンBについて説明する。動作パターンBでは、振動型アクチュエータ2で発生した回転駆動力は、トルクリミッタ5が空転することで第一動力伝達系を通じて出力軸部3bへ出力されることなく、第二動力伝達系を通じてトルク増幅された後に出力軸部3bから出力される。具体的には、モータ軸部3aがCW方向に回転するように振動型アクチュエータ2を駆動して動作パターンAが実行されたことで把持部が把持対象物を把持する(把持部が把持対象物と接触する)と、出力軸部3bはそれ以上回転することができなくなる。こうして出力軸部3bの回転が抑制されることで、振動型アクチュエータ2の出力トルクが上がり始める。そして、振動型アクチュエータ2の出力トルクがトルクリミッタ5の制限を超えると、それ以上のトルクは伝達されなくなり、トルクリミッタ5が空転する。   Subsequently, the operation pattern B will be described. In the operation pattern B, the rotational driving force generated by the vibration type actuator 2 is not output to the output shaft portion 3b through the first power transmission system due to the torque limiter 5 slipping, and torque amplification is performed through the second power transmission system. And then output from the output shaft 3b. Specifically, the vibration type actuator 2 is driven so that the motor shaft portion 3a rotates in the CW direction, and the operation pattern A is executed, whereby the grip portion grips the grip target object (the grip portion is a grip target object And the output shaft 3b can not rotate any more. Thus, the rotation of the output shaft portion 3b is suppressed, and the output torque of the vibration-type actuator 2 starts to increase. When the output torque of the vibration-type actuator 2 exceeds the limit of the torque limiter 5, no more torque is transmitted, and the torque limiter 5 slips.

一方、モータ軸部3aに取り付けられた第一小ギア部8aと噛み合っている第一大ギア部8bは、回転速度は遅くなるが、トルクが増幅されてCCW方向に回転する。また、噛み合いクラッチ6は、動作パターンAに引き続いてCCW方向の回転によって移動部材6aと固定部材6bとが係合した状態が維持されるため、駆動軸部4a及び従動軸部4bと一方向クラッチ7の内輪とが一体的にCCW方向に回転する。このとき、トルクリミッタ5の空転により、一方向クラッチ7の外輪へは第二ギア9を介した回転駆動力は伝達されていない。そのため、一方向クラッチ7の外輪は内輪に対して相対的にCW方向に回転する(図3に「外CW」と記す)こととなり、一方向クラッチ7が連結状態に切り替わって、一方向クラッチ7の外輪がCCW方向に回転する。一方向クラッチ7の外輪がCCW方向に回転すると、外輪と一体となっている第二小ギア部9bがCCW方向に回転し、第二小ギア部9bと係合している第二大ギア部9aがCW方向、つまり、モータ軸部3aの回転方向と同じ方向に回転する。厳密には、トルクリミッタ5が解除状態になった後に一方向クラッチ7が解除状態から連結状態に切り替わるまでには、極めて微小な距離(角度)の回転が生じ、その後に第二動力伝達系を通じた出力軸部3bへのトルク伝達が開始される。振動型アクチュエータ2で発生したトルクは、第一ギア8における第一小ギア部8aと第一大ギア部8b及び第二ギア9の第二小ギア部9bと第二大ギア部9aのそれぞれの歯数比で決まる減速比分だけ増幅されて出力軸部3bに伝わり、把持部の把持力となる。   On the other hand, the first large gear portion 8b meshing with the first small gear portion 8a attached to the motor shaft portion 3a has a low rotational speed, but its torque is amplified and rotates in the CCW direction. Further, since the meshing clutch 6 is maintained in the engaged state between the moving member 6a and the fixed member 6b by the rotation in the CCW direction following the operation pattern A, the drive shaft 4a, the driven shaft 4b and the one-way clutch The inner ring of 7 rotates integrally in the CCW direction. At this time, due to the idling of the torque limiter 5, the rotational driving force via the second gear 9 is not transmitted to the outer ring of the one-way clutch 7. Therefore, the outer ring of the one-way clutch 7 rotates relative to the inner ring in the CW direction (referred to as "outside CW" in FIG. 3), and the one-way clutch 7 is switched to the connected state. The outer ring rotates in the CCW direction. When the outer ring of the one-way clutch 7 rotates in the CCW direction, the second small gear portion 9b integral with the outer ring rotates in the CCW direction, and the second large gear portion engaged with the second small gear portion 9b. 9a rotates in the CW direction, that is, in the same direction as the rotation direction of the motor shaft 3a. Strictly speaking, a very small distance (angle) of rotation occurs between the release of the torque limiter 5 and the release of the one-way clutch 7 after the release of the torque limiter 5, and then the second power transmission system The torque transmission to the output shaft 3b is started. The torque generated by the vibration-type actuator 2 is determined by each of the first small gear portion 8 a and the first large gear portion 8 b in the first gear 8 and the second small gear portion 9 b and the second large gear portion 9 a of the second gear 9. It is amplified by the reduction ratio determined by the gear ratio, transmitted to the output shaft 3b, and becomes the gripping force of the gripping portion.

続いて、動作パターンCについて説明する。動作パターンCでは、振動型アクチュエータ2で発生した回転駆動力は、第一動力伝達系(モータ軸部3a及びトルクリミッタ5)を通じて)出力軸部3bからダイレクトに出力され、第二動力伝達系は空転する。より詳しくは、本実施形態では、把持部を開く動作を行うためには、モータ軸部3aがCCW方向に回転するように振動型アクチュエータ2が駆動される。このとき、把持部は把持対象物から遠ざかるように動くために、トルクリミッタ5にトルクは掛からず、トルクリミッタ5は連結状態となる。つまり、トルクリミッタ5では、モータ軸部3aが静摩擦力によって出力軸部3bに連結した状態となっており、モータ軸部3aの回転が出力軸部3bへダイレクトに伝達され、出力軸部3bがCCW方向に回転する。   Subsequently, the operation pattern C will be described. In the operation pattern C, the rotational driving force generated by the vibration type actuator 2 is directly output from the output shaft 3b through the first power transmission system (through the motor shaft 3a and the torque limiter 5), and the second power transmission system Idle. More specifically, in the present embodiment, in order to perform the opening operation of the grip portion, the vibration-type actuator 2 is driven such that the motor shaft portion 3a rotates in the CCW direction. At this time, since the grip portion moves away from the object to be gripped, no torque is applied to the torque limiter 5, and the torque limiter 5 is in the connected state. That is, in the torque limiter 5, the motor shaft 3a is connected to the output shaft 3b by static friction, and the rotation of the motor shaft 3a is directly transmitted to the output shaft 3b and the output shaft 3b is Rotate in CCW direction.

これにより、第二ギア9の第二大ギア部9aは出力軸部3bと共にCCW方向に回転し、第二大ギア部9aと噛み合っている第二小ギア部9bは増速されてCW方向に回転する。こうして、一方向クラッチ7は、外輪が内輪に対して相対的にCW方向に回転する(図3に「外CW」と記す)連結状態となる。しかし、モータ軸部3aがCCW方向に回転すると、モータ軸部3aに取り付けられた第一ギア8の第一小ギア部8aがCCW方向に回転し、第一小ギア部8aと噛み合っている第一大ギア部8bがCW方向に回転する。噛み合いクラッチ6は、前述の通り、CW方向の回転によって移動部材6aが固定部材6bから離れて解除状態となるため、第二動力伝達系は空転する。   As a result, the second large gear portion 9a of the second gear 9 rotates in the CCW direction together with the output shaft portion 3b, and the second small gear portion 9b meshing with the second large gear portion 9a is accelerated in the CW direction. Rotate. Thus, in the one-way clutch 7, the outer ring rotates in the CW direction relative to the inner ring (referred to as "outside CW" in FIG. 3), which is in a connected state. However, when the motor shaft portion 3a rotates in the CCW direction, the first small gear portion 8a of the first gear 8 attached to the motor shaft portion 3a rotates in the CCW direction and meshes with the first small gear portion 8a. The large gear portion 8b rotates in the CW direction. As described above, in the meshing clutch 6, the movable member 6a is separated from the fixed member 6b and is released by the rotation in the CW direction, so that the second power transmission system slips.

次に、駆動装置1の省スペース性について説明する。振動型アクチュエータ2は、モータ軸部3aの両端から出力(回転駆動力)を取り出すことができる。そこで、駆動装置1では、モータ軸部3aにおいて振動型アクチュエータ2を挟んで出力軸部3bとは反対側となる位置に第一小ギア部8aを設け、第一小ギア部8aを第一大ギア部8bと噛み合わせることで、第二動力伝達系へ出力を取り出している。これにより、噛み合いクラッチ6と一方向クラッチ7を振動型アクチュエータ2と並べて配置することができるようになることで、駆動装置1全体の軸方向長さを短くすることが可能となっている。   Next, space saving of the drive device 1 will be described. The vibration type actuator 2 can take out an output (rotational driving force) from both ends of the motor shaft 3a. Therefore, in the driving device 1, the first small gear portion 8a is provided at a position opposite to the output shaft portion 3b with respect to the vibration type actuator 2 in the motor shaft portion 3a, and the first small gear portion 8a is By meshing with the gear portion 8b, an output is taken out to the second power transmission system. As a result, since the meshing clutch 6 and the one-way clutch 7 can be arranged side by side with the vibration-type actuator 2, the axial length of the entire drive device 1 can be shortened.

振動型アクチュエータ2に対する噛み合いクラッチ6と一方向クラッチ7の配置は、トルク密度の高い振動型アクチュエータ2を使用していることによって可能となっており、その理由について以下に説明する。前述の通り、例えば、振動型アクチュエータ2には、外径がφ15、軸方向長さが20mmの形状を有し、0.1N・m以上のトルクを発生することができるものが好適に用いられる。第一小ギア部8aと第一大ギア部8bのそれぞれの歯数が25と60、第二大ギア部9aと第二小ギア部9bのそれぞれの歯数が65と20であるとすると、減速比は7.8となり、計算上は出力軸部3bから0.78N・m以上のトルクを取り出すことができる。例えば、3指のハンド装置において各指の各把持部に駆動装置1が配置されている場合には2N・m以上の把持力(トルク)が得られることから、駆動装置1は把持部を駆動する動力源として十分に使用可能であると判断することができる。したがって、高減速比の波動歯車減速機や遊星歯車減速機等のサイズが比較的大きな減速機を用いる必要がなくなり、コンパクトな構成を実現することができる。   The arrangement of the meshing clutch 6 and the one-way clutch 7 with respect to the vibration type actuator 2 is made possible by using the vibration type actuator 2 with high torque density, and the reason will be described below. As described above, for example, as the vibration-type actuator 2, one having an outer diameter of φ15 and an axial length of 20 mm and capable of generating a torque of 0.1 N · m or more is suitably used. . Assuming that the numbers of teeth of the first small gear portion 8a and the first large gear portion 8b are 25 and 60, and the numbers of teeth of the second large gear portion 9a and the second small gear portion 9b are 65 and 20, respectively. The reduction ratio is 7.8, and a torque of 0.78 N · m or more can be extracted from the output shaft portion 3b in calculation. For example, when the driving device 1 is disposed in each gripping portion of each finger in a three-fingered hand apparatus, a gripping force (torque) of 2 N · m or more can be obtained, and thus the driving device 1 drives the gripping portions It can be determined that the power source can be used sufficiently. Therefore, it is not necessary to use a reduction gear having a relatively large size such as a wave gear reduction gear having a high reduction ratio or a planetary gear reduction gear, and a compact configuration can be realized.

また、振動型アクチュエータ2の内部では、不図示の振動体と被駆動体とが定常的に一定の押圧力で接触しており、この押圧力は振動体と被駆動体との相対的な位置を保持する保持力を生じさせている。そのため、振動型アクチュエータ2の駆動停止前に振動型アクチュエータ2の出力が第一動力伝達系と第二動力伝達系のどちらの経路で伝達されているかに関係なく、振動型アクチュエータ2の停止後の無通電時には保持力がモータ軸部3aの回転を抑制する。つまり、振動型アクチュエータ2の内部で生じている保持力は、駆動装置1に加わる外力や重力に抗して、駆動装置1を構成する各部品の回転を抑制する。したがって、駆動装置1では、出力軸部3bを静止状態に維持するためのブレーキ等を別途設ける必要がないため、小型化と軽量化が可能になる。   Further, inside the vibration type actuator 2, a vibrator and a driven body (not shown) are in constant contact with a constant pressing force, and this pressing force is a relative position between the vibrating body and the driven body. To create a holding force to hold the Therefore, regardless of which path of the first power transmission system and the second power transmission system the output of the vibration actuator 2 is transmitted before the driving stop of the vibration actuator 2, the vibration actuator 2 after the stop When no current is supplied, the holding force suppresses the rotation of the motor shaft 3a. That is, the holding force generated inside the vibration-type actuator 2 resists the external force and the gravity applied to the drive device 1 and suppresses the rotation of each component constituting the drive device 1. Therefore, in the drive device 1, there is no need to separately provide a brake or the like for maintaining the output shaft portion 3 b in a stationary state, and therefore, downsizing and weight reduction are possible.

次に、駆動装置1を用いたロボットの具体例として、ハンド装置の指ユニットについて説明する。図4は、指ユニット20の概略構成を示す斜視図である。不図示のハンド装置は、例えば、複数の(例えば、3つの)指ユニット20を備え、3つの指ユニット20で把持対象物を把持する。指ユニット20は、固定部25、指部22及び把持部24を有する。固定部25と指部22の間に指部回転軸21を中心軸とする指関節が設けられており、指部22と把持部24の間に把持部回転軸23を中心軸とする把持関節が設けられている。   Next, a finger unit of a hand device will be described as a specific example of a robot using the drive device 1. FIG. 4 is a perspective view showing a schematic configuration of the finger unit 20. As shown in FIG. The hand device (not shown) includes, for example, a plurality of (e.g., three) finger units 20, and the three finger units 20 grip a gripping target. The finger unit 20 has a fixing portion 25, a finger portion 22 and a gripping portion 24. A finger joint is provided between the fixed portion 25 and the finger portion 22. A finger joint is provided between the finger portion 22 and the grip portion 24. The grip joint is provided between the finger portion 22 and the grip portion 24. Is provided.

固定部25は、ハンド装置の掌に相当する本体部の一部、或いは、本体部に一体的に装着される部位である。固定部25には指部駆動装置27aが設置され、指部22には把持部駆動装置27bが設置されている。指部駆動装置27aと把持部駆動装置27bはそれぞれ、図1に示した駆動装置1と同等である。指部回転軸21は、指部駆動装置27aの出力軸部3bである。つまり、指関節において、指部駆動装置27aの出力軸部3bは、指部22の連結部26に設けられた穴部に挿入されて指部回転軸21として機能し、指部駆動装置27aで発生させた駆動力を指部22にダイレクトに伝達する。一方、把持関節では、把持部駆動装置27bの出力軸部3bは、不図示の傘歯車を介して出力軸部3bと略直交するように配置された把持部回転軸23に連結されており、出力軸部3bの回転は傘歯車を介して把持部回転軸23の回転に変換される。   The fixing portion 25 is a part of the main body corresponding to the palm of the hand device or a portion integrally mounted on the main body. A finger drive unit 27 a is installed in the fixed unit 25, and a grip unit drive unit 27 b is installed in the finger unit 22. The finger drive unit 27a and the grip unit drive unit 27b are respectively equivalent to the drive unit 1 shown in FIG. The finger rotation shaft 21 is the output shaft 3b of the finger drive device 27a. That is, in the finger joint, the output shaft 3b of the finger driving device 27a is inserted into the hole provided in the connecting portion 26 of the finger 22 and functions as the finger rotation shaft 21, and the finger driving device 27a The generated driving force is directly transmitted to the finger portion 22. On the other hand, in the gripping joint, the output shaft portion 3b of the gripping portion drive device 27b is connected to the gripping portion rotation shaft 23 disposed substantially orthogonal to the output shaft portion 3b via a bevel gear (not shown) The rotation of the output shaft 3b is converted to the rotation of the grip rotation shaft 23 via a bevel gear.

生産現場でのハンド装置による所定の製品の組立工程では、ハンド装置が把持対象物(部品)を高精度に掴むことが重要となる。ここでの把持対象物を掴む動作とは、図3を参照して説明した動作パターンA(閉)に該当する。動作パターンAは、把持動作のスタート位置まで把持部24を素早く移動させる準備フェーズと、把持部24の高精度な位置制御を行いながら把持部24を把持対象物に接近させて接触させる接近フェーズとに分けることができる。準備フェーズでは、把持対象物の形状と位置を所定のセンシング手段により検出し、その検出結果に基づいて把持部24を把持動作のスタート地点まで素早く(高速で)移動させる。このとき、指部駆動装置27aと把持部駆動装置27bの両方が駆動されるが、どちらも把持力を発生しない無負荷状態での駆動となる。そのため、指部駆動装置27aと把持部駆動装置27bのそれぞれの振動型アクチュエータ2の回転駆動力は、第一動力伝達系を通じて出力軸部3bから出力される。これにより、指部回転軸21まわりに指部22を高速で回転させると共に、把持部回転軸23まわりに把持部24を高速で回転させて、把持部24を把持動作のスタート地点へ移動させることができる。   In an assembly process of a predetermined product by a hand device at a production site, it is important that the hand device grips a gripping target (part) with high accuracy. The operation of grasping the object to be grasped here corresponds to the operation pattern A (closed) described with reference to FIG. The operation pattern A includes a preparation phase in which the gripping unit 24 is moved quickly to the start position of the gripping operation, and an approaching phase in which the gripping unit 24 is brought close to and comes into contact with the gripping object while performing precise position control of the gripping unit 24 Can be divided into In the preparation phase, the shape and the position of the object to be grasped are detected by predetermined sensing means, and the grasping portion 24 is moved quickly (at high speed) to the start point of the grasping operation based on the detection result. At this time, both the finger drive unit 27a and the grip unit drive unit 27b are driven, but both are drive in a no-load state where no gripping force is generated. Therefore, the rotational drive force of the vibration-type actuator 2 of each of the finger drive 27a and the grip drive 27b is output from the output shaft 3b through the first power transmission system. Thus, the finger 22 is rotated at high speed around the finger rotation axis 21 and the grip 24 is rotated at high speed around the grip rotation axis 23 to move the grip 24 to the start point of the gripping operation. Can.

接近フェーズでは、準備フェーズでスタート地点へ移動させた把持部24を把持対象物へ向かって準備フェーズよりも遅いスピードで移動させる。このとき、複数の把持部24を同一の把持対象物へ同時に接近させて、把持対象物への接触を略同時に開始させなければならない。そこで、バックラッシが発生する可能性のある傘歯車を介した把持部駆動装置27bの駆動を停止させ、ダイレクトな駆動が可能な指部駆動装置27aのみを駆動する。これにより、把持部24を準備フェーズよりも高精度に制御しながら移動させて、複数の把持部24の把持対象物に対する接触を略同時に開始させることができる。これにより、把持対象物の重心位置がずれる等の不都合を生じさせることなく、把持対象物の把持動作を完了させることができる。   In the approach phase, the gripper 24 moved to the start point in the preparation phase is moved toward the object to be grasped at a slower speed than the preparation phase. At this time, the plurality of gripping portions 24 must be brought close to the same gripping object simultaneously, and contact with the gripping object must be started almost simultaneously. Therefore, the driving of the grip driving device 27b via the bevel gear that may cause backlash is stopped, and only the finger driving device 27a capable of direct driving is driven. As a result, the gripping portions 24 can be moved while being controlled with higher precision than in the preparation phase, and contact with the gripping objects of the plurality of gripping portions 24 can be started substantially simultaneously. As a result, the gripping operation of the object to be grasped can be completed without causing a disadvantage such as displacement of the center of gravity of the object to be grasped.

動作パターンAの完了後に、把持部24の把持力を増大させる動作に入る。ここでの把持力を増大させる動作とは、図3を参照して説明した動作パターンB(把持)に該当する。動作パターンBは、動作パターンAで把持対象物に対して把持部24が接触したことにより把持力が発生する時点から始まる。仮に、駆動系が高減速比の減速機を有し、且つ、駆動系全体の慣性モーメントが大きい場合には、把持対象物と把持部との接触初期に、慣性力による把持力の誤差が生じやすくなる。これに対して、指ユニット20で構成されたハンド装置では、指部駆動装置27aの駆動により指部22を指部回転軸21まわりにダイレクトに駆動するため、駆動系全体の慣性モーメントが小さくなり、これにより接触初期の把持力誤差を小さくすることができる。そして、複数の指ユニット20の把持力を制御する際に、接触初期の誤差が小さくなることで、バランスよく把持対象物を把持することができ、その後の把持力の制御を容易且つ高精度に行うことができる。   After completion of the operation pattern A, an operation to increase the gripping force of the gripping portion 24 is started. The operation for increasing the gripping force here corresponds to the operation pattern B (gripping) described with reference to FIG. The movement pattern B starts from the time when a holding force is generated by the holding unit 24 contacting the holding object in the movement pattern A. If the drive system has a reduction gear with a high reduction ratio, and the moment of inertia of the entire drive system is large, an error in the gripping force due to the inertia occurs at the initial stage of contact between the object to be gripped and the gripping portion It will be easier. On the other hand, in the hand device constituted by the finger unit 20, since the finger 22 is directly driven around the finger rotation shaft 21 by the drive of the finger drive 27a, the moment of inertia of the entire drive system is reduced. This makes it possible to reduce the gripping force error at the initial stage of contact. And when controlling the grasping power of a plurality of finger units 20, the error of the initial stage of contact becomes small, and it is possible to grasp the grasped object with good balance, and the control of the grasping power thereafter is easy and highly accurate It can be carried out.

把持力の増大は、指部駆動装置27aと把持部駆動装置27bのそれぞれの振動型アクチュエータ2からの出力が第一動力伝達系から第二動力伝達系へ切り替わることによって実行される。駆動装置1(指部駆動装置27aと把持部駆動装置27b)は、トルク密度の高い振動型アクチュエータ2を用いているため、減速比が比較的小さな伝達系を備えている。そのため、振動型アクチュエータ2に固有のトルク制御方法によってトルク誤差が減速比の分だけ増幅されたとしても、大きな誤差になることはなく、よって、把持力を高精度に制御することができる。なお、求められる把持力の大きさに応じて、把持力の増大は、指部駆動装置27aと把持部駆動装置27bのいずれか一方のみを駆動することによって行ってもよい。   The increase of the gripping force is performed by switching the output from the vibration type actuator 2 of each of the finger drive 27a and the grip drive 27b from the first power transmission system to the second power transmission system. The driving device 1 (the finger portion driving device 27a and the gripping portion driving device 27b) includes the transmission system having a relatively small reduction ratio because the vibration type actuator 2 with high torque density is used. Therefore, even if the torque error is amplified by the reduction ratio by the torque control method inherent to the vibration-type actuator 2, it does not become a large error, and hence the gripping force can be controlled with high accuracy. In addition, according to the magnitude | size of the holding | grip force calculated | required, you may perform increase of a holding | grip force by driving only any one of the finger part drive 27a and the holding part drive 27b.

ハンド装置は、把持した把持対象物を別の場所へ移動させるように駆動されることが一般的であるが、その間の把持力が一定でよい場合には、指部駆動装置27a及び把持部駆動装置27bのそれぞれの振動型アクチュエータ2への給電を停止しても構わない。つまり、指ユニット20を備えるハンド装置では、指部駆動装置27aと把持部駆動装置27bのそれぞれの振動型アクチュエータ2の保持力で把持対象物を把持した状態を維持する駆動方法を用いることができる。これは、振動型アクチュエータ2への給電を停止しても、振動型アクチュエータ2の保持力によって指関節と把持関節を固定することができるため、把持対象物を把持した状態を維持することができるからである。   The hand device is generally driven to move the object to be gripped to another location, but if the gripping force between the hand device is sufficient, the finger drive device 27a and the gripper drive may be used. The power supply to each vibration type actuator 2 of the device 27b may be stopped. That is, in the hand apparatus including the finger unit 20, a driving method can be used which maintains the gripping object by the holding force of the vibration type actuator 2 of each of the finger driving device 27a and the gripping unit driving device 27b. . This allows the finger joint and the grip joint to be fixed by the holding force of the vibration type actuator 2 even if power supply to the vibration type actuator 2 is stopped, so that the gripping object can be maintained It is from.

なお、指部駆動装置27aと把持部駆動装置27bのそれぞれの振動型アクチュエータ2への給電を停止する直前は、動作パターンB(把持)により第二動力伝達系を通じて大きなトルクが出力されている状態となっている。よって、振動型アクチュエータ2への給電を停止しても、把持対象物は一定の把持力で把持された状態は維持される。こうして振動型アクチュエータ2への給電を停止して把持対象物を把持した状態を維持する駆動方法を採用した場合、振動型アクチュエータ2への給電は指ユニット20の開閉時と把持力の調整時にのみ行えばよいため、省電力化が可能となる。   A state in which a large torque is output through the second power transmission system by the operation pattern B (gripping) immediately before stopping the power supply to the vibration type actuator 2 of each of the finger driving device 27a and the gripping unit driving device 27b. It has become. Therefore, even if the power supply to the vibration-type actuator 2 is stopped, the grasped object is maintained in the grasped state with a constant grasping force. In this way, when the driving method for stopping the power supply to the vibration-type actuator 2 and maintaining the gripped object is adopted, the power supply to the vibration-type actuator 2 is performed only when the finger unit 20 is opened and closed and when the gripping force is adjusted. Power saving can be achieved because it is sufficient.

指ユニット20により把持された把持対象物がハンド装置の本体部の駆動等によって所定の位置へ移動させられる等した後には、移動先の所定の位置において図3の動作パターンC(開)の動作により把持対象物が解放される。把持対象物と指ユニット20とが非接触となった後には、指部駆動装置27a及び把持部駆動装置27bのそれぞれの振動型アクチュエータ2への給電を停止し、振動型アクチュエータ2の保持力を利用して指ユニット20を静止状態に維持することができる。その際、トルクリミッタ5の許容最大トルクを上限とする保持力で、指ユニット20を静止した状態に維持することができる。   After the object to be grasped held by the finger unit 20 is moved to a predetermined position by driving the main body of the hand apparatus, etc., the operation of the operation pattern C (open) in FIG. 3 at the predetermined position of the movement destination As a result, the gripping object is released. After the object to be gripped and the finger unit 20 are not in contact with each other, power supply to the vibration type actuator 2 of each of the finger drive 27a and the grip drive 27b is stopped, and the holding force of the vibration type actuator 2 is The finger unit 20 can be maintained stationary by utilizing it. At that time, the finger unit 20 can be kept stationary by the holding force whose upper limit is the allowable maximum torque of the torque limiter 5.

このように、指ユニット20を用いたハンド装置では、指ユニット20に発生させる把持力に、指部駆動装置27a及び把持部駆動装置27bのそれぞれの振動型アクチュエータ2の保持力を用いることができる。その際に、振動型アクチュエータ2へ給電しながら必要な把持力を得る駆動方法と、振動型アクチュエータ2へ給電を停止して振動型アクチュエータ2の内部に発生している保持力を利用する駆動方法とを選択的に用いることができる。そして、指ユニット20が把持対象物を把持している状態では、大きな保持力で指ユニット20の各間接部を固定することができるため、外力の作用等によって指ユニット20に衝撃が加わっても、把持した把持対象物を落とし難い。一方、指ユニット20が把持対象物を把持していない状態では、小さな保持力で指ユニット20の間接部を固定することができるため、外力が作用しても、その外力を逃がす方向に指ユニット20が空転する。これにより、ハンド装置の故障を抑制し、ハンド装置の近傍に作業者等がいた場合の作業員等への危害を最小限に抑えることができる。   Thus, in the hand apparatus using the finger unit 20, the holding force of the vibration type actuator 2 of each of the finger drive unit 27a and the holding unit drive unit 27b can be used for the holding force generated by the finger unit 20. . At that time, a driving method for obtaining necessary gripping force while supplying power to the vibration type actuator 2 and a driving method using the holding power generated inside the vibration type actuator 2 by stopping the power supply to the vibration type actuator 2 And can be used selectively. Then, in the state where the finger unit 20 grips the object to be gripped, each indirect part of the finger unit 20 can be fixed with a large holding force, so even if an impact is applied to the finger unit 20 by the action of external force or the like. , It is difficult to drop the gripped object. On the other hand, when the finger unit 20 does not grip the object to be gripped, the indirect part of the finger unit 20 can be fixed with a small holding force, so that even if an external force acts, the finger unit moves in the direction to release the external force 20 slips. As a result, it is possible to suppress the failure of the hand device and to minimize the damage to the worker or the like when the worker or the like is in the vicinity of the hand device.

上記説明の通り、本実施形態に係る駆動装置1はトルク密度の高い振動型アクチュエータ2を用いているため、サイズの大きな高減速比の減速機を用いることなく、大きなトルクを得ることができる。これにより、駆動速度を優先させた動作を行うための第一動力伝達系と、簡易な減速系を用いて大きなトルクを出力させる第二動力伝達系とをコンパクトにまとめることが可能になる。また、振動型アクチュエータ2の無通電保持力を利用することで、ブレーキ等を設ける必要がなくなり、これにより小型化と軽量化が可能になる。   As described above, since the drive device 1 according to the present embodiment uses the vibration-type actuator 2 having a high torque density, a large torque can be obtained without using a reduction gear having a large reduction ratio with a large size. As a result, it is possible to make the first power transmission system for performing an operation with priority given to the drive speed compact and the second power transmission system that outputs a large torque using a simple speed reduction system. Further, by using the non-energized holding force of the vibration-type actuator 2, it is not necessary to provide a brake or the like, thereby making it possible to reduce the size and weight.

更に、駆動装置1の第一動力伝達系は振動型アクチュエータ2のモータ軸部3aから出力軸部3bまでがダイレクトに連結されているため、出力軸部3bに取り付けられる部材の動作を高精度に制御することができる。よって、駆動装置1を用いた指ユニット20を用いて構成されるハンド装置では、複数の指ユニット20の動きを高精度に制御して、把持部24を略同時に把持対象物に接触させて把持することが可能になる。その結果、把持対象物に対して把持部24が接触を開始するタイミングがずれてしまうことに起因する不具合の発生を抑制することができる。また、第一動力伝達系を通じて把持部24を把持対象物に接触させることで、把持開始時に生じる慣性力による把持力誤差を小さくすることができるため、第一動力伝達系から第二動力伝達系への減速比に起因するトルク誤差の増幅を最小限に抑えることができる。   Furthermore, since the first power transmission system of the drive device 1 is directly connected from the motor shaft portion 3a to the output shaft portion 3b of the vibration type actuator 2, the operation of the members attached to the output shaft portion 3b is made with high accuracy Can be controlled. Therefore, in the hand device configured using the finger unit 20 using the drive device 1, the movements of the plurality of finger units 20 are controlled with high accuracy, and the gripping portion 24 is brought into contact with the gripping object substantially simultaneously and gripped It will be possible to As a result, it is possible to suppress the occurrence of a defect due to the timing at which the gripping unit 24 starts the contact with the gripping target being shifted. Further, by bringing the gripping portion 24 into contact with the object to be grasped through the first power transmission system, the gripping force error due to the inertia force generated at the start of gripping can be reduced, so that the first power transmission system to the second power transmission system The amplification of the torque error due to the reduction ratio can be minimized.

以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。さらに、上述した各実施形態は本発明の一実施形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。例えば、駆動装置1を構成するトルクリミッタ5、一方向クラッチ7及び噛み合いクラッチ6のそれぞれには、同様の機能を有する別の部品を用いることができる。また、図4に示した指ユニット20は、2台の駆動装置1を搭載した構成となっているが、1台又は3台以上の複数の駆動装置1を搭載することによって指ユニットを構成することも可能である。駆動装置1は、多関節ロボットにおいてアーム部が連結される関節部等でのアーム部の回転駆動にも好適に用いられる。   Although the present invention has been described in detail based on its preferred embodiments, the present invention is not limited to these specific embodiments, and various embodiments within the scope of the present invention are also included in the present invention. included. Furthermore, each embodiment mentioned above shows only one embodiment of the present invention, and it is also possible to combine each embodiment suitably. For example, another component having the same function can be used for each of the torque limiter 5, the one-way clutch 7 and the meshing clutch 6 that constitute the drive device 1. Also, although the finger unit 20 shown in FIG. 4 has a configuration in which two drive devices 1 are mounted, the finger unit is configured by mounting one or three or more drive devices 1. It is also possible. The driving device 1 is also suitably used to rotationally drive an arm in a joint or the like to which the arm is connected in an articulated robot.

1 駆動装置
2 振動型アクチュエータ
3a モータ軸部
3b 出力軸部
4a 駆動軸部
4b 従動軸部
5 トルクリミッタ
6 噛み合いクラッチ
7 一方向クラッチ
8 第一ギア
9 第二ギア
20 指ユニット
22 指部
24 把持部
27a 指部駆動装置
27b 把持部駆動装置
Reference Signs List 1 drive device 2 vibration type actuator 3a motor shaft 3b output shaft 4a drive shaft 4b driven shaft 5 torque limiter 6 meshing clutch 7 one-way clutch 8 first gear 9 second gear 20 finger unit 22 finger 24 grip 27a finger drive 27b grip drive

Claims (8)

振動型アクチュエータと、
前記振動型アクチュエータの駆動により回転するモータ軸部と、
前記モータ軸部の回転駆動力を外部に出力する出力軸部と、
前記モータ軸部の回転駆動力を前記出力軸部へ伝達する第一動力伝達系および第二動力伝達系と、を有し、
前記モータ軸部の回転方向と前記振動型アクチュエータで発生するトルクに応じて前記モータ軸部の回転駆動力が前記出力軸部へ伝達される経路が前記第一動力伝達系と前記第二動力伝達系とで切り替わることを特徴とする駆動装置。
Vibration type actuator,
A motor shaft that rotates by driving the vibration-type actuator;
An output shaft unit for outputting the rotational driving force of the motor shaft unit to the outside;
A first power transmission system and a second power transmission system for transmitting the rotational drive force of the motor shaft to the output shaft;
The path through which the rotational drive force of the motor shaft is transmitted to the output shaft according to the rotational direction of the motor shaft and the torque generated by the vibration-type actuator is the first power transmission system and the second power transmission And a drive device characterized by switching between systems.
前記第一動力伝達系は、前記モータ軸部の回転をダイレクトに前記出力軸部に伝達する経路であり、
前記第二動力伝達系は、前記モータ軸部の回転速度を減速すると共にトルクを増大させて前記出力軸部に伝達する経路であることを特徴とする請求項1に記載の駆動装置。
The first power transmission system is a path for directly transmitting the rotation of the motor shaft to the output shaft,
2. The drive device according to claim 1, wherein the second power transmission system is a path for reducing the rotational speed of the motor shaft and increasing torque to transmit the torque to the output shaft.
前記第一動力伝達系は、前記モータ軸部がトルクリミッタを介して前記出力軸部と連結されることにより構成され、
前記トルクリミッタは、前記振動型アクチュエータで発生するトルクが所定の大きさよいも小さい場合に前記モータ軸部の回転方向によらずに前記モータ軸部の回転をダイレクトに前記出力軸部に伝達し、前記振動型アクチュエータで発生するトルクが前記所定の大きさ以上の場合に空転し、
前記トルクリミッタが空転することで前記モータ軸部の回転が前記出力軸部へ伝達される経路が前記第一動力伝達系から前記第二動力伝達系へ切り替わることを特徴とする請求項2に記載の駆動装置。
The first power transmission system is configured by connecting the motor shaft to the output shaft via a torque limiter,
The torque limiter directly transmits the rotation of the motor shaft to the output shaft regardless of the rotational direction of the motor shaft when the torque generated by the vibration-type actuator is small by a predetermined amount. And idle when the torque generated by the vibration-type actuator is equal to or greater than the predetermined magnitude,
The path according to claim 2, wherein a path through which the rotation of the motor shaft is transmitted to the output shaft is switched from the first power transmission system to the second power transmission system by causing the torque limiter to idle. Drive device.
前記第二動力伝達系は、前記モータ軸部が、第一ギア、噛み合いクラッチ、一方向クラッチ及び第二ギアを介して前記出力軸部と連結されることにより構成されていることを特徴とする請求項3に記載の駆動装置。   The second power transmission system is characterized in that the motor shaft portion is connected to the output shaft portion via a first gear, a meshing clutch, a one-way clutch and a second gear. The drive device according to claim 3. 前記モータ軸部の回転が前記トルクリミッタを介してダイレクトに前記出力軸部に伝達されるときには、前記噛み合いクラッチの連結が解除されることで前記噛み合いクラッチが空転するか又は前記第二ギアの回転にしたがって前記一方向クラッチが空転することを特徴とする請求項4に記載の駆動装置。   When the rotation of the motor shaft portion is directly transmitted to the output shaft portion via the torque limiter, the engagement of the meshing clutch is disengaged by disengagement of the meshing clutch, or the rotation of the second gear is caused. The drive unit according to claim 4, wherein the one-way clutch slips in accordance with. 前記第一ギアは、前記モータ軸部に取り付けられた第一小ギア部と、前記第一小ギア部と噛み合い前記第一小ギア部よりも歯数の多い第一大ギア部とを有し、
前記第二ギアは、前記出力軸部に取り付けられた第二大ギア部と、前記第二大ギア部と噛み合い前記第二大ギア部よりも歯数の少ない第二小ギア部とを有し、
前記トルクリミッタが空転するときには、前記噛み合いクラッチと前記一方向クラッチとが連結状態となることを特徴とする請求項4又は5に記載の駆動装置。
The first gear has a first small gear portion attached to the motor shaft portion, and a first large gear portion meshing with the first small gear portion and having a larger number of teeth than the first small gear portion. ,
The second gear has a second large gear portion attached to the output shaft portion, and a second small gear portion meshing with the second large gear portion and having a smaller number of teeth than the second large gear portion. ,
The drive device according to claim 4 or 5, wherein when the torque limiter is idled, the meshing clutch and the one-way clutch are in a connected state.
前記噛み合いクラッチは、移動部材と固定部材とを有し、前記第一大ギア部の回転方向に応じて前記移動部材と前記固定部材との連結状態と解除状態とが切り替わり、
前記一方向クラッチは、前記固定部材と同軸に連結された内輪と、前記第二小ギア部と同軸に連結された外輪とを有し、前記内輪と前記外輪の角速度差の大きさと正負に応じて連結状態と解除状態とが切り替わることを特徴とする請求項6に記載の駆動装置。
The meshing clutch has a moving member and a fixed member, and switches between a connected state and a released state of the moving member and the fixed member according to the rotation direction of the first large gear portion.
The one-way clutch has an inner ring coaxially connected to the fixed member and an outer ring coaxially connected to the second small gear portion, and the angular velocity difference between the inner ring and the outer ring is determined depending on the magnitude and positive or negative The driving apparatus according to claim 6, wherein the connection state and the release state are switched.
請求項1乃至7のいずれか1項に記載の駆動装置を備えることを特徴とするロボット。
A robot comprising the drive device according to any one of claims 1 to 7.
JP2017169426A 2017-09-04 2017-09-04 Driving device and robot Pending JP2019047649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017169426A JP2019047649A (en) 2017-09-04 2017-09-04 Driving device and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169426A JP2019047649A (en) 2017-09-04 2017-09-04 Driving device and robot

Publications (1)

Publication Number Publication Date
JP2019047649A true JP2019047649A (en) 2019-03-22

Family

ID=65814868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169426A Pending JP2019047649A (en) 2017-09-04 2017-09-04 Driving device and robot

Country Status (1)

Country Link
JP (1) JP2019047649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112518801A (en) * 2020-11-16 2021-03-19 深圳市优必选科技股份有限公司 Steering wheel and robot
WO2023032503A1 (en) * 2021-08-31 2023-03-09 株式会社日立製作所 Robot hand and robot system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112518801A (en) * 2020-11-16 2021-03-19 深圳市优必选科技股份有限公司 Steering wheel and robot
CN112518801B (en) * 2020-11-16 2022-04-26 深圳市优必选科技股份有限公司 Steering wheel and robot
WO2023032503A1 (en) * 2021-08-31 2023-03-09 株式会社日立製作所 Robot hand and robot system

Similar Documents

Publication Publication Date Title
TWI432299B (en) Robot
JP7151166B2 (en) Grasping device and robot
US20150151433A1 (en) Compact robotic gripper
EP2431139B1 (en) Robot hand
JP2010131703A (en) Robot hand
JP2019047649A (en) Driving device and robot
JP2020066084A (en) Gripper
US11389952B2 (en) Robot arm
JP2013240843A (en) Finger mechanism for robot hand, and robot hand provided with the finger mechanism
JP2019076973A (en) Robot hand and control method for robot hand
JP2007069286A (en) Robot hand and grip control method thereof
US10035265B2 (en) Manipulator
KR20200008355A (en) Electromotive gripping device
JP2012086334A (en) Holding device, and robot apparatus
JP2007015029A (en) Manipulator and articulated driving mechanism
JP6687928B2 (en) Joint drive device and multi-axis manipulator
JP2019150912A (en) Driving device, deriving method of driving device, hand, robot and carrying device
JP2021133444A (en) Robot hand and gripping system
JPS6025686A (en) Robot hand
JP2003071771A (en) Sliding chuck
JPS59175982A (en) Drive
JPS5917589Y2 (en) industrial robot wrist
JP2008119772A (en) Frog leg arm robot and its control method
JP2019141957A (en) Robot hand and robot
US20220255469A1 (en) Piezoelectric motor, control method for piezoelectric motor, and robot