JP2019046559A - Method for manufacturing solid electrolyte, method for manufacturing all-solid battery electrode material, and method for manufacturing all-solid battery - Google Patents

Method for manufacturing solid electrolyte, method for manufacturing all-solid battery electrode material, and method for manufacturing all-solid battery Download PDF

Info

Publication number
JP2019046559A
JP2019046559A JP2017165191A JP2017165191A JP2019046559A JP 2019046559 A JP2019046559 A JP 2019046559A JP 2017165191 A JP2017165191 A JP 2017165191A JP 2017165191 A JP2017165191 A JP 2017165191A JP 2019046559 A JP2019046559 A JP 2019046559A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solution
mixing
water
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017165191A
Other languages
Japanese (ja)
Other versions
JP6971089B2 (en
Inventor
友弘 藤沢
Tomohiro Fujisawa
友弘 藤沢
藤井 信三
Shinzo Fujii
信三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017165191A priority Critical patent/JP6971089B2/en
Publication of JP2019046559A publication Critical patent/JP2019046559A/en
Application granted granted Critical
Publication of JP6971089B2 publication Critical patent/JP6971089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To manufacture a solid electrolyte consisting of LAGP suitable for formation of a coat on an electrode active material according to a simple procedure more inexpensively.SOLUTION: A method for manufacturing a solid electrolyte represented by the general formula, LiAlGe(PO), where 0<x≤1 comprises: an ammonia concentration-adjusting step (s3) of using GeOand a plurality of water-soluble compounds as raw material, adding ammonia to a mixture solution obtained in the step (s2) of mixing GeOin water to dissolve GeOin the solution and to obtain a first liquid solution, and adjusting an ammonia concentration of the first liquid solution to a concentration which causes all of water-soluble compounds to dissolve therein; a step (s4) of mixing in the first liquid solution with a plurality of water-soluble compounds to obtain a second liquid solution; a vitrification step (s7) of performing a thermal treatment of the second liquid solution to obtain an amorphous solid electrolyte; and a baking step (s8) of baking the amorphous solid electrolyte to cause crystallization of LAGP.SELECTED DRAWING: Figure 1

Description

本発明は固体電解質の製造方法、全固体電池用電極材料の製造方法、および全固体電池の製造方法に関する。   The present invention relates to a method of producing a solid electrolyte, a method of producing an electrode material for an all solid battery, and a method of producing an all solid battery.

リチウム二次電池は、各種二次電池の中でもエネルギー密度が高いことで知られている。しかし一般に普及しているリチウム二次電池は、電解質に可燃性の有機電解液を用いているため、リチウム二次電池では、液漏れ、短絡、過充電などに対する安全対策が他の電池よりも厳しく求められている。そこで近年、電解質に酸化物系や硫化物系の固体電解質を用いた全固体電池に関する研究開発が盛んに行われている。固体電解質は、固体中でイオン伝導が可能なイオン伝導体を主体として構成される材料であり、従来のリチウム二次電池のように可燃性の有機電解液に起因する各種問題が原理的に発生しない。そして全固体電池は層状の正極(正極層)と層状の負極(負極層)との間に層状の固体電解質(電解質層)が狭持されてなる一体的な焼結体(以下、積層電極体とも言う)に集電体を形成した構造を有している。   Lithium secondary batteries are known for having high energy density among various secondary batteries. However, since lithium secondary batteries in widespread use use a flammable organic electrolyte as an electrolyte, in lithium secondary batteries, safety measures against liquid leakage, short circuit, overcharge, etc. are stricter than other batteries. It has been demanded. Therefore, in recent years, research and development on an all-solid-state battery using an oxide-based or sulfide-based solid electrolyte as an electrolyte has been actively conducted. The solid electrolyte is a material mainly composed of an ion conductor capable of ion conduction in a solid, and in principle causes various problems due to the flammable organic electrolyte as in the conventional lithium secondary battery do not do. An all-solid-state battery is an integral sintered body (hereinafter, a laminated electrode body) in which a layered solid electrolyte (electrolyte layer) is sandwiched between a layered positive electrode (positive electrode layer) and a layered negative electrode (negative electrode layer). Also has a structure in which a current collector is formed.

積層電極体の製造方法としては金型を用いて原料粉体を加圧して得た成形体を焼成する方法(以下、圧縮成形法とも言う)や周知のグリーンシートを用いた方法(以下、グリーンシート法)などがある。圧縮成形法では、金型内に正極層、固体電解質層、および負極層の各層の原料粉体を順次層状に充填して一軸方向に加圧することによって得た成形体を焼成して積層電極体を得る。   As a method of manufacturing a laminated electrode body, there is a method of firing a molded body obtained by pressurizing raw material powder using a mold (hereinafter, also referred to as compression molding method) or a method of using a known green sheet (hereinafter, green Sheet method etc. In the compression molding method, the raw material powder of each layer of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is sequentially filled in a layer form in a mold, and a molded body obtained by uniaxially pressing is fired to form a laminated electrode body. Get

グリーンシート法は、正極活物質と固体電解質を含むスラリー状の正極層材料、負極活物質と固体電解質を含むスラリー状の負極層材料、および固体電解質を含むスラリー状の固体電解質層材料をそれぞれシート状(グリーンシート)に成形するとともに、固体電解質層材料のグリーンシートを正極層材料と負極層材料のグリーンシートで挟持した積層体を焼成して焼結体にすることで作製される。なお正極層および負極層(以下、電極層とも言う)に含まれている固体電解質は、粉体状の正極活物質および負極活物質の粒子間に介在して電極層にイオン伝導性を発現させる機能を担っている。   In the green sheet method, a slurry-like positive electrode layer material containing a positive electrode active material and a solid electrolyte, a slurry-like negative electrode layer material containing a negative electrode active material and a solid electrolyte, and a slurry-like solid electrolyte layer material containing a solid electrolyte The green sheet is formed into a shape (green sheet), and the laminated body in which the green sheet of the solid electrolyte layer material is held between the positive electrode layer material and the green sheet of the negative electrode layer material is fired to prepare a sintered body. The solid electrolyte contained in the positive electrode layer and the negative electrode layer (hereinafter also referred to as an electrode layer) intervenes between particles of the powdery positive electrode active material and the negative electrode active material to cause the electrode layer to exhibit ion conductivity. It is responsible for the function.

正極活物質や負極活物質(以下、総称して電極活物質とも言う)としては従来のリチウム二次電池に使用されていた材料を使用することができる。また全固体電池では可燃性の電解液を用いないことから、より高い電位差が得られる電極活物質についても研究されている。固体電解質としては、一般式Liで表されるNASICON型酸化物系の固体電解質があり、当該NASICON型酸化物系の固体電解質としては、Li1+xAlGe2−x(PO(但し、0<x≦1、以下、LAGPとも言う)がよく知られている。なお、以下の特許文献1にはx=0.5のLAGPについて記載されている、そしてLAGPは、複数の化合物を含む粉体状の原料を高温で焼成する固相法によって製造するのが一般的である。なお、LAGPの製造方法としては、他に、金属アルコキシドを原料とした周知のゾルゲル法があり、以下の非特許文献1にはゾルゲル法によるLAGPの作製方法について記載されている。また、以下の特許文献2には、電極活物質の表面にイオン導電性を有する被膜を形成する方法について記載されている。 Materials used for conventional lithium secondary batteries can be used as the positive electrode active material and the negative electrode active material (hereinafter collectively referred to as electrode active material). In addition, since an all solid battery does not use a flammable electrolyte, research has also been conducted on an electrode active material that can obtain a higher potential difference. The solid electrolyte has the formula Li a X b Y c P d O e with NASICON type oxide-based solid electrolyte represented, as the solid electrolyte of the NASICON type oxide, Li 1 + x Al x Ge 2 -x (PO 4) 3 (where, 0 <x ≦ 1, hereinafter also referred to as LAGP) are well known. Patent Document 1 below describes LAGP at x = 0.5, and LAGP is generally produced by a solid phase method in which a powdery raw material containing a plurality of compounds is fired at a high temperature. It is In addition, as a manufacturing method of LAGP, there is another well-known sol-gel method using a metal alkoxide as a raw material, and the following Non-Patent Document 1 describes a manufacturing method of LAGP by the sol-gel method. In addition, Patent Document 2 below describes a method of forming a film having ion conductivity on the surface of an electrode active material.

特開2013−45738号公報Unexamined-Japanese-Patent No. 2013-45738 国際公開第2014/003036号International Publication No. 2014/003036

Masashi Kotobuki, Keigo Hoshina, Yasuhiro Isshiki, Kiyoshi Kanamura、「PREPARATION OF Li1.5Al0.5Ge1.5(PO4)3 SOLID ELECTROLYTE BY SOL-GEL METHOD」、Phosphorus Research Bulletin 、Vol.25(2011)、 pp.061-063Masashi Kotobuki, Keigo Hoshina, Yasuhiro Isshiki, Kiyoshi Kanamura, "PREPARATION OF Li 1.5 Al 0.5 Ge 1.5 (PO4) 3 SOLID ELECTROLYTE BY SOL-GEL METHOD", Phosphorus Research Bulletin, Vol. 25 (2011), pp. 061- 063

全固体電池の基本構成である積層電極体は、固体電解質層を正極層と負極層で挟持した構造の焼結体からなる。上述したように、固体電解質は、固体電解質層だけではなく電極層にも含まれている。そして、電極層のイオン導電性を高めるためには電極活物質の粒子間に固体電解質の粒子を介在させるのではなく、電極活物質の粒子表面に固体電解質の被膜を形成することがより好ましい。そしてLAGPは、焼成によって結晶化することでイオン伝導度を発現することから、電極活物質の粒子表面にLAGPの被膜を形成するためには、焼成前の電極層中の粉体材料(以下、電極材料とも言う)にLAGPを非晶質の状態で含ませる必要がある。   The laminated electrode body which is the basic composition of the all solid battery consists of a sintered compact of the structure which clamped the solid electrolyte layer by the positive electrode layer and the negative electrode layer. As described above, the solid electrolyte is contained not only in the solid electrolyte layer but also in the electrode layer. And in order to raise the ion conductivity of an electrode layer, it is more preferable not to interpose the particle | grains of a solid electrolyte between the particle | grains of an electrode active material, but to form the film of a solid electrolyte on the particle | grain surface of an electrode active material. And, since LAGP expresses ion conductivity by being crystallized by firing, in order to form a film of LAGP on the particle surface of the electrode active material, the powder material in the electrode layer before firing (hereinafter referred to as It is necessary to include LAGP in an amorphous state in the electrode material).

しかし、固相法を用いてLAGPの被膜を電極活物質の粒子表面に形成する場合、粉体状の非晶質のLAGPと粉体状の電極活物質とを混合した電極材料を焼成することになるため、異なる粉体材料同士を極めて均一に混合することが難しい。異なる粉体材料同士が均一に混合されなければ、電極層中のイオン伝導度に偏りが生じる可能性がある。   However, when forming a coating of LAGP on the particle surface of the electrode active material using the solid phase method, firing the electrode material in which the powdery amorphous LAGP and the powdery electrode active material are mixed Therefore, it is difficult to mix different powder materials extremely uniformly. If the different powder materials are not uniformly mixed, a bias may occur in the ion conductivity in the electrode layer.

一方、ゾルゲル法では、原料となる金属アルコキシドを含んだゾルと電極活物質を混合した上でゾルをゲル化し、さらに熱処理によって生成させた非晶質のLAGPを焼成するという手順でLAGPの結晶を得る。そして、ゾルゲル法を用いて電極活物質の粒子表面にLAGPの被膜を形成する場合、非晶質のLAGPが生成される以前にLAGPの原料と電極活物質を混合することができる。そのため、金属活物質の粒子表面に非晶質のLAGPの被膜を効果的に形成することができる。   On the other hand, in the sol-gel method, after mixing a sol containing a metal alkoxide as a raw material and an electrode active material, the sol is gelled, and further, LAGP crystals are formed by firing amorphous LAGP generated by heat treatment. obtain. And when forming the film of LAGP on the particle | grain surface of an electrode active material using a sol gel method, the raw material of LAGP and an electrode active material can be mixed before an amorphous LAGP is produced | generated. Therefore, the film of amorphous LAGP can be effectively formed on the particle surface of the metal active material.

しかしながら、ゾルゲル法を用いてLAGPを作製する場合、原料に高価な金属アルコキシドを用いるため原料コストが増大する。また、金属アルコキシドが水と反応することから、その反応を抑制するために乾燥雰囲気内で被膜層となる化合物を作製する必要がある。したがって、ゾルゲル法によってLAGPを製造したり、LAGPの被膜を電極活物質の粒子表面に形成したりするためには、その製造設備に掛かるコストも増大する。   However, when LAGP is produced using a sol-gel method, the cost of the raw material is increased because an expensive metal alkoxide is used as the raw material. Further, since the metal alkoxide reacts with water, it is necessary to prepare a compound to be a coating layer in a dry atmosphere in order to suppress the reaction. Therefore, in order to manufacture LAGP by a sol-gel method, or to form a film of LAGP on the particle surface of the electrode active material, the cost for the manufacturing facility also increases.

そこで本発明は、全固体電池の電極層に含まれる電極活物質に被膜を形成するのに適したLAGPからなる固体電解質、電極活物質の粒子表面にLAGPからなる固体電解質の被膜が形成されてなる全固体電池用電極材料、および全固体電池を簡素な手順でより安価に製造するための方法を提供することを目的としている。   Therefore, according to the present invention, a solid electrolyte composed of LAGP suitable for forming a coating on an electrode active material contained in an electrode layer of an all solid battery, and a coating of a solid electrolyte consisting of LAGP on the particle surface of the electrode active material It is an object of the present invention to provide an all-solid-state battery electrode material and a method for producing the all-solid-state battery more inexpensively by a simple procedure.

上記目的を達成するための本発明の一態様は、0<x≦1として、一般式Li1+xAlGe2−x(POで表される固体電解質の製造方法であって、
GeOと複数の水溶性化合物とを原料とし、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
前記第2の溶液を熱処理して非晶質の固体電解質を得るガラス化ステップと、
前記非晶質の固体電解質を焼成してLAGPを結晶化させる焼成ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整する、
ことを特徴とする固体電解質の製造方法としている。
One embodiment of the present invention for achieving the above object is a method of producing a solid electrolyte represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 , wherein 0 <x ≦ 1.
Using GeO 2 and several water soluble compounds as raw materials,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
Heat treating the second solution to obtain an amorphous solid electrolyte;
Firing the amorphous solid electrolyte to crystallize LAGP;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water soluble compounds are dissolved.
The method for producing a solid electrolyte is characterized by

上記固体電解質の製造方法において、
前記複数の化合物は、CHCOOLi・2HO、Al(NO・9HO、NHPOであり、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度を0.2M以上1.35M以下に調整する、
固体電解質の製造方法とすることもできる。
In the method for producing a solid electrolyte,
The plurality of compounds are CH 3 COOLi · 2H 2 O, Al (NO 3 ) 3 · 9H 2 O, NH 4 H 2 PO 4 ,
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to 0.2 M or more and 1.35 M or less.
It can also be a method of producing a solid electrolyte.

本発明の態様には、全固体電池用の電極活物質の粒子表面に、0<x≦1として、一般式Li1+xAlGe2−x(POで表される固体電解質が被膜されてなる電極材料の製造方法も含まれており、当該電極材料の製造方法は、
GeOと、複数の水溶性化合物とを前記固体電解質の原料とし、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
粉体状の前記電極活物質を前記第2の溶液に混合する活物質混合ステップと、
前記活物質混合ステップにて得た混合液を前記固体電解質が結晶化する焼成温度よりも低い温度で熱処理して非晶質の固体電解質を得るガラス化ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整する、
ことを特徴とする全固体電池用電極材料の製造方法としている。
In the embodiment of the present invention, the solid electrolyte represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 is coated on the particle surface of the electrode active material for an all solid battery, where 0 <x ≦ 1. Also included is a method of producing an electrode material, the method of producing the electrode material comprising
Using GeO 2 and a plurality of water-soluble compounds as the material of the solid electrolyte,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
An active material mixing step of mixing the powdered electrode active material with the second solution;
Heat treatment at a temperature lower than a calcination temperature at which the solid electrolyte crystallizes, the mixture liquid obtained in the active material mixing step to obtain an amorphous solid electrolyte;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water soluble compounds are dissolved.
The method for producing an electrode material for an all-solid-state battery is characterized by

また、本発明のその他の態様は、一体的な焼結体で、正極用の電極活物質と固体電解質を含む正極層、固体電解質を含む固体電解質層、および負極用の電極活物質と固体電解質を含む負極層がこの順に積層されてなる積層電極体を備えた全固体電池の製造方法であって、
0<x≦1として、一般式Li1+xAlGe2−x(POを前記固体電解質として、非晶質状態の前記固体電解質と前記正極用の電極活物質とを混合した正極材料と、非晶質状態の前記固体電解質と前記負極用の電極活物質とを混合した負極材料を作製する電極材料作製ステップと、
層状の前記正極材料と層状の前記負極材料との間に、前記固体電解質を含んだ層状の固体電解質材料を挟持してなる積層体を焼成することで前記積層電極体を作製する焼成ステップと、
を含み、
前記電極材料作製ステップでは、
GeOと複数の水溶性化合物とを原料とした固体電解質を溶液法により作製する固体電解質作製ステップと、
前記固体電解質作製ステップにより前記固体電解質を作製する過程で前記原料に粉体状の電極活物質を混合する活物質混合ステップと、
を実行し、
前記固体電解質作製ステップでは、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
前記第2の溶液を前記固体電解質が結晶化する焼成温度よりも低い温度で熱処理して非晶質の固体電解質を得るガラス化ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整し、
前記活物質混合ステップを前記第2混合ステップと前記ガラス化ステップとの間に実行する、
ことを特徴とする全固体電池の製造方法としている。
Further, another aspect of the present invention is an integral sintered body, a positive electrode layer including an electrode active material for a positive electrode and a solid electrolyte, a solid electrolyte layer including a solid electrolyte, and an electrode active material and a solid electrolyte for a negative electrode. A method for producing an all-solid-state battery comprising a laminated electrode body in which a negative electrode layer containing
A positive electrode material in which the solid electrolyte in an amorphous state and the electrode active material for the positive electrode are mixed by using the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 as the solid electrolyte, where 0 <x ≦ 1. And an electrode material preparation step of preparing a negative electrode material in which the solid electrolyte in an amorphous state and an electrode active material for the negative electrode are mixed.
A firing step of producing the laminated electrode body by firing a laminated body formed by sandwiching a layered solid electrolyte material containing the solid electrolyte between the layered positive electrode material and the layered negative electrode material;
Including
In the electrode material preparation step,
A solid electrolyte preparation step of preparing a solid electrolyte using GeO 2 and a plurality of water soluble compounds as a raw material by a solution method;
An active material mixing step of mixing a powdered electrode active material with the raw material in the process of manufacturing the solid electrolyte by the solid electrolyte manufacturing step;
Run
In the solid electrolyte preparation step,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
Heat treating the second solution at a temperature lower than a calcination temperature at which the solid electrolyte crystallizes to obtain an amorphous solid electrolyte;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water-soluble compounds dissolve.
Performing the active material mixing step between the second mixing step and the vitrification step;
It is considered as the manufacturing method of the all-solid-state battery characterized by the above.

本発明によれば、全固体電池の電極層に含まれる電極活物質に被膜を形成するのに適したLAGPからなる固体電解質、電極活物質の粒子表面にLAGPからなる固体電解質の被膜が形成されてなる全固体電池用電極材料、および全固体電池を簡素な手順でより安価に製造するための方法が提供される。なお、その他の効果については以下の記載で明らかにする。   According to the present invention, a solid electrolyte consisting of LAGP suitable for forming a film on the electrode active material contained in the electrode layer of the all solid battery, and a solid electrolyte film consisting of LAGP on the particle surface of the electrode active material are formed An all-solid-state battery electrode material and a method for producing the all-solid-state battery less expensively by a simple procedure are provided. Other effects will be clarified in the following description.

本発明の第1の実施例に係る固体電解質の製造方法を示す図である。It is a figure which shows the manufacturing method of the solid electrolyte which concerns on the 1st Example of this invention. 上記第1の実施例に係る方法で作製された固体電解質のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the solid electrolyte produced by the method concerning the said 1st Example. 上記第1の実施例に係る方法で作製された固体電解質のイオン伝導特性を示す図である。It is a figure which shows the ion-conductive characteristic of the solid electrolyte produced by the method concerning the said 1st Example. 上記第1の実施例に係る方法を用いて全固体電池用電極材料を製造する手順の一例を示す図である。It is a figure which shows an example of the procedure which manufactures the electrode material for all-solid-state batteries using the method concerning the said 1st Example. 本発明の第2の実施例に係る全固体電池用電極材料の製造方法を示す図である。It is a figure which shows the manufacturing method of the electrode material for all the solid batteries which concern on the 2nd Example of this invention. 図4に示した手順を用いて作製した全固体電池用電極材料のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the electrode material for all-solid-state batteries produced using the procedure shown in FIG. 上記第2の実施例に係る全固体電池用電極材料のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the electrode material for all-solid-state batteries which concerns on the said 2nd Example.

実用的な全固体電池を実現させるためには、電極活物質の表面に被膜として形成されるLAGPをより簡素な方法でより安価に作製する必要がある。このような要求に対し、本発明の実施例では、LAGPを溶液法あるいは液相法と呼ばれる方法(以下、溶液法と総称することがある)を用いて作製することとしている。そして、本実施例では、当初の溶媒として水を用いながら、原料を溶媒に混合する順番や、その混合過程にて溶媒を改質させている。それによって、全ての原料を溶媒に溶解させ、単相のLAGPを作製することができる。   In order to realize a practical all-solid-state battery, it is necessary to make LAGP formed as a film on the surface of the electrode active material cheaper by a simpler method. In order to meet such requirements, in the examples of the present invention, LAGP is prepared using a method called solution method or liquid phase method (hereinafter sometimes referred to as solution method). And, in this embodiment, while using water as the initial solvent, the solvent is modified in the order of mixing the raw materials with the solvent and in the process of mixing. Thereby, all the raw materials can be dissolved in the solvent to produce single phase LAGP.

そして、以下に示す具体的な実施例では、LAGPの原料となる化合物として、二酸化ゲルマニウム(GeO:株式会社高純度化学研究所製)、酢酸リチウム(CHCOOLi・2HO:和光純薬工業株式会社製)、硝酸アルミニウム(Al(NO・9HO:関東化学工業株式会社製)、リン酸二水素アンモニウム(NHPO:関東化学工業株式会社製)を用いることとしている。 And, in a specific example shown below, germanium dioxide (GeO 2 : manufactured by High Purity Chemical Laboratory Co., Ltd.), lithium acetate (CH 3 COOLi · 2H 2 O: Wako Pure Chemical Industries, Ltd.) as a compound to be a raw material of LAGP Manufactured by Kogyo Co., Ltd., aluminum nitrate (Al (NO 3 ) 3 9 H 2 O: manufactured by Kanto Chemical Industry Co., Ltd.), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 : manufactured by Kanto Chemical Industry Co., Ltd.) It is supposed to be.

===基本となる実施例===
上記の原料と溶液法とによってLAGPの作製を可能にするために、まず、各原料の水に対する溶解性を調べた。そして、各化合物の水や各種溶媒に対する溶解性に基づいて化合物を溶媒に混合する順番を決定した。なお、水などの溶媒に対する溶解性の有無については目視により判定した。化合物が溶媒に溶解すると、無色透明の溶液となるが、溶解しない場合は化合物が沈殿して溶媒が白濁する。そして、上記原料のうち、GeOのみ、水溶性がなく、水に対して難溶性であった。また、GeOを含めたLAGPの原料は、全て、アルカリ性の溶媒によって溶解することが分かった。
=== Basic Example ===
In order to make it possible to produce LAGP by the above-mentioned raw material and solution method, first, the solubility of each raw material in water was examined. Then, based on the solubility of each compound in water and various solvents, the order of mixing the compounds in the solvent was determined. The presence or absence of solubility in a solvent such as water was visually determined. When the compound is dissolved in the solvent, it becomes a colorless and transparent solution, but if it does not dissolve, the compound precipitates and the solvent becomes cloudy. And, only GeO 2 among the above-mentioned raw materials was not soluble in water and was poorly soluble in water. Further, the raw material of LAGP including GeO 2 were all found to be dissolved by the alkaline solvent.

そこで、本発明の実施例では、最初にGeOを水に混合し、その水をアルカリ性に改質してGeOを溶解させる。その上で他の化合物を改質後の水に溶解させることとした。ここでは、アンモニア水に各原料を溶解させた。アンモニア水は、当初の溶媒である水にアンモニアを溶解させたり、高濃度のアンモニア水を水に混合したりして所定のアンモニア濃度に容易に調整することができる。また、アンモニアやアンモニア水は入手しやすく安価でもある。以上により、本発明の基本となる実施例に係る固体電解質(以下、LAGPとも言う)の製造方法は、最初に水にGeOを混合するとともに、その水をアンモニア水にしてGeOを溶解させ、その上で他のLAGPの原料をアンモニア水に溶解させている。そして、全ての原料が溶解した溶液を熱処理することでLAGPを結晶化させている。 Therefore, in the embodiment of the present invention, GeO 2 is first mixed with water, and the water is modified to be alkaline to dissolve GeO 2 . Then, it was decided to dissolve the other compound in the water after modification. Here, each raw material was dissolved in ammonia water. Ammonia water can be easily adjusted to a predetermined ammonia concentration by dissolving ammonia in water, which is the initial solvent, or mixing high concentration ammonia water with water. Also, ammonia and ammonia water are easily available and inexpensive. From the above, the method for producing a solid electrolyte (hereinafter also referred to as LAGP) according to the basic embodiment of the present invention first mixes GeO 2 with water, and makes the water ammonia water to dissolve GeO 2 On top of that, other LAGP ingredients are dissolved in ammonia water. Then, the solution in which all the raw materials are dissolved is heat-treated to crystallize LAGP.

次に、上述した基本的なLAGPの製造方法を用いつつ、特性に優れたLAGPを作製するために、まず、各原料のアンモニア水に対する溶解性について検討した。その結果、全ての原料が、0.2mol/L(以下、M)のアンモニア濃度のアンモニア水に溶解した。そこで、次に、アンモニア濃度が0.2Mよりも高いアンモニア水を作製し、濃度が異なるアンモニア水のそれぞれに各原料を溶解させてみた。   Next, in order to produce LAGP having excellent properties while using the above-described basic LAGP production method, first, the solubility of each raw material in ammonia water was examined. As a result, all the raw materials were dissolved in ammonia water with an ammonia concentration of 0.2 mol / L (hereinafter, M). Therefore, next, ammonia water having an ammonia concentration higher than 0.2 M was prepared, and each material was tried to be dissolved in each of ammonia water having different concentrations.

以下の表1にLAGPの原料のアンモニア水に対する溶解性を示した。   The following Table 1 shows the solubility of the raw material of LAGP in aqueous ammonia.

Figure 2019046559
表1に示したように、各原料を、アンモニア濃度が0Mの水と、アンモニア濃度が0.255M〜7.2Mのアンモニア水に溶解させてみた。そして水に溶解しなかったのはGeOのみであり、他の化合物は水に溶解した。また、GeOと酢酸リチウムは、7.2Mの高濃度のアンモニア水まで溶解し、硝酸アルミニウムは、1.35Mの濃度のアンモニア水に溶解し、それよりも高い濃度のアンモニア水には溶解しなかった。またリン酸二水素アンモニウムは、1.8Mよりも濃度が高いアンモニア水には溶解しなかった。以上の溶媒に対する溶解性の検討結果より、上記原料を用いて溶液法でLAGPを作製するためには、GeOを水に混合した後、その水に高濃度のアンモニア水を加えるなどして、アンモニア濃度が0.2M以上1.35M以下に調整されたアンモニア水にGeO以外の原料を混合して溶解させることになる。そして、全ての原料を溶解させた溶液を熱処理することでLAGPを作製することになる。
Figure 2019046559
As shown in Table 1, each raw material was dissolved in water having an ammonia concentration of 0 M and ammonia water having an ammonia concentration of 0.255 M to 7.2 M. And only GeO 2 did not dissolve in water, and the other compounds were dissolved in water. In addition, GeO 2 and lithium acetate dissolve up to a high concentration of aqueous ammonia of 7.2 M, aluminum nitrate dissolves in aqueous ammonia at a concentration of 1.35 M, and dissolves in aqueous ammonia at a higher concentration than that It was not. In addition, ammonium dihydrogen phosphate was not dissolved in ammonia water having a concentration higher than 1.8 M. From the results of the above solubility study in solvents, in order to produce LAGP by the solution method using the above-mentioned raw materials, after mixing GeO 2 with water, adding high concentration ammonia water to the water, etc. A raw material other than GeO 2 is mixed and dissolved in ammonia water adjusted to an ammonia concentration of 0.2 M or more and 1.35 M or less. Then, the solution in which all the raw materials are dissolved is heat treated to produce LAGP.

===第1の実施例===
次に、本発明の第1の実施例に係る固体電解質の製造方法として、アンモニアを含んだ溶媒に溶解させたLAGPの原料からLAGPを作製する手順を挙げる。図1に第1の実施例に係る固体電解質の製造方法の手順を示した。溶媒として水の入った容器を用意し(s1)、その水にGeOを混合する(s2)。なお、この工程(以下、第1混合工程とも言う)ではGeOは溶媒である水に溶解しない。次に、GeOと水との混合液にアンモニアを加え、溶媒が所定のアンモニア濃度となるように調製する(s3)。ここでは28Mの高濃度アンモニア水を水に加えることで溶媒のアンモニア濃度を調製した。GeOは、このアンモニア濃度調整工程(s3)によって溶解する。アンモニア濃度が異なるGeOのアンモニア水溶液のそれぞれに、GeO以外のLAGPの原料を混合する(s4)。なお、図中では、GeOのアンモニア水溶液に、CHCOOLi・2HO、Al(NO・9HO、NHPOをこの順で混合しているが、GeO以外の各原料を混合する順番は、アンモニア濃度調整工程(s3)より後であれば、互いに前後していてもよい。
=== First Example ===
Next, as a method for producing a solid electrolyte according to the first embodiment of the present invention, a procedure for producing LAGP from a raw material of LAGP dissolved in a solvent containing ammonia will be mentioned. FIG. 1 shows the procedure of the method of manufacturing a solid electrolyte according to the first embodiment. A container containing water as a solvent is prepared (s1), and GeO 2 is mixed with the water (s2). Note that GeO 2 does not dissolve in water as a solvent in this step (hereinafter, also referred to as a first mixing step). Next, ammonia is added to the mixed solution of GeO 2 and water, and the solvent is prepared to have a predetermined ammonia concentration (s 3). Here, the ammonia concentration of the solvent was prepared by adding 28 M high concentration ammonia water to water. GeO 2 is dissolved by this ammonia concentration adjustment step (s3). The raw material of LAGP other than GeO 2 is mixed with each ammonia aqueous solution of GeO 2 with which ammonia concentration differs (s4). In the figure, CH 3 COOLi · 2H 2 O, Al (NO 3 ) 3 · 9H 2 O, and NH 4 H 2 PO 4 are mixed in this order with an aqueous solution of GeO 2 in ammonia, but GeO 2 The order of mixing the raw materials other than each other may be back and forth with each other as long as it is after the ammonia concentration adjusting step (s3).

以上のようにしてLAGPの全ての原料を第1の溶液に混合する工程(以下、第2混合工程(s4)とも言う)を実施したならば、その混合液を熱処理して最終的にLAGPの結晶を得る工程に移行する。ここでは、まず、100℃の温度のホットプレート上に容器を置いて混合液を攪拌しながら溶媒を蒸発させる溶媒除去工程(s5)を行った上で、容器内に残存している材料をオーブンなどを用いて260℃の温度で乾燥させる(s6)。さらに、この乾燥工程(s6)によって得た容器内の材料を450℃の温度で2時間、窒素雰囲気で熱処理する(s7)。この熱処理(s7)は、非晶質のLAGPを得るための工程であるが、ここでは、LAGPの被膜を電極活物質の粒子表面に形成することを想定した条件でこの工程(以下、コーティング焼成工程(s7)とも言う)を実施している。そして、最後に焼成工程(s8)によってLAGPを結晶化させる。   If the step of mixing all the raw materials of LAGP into the first solution (hereinafter also referred to as the second mixing step (s4)) as described above is performed, the mixed solution is heat-treated to finally obtain the LAGP Transfer to the step of obtaining crystals. Here, first, a container is placed on a hot plate at a temperature of 100 ° C. and a solvent removing step (s5) is performed to evaporate the solvent while stirring the mixture, and then the material remaining in the container is subjected to an oven And the like at a temperature of 260 ° C. (s6). Further, the material in the container obtained by the drying step (s6) is heat-treated at a temperature of 450 ° C. for 2 hours in a nitrogen atmosphere (s7). This heat treatment (s7) is a step for obtaining amorphous LAGP, but here, this step (hereinafter referred to as “coating baking” is performed under the condition assuming that a film of LAGP is formed on the particle surface of the electrode active material Step (s7) is carried out. Finally, LAGP is crystallized in the firing step (s8).

ところで、第1の実施例に係る固体電解質の製造方法では、コーティング焼成工程(s7)によって非晶質のLAGPを粉体状の電極活物質の粒子表面に付着させ、その上で焼成工程(s8)によってLAGPを結晶化させることを想定している。しかし、全固体電池用の電極活物質として知られているリン酸バナジウムリチウム(Li(PO)、リン酸コバルトリチウム(LiCoPO)、二酸化チタン(TiO)は、700℃以上の温度でLAGPと反応してしまう可能性がある。そのため、実際にLAGPの被膜を電極活物質の粒子表面に形成する際には、コーティング焼成工程(s7)では、焼成温度よりも低い温度で熱処理してLAGPを非晶質の状態で電極活物質の粒子表面に付着させ、焼成工程(s8)では、700℃の温度よりも低い温度でLAGPを結晶化させる必要がある。そして、ここでは、窒素雰囲気で625℃、2時間の焼成条件でLAGPを結晶化させた。 By the way, in the method for producing a solid electrolyte according to the first embodiment, amorphous LAGP is attached to the particle surface of the powdery electrode active material in the coating and firing step (s7), and the firing step (s8) is performed thereon. ) Is supposed to crystallize LAGP. However, lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ), lithium cobalt phosphate (LiCoPO 4 ) and titanium dioxide (TiO 2 ), which are known as electrode active materials for all solid state batteries, are 700 ° C. It may react with LAGP at these temperatures. Therefore, when a film of LAGP is actually formed on the particle surface of the electrode active material, in the coating and firing step (s7), the electrode active material is heat treated at a temperature lower than the firing temperature to make LAGP amorphous. In the firing step (s8), it is necessary to crystallize LAGP at a temperature lower than 700.degree. And here, LAGP was crystallized on baking conditions of 625 degreeC and 2 hours by nitrogen atmosphere.

<特性評価>
第1の実施例に係る方法で作製したLAGPの特性を評価するために、アンモニア濃度調整工程(s3)において、アンモニア濃度が異なる各種溶媒にGeOを溶解させた。そして、アンモニア濃度が異なるそれぞれの溶媒とLAGPの原料とを混合してなる混合液から作製したLAGPをサンプルとした。また、溶液法を用いた手順によって作製したサンプルに加え、これらのサンプルの特性を評価する際の基準となるサンプルとして、固相法を用いて作製したLAGP(以下、第1の参考例とも言う)を用意した。
<Characteristics evaluation>
In order to evaluate the characteristics of LAGP produced by the method according to the first example, GeO 2 was dissolved in various solvents having different ammonia concentrations in the ammonia concentration adjusting step (s3). And LAGP produced from the liquid mixture which mixes each solvent from which an ammonia concentration differs, and the raw material of LAGP was made into the sample. In addition to samples produced by the procedure using the solution method, LAGP produced using the solid phase method (hereinafter also referred to as a first reference example) as a sample serving as a reference in evaluating the characteristics of these samples Prepared.

第1の参考例に係るサンプルは、例えば、以下の手順で作製することができる。まず、LAGPの原料となるLiCO、Al、GeO、NHPOの粉末を所定の組成比になるように秤量して磁性乳鉢やボールミルで混合し、その混合物をアルミナルツボなどに入れて300℃〜400℃の温度で3h〜5hの時間を掛けて仮焼成する。仮焼成によって得られた仮焼き粉体を1200℃〜1400℃の温度で1h〜2h熱処理することで、仮焼き粉体を溶解させる。そしてその溶解した試料を急冷してガラス化することで、非晶質のLAGPからなる粉体を得る。次にその非晶質のLAGP粉体をボールミルなどの粉砕装置を用いて粉砕した上で焼成し、LAGPを結晶化させる。なお、焼成条件については、第1の実施例と同じにする。 The sample according to the first reference example can be produced, for example, by the following procedure. First, powders of Li 2 CO 3 , Al 2 O 3 , GeO 2 and NH 4 H 2 PO 4 , which are raw materials of LAGP, are weighed to have a predetermined composition ratio, mixed in a magnetic mortar or ball mill, and the mixture Is put into an alumina crucible or the like, and temporarily baked at a temperature of 300 ° C. to 400 ° C. for 3 hours to 5 hours. The calcined powder is dissolved by heat-treating the calcined powder obtained by calcination at a temperature of 1200 ° C. to 1400 ° C. for 1 h to 2 h. Then, the melted sample is quenched and vitrified to obtain a powder composed of amorphous LAGP. Next, the amorphous LAGP powder is pulverized using a pulverizing apparatus such as a ball mill and fired to crystallize LAGP. The firing conditions are the same as in the first embodiment.

以上のようにして作製した各種サンプルの幾つかについて、X線回折装置(XRD)を用いて結晶構造を調べた。図2にサンプルのXRD測定結果を示した。図2に示したように、XRD測定を行った全てのサンプルでLAGPの結晶が生成されていることが確認できた。そして、溶媒のアンモニア濃度が0.225M〜1.35Mのサンプルでは、第1の参考例に係るサンプルと同様に異相の生成が確認されなかった。しかし、アンモニア濃度が1.8Mと3.6MのサンプルではLAGP以外の異相が生成した。これは、溶媒に溶解しなかった原料が存在したことに起因しているものと考えられる。   The crystal structure of some of the various samples prepared as described above was examined using an X-ray diffractometer (XRD). The XRD measurement result of the sample is shown in FIG. As shown in FIG. 2, it was confirmed that crystals of LAGP were formed in all the samples for which the XRD measurement was performed. And in the sample whose ammonia concentration of a solvent is 0.225M-1.35M, generation | occurrence | production of a heterophase was not confirmed similarly to the sample concerning a 1st reference example. However, in the samples with ammonia concentrations of 1.8 M and 3.6 M, different phases other than LAGP were formed. This is considered to be attributable to the presence of the raw material which did not dissolve in the solvent.

次に、作製したサンプルのイオン伝導度を測定した。イオン伝導度の測定に際しては、例えば、焼成前のコーティング焼成工程によって得られた粉体状のLAGPを、200kgf/cmの圧力でφ20mmのペレットとなるようにプレス成形し、そのペレットを焼成して得た円板状の焼結体の両面に電極としてAuを0.1μmの厚さで成膜し、これをイオン伝導度の測定用サンプルとした。そしてサンプルのインピーダンスを測定し、イオン伝導度を求めた。 Next, the ion conductivity of the produced sample was measured. In the measurement of the ion conductivity, for example, LAGP in powder form obtained by the coating baking process before baking is press-formed at a pressure of 200 kgf / cm 2 so as to be a pellet of φ 20 mm, and the pellet is baked As an electrode, Au was formed into a film with a thickness of 0.1 μm on both sides of the disk-like sintered body obtained as a sample, and this was used as a sample for measurement of ion conductivity. The impedance of the sample was then measured to determine the ion conductivity.

図3に各サンプルのイオン伝導度σ(S/cm)を示した。ここではアンモニア濃度を横軸とし、イオン伝導度σを縦軸としたグラフを示した。なお、縦軸は対数目盛になっている。図3に示したように、アンモニア濃度が0.5M以上の溶媒に原料を溶解させて作成したサンプルでは、アンモニア濃度とイオン伝導度が、ほぼ、傾きが負となる比例関係にあることが確認できた。すなわちアンモニア濃度の増大に伴ってイオン伝導度σが低下した。そして、1.35M以下であれば、1×10−6(S/cm)以上の実用可能なイオン伝導度σが得られた。なお、アンモニア濃度が0.5M未満のサンプルでは、1×10−6(S/cm)と同等かそれ以上のイオン伝導度σが得られているが、アンモニア濃度とイオン導電度σとの関係が上記の比例関係から外れていた。また、アンモニア濃度が同じサンプル同士でイオン伝導度σにバラツキが見られた。これは、溶媒のアンモニア濃度が低いと、GeOが溶媒に完全に溶解せず、サンプル間でのLAGPの結晶構造に個体差があったためと思われる。 The ion conductivity σ (S / cm 2 ) of each sample is shown in FIG. Here, a graph is shown in which the concentration of ammonia is taken on the horizontal axis and the ion conductivity σ is taken on the vertical axis. The vertical axis is on a logarithmic scale. As shown in FIG. 3, in the sample prepared by dissolving the raw material in a solvent having an ammonia concentration of 0.5 M or more, it is confirmed that the ammonia concentration and the ion conductivity have a proportional relationship in which the slope is almost negative. did it. That is, the ion conductivity σ decreased as the ammonia concentration increased. And if it is 1.35 M or less, practicable ion conductivity (sigma) more than 1 * 10 < -6 > (S / cm < 2 >) was obtained. In the sample with an ammonia concentration of less than 0.5 M, an ion conductivity σ equal to or higher than 1 × 10 −6 (S / cm 2 ) is obtained, but the ammonia concentration and the ion conductivity σ The relationship was out of proportion to the above. In addition, variations were observed in the ionic conductivity σ between samples having the same ammonia concentration. This is presumably because GeO 2 was not completely dissolved in the solvent when the ammonia concentration of the solvent was low, and there were individual differences in the crystal structure of LAGP between samples.

固相法により作製した第1の参考例に係るサンプルは、1×10−5(S/cm)以上のイオン伝導度σを示した。そして、第1実施例に係る方法で作製したLAGPについても、溶媒のアンモニア濃度を適切に調整すれば、1×10−5(S/cm)に近いイオン伝導度σが得られた。第1の実施例に用いた原料であれば、0.45Mのアンモニア濃度で最も高いイオン伝導度σが得られた。このように、第1の実施例に係る固体電解質の製造方法によれば、異相が少なく、実用的なイオン伝導度σを有するLAGPを溶液法を用いて作製することができる。したがって、LAGPをより安価に提供することが可能となる。 The sample according to the first reference example prepared by the solid phase method exhibited an ion conductivity σ of 1 × 10 −5 (S / cm 2 ) or more. And also about LAGP produced by the method which concerns on 1st Example, if the ammonia concentration of a solvent is adjusted appropriately, ionic conductivity (sigma) near 1 * 10 < -5 > (S / cm < 2 >) was obtained. In the case of the raw material used in the first example, the highest ion conductivity σ was obtained at an ammonia concentration of 0.45 M. As described above, according to the method for producing a solid electrolyte according to the first embodiment, LAGP having a small number of different phases and having practical ion conductivity σ can be produced using a solution method. Therefore, LAGP can be provided at lower cost.

===第2の実施例===
第1の実施例に係る固体電解質の製造方法では、溶液法を用いてLAGPを作製していた。そして、第1の実施例に係る固体電解質の製造方法を応用すれば、粉体状の電極活物質を液状のLAGPの原料に混合することができ、LAGPの被膜を電極活物質の粒子表面に効果的に形成することが可能となる。しかし、第1の実施例の方法によってLAGPを作製する過程で電極活物質を混合する時期や、電極活物質の混合条件、あるいは電極活物質を混合した後の熱処理の条件などによっては、実用的な特性を備えた電極材料が得られない可能性もある。そこで、本発明の第2の実施例として、第1の実施例を応用して、電極活物質の粒子表面にLAGPの被膜を効果的に形成するための電極材料の製造方法を挙げる。なお、第2の実施例では、電極活物質にTiOを用いた。また、第2の実施例により作製した電極材料の特性を評価するために、LAGPを作成する過程において、電極活物質を混合する時期や焼成工程における熱処理の温度が異なる各種電極材料をサンプルとして作製した。
=== Second Example ===
In the method of manufacturing a solid electrolyte according to the first embodiment, LAGP is manufactured using a solution method. By applying the method for producing a solid electrolyte according to the first embodiment, it is possible to mix the powdered electrode active material with the liquid LAGP raw material, and to coat the LAGP film on the particle surface of the electrode active material. It becomes possible to form effectively. However, depending on the time of mixing the electrode active material in the process of producing LAGP by the method of the first embodiment, the mixing condition of the electrode active material, or the condition of heat treatment after mixing the electrode active material, etc. There is also a possibility that an electrode material having various characteristics can not be obtained. Therefore, as a second embodiment of the present invention, a method of manufacturing an electrode material for effectively forming a film of LAGP on the particle surface of the electrode active material will be described by applying the first embodiment. In the second embodiment, TiO 2 was used as the electrode active material. In addition, in order to evaluate the characteristics of the electrode material manufactured according to the second embodiment, various electrode materials different in the time of mixing the electrode active material and the temperature of heat treatment in the baking process are manufactured as samples in the process of forming LAGP. did.

以下の表2に各サンプルの作製条件を示した。   Table 2 below shows the preparation conditions of each sample.

Figure 2019046559
図4と図5に各サンプルの作製手順を示した。図4は、表2におけるサンプル1〜3の作製手順を示しており、図1に示した第1の実施例に係るLAGPの製造手順に対し、アンモニア濃度調整工程(s3)と第2混合工程(s4)との間に電極活物質を混合する電極活物質の混合工程(s10)が挿入されている。そして、サンプル1、2、および3では、焼成工程(s8)における焼成温度を、425℃、625℃、および800℃としている。なお、焼成工程(s8)における焼成温度以外の条件については、第1の実施例と同様であり、窒素雰囲気中で2時間掛けて焼成している。なお、第1混合工程、第2混合工程、および活物質混合工程(s10)では、焼成工程(s9)によって得られる電極材料中のLAGPとTiOとの質量比が70wt%と30wt%となるようにLAGPの原料およびTiOを混合している。また、アンモニア濃度調整工程(s3)では、溶媒のアンモニア濃度を0.45Mに調整している。
Figure 2019046559
The preparation procedure of each sample is shown in FIG. 4 and FIG. FIG. 4 shows the preparation procedure of Samples 1 to 3 in Table 2, and the ammonia concentration adjusting step (s3) and the second mixing step are different from the preparation procedure of LAGP according to the first example shown in FIG. The mixing step (s10) of the electrode active material for mixing the electrode active material with (s4) is inserted. And, in Samples 1, 2 and 3, the firing temperature in the firing step (s8) is set to 425 ° C., 625 ° C. and 800 ° C. The conditions other than the firing temperature in the firing step (s8) are the same as in the first embodiment, and firing is performed in a nitrogen atmosphere for 2 hours. In the first mixing step, the second mixing step, and the active material mixing step (s10), the mass ratio of LAGP to TiO 2 in the electrode material obtained in the firing step (s9) is 70 wt% and 30 wt%. As a raw material of LAGP and TiO 2 are mixed. In the ammonia concentration adjusting step (s3), the ammonia concentration of the solvent is adjusted to 0.45M.

図5は、表2におけるサンプル4の作製手順を示しており、この手順が第2の実施例に係る電極材料の製造方法に対応している。図5に示した手順では、第1の実施例に係るLAGPの製造手順に対し、第2混合工程(s4)と溶媒除去工程(s5)との間に活物質混合工程(s10)が挿入されている。また、図5に示したサンプル4の作製手順においても、第1混合工程、第2混合工程、および活物質混合工程(s10)では、焼成工程(s9)によってLAGPとTiOとの質量比が70wt%と30wt%となるようにLAGPの原料およびTiOを混合し、アンモニア濃度調整工程(s3)では、溶媒のアンモニア濃度を0.45Mに調整している。 FIG. 5 shows the preparation procedure of the sample 4 in Table 2, and this procedure corresponds to the method of manufacturing the electrode material according to the second embodiment. In the procedure shown in FIG. 5, the active material mixing step (s10) is inserted between the second mixing step (s4) and the solvent removing step (s5) in the production procedure of LAGP according to the first embodiment. ing. Further, also in the preparation procedure of sample 4 shown in FIG. 5, in the first mixing step, the second mixing step, and the active material mixing step (s10), the mass ratio of LAGP to TiO 2 in the baking step (s9) is The raw material of LAGP and TiO 2 are mixed so as to be 70 wt% and 30 wt%, and in the ammonia concentration adjusting step (s3), the ammonia concentration of the solvent is adjusted to 0.45M.

次に、以上の手順で作製したサンプル1〜4の特性を評価するために、その評価の基準となる特性を備えた粉体材料(以下、第2の参考例とも言う)を作製した。第2の参考例に係る粉体材料は、上記第1の参考例として固相法により作製した粉体状のLAGPと、LAGPの焼成温度と同じ条件で熱処理した後の粉体状のTiOとを70wt%:30wt%の比で混合した粉体材料である。 Next, in order to evaluate the characteristics of the samples 1 to 4 manufactured according to the above-described procedure, a powder material (hereinafter also referred to as a second reference example) having characteristics to be the reference of the evaluation was manufactured. The powder material according to the second reference example includes powdery LAGP prepared by the solid phase method as the first reference example, and powdery TiO 2 after heat treatment under the same conditions as the firing temperature of LAGP. And 70% by weight and 30% by weight.

図6に、サンプル1〜3と第2の参考例に係る粉体材料のXRD測定結果を示した。まず、第2の参考例のXRD測定結果から、固相法により作製したLAGPと単体のTiOのそれぞれのX線回折強度のピークの位置(2θ)が特定され、そのLAGPとTiOに対応するピークの位置(2θ)を参考にしてサンプル1〜4におけるピーク位置(2θ)を見ると、焼成温度を425℃としたサンプル1ではTiOのピークは確認できるものの、LAGPに対応するピークがなく、この焼成温度ではLAGPが結晶化しないことが確認できた。また、異相であるGeOに対応するピークも確認された。 In FIG. 6, the XRD measurement result of the powder material which concerns on the samples 1-3 and a 2nd reference example was shown. First, from the XRD measurement results of the second reference example, the peak position (2θ) of the X-ray diffraction intensity of each of LAGP produced by the solid phase method and TiO 2 of simple substance is specified, and corresponds to that LAGP and TiO 2 looking at the peak position (2 [Theta]) in the sample 1-4 and the position of the peak (2 [Theta]) with reference to, but the peak of the sample 1 in TiO 2 were the firing temperature and 425 ° C. can be confirmed, a peak corresponding to the LAGP It was also confirmed that LAGP did not crystallize at this firing temperature. In addition, a peak corresponding to the heterophase GeO 2 was also confirmed.

焼成温度が625℃のサンプル2および3では、TiOのピークが確認できるとともに、図中αで示したX線回折角度(2θ)の位置にてLAGPのピークも確認でき、LAGPが結晶化していることがわかった。なおサンプル2では、GeOに対応するピークも確認できる。また、焼成温度が700℃よりも高い800℃であったサンプル3では、LAGPのピークに代わり、LAGPとTiOとの反応によって生成したと思われるLi1.4(Al0.4Ge0.2Ti1.4)(POに対応する結晶相が確認できた。 In Samples 2 and 3 with a firing temperature of 625 ° C., the peak of TiO 2 can be confirmed, and the peak of LAGP can also be confirmed at the position of the X-ray diffraction angle (2θ) indicated by α in the figure. I found that In sample 2, the peak corresponding to GeO 2 can also be confirmed. Further, in the sample 3 the firing temperature was 800 ° C. higher than 700 ° C., instead peak of LAGP, Li 1.4 (Al 0.4 Ge 0 that may have formed by the reaction of LAGP and TiO 2. The crystal phase corresponding to 2 Ti 1.4 ) (PO 4 ) 3 was confirmed.

次に、サンプル2と焼成条件が同じであるものの、LAGPの製造過程でTiOを混合する時期が異なるサンプル4に対してXRD測定を行った。図7は、サンプル2、サンプル4、および第2の参考例のXRD測定結果を示す図であり、図7(A)は、測定した全てのX線回折角度範囲についてのXRD測定結果を示しており、図7(B)は、図7(A)において符号δ1で示した角度範囲のXRD測定結果を拡大した図であり、図7(C)は、図7(B)において矩形の枠で示した領域δ2を拡大した図である。 Next, XRD measurement was performed on Sample 4 which had the same firing conditions as Sample 2 but different timings of mixing TiO 2 in the production process of LAGP. FIG. 7 is a view showing the XRD measurement results of sample 2, sample 4 and the second reference example, and FIG. 7 (A) shows the XRD measurement results for all the measured X-ray diffraction angle ranges. 7 (B) is an enlarged view of the XRD measurement result of the angle range indicated by symbol .delta.1 in FIG. 7 (A), and FIG. 7 (C) is a rectangular frame in FIG. 7 (B). It is the figure which expanded area | region (delta) 2 shown.

そして、図7(A)に示したように、サンプル4では、サンプル2において出現しているGeOのピークが見当たらなかった。また、図7(B)に示したように、サンプル2に対してサンプル4では、TiOのピークがより急峻となっている。これは、サンプル2とサンプル4とでは、活物質混合工程(s10)の実施時点での溶媒のpHが異なっていたことに起因するものと考えられる。そこで、図1に示したLAGPの作製手順において、第2混合工程(s4)の前後で溶媒のpH値を測定したところ、第2混合工程(s4)の前ではpH値が11.3であったのに対し、第2混合工程(s4)の後ではpH値が10.3になっていた。すなわち、図5に示した第2の実施例に係る電極材料の製造方法では、pHが低い溶媒中に電極活物質を混合している。そして第2の実施例に係る電極材料の製造方法によって作製したサンプル4では、電極活物質とアルカリ性溶液との反応に伴う特性劣化が抑制されたことで、サンプル2よりもTiOのピークが急峻になったものと思われる。さらに、図7(C)に示したように、サンプル4では、サンプル2における極めて小さなGeOのピークも確認できなかった。このように、第2の実施例に係る電極材料の製造方法によれば、電極活物質の粒子表面に極めて純度の高いLAGPの被膜を形成することができる。 Then, as shown in FIG. 7 (A), the sample 4, the peak of GeO 2 which have appeared in the sample 2 was not found. Further, as shown in FIG. 7B, in the sample 4 relative to the sample 2, the peak of TiO 2 is sharper. This is considered to be due to the fact that the pH of the solvent at the time of execution of the active material mixing step (s10) was different between sample 2 and sample 4. Therefore, when the pH value of the solvent was measured before and after the second mixing step (s4) in the preparation procedure of LAGP shown in FIG. 1, the pH value is 11.3 before the second mixing step (s4). In contrast, after the second mixing step (s4), the pH value was 10.3. That is, in the method of manufacturing the electrode material according to the second embodiment shown in FIG. 5, the electrode active material is mixed in a solvent having a low pH. And in the sample 4 manufactured by the manufacturing method of the electrode material according to the second embodiment, the characteristic deterioration due to the reaction between the electrode active material and the alkaline solution is suppressed, so the peak of TiO 2 is steeper than that of the sample It is thought that it became. Furthermore, as shown in FIG. 7C, in sample 4, a very small peak of GeO 2 in sample 2 was not confirmed. As described above, according to the method of manufacturing the electrode material according to the second embodiment, it is possible to form a highly pure LAGP film on the particle surface of the electrode active material.

===全固体電池の製造方法===
全固体電池は、上述した圧縮成形法やグリーンシート法によって、シート状の正極材料、固体電解質、および負極材料をこの順に積層した積層体を作製し、その積層体に対して焼成を行うことで作製される。そしてLAGPを固体電解質として用いた全固体電池では、積層体を焼成する工程によって非晶質のLAGPを結晶化させることになる。すなわち、図1、図4、図5における焼成工程(s8)は、積層体を焼成することを想定した工程であり、第1の実施例に固体電解質の製造方法や第2の実施例に係る電極材料の製造方法を用いて全固体電池を作製する場合には、コーティング焼成工程(s7)と焼成工程(s8)の間にシート状の正極材料、固体電解質、および負極材料をこの順に積層した積層体を作製する手順が挿入されることになる。また、図4、図5では、コーティング焼成工程(s7)によって作製された粉体材料が電極材料となる。
=== Manufacturing method of all solid state battery ===
The all-solid battery is produced by producing a laminate in which a sheet-like positive electrode material, a solid electrolyte, and a negative electrode material are laminated in this order by the above-described compression molding method or green sheet method, and firing is performed on the laminate. It is made. And in the all-solid-state battery using LAGP as a solid electrolyte, amorphous LAGP will be crystallized by the process of baking a laminated body. That is, the firing step (s8) in FIGS. 1, 4 and 5 is a step assuming firing of the laminate, and relates to the method of manufacturing a solid electrolyte and the second embodiment in the first embodiment. In the case of producing an all-solid battery using the method for producing an electrode material, a sheet-like positive electrode material, a solid electrolyte, and a negative electrode material are laminated in this order between the coating firing step (s7) and the firing step (s8) A procedure for making a laminate will be inserted. Moreover, in FIG. 4, FIG. 5, the powder material produced by the coating baking process (s7) turns into an electrode material.

===その他の実施例===
上記第2の実施例では、第1の実施例に係る固体電解質の製造方法を応用して電極活物質の粒子表面にLAGPの被膜を効果的に形成することができた。しかし、第1の実施例に係る固体電解質の製造方法は、電極活物質に対して被膜を形成する用途のみに供されるものではない。第1の実施例に係る固体電解質の製造方法によれば、溶液法を用いた極めて簡素な手順で実用的な特性を備えたLAGPを作製できることから、そのLAGPを全固体電池の固体電解質層に用いてもよい。それによって全固体電池をさらに安価に提供することが可能となる。
=== Other Examples ===
In the second embodiment, the coating of LAGP can be effectively formed on the particle surface of the electrode active material by applying the solid electrolyte manufacturing method according to the first embodiment. However, the method for producing a solid electrolyte according to the first embodiment is not limited to the use of forming a film on an electrode active material. According to the method for producing a solid electrolyte according to the first embodiment, since LAGP having practical characteristics can be produced by a very simple procedure using a solution method, the LAGP can be used as a solid electrolyte layer of an all solid battery. You may use. This makes it possible to provide an all solid battery at a lower cost.

LAGPの原料のうち、GeO以外の水溶性化合物からなる原料は、上記第1および第2の実施例にて用いたものに限定されない。そして、原料が異なれば、当然のことながら溶媒に対して可溶性を示すアンモニア濃度が異なる。いずれにしても、アンモニア濃度調整工程により、溶媒がGeOを含む全てのLAGPの原料が溶解するアンモニア濃度に調整されていればよい。 Among the raw materials of LAGP, the raw materials comprising water-soluble compounds other than GeO 2 are not limited to those used in the first and second examples. And, if the raw materials are different, naturally the concentration of ammonia which is soluble in the solvent is different. In any case, it is sufficient that the concentration of ammonia in which the solvent dissolves all the raw materials of LAGP including GeO 2 is adjusted by the ammonia concentration adjusting step.

上記第1、第2の実施例では、LAGPをLVP、LCPO、TiOなど、700℃以上の温度で焼成するとLAGPと反応してしまう可能性がある電極活物質にLAGPの被膜を形成することを想定していた。もちろん、電極活物質は、これらの化合物に限定されない。そして、その他の電極活物質では、より高い温度でLAGPとともに熱処理が可能なものもあるかもしれない。しかしながら、上記各実施例で想定しているLVP、LCPO、TiOなどは、全固体電池用の電極活物質として周知のものであり、全固体電池を早期に実用化させるためには、これらの電極活物質を使用することが現実的であると言える。そのために、本発明の実施例では、焼成温度の上限を700℃より75℃も低い625℃とした。そして上記各実施例では、この625℃の焼成温度でも結晶化したLAGPを得ることができた。 In the first and second embodiments, a film of LAGP is formed on an electrode active material which may react with LAGP when it is fired at a temperature of 700 ° C. or more, such as LVP, LCPO, TiO 2 or the like. Was assumed. Of course, the electrode active material is not limited to these compounds. And, as for other electrode active materials, there may be those which can be heat-treated together with LAGP at higher temperatures. However, LVP, LCPO, TiO 2 and the like assumed in each of the above examples are known as electrode active materials for all solid batteries, and in order to put the all solid batteries into practical use at an early stage, It can be said that it is realistic to use an electrode active material. Therefore, in the example of the present invention, the upper limit of the firing temperature is set to 625 ° C., which is 75 ° C. lower than 700 ° C. In each of the above-described examples, crystallized LAGP could be obtained even at the sintering temperature of 625 ° C.

なお、上記第2の実施例に係る電極材料の製造方法では、電極活物質に負極活物質であるTiOを用いていたが、もちろん第2の実施例に係る電極材料の製造方法は、電極活物質を正極活物質にするだけで、正極用の電極材料にも適用することができる。また、全固体電池を作製する際には、第2の実施例に係る電極材料の製造方法によって、正極層と負極層の両方の電極材料を作製してもよいし、正負いずれかの電極材料を作製してもよい。 In the method of manufacturing the electrode material according to the second embodiment, TiO 2 which is a negative electrode active material is used as the electrode active material. Of course, the method of manufacturing the electrode material according to the second embodiment is the electrode The active material can be applied to the electrode material for the positive electrode only by using the positive electrode active material. In addition, when producing an all-solid-state battery, the electrode material of both the positive electrode layer and the negative electrode layer may be produced by the method of producing an electrode material according to the second embodiment, or either positive or negative electrode material May be produced.

s2 第1混合工程、s3 アンモニア濃度調整工程、s4 第2混合工程、s7 コーティング焼成工程、s8 焼成工程   s2 first mixing step, s3 ammonia concentration adjusting step, s4 second mixing step, s7 coating baking step, s8 baking step

Claims (4)

0<x≦1として、一般式Li1+xAlGe2−x(POで表される固体電解質の製造方法であって、
GeOと複数の水溶性化合物とを原料とし、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
前記第2の溶液を熱処理して非晶質の固体電解質を得るガラス化ステップと、
前記非晶質の固体電解質を焼成してLAGPを結晶化させる焼成ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整する、
ことを特徴とする固体電解質の製造方法。
A method of producing a solid electrolyte represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 , wherein 0 <x ≦ 1.
Using GeO 2 and several water soluble compounds as raw materials,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
Heat treating the second solution to obtain an amorphous solid electrolyte;
Firing the amorphous solid electrolyte to crystallize LAGP;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water soluble compounds are dissolved.
A method of producing a solid electrolyte characterized in that
請求項1に記載の固体電解質の製造方法において、
前記複数の水溶性化合物は、CHCOOLi・2HO、Al(NO・9HO、NHPOであり、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度を0.2M以上1.35M以下に調整する、
ことを特徴とする固体電解質の製造方法。
In the method for producing a solid electrolyte according to claim 1,
The plurality of water-soluble compounds are CH 3 COOLi · 2H 2 O, Al (NO 3 ) 3 · 9H 2 O, NH 4 H 2 PO 4 ,
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to 0.2 M or more and 1.35 M or less.
A method of producing a solid electrolyte characterized in that
全固体電池用の電極活物質の粒子表面に、0<x≦1として、一般式Li1+xAlGe2−x(POで表される固体電解質が被膜されてなる電極材料の製造方法であって、
GeOと、複数の水溶性化合物とを前記固体電解質の原料とし、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
粉体状の前記電極活物質を前記第2の溶液に混合する活物質混合ステップと、
前記活物質混合ステップにて得た混合液を前記固体電解質が結晶化する焼成温度よりも低い温度で熱処理して非晶質の固体電解質を得るガラス化ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整する、
ことを特徴とする全固体電池用電極材料の製造方法。
Production of electrode material in which solid electrolyte represented by general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 is coated as 0 <x ≦ 1 on particle surface of electrode active material for all solid battery Method,
Using GeO 2 and a plurality of water-soluble compounds as the material of the solid electrolyte,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
An active material mixing step of mixing the powdered electrode active material with the second solution;
Heat treatment at a temperature lower than a calcination temperature at which the solid electrolyte crystallizes, the mixture liquid obtained in the active material mixing step to obtain an amorphous solid electrolyte;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water soluble compounds are dissolved.
The manufacturing method of the electrode material for all the solid batteries characterized by the above-mentioned.
一体的な焼結体で、正極用の電極活物質と固体電解質を含む正極層、固体電解質を含む固体電解質層、および負極用の電極活物質と固体電解質を含む負極層がこの順に積層されてなる積層電極体を備えた全固体電池の製造方法であって、
0<x≦1として、一般式Li1+xAlGe2−x(POを前記固体電解質として、非晶質状態の前記固体電解質と前記正極用の電極活物質とを混合した正極材料と、非晶質状態の前記固体電解質と前記負極用の電極活物質とを混合した負極材料を作製する電極材料作製ステップと、
層状の前記正極材料と層状の前記負極材料との間に、前記固体電解質を含んだ層状の固体電解質材料を挟持してなる積層体を焼成することで前記積層電極体を作製する焼成ステップと、
を含み、
前記電極材料作製ステップでは、
GeOと複数の水溶性化合物とを原料とした固体電解質を溶液法により作製する固体電解質作製ステップと、
前記固体電解質作製ステップにより前記固体電解質を作製する過程で前記原料に粉体状の電極活物質を混合する活物質混合ステップと、
を実行し、
前記固体電解質作製ステップでは、
前記GeOを水に混合する第1混合ステップと、
前記第1混合ステップにて得た混合液にアンモニアを加えて液中の前記GeOを溶解させて第1の溶液を得るとともに、当該第1の溶液のアンモニア濃度を調整するアンモニア濃度調整ステップと、
前記第1の溶液に前記複数の水溶性化合物を混合して第2の溶液を得る第2混合ステップと、
前記第2の溶液を前記固体電解質が結晶化する焼成温度よりも低い温度で熱処理して非晶質の固体電解質を得るガラス化ステップと、
を含み、
前記アンモニア濃度調整ステップでは、前記第1の溶液のアンモニア濃度が、全ての前記水溶性化合物が溶解する濃度となるように調整し、
前記活物質混合ステップを前記第2混合ステップと前記ガラス化ステップとの間に実行する、
ことを特徴とする全固体電池の製造方法。
In an integral sintered body, a positive electrode layer including a positive electrode active material and a solid electrolyte, a solid electrolyte layer including a solid electrolyte, and a negative electrode layer including a negative electrode active material and a solid electrolyte are laminated in this order. It is a manufacturing method of the all-solid-state battery provided with the following lamination electrode body,
A positive electrode material in which the solid electrolyte in an amorphous state and the electrode active material for the positive electrode are mixed by using the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 as the solid electrolyte, where 0 <x ≦ 1. And an electrode material preparation step of preparing a negative electrode material in which the solid electrolyte in an amorphous state and an electrode active material for the negative electrode are mixed.
A firing step of producing the laminated electrode body by firing a laminated body formed by sandwiching a layered solid electrolyte material containing the solid electrolyte between the layered positive electrode material and the layered negative electrode material;
Including
In the electrode material preparation step,
A solid electrolyte preparation step of preparing a solid electrolyte using GeO 2 and a plurality of water soluble compounds as a raw material by a solution method;
An active material mixing step of mixing a powdered electrode active material with the raw material in the process of manufacturing the solid electrolyte by the solid electrolyte manufacturing step;
Run
In the solid electrolyte preparation step,
Mixing the GeO 2 in water with a first mixing step;
Ammonia concentration adjusting step of adding ammonia to the mixed solution obtained in the first mixing step to dissolve the GeO 2 in the solution to obtain a first solution and adjusting the ammonia concentration of the first solution; ,
A second mixing step of mixing the plurality of water-soluble compounds into the first solution to obtain a second solution;
Heat treating the second solution at a temperature lower than a calcination temperature at which the solid electrolyte crystallizes to obtain an amorphous solid electrolyte;
Including
In the ammonia concentration adjusting step, the ammonia concentration of the first solution is adjusted to a concentration at which all the water-soluble compounds dissolve.
Performing the active material mixing step between the second mixing step and the vitrification step;
A method of manufacturing an all solid battery characterized in that
JP2017165191A 2017-08-30 2017-08-30 A method for manufacturing a solid electrolyte, a method for manufacturing an electrode material for an all-solid-state battery, and a method for manufacturing an all-solid-state battery. Active JP6971089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017165191A JP6971089B2 (en) 2017-08-30 2017-08-30 A method for manufacturing a solid electrolyte, a method for manufacturing an electrode material for an all-solid-state battery, and a method for manufacturing an all-solid-state battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165191A JP6971089B2 (en) 2017-08-30 2017-08-30 A method for manufacturing a solid electrolyte, a method for manufacturing an electrode material for an all-solid-state battery, and a method for manufacturing an all-solid-state battery.

Publications (2)

Publication Number Publication Date
JP2019046559A true JP2019046559A (en) 2019-03-22
JP6971089B2 JP6971089B2 (en) 2021-11-24

Family

ID=65814461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165191A Active JP6971089B2 (en) 2017-08-30 2017-08-30 A method for manufacturing a solid electrolyte, a method for manufacturing an electrode material for an all-solid-state battery, and a method for manufacturing an all-solid-state battery.

Country Status (1)

Country Link
JP (1) JP6971089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797571A (en) * 2019-10-25 2020-02-14 湖北万润新能源科技发展有限公司 Preparation method and application of oxide solid electrolyte suitable for lithium iron phosphate material
WO2021125344A1 (en) * 2019-12-20 2021-06-24 Dowaエレクトロニクス株式会社 Amorphous lithium ion-conductive oxide powder, method for producing same, and method for producing lithium ion-conductive oxide powder having nasicon crystal structure
US11677096B2 (en) 2020-05-29 2023-06-13 Taiyo Yuden Co., Ltd. Solid electrolyte, all solid battery, and manufacturing method of all solid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002416A (en) * 1999-06-17 2001-01-09 Mitsui Chemicals Inc Production of ethylene glycol soluble germanium dioxide and dissolving method thereof
JP2013127945A (en) * 2011-11-15 2013-06-27 Toyota Motor Corp Method for manufacturing nonaqueous electrolytic solution secondary battery, and nonaqueous electrolytic solution secondary battery
JP2013155068A (en) * 2012-01-30 2013-08-15 Nippon Electric Glass Co Ltd Precursor glass for lithium ion conductor and lithium ion conductor
WO2015064351A1 (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/‌electrode-active-material complex
JP2016177964A (en) * 2015-03-19 2016-10-06 Fdk株式会社 Production method of solid electrolyte, and all-solid battery
JP2017054634A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Sulfide solid battery
JP2017157307A (en) * 2016-02-29 2017-09-07 Fdk株式会社 Method for manufacturing all-solid battery, and solid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002416A (en) * 1999-06-17 2001-01-09 Mitsui Chemicals Inc Production of ethylene glycol soluble germanium dioxide and dissolving method thereof
JP2013127945A (en) * 2011-11-15 2013-06-27 Toyota Motor Corp Method for manufacturing nonaqueous electrolytic solution secondary battery, and nonaqueous electrolytic solution secondary battery
JP2013155068A (en) * 2012-01-30 2013-08-15 Nippon Electric Glass Co Ltd Precursor glass for lithium ion conductor and lithium ion conductor
WO2015064351A1 (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/‌electrode-active-material complex
JP2016177964A (en) * 2015-03-19 2016-10-06 Fdk株式会社 Production method of solid electrolyte, and all-solid battery
JP2017054634A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Sulfide solid battery
JP2017157307A (en) * 2016-02-29 2017-09-07 Fdk株式会社 Method for manufacturing all-solid battery, and solid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797571A (en) * 2019-10-25 2020-02-14 湖北万润新能源科技发展有限公司 Preparation method and application of oxide solid electrolyte suitable for lithium iron phosphate material
WO2021125344A1 (en) * 2019-12-20 2021-06-24 Dowaエレクトロニクス株式会社 Amorphous lithium ion-conductive oxide powder, method for producing same, and method for producing lithium ion-conductive oxide powder having nasicon crystal structure
CN114867685A (en) * 2019-12-20 2022-08-05 同和电子科技有限公司 Amorphous lithium ion-conductive oxide powder, method for producing same, and method for producing lithium ion-conductive oxide powder having NASICON-type crystal structure
CN114867685B (en) * 2019-12-20 2024-03-01 同和电子科技有限公司 Amorphous lithium ion conductive oxide powder, method for producing same, and method for producing lithium ion conductive oxide powder having NASICON-type crystal structure
US11677096B2 (en) 2020-05-29 2023-06-13 Taiyo Yuden Co., Ltd. Solid electrolyte, all solid battery, and manufacturing method of all solid battery

Also Published As

Publication number Publication date
JP6971089B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
CN108367924B (en) Electrolyte material having NASICON structure for solid sodium ion battery and method for producing same
Ren et al. Oxide electrolytes for lithium batteries
Ma et al. A Novel Sol–Gel Method for Large‐Scale Production of Nanopowders: Preparation of Li1. 5Al0. 5Ti1. 5 (PO 4) 3 as an Example
Zhang et al. Preparation and electrochemical properties of Li1+ xAlxGe2-x (PO4) 3 synthesized by a sol-gel method
KR101731240B1 (en) Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
US10026990B2 (en) Lithium-ion conductive garnet and method of making membranes thereof
TWI434452B (en) Ion conductor having a garnet structure
Spong et al. A solution–precursor synthesis of carbon-coated LiFePO4 for Li-ion cells
CN110265708B (en) Solid-phase synthesis method for synthesizing garnet-structured lithium lanthanum zirconium oxygen-based solid electrolyte material under synergistic action of quaternary ammonium hydroxide
Liu et al. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
JP2019046559A (en) Method for manufacturing solid electrolyte, method for manufacturing all-solid battery electrode material, and method for manufacturing all-solid battery
JP6767209B2 (en) Manufacturing method of all-solid-state battery
US20210155480A1 (en) Method for preparing ceramic solid electrolyte for lithium secondary battery
JP6757573B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
Saha et al. Polymorphism in Li4Zn (PO4) 2 and stabilization of its structural disorder to improve ionic conductivity
JP2017182949A (en) Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
WO2017141742A1 (en) Solid electrolyte and all-solid-state battery
CN113526560B (en) Sodium-potassium co-embedded metal oxide cathode material and preparation method thereof
JP3706718B2 (en) Lithium ion secondary battery positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2010248044A (en) LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
KR20150017250A (en) Method of manufacturing solid electrolye for lithium secondary battery, solid electrolye for lithium secondary battery thereof, and lithium secondary battery including the solid electrolye
JP7022616B2 (en) Manufacturing method of positive electrode active material
WO2018088424A1 (en) Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
JP6937198B2 (en) Manufacturing method of solid electrolyte, manufacturing method of electrode material for all-solid-state battery, and manufacturing method of all-solid-state battery
JPH02162605A (en) Lithium ion conductive solid electrolyte and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150