JP2019045065A - Ventilation control method and ventilation control system - Google Patents
Ventilation control method and ventilation control system Download PDFInfo
- Publication number
- JP2019045065A JP2019045065A JP2017168283A JP2017168283A JP2019045065A JP 2019045065 A JP2019045065 A JP 2019045065A JP 2017168283 A JP2017168283 A JP 2017168283A JP 2017168283 A JP2017168283 A JP 2017168283A JP 2019045065 A JP2019045065 A JP 2019045065A
- Authority
- JP
- Japan
- Prior art keywords
- air quality
- room
- ventilation
- value
- difference value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 28
- 238000005259 measurement Methods 0.000 claims abstract description 59
- 238000013461 design Methods 0.000 claims description 14
- 239000000428 dust Substances 0.000 claims description 5
- 239000012855 volatile organic compound Substances 0.000 claims description 2
- 239000013643 reference control Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000003570 air Substances 0.000 description 103
- 238000003860 storage Methods 0.000 description 16
- 230000033228 biological regulation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007430 reference method Methods 0.000 description 3
- 238000010171 animal model Methods 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
Landscapes
- Ventilation (AREA)
Abstract
Description
本発明は、室内の換気回数を制御する換気制御方法および換気制御システムに関する。 The present invention relates to a ventilation control method and a ventilation control system for controlling the number of ventilations in a room.
従来より、実験動物施設をはじめとする各種の研究施設や製造施設では、室内の清浄度維持や汚染物質の希釈のために、施設建設時に大量の換気回数(1時間あたりの各部屋の換気回数)にて設計・建築されることが多い。なお、換気回数としては、実用上は部屋の換気風量を部屋体積で除した数値が用いられている。 Conventionally, in various research facilities and manufacturing facilities, including laboratory animal facilities, a large number of ventilations at the time of construction of the facilities (ventilation frequency of each room per hour for maintenance of indoor cleanliness and dilution of pollutants) It is often designed and built at. In addition, as a ventilation frequency, the numerical value which divided the ventilation air volume of the room by the room volume is used practically.
これらの施設では、空気環境を第一優先とする考えに基づき、従来は常時換気回数を一定とする定風量方式が主流となっており、省エネルギーの観点で課題があった。そこで、近年になって、室内の空気質の維持と省エネルギーとを両立させる手法として、部屋の利用状況や室内空気の汚れ具合に応じて換気回数を柔軟に変更する、デマンド・コントロール換気という手法が主に米国において採用され始めてきた(例えば、非特許文献1参照)。 In these facilities, based on the idea of giving priority to the air environment, a constant air flow method in which the number of times of ventilation is always constant has conventionally been the mainstream, and there was a problem in terms of energy saving. Therefore, in recent years, as a method to balance the maintenance of indoor air quality and energy saving, there is a method called demand control ventilation that flexibly changes the number of ventilations according to the room usage condition and the degree of contamination of the indoor air. It has mainly begun to be adopted in the United States (see, for example, Non-Patent Document 1).
デマンド・コントロール換気の手法には、大きく分けて、集中計測・差分制御方式と個別計測・直接制御方式とがある。この制御方式について、それぞれのシステムの概要、制御方式、課題を以下に記す。 The methods of demand control ventilation are roughly classified into centralized measurement and differential control methods and individual measurement and direct control methods. About this control method, the outline of each system, the control method, and a subject are described below.
(1)集中計測・差分制御方式
図6に、集中計測・差分制御方式のシステムの概要を示す。図6において、101,102は各部屋の室内、103,104は部屋101,102への給気ダクト、105,106は部屋101,102からの排気ダクトである。給気ダクト103,104には、ダクト挿入型のプローブ107,108が設置され、排気ダクト105,106にはダクト挿入型のプローブ109,110が設置されている。また、部屋101には室内設置型のプローブ111が設けられている。
(1) Centralized Measurement / Differential Control Method FIG. 6 shows an outline of a centralized measurement / differential control system. In FIG. 6, reference numerals 101 and 102 denote rooms in the respective rooms, reference numerals 103 and 104 denote air supply ducts to the rooms 101 and 102, and reference numerals 105 and 106 denote exhaust ducts from the rooms 101 and 102. In the air supply ducts 103 and 104, duct insertion type probes 107 and 108 are installed, and in the exhaust ducts 105 and 106, duct insertion type probes 109 and 110 are installed. In the room 101, an indoor installation type probe 111 is provided.
このシステムでは、バキュームポンプ112で、エアデータルータ113を介して、プローブ107〜111が設置されている各箇所の空気を順番に吸引し、この吸引した各箇所の空気の空気質(CO2濃度、粉塵濃度、総揮発性有機化合物濃度(TVOC濃度)など)を1台のセンサ114で計測する。このセンサ114で計測された各箇所の空気の空気質は情報管理サーバ115に送られ、データ無線端末116を通して、データセンタ117へ送信される。データセンタ117では、部屋101,102へ供給される空気(給気)の空気質と室内空気(または排気)の空気質との差分に基づいて、部屋101や102の室内の清浄度や汚れ具合を判断する。このデータセンタ117での判断結果に基づいて部屋101や102の室内の換気回数がフィードバック制御される。 In this system, the air of each location where the probes 107 to 111 are installed is sequentially suctioned by the vacuum pump 112 via the air data router 113, and the air quality (CO 2 concentration, Dust concentration, total volatile organic compound concentration (TVOC concentration) and the like are measured by one sensor 114. The air quality of air at each location measured by the sensor 114 is sent to the information management server 115, and is sent to the data center 117 through the data wireless terminal 116. In the data center 117, based on the difference between the air quality of the air (supply air) supplied to the rooms 101 and 102 and the air quality of the room air (or exhaust air), the cleanliness and the degree of contamination of the rooms 101 and 102 are obtained. To judge. The number of times of ventilation in the rooms 101 and 102 is feedback controlled based on the determination result in the data center 117.
しかしながら、この集中計測・差分制御方式では、プローブ107〜111が設置されている各箇所からセンサ114まで吸引用のチューブを施工しなければならないため、工事費が多額となる。また、計測対象ガスがチューブ内面に残留・付着することにより計測精度が悪化する虞があり、計測値の信頼性が低い(他系統との相互干渉)。 However, in this centralized measurement / differential control method, since it is necessary to construct a suction tube from each location where the probes 107 to 111 are installed to the sensor 114, the construction cost is large. In addition, the measurement target gas may remain or adhere to the inner surface of the tube, which may deteriorate the measurement accuracy, and the reliability of the measurement value is low (interference with other systems).
(2)個別計測・直接制御方式
個別計測・直接制御方式では、各部屋の室内または排気ダクト1箇所に個別に空気質を計測するセンサを設置して、室内空気の洗浄度や汚れ具合を判断し、直接この計測値を用いて各部屋の室内の換気回数をフィードバック制御する。
(2) Individual measurement and direct control method In the individual measurement and direct control method, a sensor for measuring the air quality is installed individually in the room of each room or at one exhaust duct to judge the degree of cleaning and the degree of contamination of the room air. And feedback control of the ventilation frequency of the room of each room directly using this measurement value.
図7に、個別計測・直接制御方式のシステムの概要を示す。図7において、201は各部屋の室内、202は室内201への給気ダクト、203は室内201からの排気ダクト、204は給気ダクト202に設けられた可変風量制御バルブ(給気VAV)、205は排気ダクト203に設けられた可変風量制御バルブ(排気VAV)、206は室圧センサ、207はCO2センサである。 FIG. 7 shows an outline of a system of the individual measurement / direct control system. In FIG. 7, 201 is the room of each room, 202 is an air supply duct to room 201, 203 is an exhaust duct from room 201, 204 is a variable air volume control valve (air supply VAV) provided for air supply duct 202, 205 is a variable air volume control valve (exhaust VAV) provided in the exhaust duct 203, 206 is a room pressure sensor, and 207 is a CO2 sensor.
このシステムでは、CO2センサ207によって室内201からの排気のCO2濃度を計測し、この計測されるCO2濃度を規定値に保つように室内201の換気回数を制御する。すなわち、給気VAV204および換気VAV205によって、室内201への給気および排気の風量を調整する。 In this system, the CO 2 concentration of exhaust gas from the room 201 is measured by the CO 2 sensor 207, and the number of times of ventilation in the room 201 is controlled so as to maintain the measured CO 2 concentration at a prescribed value. That is, the air volume of the air supply and exhaust to the room 201 is adjusted by the air supply VAV 204 and the ventilation VAV 205.
また、このシステムでは、室圧センサ206によって室内201の室圧を計測し、この計測される室圧を目標値に保つように室内201の室圧を制御する。すなわち、排気VAV205が調整する室内201からの排気の風量を制御する。 Further, in this system, the room pressure of the room 201 is measured by the room pressure sensor 206, and the room pressure of the room 201 is controlled to maintain the measured room pressure at a target value. That is, the air volume of the exhaust from the room 201 adjusted by the exhaust VAV 205 is controlled.
なお、この換気回数の制御と室圧の制御とは、給気VAV204と排気VAV205との相互通信によって協調して行われる。 The control of the number of times of ventilation and the control of the room pressure are coordinated with each other by the mutual communication of the supply VAV 204 and the exhaust VAV 205.
しかしながら、この個別計測・直接制御方式では、CO2センサには経年による計測値のずれ(ドリフトと呼ぶ)があるため、計測値が徐々に室内空気の状態を正しく反映できなくなってしまう。 However, in the individual measurement / direct control method, the CO2 sensor has a deviation of measured values due to aging (referred to as a drift), so that the measured values can not gradually reflect the state of indoor air.
また、研究施設や製造施設においては、室内のCO2濃度の規定値が存在しない。すなわち、室内の清浄度維持や汚染物質の希釈のために換気回数が多いため、実際の室内のCO2濃度はビル管理法で規定された1000ppmよりもかなり低い数値で推移する。このため、室内または排気ダクト1箇所のCO2濃度の計測値によって制御を行う方法は不適切である。 In addition, there are no prescribed values for indoor CO 2 concentration in research facilities and manufacturing facilities. That is, since the number of ventilations is high for maintaining the cleanliness of the room and diluting the pollutants, the actual CO 2 concentration in the room remains at a value considerably lower than 1000 ppm specified by the Building Management Law. For this reason, the method of performing control by the measurement value of the CO2 concentration in the room or at one exhaust duct is inappropriate.
また、室内または排気ダクトのCO2濃度の計測値自体(差分でない)は、施設の周囲環境や外気状況によって大きく変動するため(100ppm程度)、換気の大小による汚染物質の希釈や滞留の度合いを必ずしも反映していない。 In addition, because the measured value (not difference) of CO2 concentration in the room or exhaust duct varies greatly depending on the surrounding environment of the facility and the external air conditions (about 100 ppm), the degree of dilution and retention of contaminants due to the size of ventilation is not necessarily required. It does not reflect.
本発明は、このような課題を解決するためになされたもので、その目的とするところは、個別計測・直接制御方式をベースとした基準差分値参照方式とすることにより、より効果的に室内の換気回数を制御することが可能な換気制御方法および換気制御システムを提供することにある。 The present invention has been made to solve such a problem, and the object of the present invention is to make the room more effectively by using a reference difference value reference method based on an individual measurement / direct control method. It is to provide a ventilation control method and a ventilation control system capable of controlling the ventilation frequency of
このような目的を達成するために本発明は、室内(1)への給気の空気質を第1の空気質として計測する第1の空気質計測ステップ(S101)と、室内の空気質あるいは室内からの排気の空気質を第2の空気質として計測する第2の空気質計測ステップ(S102)と、予め定められたスケジュールに従って、定期的かつ一時的に室内の換気回数を設計規定換気回数に変更して、その際の第1の空気質の計測値と第2の空気質の計測値との差分を基準差分値(ΔSr)として取得する基準差分値取得ステップ(S202)と、基準差分値が取得される毎に、次の基準差分値が取得されるまでの間、第1の空気質の計測値と第2の空気質の計測値との差分の実測値(ΔSpv)と今回取得された基準差分値(ΔSr)との差(Δα)に基づいて室内の換気回数を制御する換気回数制御ステップ(S207)とを備えることを特徴とする。 In order to achieve such an object, according to the present invention, there is provided a first air quality measuring step (S101) for measuring the air quality of air supplied to the room (1) as a first air quality, Second air quality measurement step (S102) for measuring the air quality of exhaust air from the room as the second air quality, and according to a predetermined schedule, design the number of times of ventilation in the room periodically and temporarily And a reference difference value acquiring step (S202) of acquiring the difference between the first air quality measurement value and the second air quality measurement value as the reference difference value (ΔSr). Every time the value is acquired, the actual measurement value (ΔSpv) of the difference between the first air quality measurement value and the second air quality measurement value is acquired this time until the next reference difference value is acquired. Based on the difference (Δα) from the reference difference value (ΔSr) And a ventilation frequency control step (S207) for controlling the number of times of ventilation inside.
この発明では、予め定められたスケジュールに従って、定期的かつ一時的に室内の換気回数を設計規定換気回数に変更して、その際の第1の空気質の計測値と第2の空気質の計測値との差分を基準差分値として取得する。例えば、運用上室内の空気質が最もよくなると予想される時間をスケジュールされた時間(例えば、毎週月曜日のAM1:00)とし、このスケジュールされた時間に達する毎に基準差分値を取得する。そして、基準差分値が取得される毎に、次の基準差分値が取得されるまでの間、第1の空気質の計測値と第2の空気質の計測値との差分の実測値(実測差分値)と今回取得された基準差分値との差に基づいて室内の換気回数を制御する。なお、本発明において、空気質としては、例えばCO2濃度、粉塵濃度、TVOC濃度などが挙げられる。 In this invention, according to a predetermined schedule, the ventilation frequency of the room is changed to the design prescribed ventilation frequency regularly and temporarily, and the measurement value of the first air quality and the measurement of the second air quality at that time. The difference with the value is acquired as a reference difference value. For example, the time when the air quality in the room is expected to be the best in operation is set as the scheduled time (for example, AM 1:00 every Monday), and the reference difference value is acquired each time this scheduled time is reached. Then, every time the reference difference value is acquired, the measured value of the difference between the first air quality measurement value and the second air quality measurement value (measured value) until the next reference difference value is acquired. The ventilation frequency of the room is controlled based on the difference between the difference value) and the reference difference value acquired this time. In the present invention, examples of air quality include CO 2 concentration, dust concentration, TVOC concentration, and the like.
本発明では、空気質の計測値に経年によるドリフトが発生した場合でも、基準差分値が定期的に取得され、かつ換気回数の制御が実測差分値と基準差分値との差に基づいて行われるため、空気質の計測値の真値に対するドリフトの影響が相殺されて、実質上問題にならなくなる。また、設計規定換気回数における第1の空気質の計測値と第2の空気質の計測値との差分を基準差分値とし、この基準差分値を実測差分値との差を求める際の基準にしているため、周囲環境や外気状況などの影響を受けず、あくまでも設計規定換気回数で換気をした場合の室内環境を基準としたデマンド・コントロール換気制御が実現できる。 In the present invention, even when drift due to aging occurs in the measured value of air quality, the reference difference value is periodically acquired, and the control of the ventilation frequency is performed based on the difference between the actual measurement difference value and the reference difference value. Therefore, the influence of the drift on the true value of the measured value of air quality is offset, and the problem does not substantially occur. Also, the difference between the measured value of the first air quality and the measured value of the second air quality in the design prescribed ventilation frequency is used as a reference difference value, and this reference difference value is used as a reference when obtaining the difference from the measured difference value. Therefore, demand-controlled ventilation control can be realized based on the indoor environment when ventilation is performed with the design regulation frequency without being influenced by the ambient environment or the outside air condition.
なお、上記説明では、一例として、発明の構成要素に対応する図面上の構成要素を、括弧を付した参照符号によって示している。 In the above description, as an example, constituent elements on the drawing corresponding to constituent elements of the invention are indicated by reference numerals in parentheses.
以上説明したように、本発明によれば、個別計測・直接制御方式をベースとした基準差分値参照方式とすることにより、空気質の計測値の真値に対するドリフトの影響が相殺され、周囲環境や外気状況などの影響を受けず、あくまでも設計規定換気回数で換気をした場合の室内環境を基準としたデマンド・コントロール換気制御が実現されるものとなり、より効果的に室内の換気回数を制御することが可能となる。 As described above, according to the present invention, the effect of drift on the true value of the measured value of air quality is offset by using the reference difference value reference method based on the individual measurement and direct control method, and the surrounding environment Demand-controlled ventilation control based on the indoor environment when ventilation is performed with the design regulation frequency is realized without being influenced by the ambient air conditions, etc., and the number of ventilation cycles in the room is controlled more effectively. It becomes possible.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。本実施の形態では、従来技術の「個別計測・直接制御方式」をベースとして、「基準差分値参照方式」による、デマンド・コントロール換気制御を行う。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In the present embodiment, demand control ventilation control is performed by the “reference difference value reference method” based on the “individual measurement / direct control method” of the prior art.
図1に、本実施の形態の換気制御システムの概要を示す。図1において、1は各部屋の室内、2は室内1への給気ダクト、3は室内1からの排気ダクト、4は給気ダクト2に設けられた可変風量制御バルブ(給気VAV)、5は排気ダクト3に設けられた可変風量制御バルブ(排気VAV)、6は室圧センサ、7,8はCO2センサ、9は空調機、10は換気回数制御装置である。 FIG. 1 shows an outline of the ventilation control system of the present embodiment. In FIG. 1, 1 is a room of each room, 2 is an air supply duct to room 1, 3 is an exhaust duct from room 1, 4 is a variable air volume control valve (air supply VAV) provided in air supply duct 2, 5 is a variable air flow control valve (exhaust VAV) provided in the exhaust duct 3, 6 is a room pressure sensor, 7 and 8 are CO2 sensors, 9 is an air conditioner, and 10 is a ventilation frequency control device.
この換気制御システム300において、給気ダクト2、排気ダクト3、給気VAV4、排気VAV5、室圧センサ6、CO2センサ8は、各部屋毎に設けられている。すなわち、室内1−1〜1−nに対し、給気ダクト2−1〜2−n、排気ダクト3−1〜3−n、給気VAV4−1〜4−n、排気VAV5−1〜5−n、室圧センサ6−1〜6−n、CO2センサ8−1〜8−nが設けられている。 In the ventilation control system 300, the air supply duct 2, the air exhaust duct 3, the air supply VAV4, the exhaust air VAV5, the room pressure sensor 6, and the CO2 sensor 8 are provided for each room. That is, the air supply ducts 2-1 to 2-n, the exhaust air ducts 3-1 to 3-n, the air supply VAV4-1 to 4-n, the exhaust air VAV5-1 to 5-1 with respect to the interior 1-1 to 1-n. Chamber pressure sensors 6-1 to 6-n and CO2 sensors 8-1 to 8-n.
また、この換気制御システム300において、CO2センサ7は、給気ダクト2−1〜2−nにつながる空調機9からのメイン給気ダクト11に設けられている。すなわち、CO2センサ8は各部屋の排気ダクト3毎に設置(n箇所)されているが、CO2センサ7はメイン給気ダクト11にのみ設置(1箇所)されている。以下、CO2センサ7を給気側のCO2センサと呼び、CO2センサ8を排気側のCO2センサと呼ぶ。 In the ventilation control system 300, the CO2 sensor 7 is provided in the main air supply duct 11 from the air conditioner 9 connected to the air supply ducts 2-1 to 2-n. That is, although the CO 2 sensor 8 is installed (n locations) for each exhaust duct 3 of each room, the CO 2 sensor 7 is installed (only 1 location) only in the main air supply duct 11. Hereinafter, the CO2 sensor 7 is referred to as a charge-side CO2 sensor, and the CO2 sensor 8 is referred to as an exhaust-side CO2 sensor.
換気回数制御装置10は、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種機能を実現させるプログラムとによって実現され、図2にその要部の機能ブロック図を示すように、スケジュール記憶部10−1と基準差分値取得部10−2と基準差分値記憶部10−3と換気回数制御部10−4とを備えている。 The ventilation frequency control device 10 is realized by hardware including a processor and a storage device, and a program for realizing various functions in cooperation with the hardware, and a functional block diagram of the main part is shown in FIG. A schedule storage unit 10-1, a reference difference value acquisition unit 10-2, a reference difference value storage unit 10-3, and a ventilation frequency control unit 10-4.
この換気回数制御装置10において、スケジュール記憶部10−1には、運用上室内の汚染物質の発生が最も少ないと予想される時間(この例では、室内のCO2濃度が最も小さいと予想される時間)をスケジュールされた時間(例えば、毎週月曜日のAM1:00)Tとし、このスケジュールされた時間Tが室内1毎に記憶されている。 In the ventilation frequency control device 10, the schedule storage unit 10-1 is operated for the time when the occurrence of the pollutant in the room is expected to be the smallest in operation (in this example, the time when the CO2 concentration in the room is expected to be the smallest). ) Is a scheduled time (for example, every Monday AM 1:00) T, and this scheduled time T is stored for each room 1.
すなわち、スケジュール記憶部10−1には、室内1−1〜1−nについて、スケジュールされた時間TがT1〜Tnとして記憶されている。なお、このスケジュールは、初期の連続計測データと施設特性を考慮して決定するものとする。例えば、室内1が夜行性のマウスの飼育室である場合には昼間の時間として時間Tを決定し、室内1が昼行性のマーモセットの飼育室である場合には深夜の時間として時間Tを決定する。 That is, scheduled times T are stored as T1 to Tn in the room 1-1 to 1-n in the schedule storage unit 10-1. In addition, this schedule shall be determined in consideration of initial continuous measurement data and facility characteristics. For example, when room 1 is a breeding room for nocturnal mice, time T is determined as daytime time, and when room 1 is a breeding room for diurnal marmoset, time T is set as midnight time. decide.
基準差分値取得部10−2は、スケジュール記憶部10−1に記憶されているスケジュールされた時間T(T1〜Tn)に達する毎に、一時的に室内1(1−1〜1−n)の換気回数を設計規定換気回数に変更して、その際の給気側のCO2センサ7からのCO2濃度の計測値S1と排気側のCO2センサ8(8−1〜8−n)からのCO2濃度の計測値S2(S21〜S2n)との差分を基準差分値ΔSr(ΔSr1〜ΔSrn)として取得する。この取得された基準差分値ΔSr(ΔSr1〜ΔSrn)は基準差分値記憶部10−3に更新・記憶される。 The reference difference value acquiring unit 10-2 temporarily stores the indoor 1 (1-1 to 1-n) each time the scheduled time T (T1 to Tn) stored in the schedule storage unit 10-1 is reached. Change the ventilation frequency of the design to the design prescribed ventilation frequency, and then measure the measured value S1 of the CO2 concentration from the CO2 sensor 7 on the air supply side and the CO2 from the CO2 sensor 8 (8-1 to 8-n) on the exhaust side obtaining a difference between the density measured value S2 (S2 1 ~S2n) as a reference difference value ΔSr (ΔSr 1 ~ΔSrn). The acquired reference difference value ΔSr (ΔSr 1 to ΔSrn) is updated and stored in the reference difference value storage unit 10-3.
換気回数制御部10−4は、基準差分値取得部10−2によって基準差分値ΔSr(ΔSr1〜ΔSrn)が取得される毎に、次の基準差分値ΔSr(ΔSr1〜ΔSrn)が取得されるまでの間、給気側のCO2センサ7からのCO2濃度の計測値S1と排気側のCO2センサ8(8−1〜8−n)からのCO2濃度の計測値S2(S21〜S2n)との差分の実測値ΔSpv(ΔSpv1〜ΔSpvn)と今回取得された基準差分値ΔSr(ΔSr1〜ΔSrn)との差Δα(Δα1〜Δαn)に基づいて、室内1(1−1〜1−n)の換気回数を制御する。すなわち、給気VAV4(4−1〜4−n)および換気VAV5(5−1〜5−n)によって、室内1(1−1〜1−n)への給気および排気の風量を調整する。 Ventilation rate control unit 10-4, each time the reference difference value ΔSr (ΔSr 1 ~ΔSrn) is acquired by the reference difference value acquiring unit 10-2, the following reference difference value ΔSr (ΔSr 1 ~ΔSrn) is obtained until that, the measured value of the CO2 concentration of CO2 sensor 8 with CO2 concentration measurement value S1 exhaust side (8-1 to 8-n) from CO2 sensor 7 supply side S2 (S2 1 ~S2n) based on a difference Δα (Δα 1 ~Δαn) between the difference of the measured value ΔSpv (ΔSpv 1 ~ΔSpvn) and obtained this time reference difference value ΔSr (ΔSr 1 ~ΔSrn) with an indoor 1 (1-1 to 1 -N) control the ventilation frequency. That is, the air volume of air supply and exhaust to room 1 (1-1 to 1-n) is adjusted by air supply VAV 4 (4-1 to 4-n) and ventilation VAV 5 (5-1 to 5-n). .
この換気回数制御装置10における各部の処理動作について、図3に示すフローチャートを参照して、室内1−1を代表してより具体的に説明する。 The processing operation of each part in the ventilation frequency control device 10 will be more specifically described on behalf of the room 1-1 with reference to the flowchart shown in FIG.
なお、図2において、給気側のCO2センサ7によるCO2濃度の計測(給気側のCO2濃度の計測)および排気側のCO2センサ8によるCO2濃度の計測(排気側のCO2濃度の計測)は、所定の周期(例えば1分毎)で行われているものとする(図4に示すステップS101,S102)。 In FIG. 2, measurement of the CO2 concentration by the CO2 sensor 7 on the air supply side (measurement of the CO2 concentration on the air supply side) and measurement of the CO2 concentration by the CO2 sensor 8 on the exhaust side (measurement of the CO2 concentration on the exhaust side) It is assumed that the process is performed at a predetermined cycle (for example, every one minute) (steps S101 and S102 shown in FIG. 4).
換気回数制御装置10において、基準差分値取得部10−2は、スケジュール記憶部10−1に記憶されているスケジュール時間T1になると(ステップS201のYES)、一時的(例えば、10分間)に室内1−1の換気回数を設計規定換気回数(例えば、1時間あたり15回)に変更して、その際の給気側のCO2センサ7からのCO2濃度の計測値S1とCO2センサ8−1からのCO2濃度の計測値S21との差分を基準差分値ΔSr1として取得する(ステップS202)。この場合、室内1−1の換気回数の設計規定換気回数への変更は、給気VAV4−1および換気VAV5−1によって、室内1−1への給気の風量を設計規定風量に調整することによって行う。 In the ventilation frequency control device 10, the reference difference value acquisition unit 10-2 temporarily (for example, 10 minutes) indoors when the schedule time T1 stored in the schedule storage unit 10-1 comes (YES in step S201). Change the ventilation frequency of 1-1 to the design regulation ventilation frequency (for example, 15 times per hour), and from the measured value S1 of the CO2 concentration from the CO2 sensor 7 on the air supply side and the CO2 sensor 8-1 get the difference between the measured value S2 1 of CO2 concentration as the reference difference value .DELTA.Sr 1 (step S202). In this case, change the ventilation frequency of the room 1-1 to the design regulation ventilation frequency by adjusting the air volume of the air supply to the room 1-1 to the design regulation air volume by the air supply VAV4-1 and the ventilation VAV5-1. Do by.
そして、基準差分値取得部10−2は、ステップS202で取得した基準差分値ΔSr1を基準差分値記憶部(メモリ)10−3に記憶させる(ステップS203)。この場合、前回取得した基準差分値ΔSr1が基準差分値記憶部10−3に記憶されていれば、その記憶されている前回の基準差分値ΔSr1を今回取得した基準差分値ΔSr1に書き替える。すなわち、基準差分値記憶部10−3に記憶されている基準差分値ΔSr1を更新する。 Then, the reference difference value acquisition unit 10-2 stores the reference difference value ΔSr 1 acquired in step S202 in the reference difference value storage unit (memory) 10-3 (step S203). In this case, if the stored reference difference value .DELTA.Sr 1 acquired previously is the reference difference value storage unit 10-3, write the reference difference value .DELTA.Sr 1 acquired this time the reference difference value .DELTA.Sr 1 of last time is the stored Change. That is, the reference difference value ΔSr 1 stored in the reference difference value storage unit 10-3 is updated.
換気回数制御装置10において、換気回数制御部10−4は、基準差分値取得部10−2によって基準差分値ΔSr1が取得されると、この取得された基準差分値ΔSr1を今回取得された基準差分値ΔSr1として基準差分値記憶部10−3から読み出し(ステップS204)、また、その時の給気側のCO2センサ7からのCO2濃度の計測値S1と排気側のCO2センサ8−1からのCO2濃度の計測値S21との差分を実測差分値ΔSpv1として取得し(ステップS205)し、この実測差分値ΔSpv1と今回取得された基準差分値ΔSr1との差Δα1を求め(ステップS206:図5参照)、この差Δα1に基づいて室内1−1の換気回数を制御する(ステップS207)。すなわち、給気VAV4−1および換気VAV5−1によって、室内1−1への給気の風量を調整する。 In the ventilation frequency control device 10, when the reference difference value ΔSr 1 is acquired by the reference difference value acquiring unit 10-2, the ventilation frequency control unit 10-4 acquires the acquired reference difference value ΔSr 1 this time. Read out from the reference difference value storage unit 10-3 as the reference difference value ΔSr 1 (step S204), and also from the measured value S1 of the CO 2 concentration from the CO 2 sensor 7 on the air supply side and the CO 2 sensor 8-1 on the exhaust side acquires the difference between the measured value S2 1 of CO2 concentration as measured difference value DerutaSpv 1 (step S205), and obtains a difference [Delta] [alpha] 1 between the reference difference value .DELTA.Sr 1 to this actual difference value DerutaSpv 1 obtained this time ( Step S206: Refer to FIG. 5), and control the ventilation frequency of the room 1-1 based on the difference Δα 1 (step S207). That is, the air volume of the air supply to the room 1-1 is adjusted by the air supply VAV4-1 and the ventilation VAV5-1.
なお、換気回数制御(ステップS207)は、計測周期とは別に設定する所定の周期(例えば15分毎)で行うものとする。これは、制御の安定性向上と頻繁な動作によるVAVの摩耗防止のために有効である。 The ventilation frequency control (step S207) is performed at a predetermined cycle (for example, every 15 minutes) set separately from the measurement cycle. This is effective for improving control stability and preventing wear of VAV due to frequent operation.
換気回数制御装置10は、以降、ステップS201において次回のスケジュール時間T1に達したことが確認されるまでの間、ステップS201のNOに従って、ステップS204〜S207の処理動作を繰り返す。これにより、基準差分値ΔSr1が取得される毎に、次の基準差分値ΔSr1が取得されるまでの間、実測差分値ΔSpv1と今回取得された基準差分値ΔSr1との差Δα1に基づいて、室内1−1の換気回数が制御されるものとなる。すなわち、その時々の実測差分値ΔSpv1が基準差分値ΔSr1に対してどの程度の差あるか、という観点で室内1−1の空気質が判断され、この判断結果に基づいて室内1−1の換気回数が制御されるものとなる。 Thereafter, the ventilation frequency control device 10 repeats the processing operation of steps S204 to S207 according to the NO of step S201 until it is confirmed that the next schedule time T1 is reached in step S201. Thus, each time the reference difference value .DELTA.Sr 1 is obtained, the difference [Delta] [alpha] 1 between the reference difference value .DELTA.Sr 1 of between, acquired actual difference value DerutaSpv 1 and this until the next reference difference value .DELTA.Sr 1 is obtained The ventilation frequency of the room 1-1 is controlled based on That is, the air quality of the room 1-1 is judged in terms of how much the actual measurement difference value ΔSpv 1 at that time is with respect to the reference difference value ΔSr 1 and the room 1-1 is determined based on the judgment result. The ventilation frequency of the
以上の説明から分かるように、本実施の形態によれば、CO2濃度の計測値S1,S2に経年によるドリフトが発生した場合でも、基準差分値ΔSrが定期的に取得され、かつ換気回数の制御が実測差分値ΔSpvと基準差分値ΔSrとの差Δαに基づいて行われるため、CO2濃度の計測値S1,S2の真値に対するドリフトの影響が相殺されて、実質上問題にならなくなる。 As understood from the above description, according to the present embodiment, even when drift due to aging occurs in the measured values S1 and S2 of the CO 2 concentration, the reference difference value ΔSr is periodically acquired, and control of the ventilation frequency is performed. Is performed based on the difference .DELTA..alpha. Between the actual difference value .DELTA.Spv and the reference difference value .DELTA.Sr, the influence of the drift on the true value of the measured values S1 and S2 of the CO2 concentration is canceled out and the problem does not substantially occur.
また、設計規定換気回数における給気側のCO2濃度の計測値S1と排気側のCO2濃度の計測値S2との差分を基準差分値ΔSrとし、この基準差分値ΔSrを実測差分値ΔSpvとの差を求める際の基準にしているため、周囲環境や外気状況などの影響を受けず、あくまでも設計規定換気回数で換気をした場合の室内環境を基準としたデマンド・コントロール換気制御が実現されるものとなる。 Further, the difference between the measured value S1 of the CO2 concentration on the air supply side and the measured value S2 of the CO2 concentration on the exhaust side in the design prescribed ventilation frequency is a reference difference value ΔSr, and the difference between the reference difference value ΔSr and the measured difference value ΔSpv The demand control ventilation control is realized based on the indoor environment when ventilation is performed with the design regulation frequency to the last without being influenced by the surrounding environment or the outside air condition. Become.
このようにして、本実施の形態では、より効果的に室内の換気回数を制御することが可能となる。 Thus, in the present embodiment, it is possible to control the number of ventilations in the room more effectively.
なお、上述した実施の形態では、CO2濃度を空気質として計測するようにしたが、粉塵濃度、TVOC濃度などを空気質として計測するようにしてもよい。すなわち、本発明において、空気質を計測するセンサは、CO2濃度を計測するセンサに限られるものではない。例えば、粉塵濃度を計測するセンサ、TVOC濃度を計測するセンサなど、様々な可能性があり、センサ種類に依らず本発明を適用することが可能である。 In the embodiment described above, the CO2 concentration is measured as the air quality, but the dust concentration, the TVOC concentration, or the like may be measured as the air quality. That is, in the present invention, the sensor that measures air quality is not limited to the sensor that measures the CO 2 concentration. For example, there are various possibilities, such as a sensor that measures dust concentration, a sensor that measures TVOC concentration, etc., and it is possible to apply the present invention regardless of the sensor type.
また、本発明は、実験動物施設、バイオクリーン/バイオハザード実験施設、医薬品製造施設、各種クリーンルームなどのような建物施設の風量制御システムに搭載できる可能性がある。 In addition, the present invention may be installed in an air volume control system of a building facility such as an experimental animal facility, a bioclean / biohazard experimental facility, a pharmaceutical manufacturing facility, and various clean rooms.
また、上述した実施の形態では、CO2センサ8(8−1〜8−n)を用いて室内1(1−1〜1−n)からの排気のCO2濃度を計測するようにしたが、室内(1−1〜1−n)のCO2濃度を計測するようにしてもよい。 In the embodiment described above, the CO2 concentration of the exhaust gas from the room 1 (1-1 to 1-n) is measured using the CO2 sensor 8 (8-1 to 8-n). The CO 2 concentration of (1-1 to 1-n) may be measured.
また、上述した実施の形態では、スケジュール記憶部10−1、基準差分値取得部10−2、基準差分値記憶部10−3、換気回数制御部10−4の機能を換気回数制御装置10に持たせるようにしたが、換気回数制御装置10で持っている機能を給気VAV4−1〜4−n、または排気VAV5−1〜5−nに分散して持たせるようにしてもよい。この場合には、各換気回数制御装置10(10−1〜10−n)は、給気ダクト側のCO2濃度計測値S1をコントローラ間通信などの手段によって取得する。 Further, in the above-described embodiment, the functions of the schedule storage unit 10-1, the reference difference value acquisition unit 10-2, the reference difference value storage unit 10-3, and the ventilation frequency control unit 10-4 are provided to the ventilation frequency control device 10. Although it is made to have, you may make it disperse | distribute and have the function which it has with the ventilation frequency control apparatus 10 in air supply VAV4-1-4-n or exhaust VAV5-1-5-n. In this case, each ventilation frequency control device 10 (10-1 to 10-n) acquires the measured CO2 concentration value S1 on the air supply duct side by means of inter-controller communication or the like.
〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.
1…室内、2(2−1〜2−n)…給気ダクト、3(3−1〜3−n)…排気ダクト、4(4−1〜4−n)…給気VAV、5(5−1〜5−n)…排気VAV、7…給気側のCO2センサ、8(8−1〜8−n)…排気側のCO2センサ、9…空調機、10…換気回数制御装置、10−1…スケジュール記憶部、10−2…基準差分値取得部、10−3…基準差分値記憶部、10−4…換気回数制御部。11…メイン給気ダクト。 1 ... indoor 2 (2-1 to 2-n) ... air supply duct, 3 (3-1 to 3-n) ... exhaust duct, 4 (4-1 to 4-n) ... air supply VAV, 5 ( 5-1 to 5-n) ... Exhaust VAV, 7 ... CO2 sensor on the air supply side, 8 (8-1 to 8-n) ... CO2 sensor on the exhaust side, 9 ... Air conditioner, 10 ... Ventilation frequency control device, 10-1 ... schedule storage unit, 10-2 ... reference difference value acquisition unit, 10-3 ... reference difference value storage unit, 10-4 ... ventilation frequency control unit. 11: Main air supply duct.
Claims (7)
前記室内の空気質あるいは前記室内からの排気の空気質を第2の空気質として計測する第2の空気質計測ステップと、
予め定められたスケジュールに従って、定期的かつ一時的に前記室内の換気回数を設計規定換気回数に変更して、その際の前記第1の空気質の計測値と前記第2の空気質の計測値との差分を基準差分値として取得する基準差分値取得ステップと、
前記基準差分値が取得される毎に、次の基準差分値が取得されるまでの間、前記第1の空気質の計測値と前記第2の空気質の計測値との差分の実測値と今回取得された基準差分値との差に基づいて、前記室内の換気回数を制御する換気回数制御ステップと
を備えることを特徴とする換気制御方法。 A first air quality measurement step of measuring the air quality of air supplied into the room as a first air quality;
A second air quality measurement step of measuring the air quality of the room or the air quality of exhaust air from the room as a second air quality;
According to a predetermined schedule, the ventilation frequency of the room is changed to the design prescribed ventilation frequency periodically and temporarily, and the measurement value of the first air quality and the measurement value of the second air quality at that time A reference difference value acquiring step of acquiring a difference between
Every time the reference difference value is obtained, the measured value of the difference between the first air quality measurement value and the second air quality measurement value until the next reference difference value is obtained, and And a ventilation frequency control step of controlling the number of ventilations in the room based on a difference from the reference difference value acquired this time.
前記基準差分値が取得される毎に取得された基準差分値をメモリに更新記憶させる基準差分値更新記憶ステップ
を備えることを特徴とする換気制御方法。 In the ventilation control method according to claim 1,
A reference control value updating and storing step of updating and storing the reference difference value acquired each time the reference difference value is acquired, the ventilation control method.
前記空気質は、CO2濃度である
ことを特徴とする換気制御方法。 In the ventilation control method described in claim 1 or 2,
The air quality is a CO 2 concentration.
前記空気質は、粉塵濃度である
ことを特徴とする換気制御方法。 In the ventilation control method described in claim 1 or 2,
The air quality is dust concentration.
前記空気質は、総揮発性有機化合物濃度である
ことを特徴とする換気制御方法。 In the ventilation control method described in claim 1 or 2,
The air quality is the total volatile organic compound concentration.
前記第1の空気質計測ステップは、
空調機から各部屋の室内への給気ダクト内の空気質を前記第1の空気質として計測し、
前記第2の空気質計測ステップは、
前記各部屋の室内の空気質あるいは前記各部屋の室内からの排気ダクト内の空気質を前記第2の空気質として計測し、
前記基準差分値取得ステップは、
前記各部屋の前記基準差分値を取得し、
前記換気回数制御ステップは、
前記各部屋の基準差分値が取得される毎に、次の基準差分値が取得されるまでの間、前記第1の空気質の計測値と前記第2の空気質の計測値との差分の実測値と今回取得された基準差分値との差に基づいて、前記各部屋の室内の換気回数を制御する
ことを特徴とする換気制御方法。 In the ventilation control method according to any one of claims 1 to 5,
The first air quality measurement step is
The air quality in the air supply duct from the air conditioner to the room of each room is measured as the first air quality,
The second air quality measurement step is
The air quality in the room of each room or the air quality in the exhaust duct from the room of each room is measured as the second air quality,
The reference difference value acquisition step is
Obtaining the reference difference value of each room;
The ventilation frequency control step is
Every time the reference difference value for each room is acquired, the difference between the first air quality measurement value and the second air quality measurement value until the next reference difference value is acquired. A ventilation control method comprising: controlling the number of times of ventilation in each room based on a difference between an actual measurement value and a reference difference value acquired this time.
前記室内の空気質あるいは前記室内からの排気の空気質を第2の空気質として計測するように構成された第2の空気質計測部と、
予め定められたスケジュールに従って、定期的かつ一時的に前記室内の換気回数を設計規定換気回数に変更して、その際の前記第1の空気質の計測値と前記第2の空気質の計測値との差分を基準差分値として取得するように構成された基準差分値取得部と、
前記基準差分値が取得される毎に、次の基準差分値が取得されるまでの間、前記第1の空気質の計測値と前記第2の空気質の計測値との差分の実測値と今回取得された基準差分値との差に基づいて、前記室内の換気回数を制御するように構成された換気回数制御部と
を備えることを特徴とする換気制御システム。 A first air quality measuring unit configured to measure the air quality of air supplied into the room as the first air quality;
A second air quality measurement unit configured to measure the air quality of the room or the air quality of exhaust air from the room as a second air quality;
According to a predetermined schedule, the ventilation frequency of the room is changed to the design prescribed ventilation frequency periodically and temporarily, and the measurement value of the first air quality and the measurement value of the second air quality at that time A reference difference value acquisition unit configured to acquire a difference between the
Every time the reference difference value is obtained, the measured value of the difference between the first air quality measurement value and the second air quality measurement value until the next reference difference value is obtained, and And a ventilation frequency control unit configured to control the number of times of ventilation in the room based on a difference from the reference difference value acquired this time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017168283A JP6933530B2 (en) | 2017-09-01 | 2017-09-01 | Ventilation control method and ventilation control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017168283A JP6933530B2 (en) | 2017-09-01 | 2017-09-01 | Ventilation control method and ventilation control system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019045065A true JP2019045065A (en) | 2019-03-22 |
JP6933530B2 JP6933530B2 (en) | 2021-09-08 |
Family
ID=65816332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017168283A Active JP6933530B2 (en) | 2017-09-01 | 2017-09-01 | Ventilation control method and ventilation control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6933530B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210049499A (en) * | 2019-10-25 | 2021-05-06 | 한국전자기술연구원 | Method for managing air quality improvement device and air quality improvement device applied with the same |
CN115614942A (en) * | 2022-09-16 | 2023-01-17 | 宁波奥克斯电气股份有限公司 | Fresh air control method, fresh air control device and fresh air conditioner |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008533418A (en) * | 2005-03-10 | 2008-08-21 | エアキュイティー,インコーポレイテッド | Dynamic control of dilution ventilation in a one-pass critical environment |
JP2013011405A (en) * | 2011-06-29 | 2013-01-17 | Mitsubishi Electric Corp | Ventilation device |
JP2017003207A (en) * | 2015-06-12 | 2017-01-05 | 三菱電機株式会社 | Ventilation system |
-
2017
- 2017-09-01 JP JP2017168283A patent/JP6933530B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008533418A (en) * | 2005-03-10 | 2008-08-21 | エアキュイティー,インコーポレイテッド | Dynamic control of dilution ventilation in a one-pass critical environment |
JP2013011405A (en) * | 2011-06-29 | 2013-01-17 | Mitsubishi Electric Corp | Ventilation device |
JP2017003207A (en) * | 2015-06-12 | 2017-01-05 | 三菱電機株式会社 | Ventilation system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210049499A (en) * | 2019-10-25 | 2021-05-06 | 한국전자기술연구원 | Method for managing air quality improvement device and air quality improvement device applied with the same |
KR102351070B1 (en) * | 2019-10-25 | 2022-01-14 | 한국전자기술연구원 | Method for managing air quality improvement device and air quality improvement device applied with the same |
CN115614942A (en) * | 2022-09-16 | 2023-01-17 | 宁波奥克斯电气股份有限公司 | Fresh air control method, fresh air control device and fresh air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP6933530B2 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10145827B2 (en) | Distributed sensor system with remote sensor nodes and centralized data processing | |
US11040301B2 (en) | Systems and methods for predicting HVAC filter change | |
EP3518202B1 (en) | Distributed sensor system with remote sensor nodes and centralized data processing | |
US9109989B2 (en) | Corrosion detector apparatus for universal assessment of pollution in data centers | |
CN110094828A (en) | Air cleaning system and its control method | |
US20210311005A1 (en) | Smart sensing network | |
KR20120108625A (en) | Method and system for control of indoor environment | |
WO2016030386A1 (en) | Sensor system and sensing method | |
JP6933530B2 (en) | Ventilation control method and ventilation control system | |
US20180306455A1 (en) | Air treatment system | |
JP2014222116A (en) | Ventilation system and control device | |
WO2021050725A1 (en) | System and method for calibration of building air quality assurance devices | |
CA2979420A1 (en) | Method and system for schedule-based control of a hvac system | |
KR20170102618A (en) | Control method for ventilation system of subway station | |
US10698389B2 (en) | Method and system for optimizing the operation of at least one of a plurality of field devices from automation technology | |
KR20200127377A (en) | System and method for controlling air conditioner | |
JP2019178977A (en) | Method for predicting density of volatile organic compound in building, information processing system, and building | |
US10481035B2 (en) | Method for measuring pressure differences between different premises in a building | |
CN108386957B (en) | Self-cleaning control method for air conditioner and air conditioner | |
KR20220084309A (en) | Mirror calibration of multiple flow measurement devices | |
CN104390690B (en) | A kind of electric cleaner removes the calibration method and device of dust quantity | |
CA3181758A1 (en) | System and method to monitor and control pool equipment | |
CN104596622B (en) | Method and device for calibrating dust removal quantity of electric precipitator | |
CN114517379A (en) | Water inlet temperature sharing method of washing equipment | |
KR20210023455A (en) | Portable environmental sensor measuring and correcting system and the method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6933530 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |