JP2019044081A - Curable composition, cured product thereof, and methods for producing them - Google Patents

Curable composition, cured product thereof, and methods for producing them Download PDF

Info

Publication number
JP2019044081A
JP2019044081A JP2017168905A JP2017168905A JP2019044081A JP 2019044081 A JP2019044081 A JP 2019044081A JP 2017168905 A JP2017168905 A JP 2017168905A JP 2017168905 A JP2017168905 A JP 2017168905A JP 2019044081 A JP2019044081 A JP 2019044081A
Authority
JP
Japan
Prior art keywords
curable composition
group
component
cured product
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017168905A
Other languages
Japanese (ja)
Other versions
JP6999335B2 (en
Inventor
谷 佳 典 西
Yoshinori Nishiya
谷 佳 典 西
山 敦 史 亀
Atsushi Kameyama
山 敦 史 亀
野 龍 一 上
Ryuichi Ueno
野 龍 一 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2017168905A priority Critical patent/JP6999335B2/en
Publication of JP2019044081A publication Critical patent/JP2019044081A/en
Application granted granted Critical
Publication of JP6999335B2 publication Critical patent/JP6999335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide a curable composition for obtaining a cured product having high heat resistance, a cured product thereof, and methods for producing the curable composition and the cured product.SOLUTION: There are provided: a curable composition containing (A) an epoxy compound having at least one norbornane structure and at least two epoxy groups, (B) a phenolic curing agent, (C) a curing accelerator, and optionally (D) an epoxy compound other than (A), (E) an inorganic filler, and (F) a silane coupling agent; a cured product of the curable composition; and methods for producing the curable composition and the cured product.SELECTED DRAWING: None

Description

本発明は、耐熱性に優れた硬化物を得るための硬化性組成物、その硬化物、ならびに該硬化性組成物および該硬化物の製造方法に関する。   The present invention relates to a curable composition for obtaining a cured product having excellent heat resistance, the cured product, the curable composition, and a method for producing the cured product.

封止材、接着剤、塗料、複合材向けマトリックス樹脂等の材料として、エポキシ化合物を含む硬化性組成物が用いられている。エポキシ化合物の中でも、耐熱性等に優れる硬化物が得られるものとして脂環骨格を有するエポキシ化合物が知られている。例えば、特許文献1には、耐熱性等に優れた樹脂を得ることのできる特定の構造を有する脂環骨格を有するエポキシ化合物が開示されている。   A curable composition containing an epoxy compound is used as a material such as a sealing resin, an adhesive, a paint, and a matrix resin for a composite material. Among epoxy compounds, an epoxy compound having an alicyclic skeleton is known as a material capable of obtaining a cured product having excellent heat resistance and the like. For example, Patent Document 1 discloses an epoxy compound having an alicyclic skeleton having a specific structure capable of obtaining a resin excellent in heat resistance and the like.

また、これらエポキシ化合物のなかでも、耐熱性や透明性等が優れる硬化物が得られるものとして分子内に2個以上の脂環骨格を有するエポキシ化合物が知られている。特許文献2には、ジエポキシビシクロへキシル化合物を含む硬化性組成物が開示されている。しかしながら、特許文献2において提案されている脂環骨格を有するエポキシ化合物は、硬化物の耐熱性等の観点において、更なる改善の余地があった。   Among these epoxy compounds, epoxy compounds having two or more alicyclic skeletons in the molecule are known as those capable of obtaining a cured product having excellent heat resistance and transparency. Patent Document 2 discloses a curable composition containing a diepoxybicyclohexyl compound. However, the epoxy compound having an alicyclic skeleton proposed in Patent Document 2 has room for further improvement in terms of the heat resistance of the cured product.

特開昭49−126658号公報Japanese Patent Laid-Open No. 49-126658 特開2008−31424号公報JP 2008-31424 A

接着剤、塗料、封止材、複合材向けマトリックス樹脂等の用途においては、依然として、より過酷な使用条件に適合し得るように、さらなる高耐熱性の樹脂硬化物が求められている。   In applications such as adhesives, paints, sealing materials, and matrix resins for composites, there is still a demand for further high heat-resistant resin cured products that can be adapted to more severe use conditions.

したがって、本発明は、高耐熱性を有する硬化物を得るための硬化性組成物を提供することを目的とする。また、本発明の別の目的は、上記硬化性組成物を硬化させてなる硬化物、ならびに上記硬化性組成物および該硬化物の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a curable composition for obtaining a cured product having high heat resistance. Another object of the present invention is to provide a cured product obtained by curing the curable composition, a curable composition, and a method for producing the cured product.

本発明者らは、上記目的を解決するために鋭意検討を行った結果、多官能エポキシ化合物、フェノール系硬化剤、および硬化促進剤を含有する硬化性組成物を開発し、その硬化物が耐熱性に優れることを見出して本発明を完成するに至った。   As a result of intensive studies to solve the above object, the present inventors have developed a curable composition containing a polyfunctional epoxy compound, a phenolic curing agent, and a curing accelerator, and the cured product is heat resistant. As a result, the present invention was completed.

すなわち、本発明によれば、以下の発明が提供される。
[1] (A)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
(B)フェノール系硬化剤と、
(C)硬化促進剤と
を含有する、硬化性組成物。
[2] (D)前記(A)以外のエポキシ化合物をさらに含有する、[1]に記載の硬化性組成物。
[3] (E)無機充填剤をさらに含有する、[1]または[2]に記載の硬化性組成物。
[4] (F)シランカップリング剤をさらに含有する、[1]〜[3]のいずれか一つに記載の硬化性組成物。
[5] [1]〜[4]のいずれか一つに記載の硬化性組成物を硬化させてなる硬化物。
[6] ガラス転移温度が160℃以上である[5]に記載の硬化物。
[7] [5]または[6]に記載の硬化物中に半導体素子が設置されている、半導体装置。
[8] 硬化性組成物の製造方法であって、
(A)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
(B)フェノール系硬化剤と、
(C)硬化促進剤と
を混合して混合物を得る工程
を有する、硬化性組成物の製造方法。
[9] 前記混合物を得る工程において、(D)前記(A)以外のエポキシ化合物をさらに混合して混合物を得る、[8]に記載の製造方法。
[10] [8]または[9]に記載の方法により製造した前記硬化性組成物を170〜300℃にて加熱して硬化させる工程
を有する、硬化物の製造方法。
That is, according to the present invention, the following inventions are provided.
[1] (A) an epoxy compound having at least one norbornane structure and at least two epoxy groups;
(B) a phenolic curing agent;
(C) A curable composition containing a curing accelerator.
[2] (D) The curable composition according to [1], further containing an epoxy compound other than (A).
[3] The curable composition according to [1] or [2], further comprising (E) an inorganic filler.
[4] The curable composition according to any one of [1] to [3], further comprising (F) a silane coupling agent.
[5] A cured product obtained by curing the curable composition according to any one of [1] to [4].
[6] The cured product according to [5], which has a glass transition temperature of 160 ° C. or higher.
[7] A semiconductor device in which a semiconductor element is installed in the cured product according to [5] or [6].
[8] A method for producing a curable composition comprising:
(A) an epoxy compound having at least one norbornane structure and at least two epoxy groups;
(B) a phenolic curing agent;
(C) The manufacturing method of a curable composition which has the process of mixing with a hardening accelerator and obtaining a mixture.
[9] The production method according to [8], wherein in the step of obtaining the mixture, (D) an epoxy compound other than (A) is further mixed to obtain a mixture.
[10] A method for producing a cured product, comprising a step of heating and curing the curable composition produced by the method according to [8] or [9] at 170 to 300 ° C.

本発明の硬化性組成物は、成分(A)〜(C)、所望により成分(D)〜(F)を含有する新規な硬化性組成物であり、該組成物の硬化物は耐熱性が良好で、熱分解し難く、ガラス転移温度が高いという特徴を有している。したがって、本発明の硬化性組成物は、高耐熱性を必要とされる用途、例えば、接着剤、塗料、封止材、複合材向けマトリックス樹脂等の用途に使用可能である。特に、半導体素子封止材として優れた封止性能を発揮すると共に、半導体装置の高信頼性に寄与することができる。   The curable composition of the present invention is a novel curable composition containing components (A) to (C) and optionally components (D) to (F), and the cured product of the composition has heat resistance. It has the characteristics of being good, hardly thermally decomposed, and having a high glass transition temperature. Therefore, the curable composition of the present invention can be used for applications that require high heat resistance, such as adhesives, paints, sealing materials, and matrix resins for composite materials. In particular, it exhibits excellent sealing performance as a semiconductor element sealing material and can contribute to high reliability of the semiconductor device.

[硬化性組成物]
以下、本発明について詳細に説明する。なお、本発明の成分(A)における「化合物」とは、各式に示す単量体だけでなく、該単量体が少量重合したオリゴマー、すなわち硬化樹脂を形成する前のプレポリマーも含むものとする。
[Curable composition]
Hereinafter, the present invention will be described in detail. The “compound” in the component (A) of the present invention includes not only the monomer shown in each formula but also an oligomer obtained by polymerizing the monomer in a small amount, that is, a prepolymer before forming a cured resin. .

(成分A)
硬化性組成物を構成する成分(A)は、ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物である(以下、単に「多官能エポキシ化合物」ともいう)。上記多官能エポキシ化合物としては、脂環式エポキシ化合物が好ましく、下記式(1)に示す、5員環、6員環またはノルボルナン環に結合したエポキシ構造を有することがより好ましい。

Figure 2019044081
(Component A)
Component (A) constituting the curable composition is an epoxy compound having at least one norbornane structure and at least two epoxy groups (hereinafter, also simply referred to as “polyfunctional epoxy compound”). The polyfunctional epoxy compound is preferably an alicyclic epoxy compound, and more preferably has an epoxy structure bonded to a 5-membered ring, 6-membered ring or norbornane ring represented by the following formula (1).
Figure 2019044081

具体的な多官能エポキシ化合物としては、下記式(2)で表される化合物を例示することができる。

Figure 2019044081
As a specific polyfunctional epoxy compound, the compound represented by following formula (2) can be illustrated.
Figure 2019044081

成分(A)の多官能エポキシ化合物の製造例を説明する。
下記式(2−1)の化合物は、例えば、以下のようにして製造することができる。

Figure 2019044081
A production example of the polyfunctional epoxy compound of component (A) will be described.
The compound of the following formula (2-1) can be produced, for example, as follows.
Figure 2019044081

まず、ブタジエンとジシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(a)を合成し、次に、下記式(3)に示すように化合物(a)とメタクロロ過安息香酸とを反応させることによって式(2−1)の化合物を製造できる。

Figure 2019044081
First, a compound (a) having the following norbornane structure is synthesized by a Diels-Alder reaction between butadiene and dicyclopentadiene, and then, as shown in the following formula (3), the compound (a), metachloroperbenzoic acid, Can be reacted to produce a compound of formula (2-1).
Figure 2019044081

下記式(2−2)の化合物は、例えば、以下のようにして製造することができる。

Figure 2019044081
The compound of following formula (2-2) can be manufactured as follows, for example.
Figure 2019044081

まず、シクロペンタジエンとジシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(b)(トリシクロペンタジエン)を合成し、次に、下記式(4)に示すように化合物(b)とメタクロロ過安息香酸とを反応させることによって式(2−2)の化合物を製造できる。

Figure 2019044081
First, compound (b) (tricyclopentadiene) having the following norbornane structure was synthesized by Diels-Alder reaction of cyclopentadiene and dicyclopentadiene, and then compound (b) as shown in formula (4) below. Can react with metachloroperbenzoic acid to produce the compound of formula (2-2).
Figure 2019044081

下記式(2−3)の化合物は、例えば、以下のようにして製造することができる。

Figure 2019044081
The compound of the following formula (2-3) can be produced, for example, as follows.
Figure 2019044081

まず、ブタジエンとシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(c)を合成し、次に、下記式(5)に示すように化合物(c)とメタクロロ過安息香酸とを反応させることによって式(2−3)の化合物を製造できる。

Figure 2019044081
First, a compound (c) having the following norbornane structure is synthesized by a Diels-Alder reaction between butadiene and cyclopentadiene. Next, as shown in the following formula (5), the compound (c) and metachloroperbenzoic acid are synthesized. The compound of Formula (2-3) can be manufactured by making it react.
Figure 2019044081

下記式(2−4)の化合物は、例えば、以下のようにして製造することができる。

Figure 2019044081
The compound of the following formula (2-4) can be produced, for example, as follows.
Figure 2019044081

ジシクロペンタジエンとペルオキシ一硫酸カリウム(オキソン)とを反応させることによって式(2−4)の化合物を製造できる。式(2−4)の化合物であるジシクロペンタジエンジエポキシドは、市販品であってもよく、市販品としてはSHANDONG QIHUAN BIOCHEMICAL CO., LTD.製のジシクロペンタジエンジエポキシドを例示できる。   The compound of formula (2-4) can be produced by reacting dicyclopentadiene with potassium peroxymonosulfate (oxone). The dicyclopentadiene diepoxide which is the compound of the formula (2-4) may be a commercially available product, and examples of the commercially available product include dicyclopentadiene diepoxide manufactured by SHANDONG QIHUAN BIOCHEMICAL CO., LTD.

(成分B)
硬化性組成物を構成する成分(B)はフェノール系硬化剤である。本発明に用いられるフェノール系硬化剤は、1分子中に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂(好ましくは、フェニレン骨格、ビフェニレン骨格等を有するフェノールアラルキル樹脂)、ナフトールアラルキル樹脂(好ましくは、フェニレン骨格、ビフェニレン骨格等を有するナフトールアラルキル樹脂)、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールメタン型フェノール樹脂、ビスフェノール化合物等が挙げられるが、これらに限定されるものではない。本発明に用いられるフェノール系硬化剤として好ましくはフェノールノボラック樹脂、フェノールアラルキル樹脂、トリフェノールメタン型フェノール樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフトールアラルキル樹脂、テルペン変性フェノール樹脂である。これらのフェノール系硬化剤は単独で用いても2種類以上併用してもよい。
(Component B)
Component (B) constituting the curable composition is a phenolic curing agent. The phenolic curing agent used in the present invention is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule. For example, a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin (preferably, Phenol aralkyl resin having a phenylene skeleton, a biphenylene skeleton, etc.), a naphthol aralkyl resin (preferably a naphthol aralkyl resin having a phenylene skeleton, a biphenylene skeleton, etc.), a terpene-modified phenol resin, a dicyclopentadiene-modified phenol resin, a triphenolmethane phenol Examples thereof include, but are not limited to, resins and bisphenol compounds. The phenolic curing agent used in the present invention is preferably a phenol novolak resin, a phenol aralkyl resin, a triphenolmethane type phenol resin, a cresol novolak resin, a dicyclopentadiene modified phenol resin, a naphthol aralkyl resin, or a terpene modified phenol resin. These phenolic curing agents may be used alone or in combination of two or more.

成分(B)の配合割合としては、硬化性組成物が、後述する上記成分(A)以外のエポキシ化合物(成分(D))を含まない場合は、本発明の硬化性組成物に含まれる成分(A)100質量部に対して、成分(B)を50質量部以上、300質量部以下の範囲とすることが好ましく、75質量部以上、200質量部以下とすることがより好ましい。また、硬化性組成物が、成分(D)を含む場合は、本発明の硬化性組成物における成分(B)の配合割合は、上記成分(A)および(D)の合計100質量部に対して、成分(B)を50質量部以上、300質量部以下の範囲とすることが好ましく、75質量部以上、200質量部以下とすることがより好ましい。成分(B)をこの範囲で含有することにより、効率的に硬化反応を進行させることができ、高耐熱性の硬化物を得ることができる。   As a mixture ratio of a component (B), when a curable composition does not contain epoxy compounds (component (D)) other than the said component (A) mentioned later, the component contained in the curable composition of this invention (A) It is preferable to make a component (B) into the range of 50 to 300 mass parts with respect to 100 mass parts, and it is more preferable to set it as 75 to 200 mass parts. Moreover, when a curable composition contains a component (D), the mixture ratio of the component (B) in the curable composition of this invention is with respect to a total of 100 mass parts of the said component (A) and (D). The component (B) is preferably in the range of 50 parts by mass or more and 300 parts by mass or less, and more preferably 75 parts by mass or more and 200 parts by mass or less. By containing the component (B) in this range, the curing reaction can be efficiently advanced, and a highly heat-resistant cured product can be obtained.

(成分C)
本発明の硬化性組成物を構成する成分(C)は硬化促進剤である。硬化促進剤としては、公知の硬化促進剤を使用することができ、トリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、2−メチルイミダゾール、2−エチルイミダゾール、1,2−ジメチルイミダゾール等のイミダゾール系化合物、トリフェニルホスフィン、トリパラトリルホスフィン等の共有結合のみでリンが結合している有機リン化合物、テトラフェニルホスホニウムテトラフェニルボレート等の共有結合およびイオン結合でリンが結合している塩タイプの有機リン化合物等の有機リン化合物等が挙げられるが、これらに限定されるものではない。また、上記した硬化促進剤は単独で使用してもよく、2種以上を併用して使用してもよい。これらのうち、トリフェニルホスフィン、トリパラトリルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等の有機リン化合物が、硬化速度向上の効果が大きく、好ましい。
上記有機リン化合物は、特開昭55−157594号公報に記載されているように、エポキシ基とフェノール性水酸基との架橋反応を促進する機能を発揮するものである。本発明の有機リン化合物は当該機能を有するものであれば、特に限定されない。
(Component C)
Component (C) constituting the curable composition of the present invention is a curing accelerator. As the curing accelerator, known curing accelerators can be used, and amine compounds such as tributylamine, 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole, 2-ethyl Imidazole compounds such as imidazole and 1,2-dimethylimidazole, organophosphorus compounds in which phosphorus is bound only by covalent bonds such as triphenylphosphine and tripalatolylphosphine, and covalent and ionic bonds such as tetraphenylphosphonium tetraphenylborate And organic phosphorus compounds such as salt-type organic phosphorus compounds to which phosphorus is bonded, but are not limited thereto. Moreover, the above-described curing accelerators may be used alone or in combination of two or more. Of these, organic phosphorus compounds such as triphenylphosphine, tripalatolylphosphine, and tetraphenylphosphonium tetraphenylborate are preferable because they have a large effect of improving the curing rate.
As described in JP-A-55-157594, the organic phosphorus compound exhibits a function of promoting a crosslinking reaction between an epoxy group and a phenolic hydroxyl group. The organophosphorus compound of the present invention is not particularly limited as long as it has the function.

本発明の硬化性組成物における成分(C)の配合割合は、硬化性組成物が、後述する上記成分(A)以外のエポキシ化合物(成分(D))を含まない場合は、本発明の硬化性組成物に含まれる成分(A)100質量部に対して、成分(C)を0.01質量部以上、20質量部以下の範囲とすることが好ましく、0.1質量部以上、10質量部以下の範囲とすることがより好ましい。また、硬化性組成物が、成分(D)を含む場合は、本発明の硬化性組成物における成分(C)の配合割合は、上記成分(A)および(D)の合計100質量部に対して、成分(C)を0.01質量部以上、20質量部以下の範囲とすることが好ましく、0.1質量部以上、10質量部以下の範囲とすることがより好ましい。成分(C)の配合割合が上記範囲内にあると、良好な耐熱性を得ることができる。   The blending ratio of the component (C) in the curable composition of the present invention is such that the curable composition does not contain an epoxy compound (component (D)) other than the component (A) described later. The component (C) is preferably 0.01 parts by mass or more and 20 parts by mass or less, and preferably 0.1 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the component (A) contained in the composition. It is more preferable to set it as the range below a part. Moreover, when a curable composition contains a component (D), the mixture ratio of the component (C) in the curable composition of this invention is with respect to a total of 100 mass parts of the said component (A) and (D). The component (C) is preferably in the range of 0.01 parts by mass or more and 20 parts by mass or less, and more preferably in the range of 0.1 parts by mass or more and 10 parts by mass or less. When the blending ratio of the component (C) is within the above range, good heat resistance can be obtained.

(成分D)
本発明の硬化性組成物は、用途に応じて上記成分(A)以外のエポキシ化合物(本明細書において、「その他のエポキシ化合物」ともいう)を含んでいても良い。例えば、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、グリシジルアミン型エポキシドおよび脂環式エポキシド等、並びにそれらのオリゴマーおよびポリマーが挙げられる。
(Component D)
The curable composition of the present invention may contain an epoxy compound (also referred to as “other epoxy compound” in the present specification) other than the component (A) depending on the application. Examples include glycidyl ether type epoxides, glycidyl ester type epoxides, glycidyl amine type epoxides and alicyclic epoxides, and oligomers and polymers thereof.

グリシジルエーテル型エポキシドとしては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル等の二価フェノールのグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、テトラキス(ヒドロキシフェニル)エタンテトラグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル、キシリレン骨格含有フェノールノボラックグリシジルエーテル、ジシクロペンタジエン骨格含有フェノールノボラックグリシジルエーテル、ビフェニル骨格含有フェノールノボラックグリシジルエーテル、テルペン骨格含有フェノールノボラックグリシジルエーテル、ビスフェノールAノボラックグリシジルエーテル、ビスフェノールFノボラックグリシジルエーテル、ビスフェノールSノボラックグリシジルエーテル、ビスフェノールAPノボラックグリシジルエーテル、ビスフェノールCノボラックグリシジルエーテル、ビスフェノールEノボラックグリシジルエーテル、ビスフェノールZノボラックグリシジルエーテル、ビフェノールノボラックグリシジルエーテル、テトラメチルビスフェノールAノボラックグリシジルエーテル、ジメチルビスフェノールAノボラックグリシジルエーテル、テトラメチルビスフェノールFノボラックグリシジルエーテル、ジメチルビスフェノールFノボラックグリシジルエーテル、テトラメチルビスフェノールSノボラックグリシジルエーテル、ジメチルビスフェノールSノボラックグリシジルエーテル、テトラメチル−4,4’−ビフェノールノボラックグリシジルエーテル、トリスヒドロキシフェニルメタンノボラックグリシジルエーテル、レゾルシノールノボラックグリシジルエーテル、ハイドロキノンノボラックグリシジルエーテル、ピロガロールノボラックグリシジルエーテル、ジイソプロピリデンノボラックグリシジルエーテル、1,1−ジ−4−ヒドロキシフェニルフルオレンノボラックグリシジルエーテル、フェノール化ポリブタジエンノボラックグリシジルエーテル、エチルフェノールノボラックグリシジルエーテル、ブチルフェノールノボラックグリシジルエーテル、オクチルフェノールノボラックグリシジルエーテル、ナフトールノボラックグリシジルエーテル、水素化フェノールノボラックグリシジルエーテル、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂のグリシジルエーテル等の多価フェノールのグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメチロールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の二価アルコールのグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールヘキサグリシジルエーテル、ポリグリセリンポリグリシジルエーテル等の多価アルコールのグリシジルエーテル、トリグリシジルイソシアヌレート等が挙げられる。   Examples of the glycidyl ether type epoxide include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, tetramethylbiphenol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and brominated bisphenol A diglycidyl ether. Glycidyl ether of dihydric phenol, dihydroxynaphthylcresol triglycidyl ether, tris (hydroxyphenyl) methane triglycidyl ether, tetrakis (hydroxyphenyl) ethanetetraglycidyl ether, dinaphthyltriol triglycidyl ether, phenol novolac glycidyl ether, cresol novolac glycidyl ether, Phenolic novolac containing xylylene skeleton Sidyl ether, dicyclopentadiene skeleton-containing phenol novolac glycidyl ether, biphenyl skeleton-containing phenol novolak glycidyl ether, terpene skeleton-containing phenol novolac glycidyl ether, bisphenol A novolac glycidyl ether, bisphenol F novolac glycidyl ether, bisphenol S novolak glycidyl ether, bisphenol AP novolak Glycidyl ether, bisphenol C novolac glycidyl ether, bisphenol E novolac glycidyl ether, bisphenol Z novolac glycidyl ether, biphenol novolac glycidyl ether, tetramethylbisphenol A novolac glycidyl ether, dimethyl bisphenol A novolac glycidyl Ether, tetramethylbisphenol F novolac glycidyl ether, dimethyl bisphenol F novolac glycidyl ether, tetramethyl bisphenol S novolac glycidyl ether, dimethyl bisphenol S novolac glycidyl ether, tetramethyl-4,4'-biphenol novolac glycidyl ether, trishydroxyphenylmethane novolak Glycidyl ether, resorcinol novolak glycidyl ether, hydroquinone novolak glycidyl ether, pyrogallol novolac glycidyl ether, diisopropylidene novolac glycidyl ether, 1,1-di-4-hydroxyphenylfluorene novolac glycidyl ether, phenolized polybutadiene novolac glycidyl ether Glycidyl ethers of polyhydric phenols such as glycidyl ether of ethylphenol novolac glycidyl ether, butylphenol novolak glycidyl ether, octylphenol novolak glycidyl ether, naphthol novolac glycidyl ether, hydrogenated phenol novolac glycidyl ether, phenol aralkyl type epoxy resin having biphenylene skeleton, Ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexane dimethylol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, etc. Price Examples include glycidyl ether of cole, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether, sorbitol hexaglycidyl ether, glycidyl ether of polyhydric alcohol such as polyglycerin polyglycidyl ether, triglycidyl isocyanurate, etc. .

グリシジルエステル型エポキシドとしては、グリシジルメタクリレート、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、トリメット酸トリグリシジルエステル等のカルボン酸のグリシジルエステルやグリシジルエステル型のポリエポキシド等が挙げられる。   Glycidyl ester type epoxides include glycidyl methacrylate, phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, trimetic acid triglycidyl ester and the like. Examples include mold polyepoxides.

グリシジルアミン型エポキシドとしては、N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジルジアミノジフェニルスルホン、N,N,N’,N’−テトラグリシジルジエチルジフェニルメタン等のグリシジル芳香族アミン、ビス(N,N−ジグリシジルアミノシクロヘキシル)メタン(N,N,N’,N’−テトラグリシジルジアミノジフェニルメタンの水素化物)、N,N,N’,N’−テトラグリシジル−1,3−(ビスアミノメチル)シクロヘキサン(N,N,N’,N’−テトラグリシジルキシリレンジアミンの水素化物)、トリスグリシジルメラミン、トリグリシジル−p−アミノフェノール、N−グリシジル−4−グリシジルオキシピロリドン等のグリシジル複素環式アミン等が挙げられる。   Examples of the glycidylamine type epoxide include N, N-diglycidylaniline, N, N-diglycidyltoluidine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl. Glycidyl aromatic amines such as diaminodiphenylsulfone, N, N, N ′, N′-tetraglycidyldiethyldiphenylmethane, bis (N, N-diglycidylaminocyclohexyl) methane (N, N, N ′, N′-tetraglycidyl) Hydride of diaminodiphenylmethane), N, N, N ′, N′-tetraglycidyl-1,3- (bisaminomethyl) cyclohexane (hydride of N, N, N ′, N′-tetraglycidylxylylenediamine) , Trisglycidylmelamine, triglycidyl-p-aminophenol, N-glycine Glycidyl heterocyclic amines such as Gilles 4-glycidyloxy pyrrolidone.

脂環式エポキシドとしては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ビス(2,3−エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4−エポキシ−6−メチルシクロへキシルメチル 3’,4’−エポキシ−6’−メチルシクロヘキサンカルボキシレート、3,4−エポキシシクロへキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチルシクロへキシル 3,4−エポキシ−1−メチルヘキサンカルボキシレート、3,4−エポキシ−3−メチルシクロへキシルメチル 3,4−エポキシ−3−メチルヘキサンカルボキシレート、3,4−エポキシ−5−メチルシクロへキシルメチル 3,4−エポキシ−5−メチルシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロへキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタジオキサン、メチレンビス(3,4−エポキシシクロヘキサン)、(3,3’,4,4’−ジエポキシ)ビシクロヘキシル、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−(2−オキシラニル)シクロヘキサン付加物、テトラヒドロインデンジエポキシド等が挙げられる。本発明の硬化性組成物は、上記したような上記成分(A)以外のエポキシ化合物(成分(D))を1または2種以上含んでいてもよい。   Examples of the alicyclic epoxide include vinylcyclohexene dioxide, limonene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3,4-epoxy-6-methylcyclohexylmethyl 3 ′, 4. '-Epoxy-6'-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-1-methylcyclohexyl 3,4-epoxy-1-methylhexane Carboxylate, 3,4-epoxy-3-methylcyclohexylmethyl 3,4-epoxy-3-methylhexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl 3,4-epoxy-5-methylcyclo Hexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-metadioxane, methylenebis (3,4-epoxycyclohexane), (3,3 ′, 4 , 4′-diepoxy) bicyclohexyl, 1,2-epoxy- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, tetrahydroindene diepoxide and the like. The curable composition of the present invention may contain one or more epoxy compounds (component (D)) other than the above-described component (A).

硬化物の耐熱性という観点からは、上記成分(D)の配合割合は、硬化性組成物に対して1〜90質量%であることが好ましく、5〜40質量%であることがより好ましい。   From the viewpoint of heat resistance of the cured product, the blending ratio of the component (D) is preferably 1 to 90% by mass and more preferably 5 to 40% by mass with respect to the curable composition.

また、硬化物の耐熱性の観点から、上記成分(A)と成分(D)との配合割合は、成分(A)100質量部に対して、成分(D)5質量部以上、200質量部以下が好ましく、10質量部以上、150質量部以下がより好ましい。
成分(A)と(D)の配合割合が当該範囲内にあると、良好な耐熱性を得ることができる。
From the viewpoint of heat resistance of the cured product, the blending ratio of the component (A) and the component (D) is 5 parts by mass or more and 200 parts by mass of the component (D) with respect to 100 parts by mass of the component (A). The following is preferable, and 10 parts by mass or more and 150 parts by mass or less are more preferable.
When the blending ratio of the components (A) and (D) is within the range, good heat resistance can be obtained.

一つの好ましい実施態様においては、本発明の硬化性組成物に含まれる上記成分(A)以外のエポキシ化合物は、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシドおよび脂環式エポキシドからなる群から選択されるものである。より好ましい実施態様においては、本発明の硬化性組成物に含まれる上記成分(A)以外のエポキシ化合物は、テトラメチルビフェノールジグリシジルエーテル、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂のグリシジルエーテル、トリスヒドロキシフェニルメタンノボラックグリシジルエーテルからなる群から選択されるものである。   In one preferred embodiment, the epoxy compound other than the component (A) contained in the curable composition of the present invention is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide and an alicyclic epoxide. Is. In a more preferred embodiment, the epoxy compound other than the component (A) contained in the curable composition of the present invention includes tetramethylbiphenol diglycidyl ether, glycidyl ether of a phenol aralkyl type epoxy resin having a biphenylene skeleton, and trishydroxy. It is selected from the group consisting of phenylmethane novolak glycidyl ether.

(成分E)
硬化性組成物を構成する成分(E)は無機充填剤である。本発明で用いる無機充填剤は特に限定されず、硬化性組成物あるいはその硬化物の用途あるいは付与したい性状を考慮して選択することができる。このような無機充填剤としては、たとえば、シリカ、アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、三酸化アンチモン、酸化亜鉛、酸化鉄等の酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸ストロンチウム等の炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウム等の硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素、窒化マンガン等の窒化物;水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム等の水酸化物;ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム等のケイ素化合物;ホウ酸アルミニウム等のホウ素化合物、ジルコン酸バリウム、ジルコン酸カルシウム等のジルコニウム化合物;リン酸ジルコニウム、リン酸マグネシウウム等のリン化合物;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸バリウム、チタン酸カリウム等のチタン化合物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、コーディエライト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、水和石膏、ミョウバン、ケイ藻土、ベーマイト等の鉱物類、フライアッシュ、脱水汚泥、ガラスビーズ、ガラスファイバー、ケイ砂、カーボンブラック、マグネシウムオキシサルフェイト、シリコン酸化物、シリコンカーバイド等;銅、鉄、コバルト、ニッケル等の金属あるいはそのいずれかを含む合金;センダスト、アルニコ磁石、フェライト等の磁性材料等が挙げられ、好ましくは、シリカまたはアルミナである。ここで、シリカとしては、例えば、溶融シリカ、球状シリカ、結晶シリカ、無定形シリカ、合成シリカ、中空シリカ等が挙げられ、好ましくは球状シリカ、結晶シリカである。無機充填剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Component E)
Component (E) constituting the curable composition is an inorganic filler. The inorganic filler used in the present invention is not particularly limited, and can be selected in consideration of the use of the curable composition or its cured product or the properties to be imparted. Examples of the inorganic filler include oxides such as silica, alumina, titanium oxide, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, antimony trioxide, zinc oxide, and iron oxide; calcium carbonate, Carbonates such as magnesium carbonate, barium carbonate and strontium carbonate; sulfates such as barium sulfate, aluminum sulfate and calcium sulfate; nitrides such as aluminum nitride, silicon nitride, titanium nitride, boron nitride and manganese nitride; calcium hydroxide and water Hydroxides such as aluminum oxide and magnesium hydroxide; silicon compounds such as calcium silicate, magnesium silicate and aluminum silicate; boron compounds such as aluminum borate; zirconium compounds such as barium zirconate and calcium zirconate; phosphoric acid The Phosphorus compounds such as conium and magnesium phosphate; titanium compounds such as strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, barium titanate, potassium titanate; mica, talc, kaolin, kaolin clay, kaolinite , Halloysite, Cordierite, Pyrophyllite, Montmorillonite, Sericite, Amesite, Bentonite, Asbestos, Wollastonite, Sepiolite, Zonolite, Zeolite, Hydrotalcite, Hydrated Gypsum, Alum, Diatomaceous Earth, Boehmite, etc. Minerals, fly ash, dehydrated sludge, glass beads, glass fiber, silica sand, carbon black, magnesium oxysulfate, silicon oxide, silicon carbide, etc .; copper, iron, cobalt, nickel Metal or alloy including any of its like; sendust, alnico magnet, a magnetic material and the like such as ferrite, preferably, silica or alumina. Here, examples of the silica include fused silica, spherical silica, crystalline silica, amorphous silica, synthetic silica, hollow silica, and the like, preferably spherical silica and crystalline silica. An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明で用いられる無機充填剤は粒状であってもよく、その場合の平均粒径は、特に限定されないが、例えば、0.01μm以上、150μm以下が挙げられ、好ましくは、0.1μm以上、120μm以下、より好ましくは、0.5μm以上、75μm以下である。この範囲であれば、例えば、半導体素子の封止材用途に使用する場合、金型キャビティへの充填性が良好となる。無機充填剤の平均粒径はレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填剤の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填剤を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製「LA−500」、「LA−750」、「LA−950」、「LA−960」等を使用することができる。   The inorganic filler used in the present invention may be granular, and the average particle size in that case is not particularly limited, and examples include 0.01 μm or more and 150 μm or less, preferably 0.1 μm or more, It is 120 μm or less, more preferably 0.5 μm or more and 75 μm or less. If it is this range, when using for the sealing material use of a semiconductor element, for example, the filling property to a mold cavity will become favorable. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis with a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring device, “LA-500”, “LA-750”, “LA-950”, “LA-960” manufactured by Horiba, Ltd., and the like can be used.

成分(E)の配合割合としては、硬化性組成物の高耐熱性の硬化物が得られる限り、特に限定されず、用途に応じて適宜設定できる。例えば、組成物を半導体封止用途に使用する場合は以下に示す配合割合が好ましい。
成分(E)の配合割合の下限値は、硬化性組成物が成分(D)を含まない場合は、成分(A)および(B)の合計100質量部に対して、例えば150質量部以上が挙げられ、400質量部以上が好ましく、500質量部以上がより好ましい。また、成分(E)の配合割合の上限値は、硬化性組成物が成分(D)を含まない場合は、成分(A)および(B)の合計100質量部に対して、1300質量部以下が挙げられ、1150質量部以下が好ましく、950質量部以下がより好ましい。
また、成分(E)の配合割合の下限値は、硬化性組成物が成分(D)を含む場合は、成分(A)、(B)、および(D)の合計100質量部に対して、例えば150質量部以上が挙げられ、400質量部以上が好ましく、500質量部以上がより好ましい。また、成分(E)の配合割合の上限値は、硬化性組成物が成分(D)を含まない場合は、成分(A)、(B)、および(D)の合計100質量部に対して、1300質量部以下が挙げられ、1150質量部以下が好ましく、950質量部以下がより好ましい。
上記のように、成分(E)の配合割合の下限値が400質量部以上であれば、硬化樹脂組用組成物の硬化に伴う吸湿量の増加や、強度の低下を抑制でき、したがって良好な耐半田クラック性を有する硬化物を得ることができる。また、成分(E)の配合割合の上限値が1300質量部以下であれば、硬化樹脂組用組成物が流動性を有し、金型への充填がしやすく、硬化物が良好な封止性能を発揮する。
The blending ratio of component (E) is not particularly limited as long as a highly heat-resistant cured product of the curable composition is obtained, and can be appropriately set depending on the application. For example, when using a composition for the semiconductor sealing use, the compounding ratio shown below is preferable.
When the curable composition does not contain the component (D), the lower limit of the blending ratio of the component (E) is, for example, 150 parts by mass or more with respect to 100 parts by mass in total of the components (A) and (B). 400 mass parts or more are preferable, and 500 mass parts or more are more preferable. Moreover, the upper limit of the mixture ratio of a component (E) is 1300 mass parts or less with respect to a total of 100 mass parts of a component (A) and (B), when a curable composition does not contain a component (D). 1150 parts by mass or less is preferable, and 950 parts by mass or less is more preferable.
Moreover, when the curable composition contains the component (D), the lower limit of the blending ratio of the component (E) is 100 parts by mass in total of the components (A), (B), and (D). For example, 150 mass parts or more are mentioned, 400 mass parts or more are preferable and 500 mass parts or more are more preferable. Moreover, when the curable composition does not contain the component (D), the upper limit of the blending ratio of the component (E) is 100 parts by mass in total of the components (A), (B), and (D). 1300 mass parts or less are mentioned, 1150 mass parts or less are preferable and 950 mass parts or less are more preferable.
As described above, when the lower limit value of the blending ratio of the component (E) is 400 parts by mass or more, it is possible to suppress an increase in moisture absorption and a decrease in strength due to the curing of the composition for curable resin assembly, and thus it is favorable. A cured product having solder crack resistance can be obtained. Moreover, if the upper limit of the mixture ratio of a component (E) is 1300 mass parts or less, the composition for cured resin group has fluidity | liquidity, it is easy to fill a metal mold | die, and cured | curing material has favorable sealing Demonstrate performance.

(成分F)
本発明で用いられる(F)シランカップリング剤は、有機成分である(A)多官能エポキシ化合物、(B)フェノール系硬化剤および/または前記(A)以外のエポキシ化合物(成分(D))と(E)無機充填剤との双方に反応性を持ち、両者の親和性を向上させる成分である。本発明の(F)シランカップリング剤としては、有機成分との結合に寄与する官能基Yと(E)無機充填剤との結合に寄与する官能基Xとを有する、下記式(6)で示される構造を有する化合物が挙げられる。

Figure 2019044081
(式中、Yはアミノ基、メルカプト基、エポキシ基、(メタ)アクリル基、ビニル基、イソシアネート基、イミダゾリル基、ウレイド基、スルフィド基、およびイソシアヌレート基からなる群から選択される官能基を含む1価の基を示し、Xはヒドロキシ基、アルコキシ基から選択される官能基を示し、lは0、1または2を示す。) (Component F)
The (F) silane coupling agent used in the present invention is an organic component (A) polyfunctional epoxy compound, (B) a phenolic curing agent and / or an epoxy compound other than the above (A) (component (D)). And (E) a component that has reactivity with both inorganic fillers and improves the affinity between them. The (F) silane coupling agent of the present invention has the functional group Y contributing to the bond with the organic component and the functional group X contributing to the bond with the (E) inorganic filler, represented by the following formula (6). And compounds having the structure shown.
Figure 2019044081
Wherein Y is a functional group selected from the group consisting of amino group, mercapto group, epoxy group, (meth) acryl group, vinyl group, isocyanate group, imidazolyl group, ureido group, sulfide group, and isocyanurate group. And X represents a functional group selected from a hydroxy group and an alkoxy group, and l represents 0, 1 or 2.)

本発明において、式(6)におけるXは、好ましくは、アルコキシ基である。上記アルコキシ基は、直鎖状、分岐状、環状のいずれであってもよい。上記アルコキシ基の炭素原子数は、好ましくは1〜10、より好ましくは1〜6、さらに好ましくは1または2である。アルコキシ基として好ましくはメトキシ基、エトキシ基である。シランカップリング剤は、1分子中に、無機充填剤との結合に寄与する官能基Xを、1〜3個、好ましくは2または3個有する。したがって、式(6)におけるlは、好ましくは1または0である。上記無機充填剤との結合に寄与する官能基Xが2個以上存在する場合、当該官能基Xは同一の官能基であっても異なる官能基の組み合わせであってもよい。   In the present invention, X in formula (6) is preferably an alkoxy group. The alkoxy group may be linear, branched or cyclic. The number of carbon atoms of the alkoxy group is preferably 1 to 10, more preferably 1 to 6, and further preferably 1 or 2. The alkoxy group is preferably a methoxy group or an ethoxy group. The silane coupling agent has 1 to 3, preferably 2 or 3, functional groups X that contribute to bonding with the inorganic filler in one molecule. Therefore, l in formula (6) is preferably 1 or 0. When two or more functional groups X that contribute to bonding with the inorganic filler are present, the functional groups X may be the same functional group or a combination of different functional groups.

本発明において、式(6)におけるYが示す1価の基は、アミノ基、メルカプト基、エポキシ基、(メタ)アクリル基、ビニル基、イソシアネート基、イミダゾリル基、ウレイド基からなる群から選択される1種以上の官能基(Y)を含むことが好ましく、アミノ基、メルカプト基からなる群から選択される1種以上の官能基を含むことがより好ましい。ここで、アミノ基は、1級、2級および3級アミノ基のいずれであってもよく、好ましくは、1級、または2級アミノ基である。ここで、2級アミノ基として好ましくはアニリノ基である。 In the present invention, the monovalent group represented by Y in formula (6) is selected from the group consisting of an amino group, a mercapto group, an epoxy group, a (meth) acryl group, a vinyl group, an isocyanate group, an imidazolyl group, and a ureido group. preferably contains one or more functional groups (Y 1) that, an amino group, and more preferably contains one or more functional groups selected from the group consisting of a mercapto group. Here, the amino group may be any of primary, secondary, and tertiary amino groups, and is preferably a primary or secondary amino group. Here, the secondary amino group is preferably an anilino group.

また、式(6)におけるYが示す1価の基としては、下記式(6−1)の構造が挙げられる。

Figure 2019044081
(式中、Yは、アミノ基、メルカプト基、エポキシ基、(メタ)アクリル基、ビニル基、イソシアネート基、イミダゾリル基、ウレイド基、スルフィド基およびイソシアヌレート基からなる群から選択される1種以上の官能基を示し、Rは炭化水素基を示す。) Moreover, as a monovalent group which Y in Formula (6) shows, the structure of following formula (6-1) is mentioned.
Figure 2019044081
(In the formula, Y 1 is one selected from the group consisting of amino group, mercapto group, epoxy group, (meth) acryl group, vinyl group, isocyanate group, imidazolyl group, ureido group, sulfide group and isocyanurate group) The above functional group is shown, R shows a hydrocarbon group.)

本発明におけるYとしては、アミノ基、メルカプト基、エポキシ基、(メタ)アクリル基、ビニル基、イソシアネート基、イミダゾリル基、ウレイド基およびイソシアヌレート基からなる群から選択される1種以上の官能基が好ましく、1級アミノ基、メルカプト基、および2級アミノ基からなる群から選択される1種以上の官能基がより好ましい。
式(6−1)におけるRが示す「炭化水素基」は、アルキレン基が挙げられ、該アルキレン基は置換されていてもよくその置換基としては特に限定されるものではないが、炭素数1〜12の鎖状アルキル基または炭素数6〜14のアリール基が挙げられる。炭素数1〜12の鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基が挙げられる。炭素数6〜14のアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、フェナントリル基、ビフェニル基が挙げられる。
上記アルキレン基の炭素原子数は特に限定されるものではないが、好ましくは1〜10、より好ましくは1〜5、さらに好ましくは1〜3である。上記アルキレン基は直鎖状であっても分岐鎖状であってもよい。上記アルキレン基としては置換されていないアルキレン基が好ましい。
Y 1 in the present invention is one or more functional groups selected from the group consisting of amino group, mercapto group, epoxy group, (meth) acryl group, vinyl group, isocyanate group, imidazolyl group, ureido group and isocyanurate group. A group is preferable, and one or more functional groups selected from the group consisting of a primary amino group, a mercapto group, and a secondary amino group are more preferable.
Examples of the “hydrocarbon group” represented by R in the formula (6-1) include an alkylene group, and the alkylene group may be substituted, but the substituent is not particularly limited. -12 chain alkyl group or C6-C14 aryl group is mentioned. Examples of the chain alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a phenanthryl group, and a biphenyl group.
The number of carbon atoms of the alkylene group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. The alkylene group may be linear or branched. The alkylene group is preferably an unsubstituted alkylene group.

Yで示される1価の基の具体例としては、N−(フェニル)−アミノC1−10アルキル基(ここで、C1−10アルキル基は炭素数1から10のアルキル基を表す。以下同様)、メルカプトC1−10アルキル基、アミノC1−10アルキル基、N−(アミノC1−10アルキル)−アミノC1−10アルキル基、N−(C1−10アルキリデン)−アミノC1−10アルキル基、(エポキシC3−10シクロアルキル)C1−10アルキル基、グリシドキシC1−10アルキル基、グリシジルC1−10アルキル基、アクリルオキシC1−10アルキル基、メタクリルオキシC1−10アルキル基、ビニル基、スチリル基、イソシアネートC1−10アルキル基、イミダゾリルC1−10アルキル基、ウレイドC1−10アルキル基、トリ(C1−10アルコキシ)シリルC1−10アルキルテトラスルフィドC1−10アルキル基、ジ[トリ(C1−10アルコキシ)シリルC1−10アルキル]イソシアヌレートC1−10アルキル基が挙げられる。好ましくは、N−(フェニル)−アミノC1−10アルキル基、メルカプトC1−10アルキル基、アミノC1−10アルキル基である。 Specific examples of the monovalent group represented by Y include an N- (phenyl) -amino C 1-10 alkyl group (wherein the C 1-10 alkyl group represents an alkyl group having 1 to 10 carbon atoms. The same), mercapto C 1-10 alkyl group, amino C 1-10 alkyl group, N- (amino C 1-10 alkyl) -amino C 1-10 alkyl group, N- (C 1-10 alkylidene) -amino C 1-10 alkyl group, (epoxy C 3-10 cycloalkyl) C 1-10 alkyl group, glycidoxy C 1-10 alkyl group, glycidyl C 1-10 alkyl group, acryloxy C 1-10 alkyl group, methacryloxy C 1-10 alkyl group, a vinyl group, a styryl group, an isocyanate C 1-10 alkyl group, imidazolyl C 1-10 alkyl group, ureido C 1-10 A Kill group, tri (C 1-10 alkoxy) silyl C 1-10 alkyl tetrasulfide C 1-10 alkyl group, di [tri (C 1-10 alkoxy) silyl C 1-10 alkyl] isocyanurates C 1-10 alkyl Groups. N- (phenyl) -amino C 1-10 alkyl group, mercapto C 1-10 alkyl group, and amino C 1-10 alkyl group are preferable.

本発明で用いられる(F)シランカップリング剤の具体例を以下に示す。上記アミノ基を有するシランカップリング剤(以下、アミノシランともいう)としては、例えば、γ−アミノプロピルトリエトキシシラン、3−アミノプロピルトリエトキシシラン(γ−アミノプロピルトリメトキシシランともいう)、N−フェニル−3−アミノプロピルトリメトキシシラン(N−フェニル−γ−アミノプロピルトリメトキシシラン、アニリノシランともいう)等を挙げることができる。メルカプト基を有するシランカップリング剤(以下、メルカプトシランともいう)としては、例えば、3−メルカプトプロピルトリメトキシシラン(γ−メルカプトプロピルトリメトキシシランともいう)、3−メルカプトプロピルメチルジメトキシシラン等を挙げることができる。エポキシ基を有するシランカップリング剤(以下、エポキシシランともいう)としては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。
これらの(F)シランカップリング剤は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of the (F) silane coupling agent used in the present invention are shown below. Examples of the silane coupling agent having an amino group (hereinafter also referred to as aminosilane) include γ-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane (also referred to as γ-aminopropyltrimethoxysilane), N- And phenyl-3-aminopropyltrimethoxysilane (also referred to as N-phenyl-γ-aminopropyltrimethoxysilane or anilinosilane). Examples of the silane coupling agent having a mercapto group (hereinafter also referred to as mercaptosilane) include 3-mercaptopropyltrimethoxysilane (also referred to as γ-mercaptopropyltrimethoxysilane), 3-mercaptopropylmethyldimethoxysilane, and the like. be able to. Examples of silane coupling agents having an epoxy group (hereinafter also referred to as epoxy silane) include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and β- (3,4 epoxycyclohexyl). Examples thereof include ethyltrimethoxysilane.
These (F) silane coupling agents may be used individually by 1 type, or may use 2 or more types together.

本発明で用いられる(F)シランカップリング剤を無機充填剤を含む硬化性組成物に添加することにより、機械的強度を向上させたり、硬化性組成物の溶融時の粘度を低減することが可能になる。   By adding the silane coupling agent (F) used in the present invention to a curable composition containing an inorganic filler, the mechanical strength can be improved or the viscosity of the curable composition when melted can be reduced. It becomes possible.

ここで、本発明で用いられる(F)シランカップリング剤の配合割合は、特に限定するものではないが、硬化性組成物が成分(D)を含まない場合は、硬化物の機械的強度向上の観点から、成分(A)、(B)および(E)の合計100質量部に対して、0.01〜2質量部であることが好ましく、0.05〜2質量部であることがより好ましい。また、硬化性組成物が成分(D)を含む場合は、本発明で用いられる(F)シランカップリング剤の配合割合は、特に限定するものではないが、硬化物の機械的強度向上の観点から、成分(A)、(B)、(D)および(E)の合計100質量部に対して、0.01〜2質量部であることが好ましく、0.05〜2質量部であることがより好ましい。   Here, the blending ratio of the (F) silane coupling agent used in the present invention is not particularly limited, but when the curable composition does not contain the component (D), the mechanical strength of the cured product is improved. From the viewpoint, the amount is preferably 0.01 to 2 parts by mass, more preferably 0.05 to 2 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (E). preferable. Moreover, when a curable composition contains a component (D), the compounding ratio of the (F) silane coupling agent used by this invention is not specifically limited, From a viewpoint of the mechanical strength improvement of hardened | cured material From 0.01 to 2 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass in total of components (A), (B), (D) and (E) Is more preferable.

(その他の成分)
本発明の硬化性組成物は、該組成物の粘度を低下させたい場合、その性能を損なわない範囲で、ベンゾオキサジン環が一つである単官能ベンゾオキサジン化合物を含有してもよい。
また、本発明の硬化性組成物には、その性能を損なわない範囲で、例えば、ナノカーボンや難燃剤、離型剤等を配合することができる。
ナノカーボンとしては、例えば、カーボンナノチューブ、フラーレンまたはそれぞれの誘導体が挙げられる。
難燃剤としては、例えば、赤燐、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビスフェニルホスフェート、ビスフェノールAビスジフェニルホスフェート等のリン酸エステルや、ホウ酸エステル等が挙げられる。
離型剤としては、例えば、シリコーンオイル、ステアリン酸エステル、カルナバワックス等が挙げられる。
(Other ingredients)
The curable composition of the present invention may contain a monofunctional benzoxazine compound having one benzoxazine ring as long as the viscosity of the composition is to be reduced, as long as the performance is not impaired.
Moreover, nanocarbon, a flame retardant, a mold release agent, etc. can be mix | blended with the curable composition of this invention in the range which does not impair the performance, for example.
Examples of nanocarbon include carbon nanotubes, fullerenes, and derivatives thereof.
Examples of the flame retardant include phosphate esters such as red phosphorus, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, resorcinol bisphenyl phosphate, and bisphenol A bisdiphenyl phosphate. And boric acid esters.
Examples of the mold release agent include silicone oil, stearic acid ester, carnauba wax and the like.

本発明の硬化性組成物を半導体封止用途に使用する場合は、硬化性組成物の性能を損なわない範囲で、成分(A)〜(F)以外に、カーボンブラック、ベンガラ、および酸化チタン等の着色剤;カルナバワックス等の天然ワックス、酸化ポリエチレンワックス等の合成ワックス、ステアリン酸等の高級脂肪酸、ステアリン酸亜鉛等の金属塩類、およびパラフィン等の離型剤;シリコーンオイル、およびシリコーンゴム等の低応力添加剤;水酸化アルミニウム、および水酸化マグネシウム等の金属水酸化物;ならびにフォスファゼン等の難燃剤等の1種類以上を適宜配合してもよい。   When the curable composition of the present invention is used for semiconductor encapsulation, carbon black, bengara, titanium oxide, etc., in addition to the components (A) to (F), as long as the performance of the curable composition is not impaired. Colorants; natural waxes such as carnauba wax; synthetic waxes such as oxidized polyethylene wax; higher fatty acids such as stearic acid; metal salts such as zinc stearate; and mold release agents such as paraffin; silicone oil and silicone rubber One or more kinds of low stress additives; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; and flame retardants such as phosphazene may be appropriately blended.

[硬化性組成物の製造方法]
次に、本発明の硬化性組成物の製造方法について説明する。
成分(A)〜(C)、さらに、所望により成分(D)〜(F)、その他の添加剤、および溶剤を適宜追加して混練または混合することにより、本発明の硬化性組成物を製造することができる。
混練、混合方法は、特に限定されず、例えば、プラネタリーミキサー、2軸押出機、熱ロールまたはニーダー等の混練機等を用いて混合することができる。また、成分(A)、(B)が室温で高粘度の液状または固体状である場合、成分(E)を含有する場合等には、必要に応じて加熱して混練したり、さらに、加圧または減圧条件下で混練したりしても良い。加熱温度としては80〜120℃が好ましい。また、成分(F)は一般に常温で液体状であるため、前もって成分(E)と混合させても、成分(A)、(B)、(C)等と混合してもよい。
成分(E)を含む硬化性組成物は室温下では固体状であるので、加熱混練後、冷却、粉砕して粉体状としてもよく、該粉体を打錠成形してペレット状にしてもよい。また、粉体を造粒して顆粒状にしてもよい。
[Method for producing curable composition]
Next, the manufacturing method of the curable composition of this invention is demonstrated.
The components (A) to (C) and, if desired, components (D) to (F), other additives, and a solvent are appropriately added and kneaded or mixed to produce the curable composition of the present invention. can do.
The kneading and mixing methods are not particularly limited, and for example, they can be mixed using a planetary mixer, a twin screw extruder, a kneader such as a heat roll or a kneader, and the like. In addition, when the components (A) and (B) are in a highly viscous liquid or solid state at room temperature or contain the component (E), they are heated and kneaded as necessary, and further added. Kneading may be performed under pressure or reduced pressure conditions. The heating temperature is preferably 80 to 120 ° C. In addition, since the component (F) is generally in a liquid state at normal temperature, it may be mixed with the component (E) in advance or with the components (A), (B), (C) and the like.
Since the curable composition containing the component (E) is solid at room temperature, it may be cooled and pulverized after heating and kneading to form a powder, or the powder may be compressed into a pellet. Good. Alternatively, the powder may be granulated into granules.

[硬化物]
本発明の硬化性組成物の硬化物は耐熱性が良好で、熱分解し難く、ガラス転移温度が高いという特徴を有している。
本発明の硬化物の耐熱性は、ガラス転移温度を測定することにより評価できる。ガラス転移温度は、本発明の効果を奏する限り特に限定されないが、160℃以上が挙げられ、好ましくは、180℃以上、より好ましくは200℃以上とされる。ガラス転移温度は、示差走査熱量測定(DSC)により測定することができる。このような測定は、市販の示差走査熱量計(例えば株式会社日立ハイテクサイエンス製)を用いることにより、簡便に行うことができる。
[Cured product]
The cured product of the curable composition of the present invention is characterized by good heat resistance, hardly pyrolyzing, and a high glass transition temperature.
The heat resistance of the cured product of the present invention can be evaluated by measuring the glass transition temperature. The glass transition temperature is not particularly limited as long as the effect of the present invention is exhibited, but may be 160 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The glass transition temperature can be measured by differential scanning calorimetry (DSC). Such a measurement can be easily performed by using a commercially available differential scanning calorimeter (for example, manufactured by Hitachi High-Tech Science Co., Ltd.).

[硬化物の製造方法]
本発明の硬化物の製造方法は、特に限定されないが、例えば、次のように製造することができる。
まず、本発明の硬化性組成物を上記方法によって製造する。続いて、得られた硬化性組成物を、加熱による熱硬化反応により硬化させることができる。このときの加熱温度は、例えば、150℃以上330℃以下が挙げられ、好ましくは170℃以上300℃以下、より好ましくは200℃以上250℃以下である。通常、フェノール系硬化剤を用いる場合の熱硬化反応の加熱温度は低い温度、例えば、100℃以上170℃未満であるが、本発明では、熱耐性の向上の観点から、加熱温度は170℃以上300℃以下とすることが好ましい。硬化時間は、例えば、1分間以上5時間以内が挙げられる。硬化物を連続生産する場合は硬化時間は1分間以上3分間以内で十分であるが、十分な強度を得るために後硬化としてさらに5分間以上5時間以内で加熱することが好ましい。
[Method for producing cured product]
Although the manufacturing method of the hardened | cured material of this invention is not specifically limited, For example, it can manufacture as follows.
First, the curable composition of this invention is manufactured by the said method. Subsequently, the obtained curable composition can be cured by a thermosetting reaction by heating. As for the heating temperature at this time, 150 to 330 degreeC is mentioned, for example, Preferably it is 170 to 300 degreeC, More preferably, it is 200 to 250 degreeC. Usually, the heating temperature of the thermosetting reaction in the case of using a phenolic curing agent is a low temperature, for example, 100 ° C. or higher and lower than 170 ° C. In the present invention, from the viewpoint of improving heat resistance, the heating temperature is 170 ° C. or higher. It is preferable to set it to 300 ° C. or lower. As for hardening time, 1 minute or more and less than 5 hours are mentioned, for example. In the case of continuously producing a cured product, a curing time of 1 minute or more and 3 minutes or less is sufficient, but in order to obtain a sufficient strength, it is preferable to further heat for 5 minutes or more and 5 hours or less as post-curing.

[半導体装置]
本発明の半導体装置は、成分(A)〜(C)、所望により成分(D)〜(F)を含有する本発明の硬化性組成物を硬化させてなる硬化物中に半導体素子が設置されている半導体装置である。ここで、通常、半導体素子は金属素材の薄板であるリードフレームにより支持固定されている。「硬化物中に半導体素子が設置されている」とは、半導体素子が上記硬化性組成物の硬化物で封止されていることを意味し、半導体素子が該硬化物で被覆されている状態を表す。この場合、半導体素子全体が被覆されていてもよく、基板上に設置された半導体素子の表面が被覆されていてもよい。
[Semiconductor device]
In the semiconductor device of the present invention, a semiconductor element is placed in a cured product obtained by curing the curable composition of the present invention containing the components (A) to (C) and optionally the components (D) to (F). It is a semiconductor device. Here, the semiconductor element is usually supported and fixed by a lead frame which is a thin plate of a metal material. “The semiconductor element is installed in the cured product” means that the semiconductor element is sealed with the cured product of the curable composition, and the semiconductor element is covered with the cured product. Represents. In this case, the entire semiconductor element may be covered, or the surface of the semiconductor element placed on the substrate may be covered.

本発明の硬化物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造する場合は、トランスファーモールド、コンプレッションモールド、あるいはインジェクションモールド等の従来からの成形方法により封止工程を実施することによって、半導体装置を製造することができる。   In the case of manufacturing a semiconductor device by sealing various electronic components such as semiconductor elements using the cured product of the present invention, the sealing step is performed by a conventional molding method such as transfer molding, compression molding, or injection molding. By carrying out the above, a semiconductor device can be manufactured.

以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

<成分(A);ノルボルネン構造を持つ多官能エポキシ化合物>
成分(A)として下記(A1)〜(A3)を使用した。
(A1)多官能エポキシ化合物1;式(2−1)の化合物
上記式(3)に示す化合物(a)を、『土田詔一ら、「ブタジエンとシクロペンタジエンとのDiels−Alder反応−三量体の決定−」、石油学会誌、1972年、第15巻、3号、p189−192』に記載の方法に準拠して合成した。
次に、上記式(3)の反応を次のようにして行った。反応容器に、クロロホルム23.5kgおよび化合物(a)1.6kgを投入し、0℃で攪拌しながらメタクロロ過安息香酸4.5kgを滴下した。室温まで昇温し、12時間反応を行った。
次に、ろ過により副生したメタクロロ安息香酸を除去した後、ろ液を1N水酸化ナトリウム水溶液で3回洗浄後、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、ろ過により硫酸マグネシウムを除去してろ液を濃縮し、粗体を得た。
粗体にトルエン2kgを加え、室温で溶解した。これにヘプタン6kgを滴下して晶析し、5℃で1時間熟成した。晶析物をろ取してヘキサンにより洗浄した。35℃下、24時間減圧乾燥することによって、下記式(2−1)に示す化合物を白色固体として1.4kg得た。

Figure 2019044081
<Component (A): polyfunctional epoxy compound having a norbornene structure>
The following (A1) to (A3) were used as the component (A).
(A1) Polyfunctional epoxy compound 1; compound of formula (2-1) The compound (a) represented by the above formula (3) is converted into “Diels-Alder reaction of butadiene and cyclopentadiene-trimer”. The body was synthesized according to the method described in “Determining the Body—”, Journal of Petroleum Society, 1972, Vol. 15, No. 3, p189-192 ”.
Next, the reaction of the above formula (3) was performed as follows. To the reaction vessel, 23.5 kg of chloroform and 1.6 kg of compound (a) were added, and 4.5 kg of metachloroperbenzoic acid was added dropwise with stirring at 0 ° C. The temperature was raised to room temperature and the reaction was carried out for 12 hours.
Next, after removing metachlorobenzoic acid by-produced by filtration, the filtrate was washed with a 1N aqueous sodium hydroxide solution three times and then with a saturated saline solution. The organic layer was dried over magnesium sulfate, the magnesium sulfate was removed by filtration, and the filtrate was concentrated to obtain a crude product.
2 kg of toluene was added to the crude product and dissolved at room temperature. 6 kg of heptane was added dropwise thereto for crystallization, and aging was carried out at 5 ° C. for 1 hour. The crystallized product was collected by filtration and washed with hexane. By drying under reduced pressure at 35 ° C. for 24 hours, 1.4 kg of a compound represented by the following formula (2-1) was obtained as a white solid.
Figure 2019044081

(A2)多官能エポキシ化合物2;式(2−2)の化合物(トリシクロペンタジエンジエポキシド:TCPD−DE)
化合物(b)を化合物(a)と同様に、上記文献に記載の方法に準拠して合成した。
次に、上記式(4)の反応を次のようにして行った。反応容器に、クロロホルム59.2kgおよび化合物(b)4.0kgを投入し、−10℃で攪拌しながらメタクロロ過安息香酸10.6kgを滴下した。室温まで昇温し、12時間反応を行った。
次に、ろ過により副生したメタクロロ安息香酸を除去した後、ろ液を5%亜硫酸ナトリウム水溶液42.0kgで洗浄した。有機層を更に1N水酸化ナトリウム水溶液41.6kgで4回洗浄後、飽和食塩水48.0kgで洗浄した。有機層を硫酸マグネシウムで乾燥後、ろ過により硫酸マグネシウムを除去してろ液を濃縮し、粗体5.1kgを得た。
粗体にトルエン3.5kgを加え、室温で溶解した。これにヘプタン13.7kgを滴下して晶析し、5℃で1時間熟成した。晶析物をろ取してヘプタンにより洗浄した。35℃下、12時間減圧乾燥することによって、下記式(2−2)に示す化合物を白色固体として2.8kg得た。

Figure 2019044081
(A2) Polyfunctional epoxy compound 2; compound of formula (2-2) (tricyclopentadiene diepoxide: TCPD-DE)
The compound (b) was synthesized in the same manner as the compound (a) according to the method described in the above document.
Next, the reaction of the above formula (4) was performed as follows. To the reaction vessel, 59.2 kg of chloroform and 4.0 kg of compound (b) were added, and 10.6 kg of metachloroperbenzoic acid was added dropwise with stirring at −10 ° C. The temperature was raised to room temperature and the reaction was carried out for 12 hours.
Next, metachlorobenzoic acid by-produced by filtration was removed, and the filtrate was washed with 42.0 kg of 5% aqueous sodium sulfite solution. The organic layer was further washed 4 times with 41.6 kg of 1N aqueous sodium hydroxide solution and then with 48.0 kg of saturated brine. The organic layer was dried over magnesium sulfate, the magnesium sulfate was removed by filtration, and the filtrate was concentrated to obtain 5.1 kg of a crude product.
To the crude product, 3.5 kg of toluene was added and dissolved at room temperature. 13.7 kg of heptane was added dropwise thereto for crystallization, and aging was carried out at 5 ° C. for 1 hour. The crystallized product was collected by filtration and washed with heptane. By drying under reduced pressure at 35 ° C. for 12 hours, 2.8 kg of a compound represented by the following formula (2-2) was obtained as a white solid.
Figure 2019044081

(A3)多官能エポキシ化合物3;式(2−4)の化合物(ジシクロペンタジエンジエポキシド:DCPD−DE)
反応容器にジシクロペンタジエン10kg、重曹68kg、アセトン100Lおよびイオン交換水130Lを仕込み、10℃以下に冷却した後、反応液の温度を30℃以下に維持するように冷却を制御して、オキソン84kgを徐々に添加し、撹拌しながら10時間反応を行った。
次に、酢酸エチル100Lによる反応生成物の抽出を2回行い、得られた有機層を分取して合わせた。続いて、当該有機層を食塩およびチオ硫酸ナトリウムの混合水溶液(食塩20wt%+チオ硫酸ナトリウム20wt%)100Lにて洗浄した後、さらに、イオン交換水100Lで2回洗浄した。
洗浄後の有機層を硫酸マグネシウムにて乾燥後、ろ過により硫酸マグネシウムを除去し、ろ液から有機溶媒を留去して、下記式(2−4)に示す化合物を白色固体として11kg得た。

Figure 2019044081
(A3) Polyfunctional epoxy compound 3; compound of formula (2-4) (dicyclopentadiene diepoxide: DCPD-DE)
A reaction vessel was charged with 10 kg of dicyclopentadiene, 68 kg of baking soda, 100 L of acetone and 130 L of ion-exchanged water, cooled to 10 ° C. or lower, and controlled to maintain the temperature of the reaction solution at 30 ° C. or lower. Was gradually added and reacted for 10 hours with stirring.
Next, extraction of the reaction product with 100 L of ethyl acetate was performed twice, and the obtained organic layers were separated and combined. Subsequently, the organic layer was washed with 100 L of a mixed aqueous solution of sodium chloride and sodium thiosulfate (sodium 20 wt% + sodium thiosulfate 20 wt%), and then further washed twice with 100 L of ion-exchanged water.
The organic layer after washing was dried over magnesium sulfate, magnesium sulfate was removed by filtration, and the organic solvent was distilled off from the filtrate to obtain 11 kg of a compound represented by the following formula (2-4) as a white solid.
Figure 2019044081

<成分(B);フェノール系硬化剤>
成分(B)として下記(B1)〜(B3)を使用した。
(B1)フェノール系硬化剤1;フェノールノボラック樹脂(TD−2106、DIC社製)
(B2)フェノール系硬化剤2;ビフェニレン骨格を有するフェノールアラルキル樹脂(GPH−065、日本化薬社製)
(B3)フェノール系硬化剤3;トリフェノールメタン型フェノール樹脂(KTG−105、日本化薬社製)
<Component (B); Phenolic curing agent>
The following (B1) to (B3) were used as the component (B).
(B1) Phenolic curing agent 1; phenol novolac resin (TD-2106, manufactured by DIC Corporation)
(B2) Phenol-based curing agent 2; phenol aralkyl resin having a biphenylene skeleton (GPH-065, manufactured by Nippon Kayaku Co., Ltd.)
(B3) Phenol-based curing agent 3; triphenol methane type phenol resin (KTG-105, manufactured by Nippon Kayaku Co., Ltd.)

<成分(C);硬化促進剤>
成分(C)として下記(C1)〜(C2)を使用した。
(C1)硬化促進剤1;テトラフェニルホスホニウムテトラフェニルボレート(TPP−K)(北興化学工業株式会社製)
(C2)硬化促進剤2;トリパラトリルホスフィン(TPTP)(北興化学工業株式会社製)
<Component (C); Curing accelerator>
The following (C1) to (C2) were used as the component (C).
(C1) Curing accelerator 1; tetraphenylphosphonium tetraphenylborate (TPP-K) (manufactured by Hokuko Chemical Co., Ltd.)
(C2) Curing accelerator 2; Tripalatolylphosphine (TPTP) (made by Hokuko Chemical Co., Ltd.)

<成分(D);成分(A)以外のエポキシ化合物(その他のエポキシ化合物)>
成分(D)として下記(D1)、(D2)を使用した。
(D1)、(D2)その他のエポキシ化合物1、2として、ノルボルナン構造を有さない次の成分(D1)および(D2)を使用した。
(D1)その他のエポキシ化合物1;下記式(7)に示すエポキシ化合物(テトラメチルビフェノールジグリシジルエーテル)(YX−4000H、三菱化学株式会社製)

Figure 2019044081
(D2)その他のエポキシ化合物2;エポキシ化合物(ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂のグリシジルエーテル)(NC−3000、日本化薬株式会社製) <Component (D); Epoxy Compound Other than Component (A) (Other Epoxy Compound)>
The following (D1) and (D2) were used as the component (D).
(D1), (D2) As the other epoxy compounds 1 and 2, the following components (D1) and (D2) having no norbornane structure were used.
(D1) Other epoxy compound 1; epoxy compound (tetramethylbiphenol diglycidyl ether) represented by the following formula (7) (YX-4000H, manufactured by Mitsubishi Chemical Corporation)
Figure 2019044081
(D2) Other epoxy compound 2; epoxy compound (glycidyl ether of phenol aralkyl type epoxy resin having a biphenylene skeleton) (NC-3000, manufactured by Nippon Kayaku Co., Ltd.)

(実施例1)
上記のようにして得られた多官能エポキシ化合物1(A1)、フェノール系硬化剤1(B1)および硬化促進剤2(C2)を下記の組成となるように100度に熱した熱板上で溶解混合し、硬化性組成物を得た。
<硬化性組成物の組成>
(A1)多官能エポキシ化合物1 50質量部
(B1)フェノール系硬化剤1 47質量部
(C2)硬化促進剤2 3質量部
Example 1
On the hot plate which heated the polyfunctional epoxy compound 1 (A1), the phenol type hardening | curing agent 1 (B1), and the hardening accelerator 2 (C2) which were obtained as mentioned above at 100 degree | times so that it might become the following composition. The mixture was dissolved and mixed to obtain a curable composition.
<Composition of curable composition>
(A1) Polyfunctional epoxy compound 1 50 parts by mass (B1) Phenolic curing agent 1 47 parts by mass (C2) Curing accelerator 2 3 parts by mass

上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、220℃にて3時間加熱し、硬化物を得た。   The curable composition obtained as described above was heated at 220 ° C. for 3 hours in a hot air circulating oven to obtain a cured product.

<耐熱性(ガラス転移温度;Tg)>
上記のようにして得た硬化物のガラス転移温度(Tg)を、日立ハイテクサイエンス製示差走査熱量計DSC7020により、30〜300℃まで10℃/分で昇温して測定し、硬化物の耐熱性とした。なお、ここでいうガラス転移温度は、JIS K7121「プラスチックの転移温度測定法」に記載されているうち「中間点ガラス転移温度:Tmg」に基づいて測定した。測定結果を表1にまとめた。
サンプル量:約10mg
<Heat resistance (glass transition temperature; Tg)>
The glass transition temperature (Tg) of the cured product obtained as described above was measured with a differential scanning calorimeter DSC7020 manufactured by Hitachi High-Tech Science Inc. at a rate of 10 ° C./min. It was sex. The glass transition temperature here was measured based on “intermediate glass transition temperature: T mg ” described in JIS K7121 “Plastic Transition Temperature Measurement Method”. The measurement results are summarized in Table 1.
Sample amount: about 10mg

(実施例2〜8)
各成分の配合割合を表1に示した通りとした以外は実施例1と同様にして、各実施例の組成物を調製した。各々の組成物について実施例1と同様にして耐熱性(ガラス転移温度)を測定した。結果を表1に示す。
(Examples 2 to 8)
A composition of each example was prepared in the same manner as in Example 1 except that the blending ratio of each component was as shown in Table 1. About each composition, it carried out similarly to Example 1, and measured heat resistance (glass transition temperature). The results are shown in Table 1.

(比較例1〜3)
各成分の配合割合を表2に示した通りとした以外は実施例1と同様にして、各比較例の組成物を調製した。各々の組成物について実施例1と同様にして耐熱性(ガラス転移温度)を測定した。結果を表2に示す。
(Comparative Examples 1-3)
A composition of each comparative example was prepared in the same manner as in Example 1 except that the blending ratio of each component was as shown in Table 2. About each composition, it carried out similarly to Example 1, and measured heat resistance (glass transition temperature). The results are shown in Table 2.

Figure 2019044081
Figure 2019044081

Figure 2019044081
Figure 2019044081

各実施例の硬化性組成物は耐熱性(ガラス転移温度)が160℃以上であり、耐熱性が高度に向上していることが分かる。一方、比較例1〜3はガラス転移温度が低くなっており耐熱性に劣っている。
以上の結果から、本発明の実施形態である硬化性組成物を硬化させて、高耐熱性の硬化物を得ることができた。
The curable composition of each example has a heat resistance (glass transition temperature) of 160 ° C. or higher, and it can be seen that the heat resistance is highly improved. On the other hand, Comparative Examples 1 to 3 have a low glass transition temperature and are inferior in heat resistance.
From the above results, it was possible to obtain a highly heat-resistant cured product by curing the curable composition according to the embodiment of the present invention.

Claims (10)

(A)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
(B)フェノール系硬化剤と、
(C)硬化促進剤と
を含有する、硬化性組成物。
(A) an epoxy compound having at least one norbornane structure and at least two epoxy groups;
(B) a phenolic curing agent;
(C) A curable composition containing a curing accelerator.
(D)前記(A)以外のエポキシ化合物をさらに含有する、請求項1に記載の硬化性組成物。   (D) The curable composition of Claim 1 which further contains epoxy compounds other than said (A). (E)無機充填剤をさらに含有する、請求項1または2に記載の硬化性組成物。   (E) The curable composition of Claim 1 or 2 which further contains an inorganic filler. (F)シランカップリング剤をさらに含有する、請求項1〜3のいずれか一項に記載の硬化性組成物。   (F) The curable composition according to any one of claims 1 to 3, further comprising a silane coupling agent. 請求項1〜4のいずれか一項に記載の硬化性組成物を硬化させてなる硬化物。   Hardened | cured material formed by hardening | curing the curable composition as described in any one of Claims 1-4. ガラス転移温度が160℃以上である請求項5に記載の硬化物。   The cured product according to claim 5, wherein the glass transition temperature is 160 ° C or higher. 請求項5または6に記載の硬化物中に半導体素子が設置されている、半導体装置。   The semiconductor device with which the semiconductor element is installed in the hardened | cured material of Claim 5 or 6. 硬化性組成物の製造方法であって、
(A)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
(B)フェノール系硬化剤と、
(C)硬化促進剤と
を混合して混合物を得る工程
を有する、硬化性組成物の製造方法。
A method for producing a curable composition comprising:
(A) an epoxy compound having at least one norbornane structure and at least two epoxy groups;
(B) a phenolic curing agent;
(C) The manufacturing method of a curable composition which has the process of mixing with a hardening accelerator and obtaining a mixture.
前記混合物を得る工程において、(D)前記(A)以外のエポキシ化合物をさらに混合して混合物を得る、請求項8に記載の製造方法。   The method according to claim 8, wherein in the step of obtaining the mixture, (D) an epoxy compound other than (A) is further mixed to obtain a mixture. 請求項8または9に記載の方法により製造した前記硬化性組成物を170〜300℃にて加熱して硬化させる工程
を有する、硬化物の製造方法。
The manufacturing method of hardened | cured material which has the process of heating and hardening the said curable composition manufactured by the method of Claim 8 or 9 at 170-300 degreeC.
JP2017168905A 2017-09-01 2017-09-01 A curable composition, a cured product of the composition, the composition and a method for producing the cured product. Active JP6999335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168905A JP6999335B2 (en) 2017-09-01 2017-09-01 A curable composition, a cured product of the composition, the composition and a method for producing the cured product.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168905A JP6999335B2 (en) 2017-09-01 2017-09-01 A curable composition, a cured product of the composition, the composition and a method for producing the cured product.

Publications (2)

Publication Number Publication Date
JP2019044081A true JP2019044081A (en) 2019-03-22
JP6999335B2 JP6999335B2 (en) 2022-01-18

Family

ID=65815569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168905A Active JP6999335B2 (en) 2017-09-01 2017-09-01 A curable composition, a cured product of the composition, the composition and a method for producing the cured product.

Country Status (1)

Country Link
JP (1) JP6999335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096610A (en) * 2019-07-23 2022-02-25 株式会社Kcc Epoxy resin composition
WO2023120740A1 (en) * 2021-12-22 2023-06-29 株式会社レゾナック Resin composition, electronic component device, and method for manufacturing electronic component device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171502A (en) * 1997-08-28 1999-03-16 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing apparatus
JP2004156036A (en) * 2002-10-18 2004-06-03 Hitachi Chem Co Ltd Curing accelerator for curable resin, curable resin composition, electronic component device and method for producing phosphine derivative
JP2004300275A (en) * 2003-03-31 2004-10-28 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2004352894A (en) * 2003-05-29 2004-12-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US20120302667A1 (en) * 2011-05-23 2012-11-29 Cheil Industries, Inc. Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same
US20130266812A1 (en) * 2012-04-05 2013-10-10 Guangdong Shengyi Sci.Tech Co., Ltd Epoxy Resin Composition, and Prepreg and Copper Clad Laminate Made Therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171502A (en) * 1997-08-28 1999-03-16 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing apparatus
JP2004156036A (en) * 2002-10-18 2004-06-03 Hitachi Chem Co Ltd Curing accelerator for curable resin, curable resin composition, electronic component device and method for producing phosphine derivative
JP2004300275A (en) * 2003-03-31 2004-10-28 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2004352894A (en) * 2003-05-29 2004-12-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US20120302667A1 (en) * 2011-05-23 2012-11-29 Cheil Industries, Inc. Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same
US20130266812A1 (en) * 2012-04-05 2013-10-10 Guangdong Shengyi Sci.Tech Co., Ltd Epoxy Resin Composition, and Prepreg and Copper Clad Laminate Made Therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096610A (en) * 2019-07-23 2022-02-25 株式会社Kcc Epoxy resin composition
WO2023120740A1 (en) * 2021-12-22 2023-06-29 株式会社レゾナック Resin composition, electronic component device, and method for manufacturing electronic component device

Also Published As

Publication number Publication date
JP6999335B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6849698B2 (en) Cured resin composition, cured product and curing method of the cured resin composition, and semiconductor device
WO2018181857A1 (en) Curable resin composition, cured product of said composition, method of producing said composition and said cured product, and semiconductor device
JP7086982B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JPWO2013008667A1 (en) Curable resin composition and method for producing cured product using the same
CN1138602A (en) Semiconductor encapsulating epoxy resin compositions and semiconductor devices encapsulated therewith
KR20200070276A (en) Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
KR102427035B1 (en) A composition for a cured resin, a cured product of the composition, a method for manufacturing the composition and the cured product, and a semiconductor device
JP6999335B2 (en) A curable composition, a cured product of the composition, the composition and a method for producing the cured product.
JP7569784B2 (en) Composition for cured resin, cured product of said composition, methods for producing said composition and said cured product, and semiconductor device
US11555092B2 (en) Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP6946088B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JP7410052B2 (en) Composition for cured resin, cured product of the composition, method for producing the composition and cured product, and semiconductor device
JP7567317B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
TWI824400B (en) Composition for curable resin, cured product of the composition, method of manufacturing the composition and the cured product, and semiconductor device
JP2019006977A (en) Curable composition containing organosilicon compound having epoxy group, cured product, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 6999335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350