JP2019043814A - Glass for near-infrared absorption filter - Google Patents

Glass for near-infrared absorption filter Download PDF

Info

Publication number
JP2019043814A
JP2019043814A JP2017169370A JP2017169370A JP2019043814A JP 2019043814 A JP2019043814 A JP 2019043814A JP 2017169370 A JP2017169370 A JP 2017169370A JP 2017169370 A JP2017169370 A JP 2017169370A JP 2019043814 A JP2019043814 A JP 2019043814A
Authority
JP
Japan
Prior art keywords
glass
less
ratio
infrared absorption
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017169370A
Other languages
Japanese (ja)
Other versions
JP6913364B2 (en
Inventor
悟郎 阿曽
Goro Aso
悟郎 阿曽
耕治 中畑
Koji Nakahata
耕治 中畑
沢登 成人
Shigeto Sawanobori
成人 沢登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumita Optical Glass Inc
Original Assignee
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumita Optical Glass Inc filed Critical Sumita Optical Glass Inc
Priority to JP2017169370A priority Critical patent/JP6913364B2/en
Priority to CN201810216489.4A priority patent/CN109422460B/en
Publication of JP2019043814A publication Critical patent/JP2019043814A/en
Application granted granted Critical
Publication of JP6913364B2 publication Critical patent/JP6913364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

To provide a glass for a near-infrared absorption filter, which has good transmission characteristics for visible light and excellent polishing processability.SOLUTION: The glass for a near-infrared absorption filter has a composition comprising, in terms of mass%, at least POby 65.0% or more and 75.0% or less, AlOby 10.0% or more and 16.0% or less, BOby 1.5% or more and 7.0% or less, LiO by 1.0% or more and 3.5% or less, KO by 2.0% or more and 10.0% or less, RO by 7.0% or more and 13.5% or less, MgO by 0.5% or more and 6.0% or less, and RO by 0.5% or more and 6.0% or less, contains CuO by 4.5% or more and 9.0% or less in an external ratio, satisfies 0.78≤x≤3.00, 0.74≤y≤2.29 and 0.12≤z≤0.24, where x is RO/CuO, y is AlO/RO and z is AlO/(PO+BO).SELECTED DRAWING: Figure 1

Description

本発明は、近赤外吸収フィルタ用ガラスに関する。   The present invention relates to a near-infrared absorption filter glass.

カメラ、スマートフォン等のカラー撮影機器には、固体撮影素子が搭載される。この固体撮影素子の分光感度は、可視域から近赤外域の広い範囲に亘っており、その感度は、可視域よりも赤外域の方が高い。そのため、固体撮影素子を効果的に機能させるためには、可視域の光を透過させるとともに、近赤外域(波長800〜900nm程度)の光を吸収し、通常の感度に補正する必要がある。そして、このような感度補正を達成する光学部品の一つとして、近赤外吸収フィルタが多く用いられている。
また、近年の撮影機器の小型化・軽量化の需要の増加に伴い、この近赤外吸収フィルタに対しては、一層の薄型化が要求されている。
A solid imaging element is mounted on a color imaging device such as a camera or a smartphone. The spectral sensitivity of this solid-state imaging element covers a wide range from the visible range to the near infrared range, and the sensitivity is higher in the infrared range than in the visible range. Therefore, in order to make the solid-state imaging device function effectively, it is necessary to transmit light in the visible region, absorb light in the near infrared region (wavelength of about 800 to 900 nm), and correct to normal sensitivity. A near-infrared absorption filter is often used as one of the optical components that achieve such sensitivity correction.
In addition, with the recent increase in demand for downsizing and weight reduction of photographic equipment, further reduction in thickness is required for the near-infrared absorption filter.

ここで、近赤外吸収フィルタは、ガラスから作製することができ、近赤外吸収フィルタ用のガラスが備えるべき分光特性としては、800nm以上の波長の光の吸収特性が高く、400〜700nmの波長の光の透過特性が高いことが挙げられる。   Here, the near-infrared absorption filter can be made of glass, and as the spectral characteristics that the glass for the near-infrared absorption filter should have, the absorption characteristic of light having a wavelength of 800 nm or more is high, and the wavelength is 400 to 700 nm. It is mentioned that the transmission characteristic of the light of a wavelength is high.

このような分光特性を備えるガラスとして、例えば、特許文献1〜3は、フツリン酸塩ガラスにCuOを含有させることにより、耐候性に優れるとともに、所定の透過率特性を満足する近赤外吸収フィルタを製造可能なガラスが得られることを開示している。   As a glass having such spectral characteristics, for example, Patent Documents 1 to 3 include a near-infrared absorption filter that is excellent in weather resistance and satisfies a predetermined transmittance characteristic by containing CuO in a fluorophosphate glass. It is disclosed that a glass capable of producing is obtained.

なお、上記文献に開示のガラスにおいては、CuOに由来する銅イオンの価数をCu2+に制御することで、近赤外域の光の吸収特性を高めている。また、一層の薄型化を図る際には、単位体積当たりのCuO、ひいてはCu2+の含有量を増やすことで、近赤外域の光の吸収特性が良好に保持され得る。 In the glass disclosed in the above document, the light absorption property in the near infrared region is enhanced by controlling the valence of copper ions derived from CuO to Cu 2+ . Further, when further reducing the thickness, the light absorption characteristics in the near infrared region can be satisfactorily maintained by increasing the content of CuO per unit volume, and hence Cu 2+ .

特開平01−219037号公報Japanese Patent Laid-Open No. 01-219037 特開平03−083834号公報Japanese Patent Laid-Open No. 03-083833 特開平03−083835号公報Japanese Patent Laid-Open No. 03-083835

しかしながら、上記文献に開示の技術で用いられるフツリン酸塩ガラスは、研磨処理などによって容易に削れてしまう傾向にあり、厚みの微調整が困難である、言い換えれば、研磨加工性が悪いという問題があった。この問題は、歩留まりの低下をもたらし、また、一層の薄型化の要求に応じる場合などにおいて、特に深刻となる。   However, the fluorophosphate glass used in the technique disclosed in the above document tends to be easily scraped by a polishing process or the like, and the fine adjustment of the thickness is difficult, in other words, the problem of poor polishing processability. there were. This problem causes a decrease in yield, and becomes particularly serious when responding to demands for further thinning.

加えて、フツリン酸塩ガラスは、一般に、製造時にフッ素が揮発して組成が安定せず、得率が低くなるため、大量生産には適しておらず、その上、排ガス処理装置の設置などに伴うコストを増大させるという問題もある。   In addition, fluorophosphate glass is generally not suitable for mass production because fluorine volatilizes during production and the composition is not stable and the yield is low. There is also the problem of increasing the costs involved.

一方、上述した研磨加工性に関する問題への対処として、上記文献に開示の技術において、フツリン酸塩ガラスに代えてリン酸塩ガラスを用いることが考えられる。   On the other hand, as a countermeasure to the above-described problem relating to the polishing processability, it is conceivable to use phosphate glass instead of fluorophosphate glass in the technique disclosed in the above-mentioned document.

しかしながら、単にフツリン酸塩ガラスに代えてリン酸塩ガラスを用いた場合には、熔解温度が高くなるため、可視光の透過特性が悪化するとともに、Cu2+が還元されてCuになり易くなり、近赤外域の光の吸収特性が悪化する。かかる近赤外域の光の吸収特性の悪化は、一層の薄型化に対応すべくCuOの含有量を増やした場合において、より顕著となる。 However, when phosphate glass is simply used instead of fluorophosphate glass, the melting temperature increases, so that the visible light transmission characteristics deteriorate and Cu 2+ is easily reduced to Cu +. The light absorption characteristics in the near infrared region deteriorate. Such deterioration of the light absorption characteristics in the near infrared region becomes more conspicuous when the content of CuO is increased to cope with further thinning.

本発明は、上記の観点に鑑みてなされたもので、可視光の透過特性が良好である上、研磨加工性に優れる、近赤外吸収フィルタ用ガラスを提供することを目的とする。   This invention is made | formed in view of said viewpoint, and it aims at providing the glass for near-infrared absorption filters which is excellent in the permeation | transmission characteristic of visible light, and is excellent in polishing workability.

前記課題を解決するための手段としては以下の通りである。即ち、本発明の近赤外吸収フィルタ用ガラスは、
質量%で、
:65.0%以上75.0%以下
Al:10.0%以上16.0%以下
:1.5%以上7.0%以下
O:7.0%以上13.5%以下
LiO:1.0%以上3.5%以下
NaO:0%以上4.0%以下
O:2.0%以上10.0%以下
CsO:0%以上3.0%以下
O:0.5%以上6.0%以下
CaO:0%以上2.0%以下
SrO:0%以上3.0%以下
BaO:0%以上4.0%以下
ZnO:0%以上3.0%以下
MgO:0.5%以上6.0%以下
Nb:0%以上5.0%以下
(但し、R Oは、LiO、NaO、KO及びCsOの総和を示し、ROは、CaO、SrO、BaO、ZnO及びMgOの総和を示す)の組成を有し、
CuOを外割りで4.5%以上9.0%以下含み、且つ、
O/CuOをx、Al/R Oをy、Al/(P+B)をzとしたときに、下式(1)〜(3):
0.78≦x≦3.00 (1)
0.74≦y≦2.29 (2)
0.12≦z≦0.24 (3)
を満たす、ことを特徴とする。かかる近赤外吸収フィルタ用ガラスは、可視光の透過特性が良好である上、研磨加工性に優れる。
Means for solving the above problems are as follows. That is, the near infrared absorption filter glass of the present invention is
% By mass
P 2 O 5 : 65.0% to 75.0% Al 2 O 3 : 10.0% to 16.0% B 2 O 3 : 1.5% to 7.0% R 1 2 O: 7.0% to 13.5% Li 2 O: 1.0% to 3.5% Na 2 O: 0% to 4.0% K 2 O: 2.0% to 10.0% Cs 2 O: 0% to 3.0% R 2 O: 0.5% to 6.0% CaO: 0% to 2.0% SrO: 0% to 3.0% BaO: 0% 4.0% or less ZnO: 0% or more and 3.0% or less MgO: 0.5% or more and 6.0% or less Nb 2 O 5 : 0% or more and 5.0% or less (provided that R 1 2 O is li 2 O, Na 2 O, shows the sum of K 2 O and Cs 2 O, R 2 O is, CaO, SrO, BaO, the composition of indicating the sum of ZnO and MgO) And,
CuO is included on the outer surface at 4.5% or more and 9.0% or less, and
When R 1 2 O / CuO is x, Al 2 O 3 / R 1 2 O is y, and Al 2 O 3 / (P 2 O 5 + B 2 O 3 ) is z, the following formulas (1) to (1) 3):
0.78 ≦ x ≦ 3.00 (1)
0.74 ≦ y ≦ 2.29 (2)
0.12 ≦ z ≦ 0.24 (3)
It is characterized by satisfying. Such near-infrared absorption filter glass has excellent visible light transmission characteristics and excellent polishing processability.

本発明の近赤外吸収フィルタ用ガラスは、フッ素を含まないことが好ましい。   It is preferable that the near-infrared absorption filter glass of the present invention does not contain fluorine.

本発明の近赤外吸収フィルタ用ガラスは、日本光学硝子工業会規格「JOGIS10−1994」に準拠して測定される摩耗度が200以上350以下であることが好ましい。   The near infrared absorption filter glass of the present invention preferably has a degree of wear of 200 or more and 350 or less measured in accordance with the Japan Optical Glass Industry Association Standard “JOGIS10-1994”.

本発明の近赤外吸収フィルタ用ガラスは、厚みが0.15mm〜0.30mmであることが好ましい。   The near infrared absorption filter glass of the present invention preferably has a thickness of 0.15 mm to 0.30 mm.

本発明によれば、可視光の透過特性が良好である上、研磨加工性に優れる、近赤外吸収フィルタ用ガラスを提供することができる。   According to the present invention, it is possible to provide a glass for a near-infrared absorption filter having good visible light transmission characteristics and excellent polishing workability.

実施例2及び比較例2のガラスサンプルについての、各波長の光に対する分光透過率のシミュレーションデータである。It is a simulation data of the spectral transmittance with respect to the light of each wavelength about the glass sample of Example 2 and Comparative Example 2.

(近赤外吸収フィルタ用ガラス)
本発明の一実施形態の近赤外吸収フィルタ用ガラス(以下、「本実施形態のガラス」と称することがある。)を具体的に説明する。本実施形態のガラスは、質量%で、
:65.0%以上75.0%以下
Al:10.0%以上16.0%以下
:1.5%以上7.0%以下
O:7.0%以上13.5%以下
LiO:1.0%以上3.5%以下
NaO:0%以上4.0%以下
O:2.0%以上10.0%以下
CsO:0%以上3.0%以下
O:0.5%以上6.0%以下
CaO:0%以上2.0%以下
SrO:0%以上3.0%以下
BaO:0%以上4.0%以下
ZnO:0%以上3.0%以下
MgO:0.5%以上6.0%以下
Nb:0%以上5.0%以下
(但し、R Oは、LiO、NaO、KO及びCsOの総和を示し、ROは、CaO、SrO、BaO、ZnO及びMgOの総和を示す)の組成を有し、
CuOを外割りで4.5%以上9.0%以下含む、ことを第1の特徴とする。
(Glass for near infrared absorption filter)
The glass for near-infrared absorption filters of one embodiment of the present invention (hereinafter sometimes referred to as “glass of this embodiment”) will be specifically described. The glass of the present embodiment is mass%,
P 2 O 5 : 65.0% to 75.0% Al 2 O 3 : 10.0% to 16.0% B 2 O 3 : 1.5% to 7.0% R 1 2 O: 7.0% to 13.5% Li 2 O: 1.0% to 3.5% Na 2 O: 0% to 4.0% K 2 O: 2.0% to 10.0% Cs 2 O: 0% to 3.0% R 2 O: 0.5% to 6.0% CaO: 0% to 2.0% SrO: 0% to 3.0% BaO: 0% 4.0% or less ZnO: 0% or more and 3.0% or less MgO: 0.5% or more and 6.0% or less Nb 2 O 5 : 0% or more and 5.0% or less (provided that R 1 2 O is li 2 O, Na 2 O, shows the sum of K 2 O and Cs 2 O, R 2 O is, CaO, SrO, BaO, the composition of indicating the sum of ZnO and MgO) And,
The first feature is that CuO is included in an external ratio of 4.5% to 9.0%.

また、本実施形態のガラスは、上述した成分以外のその他の成分(後述)を含んでもよい。但し、本実施形態のガラスは、可視光の透過特性及び研磨加工性をより確実に向上させる観点から、上述した成分のみからなる組成を有するとともに、CuOを外割りで4.5%以上9.0%以下含むことが好ましい。   Moreover, the glass of this embodiment may contain other components (after-mentioned) other than the component mentioned above. However, the glass of the present embodiment has a composition composed of only the above-described components from the viewpoint of more reliably improving the visible light transmission characteristics and polishing processability, and CuO is divided by 4.5% or more and 9. It is preferable to contain 0% or less.

以下、本実施形態のガラスにおいて、各成分の割合を上記の範囲に限定した理由について説明する。なお、「%」表示は、特に断らない限り、質量%を意味し、また、必須成分であるCuO以外の成分の割合に関しては、当該CuOを考慮せずに算出されるものとする。   Hereinafter, the reason why the ratio of each component is limited to the above range in the glass of the present embodiment will be described. The “%” display means mass% unless otherwise specified, and the ratio of components other than the essential component CuO is calculated without considering the CuO.

[P
は、本実施形態のガラスにおける主成分である。ガラスにおけるPの割合が65.0%未満であると、ガラスの形成が困難になる。一方、ガラスにおけるPの割合が75.0%を超えると、摩耗度が著しく増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるPの割合は、65.0%以上75.0%以下とした。同様の観点から、本実施形態のガラスにおけるPの割合は、68.0%以上であることが好ましく、また、70.0%以下であることが好ましく、69.5%以下であることがより好ましい。
[P 2 O 5 ]
P 2 O 5 is a main component in the glass of the present embodiment. When the proportion of P 2 O 5 in the glass is less than 65.0%, it becomes difficult to form the glass. On the other hand, when the proportion of P 2 O 5 in the glass exceeds 75.0%, the degree of wear increases remarkably and the polishing processability deteriorates. Therefore, the ratio of P 2 O 5 in the glass of this embodiment is set to 65.0% or more and 75.0% or less. From the same viewpoint, the proportion of P 2 O 5 in the glass of the present embodiment is preferably 68.0% or more, more preferably 70.0% or less, and 69.5% or less. It is more preferable.

[Al
Alは、本実施形態のガラスにおける必須成分であり、摩耗度を低下させることができる成分である。ガラスにおけるAlの割合が10.0%未満であると、摩耗度を低下させる効果が十分ではなく、研磨加工性を向上させることができない。一方、ガラスにおけるAlの割合が16.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化するとともに、熔融時の融液の安定性が悪化するため、量産が困難となる。そのため、本実施形態のガラスにおけるAlの割合は、10.0%以上16.0%以下とした。同様の観点から、本実施形態のガラスにおけるAlの割合は、11.0%以上であることが好ましく、12.0%以上であることがより好ましく、また、15.0%以下であることが好ましく、14.0%以下であることがより好ましい。
[Al 2 O 3 ]
Al 2 O 3 is an essential component in the glass of the present embodiment, and is a component that can reduce the degree of wear. When the proportion of Al 2 O 3 in the glass is less than 10.0%, the effect of reducing the degree of wear is not sufficient, and the polishing processability cannot be improved. On the other hand, if the ratio of Al 2 O 3 in the glass exceeds 16.0%, the melting temperature rises, the visible light transmission characteristics deteriorate, and the stability of the melt during melting deteriorates. It becomes difficult. Therefore, the ratio of Al 2 O 3 in the glass of this embodiment is set to 10.0% or more and 16.0% or less. From the same viewpoint, the proportion of Al 2 O 3 in the glass of the present embodiment is preferably 11.0% or more, more preferably 12.0% or more, and 15.0% or less. It is preferable that it is 14.0% or less.

[B
は、本実施形態のガラスにおける必須成分であり、ガラスの網目構造を形成する成分である。ガラスにおけるBの割合が1.5%未満であると、ガラスの形成が困難になる。一方、ガラスにおけるBの割合が7.0%を超えると、摩耗度が増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるBの割合は、1.5%以上7.0%以下とした。同様の観点から、本実施形態のガラスにおけるBの割合は、2.0%以上であることが好ましく、3.0%以上であることがより好ましく、また、6.5%以下であることが好ましく、5.5%以下であることがより好ましい。
[B 2 O 3 ]
B 2 O 3 is an essential component in the glass of this embodiment and is a component that forms a network structure of glass. If the proportion of B 2 O 3 in the glass is less than 1.5%, it becomes difficult to form the glass. On the other hand, if the proportion of B 2 O 3 in the glass exceeds 7.0%, the degree of wear increases and the polishing processability deteriorates. Therefore, the ratio of B 2 O 3 in the glass of the present embodiment is set to 1.5% to 7.0%. From the same viewpoint, the ratio of B 2 O 3 in the glass of the present embodiment is preferably 2.0% or more, more preferably 3.0% or more, and 6.5% or less. Preferably, it is preferably 5.5% or less.

[LiO]
LiOは、本実施形態のガラスにおける必須成分であり、ガラスの熔解温度を効果的に低下させることができる成分である。ガラスにおけるLiOの割合が1.0%未満であると、ガラスの熔解温度を低下させる効果が十分ではない。一方、ガラスにおけるLiOの割合が3.5%を超えると、摩耗度が増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるLiOの割合は、1.0%以上3.5%以下とした。同様の観点から、本実施形態のガラスにおけるLiOの割合は、2.5%以下であることが好ましく、また、1.75%以下であることがより好ましい。
[Li 2 O]
Li 2 O is an essential component in the glass of this embodiment, and is a component that can effectively lower the melting temperature of the glass. If the proportion of Li 2 O in the glass is less than 1.0%, the effect of lowering the melting temperature of the glass is not sufficient. On the other hand, when the proportion of Li 2 O in the glass exceeds 3.5%, the degree of wear increases and the polishing processability deteriorates. Therefore, the ratio of Li 2 O in the glass of the present embodiment is set to 1.0% or more and 3.5% or less. From the same viewpoint, the ratio of Li 2 O in the glass of the present embodiment is preferably 2.5% or less, and more preferably 1.75% or less.

[NaO]
NaOは、本実施形態のガラスにおいて、ガラスの熔解温度を低下させることができる成分である。ガラスにおけるNaOの割合が4.0%を超えると、摩耗度が増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるNaOの割合は、0%以上4.0%以下とした。同様の観点から、本実施形態のガラスにおけるNaOの割合は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。また、ガラスの熔解温度をより低下させる観点から、本実施形態のガラスにおけるNaOの割合は、0.4%以上であることが好ましい。
[Na 2 O]
Na 2 O is a component that can lower the melting temperature of the glass in the glass of this embodiment. When the ratio of Na 2 O in the glass exceeds 4.0%, the degree of wear increases and the polishing processability deteriorates. Therefore, the ratio of Na 2 O in the glass of the present embodiment is set to 0% to 4.0%. From the same viewpoint, the ratio of Na 2 O in the glass of the present embodiment is preferably 1.5% or less, and more preferably 1.0% or less. From the viewpoint of reducing further the melting temperature of the glass, the proportion of Na 2 O in the glass of the present embodiment is preferably 0.4% or more.

[KO]
Oは、本実施形態のガラスにおける必須成分であり、ガラスの熔解温度を低下させることができる成分である。ガラスにおけるKOの割合が2.0%未満であると、ガラスの熔解温度を低下させる効果が十分ではない。一方、ガラスにおけるKOの割合が10.0%を超えると、摩耗度が増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるKOの割合は、2.0%以上10.0%以下とした。同様の観点から、本実施形態のガラスにおけるKOの割合は、5.0%以上であることが好ましく、また、9.0%以下であることが好ましく、7.0%以下であることがより好ましい。
[K 2 O]
K 2 O is an essential component in the glass of this embodiment, and is a component that can lower the melting temperature of the glass. If the ratio of K 2 O in the glass is less than 2.0%, the effect of lowering the melting temperature of the glass is not sufficient. On the other hand, when the proportion of K 2 O in the glass exceeds 10.0%, the degree of wear increases and the polishing processability deteriorates. Therefore, the ratio of K 2 O in the glass of this embodiment is set to 2.0% or more and 10.0% or less. From the same viewpoint, the proportion of K 2 O in the glass of the present embodiment is preferably 5.0% or more, more preferably 9.0% or less, and 7.0% or less. Is more preferable.

[CsO]
CsOは、本実施形態のガラスにおいて、ガラスの熔解温度を低下させることができる成分である。ガラスにおけるCsOの割合が3.0%を超えると、摩耗度が増大し、研磨加工性が悪化する。そのため、本実施形態のガラスにおけるCsOの割合は、0%以上3.0%以下とした。同様の観点から、本実施形態のガラスにおけるCsOの割合は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。また、ガラスの熔解温度をより低下させる観点から、本実施形態のガラスにおけるCsOの割合は、0.3%以上であることが好ましく、0.4%以上であることがより好ましい。
[Cs 2 O]
Cs 2 O is a component that can lower the melting temperature of the glass in the glass of this embodiment. When the ratio of Cs 2 O in the glass exceeds 3.0%, the degree of wear increases and the polishing processability deteriorates. Therefore, the ratio of Cs 2 O in the glass of this embodiment is set to 0% or more and 3.0% or less. From the same viewpoint, the proportion of Cs 2 O in the glass of this embodiment is preferably 1.5% or less, and more preferably 1.0% or less. Moreover, from the viewpoint of further reducing the melting temperature of the glass, the Cs 2 O ratio in the glass of the present embodiment is preferably 0.3% or more, and more preferably 0.4% or more.

[R O(LiO+NaO+KO+CsO)]
ここで、本実施形態のガラスにおいては、LiO、NaO、KO及びCsOの総和を示すR Oの割合を、7.0%以上13.5%以下とした。ガラスにおけるR Oの割合が7.0%未満であると、ガラスの熔解温度を十分に低下させることができないからである。また、ガラスにおけるR Oの割合が13.5%を超えると、摩耗度が増大し、研磨加工性が悪化するからである。同様の観点から、本実施形態のガラスにおけるR Oの割合は、8.0%以上であることが好ましく、また、12.0%以下であることが好ましい。
[R 1 2 O (Li 2 O + Na 2 O + K 2 O + Cs 2 O)]
Here, in the glass of this embodiment, the ratio of R 1 2 O indicating the total of Li 2 O, Na 2 O, K 2 O, and Cs 2 O was set to 7.0% or more and 13.5% or less. . This is because the melting temperature of the glass cannot be sufficiently lowered when the ratio of R 1 2 O in the glass is less than 7.0%. Moreover, if the ratio of R 1 2 O in the glass exceeds 13.5%, the degree of wear increases and the polishing processability deteriorates. From the same viewpoint, the ratio of R 1 2 O in the glass of this embodiment is preferably 8.0% or more, and more preferably 12.0% or less.

[CaO]
CaOは、本実施形態のガラスにおいて、摩耗度を低下させることができる成分である。ガラスにおけるCaOの割合が2.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスにおけるCaOの割合は、0%以上2.0%以下とした。同様の観点から、本実施形態のガラスにおけるCaOの割合は、1.0%以下であることが好ましい。また、摩耗度をより低下させる観点から、本実施形態のガラスにおけるCaOの割合は、0.5%以上であることが好ましい。
[CaO]
CaO is a component that can reduce the degree of wear in the glass of the present embodiment. When the proportion of CaO in the glass exceeds 2.0%, the melting temperature rises and the visible light transmission characteristics deteriorate. Therefore, the CaO ratio in the glass of this embodiment is set to 0% or more and 2.0% or less. From the same viewpoint, the CaO ratio in the glass of the present embodiment is preferably 1.0% or less. Further, from the viewpoint of further reducing the degree of wear, the CaO ratio in the glass of the present embodiment is preferably 0.5% or more.

[SrO]
SrOは、CaOと同様に、本実施形態のガラスにおいて、摩耗度を低下させることができる成分である。ガラスにおけるSrOの割合が3.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスにおけるSrOの割合は、0%以上3.0%以下とした。同様の観点から、本実施形態のガラスにおけるSrOの割合は、1.0%以下であることが好ましい。また、摩耗度をより低下させる観点から、本実施形態のガラスにおけるSrOの割合は、0.5%以上であることが好ましい。
[SrO]
SrO, like CaO, is a component that can reduce the degree of wear in the glass of this embodiment. If the SrO ratio in the glass exceeds 3.0%, the melting temperature rises and the visible light transmission characteristics deteriorate. Therefore, the ratio of SrO in the glass of this embodiment is set to 0% or more and 3.0% or less. From the same viewpoint, the SrO ratio in the glass of the present embodiment is preferably 1.0% or less. Further, from the viewpoint of further reducing the degree of wear, the ratio of SrO in the glass of the present embodiment is preferably 0.5% or more.

[BaO]
BaOは、CaO、SrOと同様に、本実施形態のガラスにおいて、摩耗度を低下させることができる成分である。ガラスにおけるBaOの割合が4.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスにおけるBaOの割合は、0%以上4.0%以下とした。同様の観点から、本実施形態のガラスにおけるBaOの割合は、1.0%以下であることが好ましい。また、摩耗度をより低下させる観点から、本実施形態のガラスにおけるBaOの割合は、0.5%以上であることが好ましい。
[BaO]
BaO, like CaO and SrO, is a component that can reduce the degree of wear in the glass of this embodiment. If the proportion of BaO in the glass exceeds 4.0%, the melting temperature increases and the visible light transmission characteristics deteriorate. Therefore, the ratio of BaO in the glass of the present embodiment is set to 0% to 4.0%. From the same viewpoint, the ratio of BaO in the glass of the present embodiment is preferably 1.0% or less. Further, from the viewpoint of further reducing the degree of wear, the ratio of BaO in the glass of the present embodiment is preferably 0.5% or more.

[ZnO]
ZnOは、CaO、SrO、BaOと同様に、本実施形態のガラスにおいて、摩耗度を低下させることができる成分である。ガラスにおけるZnOの割合が3.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスにおけるZnOの割合は、0%以上3.0%以下とした。同様の観点から、本実施形態のガラスにおけるZnOの割合は、1.0%以下であることが好ましい。また、摩耗度をより低下させる観点から、本実施形態のガラスにおけるZnOの割合は、0.5%以上であることが好ましい。
[ZnO]
ZnO is a component that can lower the degree of wear in the glass of this embodiment, similarly to CaO, SrO, and BaO. When the proportion of ZnO in the glass exceeds 3.0%, the melting temperature increases and the visible light transmission characteristics deteriorate. Therefore, the ratio of ZnO in the glass of this embodiment is set to 0% or more and 3.0% or less. From the same viewpoint, the ZnO ratio in the glass of the present embodiment is preferably 1.0% or less. Further, from the viewpoint of further reducing the degree of wear, the proportion of ZnO in the glass of the present embodiment is preferably 0.5% or more.

[MgO]
MgOは、本実施形態のガラスにおける必須成分であり、CaO、SrO、BaO、ZnOと同様に、摩耗度を低下させることができる成分である。ガラスにおけるMgOの割合が0.5%未満であると、摩耗度を低下させる効果が十分ではなく、研磨加工性を向上させることができない。一方、ガラスにおけるMgOの割合が6.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化するとともに、熔融時の融液の安定性が悪化するため、量産が困難となる。そのため、本実施形態のガラスにおけるMgOの割合は、0.5%以上6.0%以下とした。同様の観点から、本実施形態のガラスにおけるMgOの割合は、2.0%以上であることが好ましく、また、4.5%以下であることが好ましい。
[MgO]
MgO is an essential component in the glass of the present embodiment, and is a component that can reduce the degree of wear, like CaO, SrO, BaO, and ZnO. When the proportion of MgO in the glass is less than 0.5%, the effect of reducing the degree of wear is not sufficient, and the polishing processability cannot be improved. On the other hand, if the MgO ratio in the glass exceeds 6.0%, the melting temperature rises, the visible light transmission characteristics deteriorate, and the stability of the melt during melting deteriorates, making mass production difficult. . Therefore, the MgO ratio in the glass of this embodiment is set to 0.5% or more and 6.0% or less. From the same viewpoint, the MgO ratio in the glass of the present embodiment is preferably 2.0% or more, and is preferably 4.5% or less.

[RO(CaO+SrO+BaO+ZnO+MgO)]
ここで、本実施形態のガラスにおいては、CaO、SrO、BaO、ZnO及びMgOの総和を示すROの割合を、0.5%以上6.0%以下とした。ガラスにおけるROの割合が0.5%未満であると、摩耗度を低下させる効果が十分ではなく、研磨加工性を向上させることができないからである。また、ガラスにおけるROの割合が6.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化するからである。同様の観点から、本実施形態のガラスにおけるROの割合は、2.0%以上であることが好ましく、また、5.0%以下であることが好ましく、4.5%以下であることがより好ましい。
[R 2 O (CaO + SrO + BaO + ZnO + MgO)]
Here, in the glass of this embodiment, the ratio of R 2 O indicating the sum of CaO, SrO, BaO, ZnO, and MgO was set to 0.5% to 6.0%. This is because if the ratio of R 2 O in the glass is less than 0.5%, the effect of reducing the degree of wear is not sufficient, and the polishing processability cannot be improved. Moreover, when the ratio of R 2 O in the glass exceeds 6.0%, the melting temperature increases, and the visible light transmission characteristics deteriorate. From the same viewpoint, the ratio of R 2 O in the glass of the present embodiment is preferably 2.0% or more, more preferably 5.0% or less, and 4.5% or less. Is more preferable.

[Nb
Nbは、本実施形態のガラスにおいて、熔融時の融液の安定性を向上させることができる成分である。ガラスにおけるNbの割合が5.0%を超えると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスにおけるNbの割合は、0%以上5.0%以下とした。同様の観点から、本実施形態のガラスにおけるNbの割合は、2.5%以下であることが好ましい。また、熔融時の融液の安定性をより向上させる観点から、本実施形態のガラスにおけるNbの割合は、0.25%以上であることが好ましい。
[Nb 2 O 5 ]
Nb 2 O 5 is a component that can improve the stability of the melt during melting in the glass of the present embodiment. When the ratio of Nb 2 O 5 in the glass exceeds 5.0%, the melting temperature increases and the visible light transmission characteristics deteriorate. Therefore, the ratio of Nb 2 O 5 in the glass of this embodiment is set to 0% or more and 5.0% or less. From the same viewpoint, the ratio of Nb 2 O 5 in the glass of the present embodiment is preferably 2.5% or less. Further, from the viewpoint of further improving the stability of the melt during melting, the ratio of Nb 2 O 5 in the glass of the present embodiment is preferably 0.25% or more.

[CuO]
CuOは、ガラスに近赤外吸収特性を付与することができる成分であり、対象とする近赤外吸収フィルタの厚さ及び分光特性により、その割合を適宜選択することができる。但し、CuOが、外割りで4.5%未満しかガラスに含まれていないと、近赤外域の光を吸収する効果が十分ではない。一方、CuOが、外割りで9.0%を超えてガラスに含まれていると、熔解温度が上昇し、可視光の透過特性が悪化する。そのため、本実施形態のガラスは、CuOを外割りで4.5%以上9.0%以下含むことを必須とした。同様の観点から、本実施形態のガラスにおけるCuOの割合(外割り)は、5.9%以上であることが好ましく、また、7.8%以下であることが好ましい。
[CuO]
CuO is a component capable of imparting near-infrared absorption characteristics to glass, and the ratio can be appropriately selected depending on the thickness and spectral characteristics of the target near-infrared absorption filter. However, if the glass contains only less than 4.5% of CuO, the effect of absorbing near-infrared light is not sufficient. On the other hand, if CuO is included in the glass exceeding 9.0% on an external basis, the melting temperature rises and the visible light transmission characteristics deteriorate. For this reason, the glass of the present embodiment is required to contain CuO in an external ratio of 4.5% to 9.0%. From the same point of view, the CuO ratio (external division) in the glass of the present embodiment is preferably 5.9% or more, and preferably 7.8% or less.

[その他の成分]
本実施形態のガラスは、本発明の目的から外れない限り、任意に、上述した成分以外のその他の成分を含んでもよい。その他の成分としては、Fe、TiO、Cr、MnO、Co、NiO、SnO、Nd、Yb等が挙げられる。但し、その他の成分は、本実施形態のガラスにおいて不可避的不純物となり得るため、含まないことが好ましい。
また、特に、本実施形態のガラスは、フッ素を含まないことが好ましい。フッ素を含まないことにより、研磨加工性の悪化を抑制することができる上、高い機械的強度を保持することができる。
[Other ingredients]
The glass of the present embodiment may optionally contain other components other than the components described above, unless departing from the object of the present invention. Examples of other components include Fe 2 O 3 , TiO 2 , Cr 2 O 3 , MnO, Co 3 O 4 , NiO, SnO 2 , Nd 2 O 3 , Yb 2 O 3 and the like. However, it is preferable not to include other components because they can be inevitable impurities in the glass of the present embodiment.
In particular, the glass of this embodiment preferably does not contain fluorine. By not containing fluorine, deterioration of polishing processability can be suppressed and high mechanical strength can be maintained.

本実施形態のガラスにおいては、上述に従ってAl、B、R O、RO、CuOなどの含有量の適正化を図ることにより、熔解温度の低下及び研磨加工性の向上がもたらされ得る。しかしながら、実際、かかる適正化のみでは、熔解時の融液の安定性が十分に得られない場合がある。そこで、本実施形態のガラスは、R O/CuOで示される質量比をx、Al/R Oで示される質量比をy、Al/(P+B)で示される質量比をzとしたときに、下式(1)〜(3):
0.78≦x≦3.00 (1)
0.74≦y≦2.29 (2)
0.12≦z≦0.24 (3)
を満たすことを第2の特徴とする。本実施形態のガラスは、これらの式を満たすことで、従来の技術よりも確実に、可視光の透過特性及び研磨加工性の向上を実現することができる。
In the glass of the present embodiment, Al 2 O 3, B 2 O 3 in accordance with the above, R 1 2 O, R 2 O, by achieve an appropriate content of such CuO, reduction and polishing of the melting temperature Can be improved. However, in practice, such optimization alone may not provide sufficient melt stability during melting. Therefore, in the glass of this embodiment, the mass ratio represented by R 1 2 O / CuO is x, the mass ratio represented by Al 2 O 3 / R 1 2 O is y, and Al 2 O 3 / (P 2 O 5 When the mass ratio represented by + B 2 O 3 is z, the following formulas (1) to (3):
0.78 ≦ x ≦ 3.00 (1)
0.74 ≦ y ≦ 2.29 (2)
0.12 ≦ z ≦ 0.24 (3)
The second feature is to satisfy the above. By satisfying these equations, the glass of the present embodiment can realize improved visible light transmission characteristics and polishing processability more reliably than in the prior art.

ここで、ガラスにおけるR O/CuOで示される質量比(x)が0.78未満であると、CuOの量が多くなり、R Oの量が少なくなるため、熔解温度が上昇し、可視光の透過特性が悪化する。また、当該質量比(x)が3.00を超えると、R Oの量が多くなるため、摩耗度が増大し、研磨加工性が悪化する。 Here, when the mass ratio (x) indicated by R 1 2 O / CuO in the glass is less than 0.78, the amount of CuO increases and the amount of R 1 2 O decreases, so the melting temperature increases. In addition, the visible light transmission characteristics deteriorate. Further, when the mass ratio (x) exceeds 3.00, the amount of R 1 2 O increases, the degree of wear is increased, polishing is deteriorated.

また、ガラスにおけるAl/R Oで示される質量比(y)が0.74未満であると、R Oの量が多くなり、Alの量が少なくなるため、摩耗度が増大し、研磨加工性が悪化する。また、当該質量比(y)が2.29を超えると、Alの量が多くなり、R Oの量が少なくなるため、熔解時の融液の安定性が悪化し、量産が困難となる。 Further, the mass ratio represented by Al 2 O 3 / R 1 2 O in the glass (y) is less than 0.74, the more the amount of R 1 2 O, the amount of Al 2 O 3 is less The degree of wear increases and the polishing processability deteriorates. On the other hand, if the mass ratio (y) exceeds 2.29, the amount of Al 2 O 3 increases and the amount of R 1 2 O decreases, so the stability of the melt during melting deteriorates and mass production It becomes difficult.

そして、ガラスにおけるAl/(P+B)で示される質量比(z)が0.12未満であると、P及びBの合計量が多くなり、Alの量が少なくなるため、摩耗度が増大し、ガラスの研磨加工性が低下する。また、当該質量比(z)が0.24を超えると、Alの量が多くなり、P及びBの合計量が少なくなるため、熔解時の融液の安定性が悪化し、量産が困難となる。 When the mass ratio represented by Al 2 O 3 / (P 2 O 5 + B 2 O 3) in the glass (z) is less than 0.12, many total amount of P 2 O 5 and B 2 O 3 Thus, since the amount of Al 2 O 3 decreases, the degree of wear increases and the polishing processability of the glass decreases. Further, when the mass ratio (z) exceeds 0.24, the amount of Al 2 O 3 increases, and the total amount of P 2 O 5 and B 2 O 3 decreases, so that the stability of the melt during melting is reduced. The quality deteriorates and mass production becomes difficult.

本実施形態のガラスは、上述した第1の特徴及び第2の特徴を有するため、少なくとも、研磨加工性に優れる。この点に関し、本実施形態のガラスは、好ましくは、日本光学硝子工業会規格「JOGIS10−1994」に準拠して測定される摩耗度が、200以上350以下である。
また、本実施形態のガラスは、上述した通り研磨加工性に優れるため、薄型化を達成することができる。具体的に、本実施形態のガラスは、良好な近赤外光の吸収特性及び可視光の透過特性を有しつつ、厚みを0.15mm〜0.30mmとすることができる。
Since the glass of this embodiment has the first and second characteristics described above, it is at least excellent in polishing processability. In this regard, the glass of the present embodiment preferably has a degree of wear measured in accordance with Japan Optical Glass Industry Association Standard “JOGIS10-1994” of 200 or more and 350 or less.
Moreover, since the glass of this embodiment is excellent in polishing workability as mentioned above, it can achieve thickness reduction. Specifically, the glass of this embodiment can have a thickness of 0.15 mm to 0.30 mm while having good near-infrared light absorption characteristics and visible light transmission characteristics.

本実施形態のガラスは、上述した成分に関する要件を満足すればよく、その製造方法については、特に限定されることなく、従来の製造方法に従って製造することができる。
例えば、まず、本実施形態のガラスに含まれ得る各成分の原料として、正リン酸、五酸化二リン、メタリン酸塩等のリン酸系化合物、炭酸塩、硝酸塩、水酸化物など、通常の光学ガラスに使用される一般的な原料を準備する。次いで、この原料を、白金などからなる坩堝に投入し、1000〜1250℃程度の温度で熔融する。そして、得られた融液を型に流し込み、ガラス転移温度付近でアニール(除歪)することにより、安定な近赤外吸収フィルタ用ガラスを得ることができる。
The glass of this embodiment should just satisfy the requirements regarding the component mentioned above, About the manufacturing method, it can manufacture according to the conventional manufacturing method, without being specifically limited.
For example, first, as a raw material of each component that can be included in the glass of the present embodiment, normal compounds such as phosphoric acid compounds such as orthophosphoric acid, diphosphorus pentoxide, and metaphosphate, carbonate, nitrate, hydroxide, etc. Prepare general raw materials used for optical glass. Next, this raw material is put into a crucible made of platinum or the like and melted at a temperature of about 1000 to 1250 ° C. Then, the obtained melt is poured into a mold and annealed (strain removal) in the vicinity of the glass transition temperature, whereby a stable near-infrared absorption filter glass can be obtained.

そして、本実施形態のガラスは、近赤外域(波長800〜1000nm程度)の光を効率的に吸収し、且つ、可視域の光に対して高い透過特性を有するため、主に、カメラ、スマートフォン等のカラー撮影機器における感度補正用のフィルタなどに用いることができる。その他、本実施形態のガラスは、近赤外レーザー光を使用した加工の際のその場観察において、赤外線を吸収し、且つ、特定の波長のみを透過させるバンドパスフィルタに用いることもできる。   And since the glass of this embodiment efficiently absorbs light in the near infrared region (wavelength of about 800 to 1000 nm) and has high transmission characteristics with respect to light in the visible region, it is mainly used for cameras and smartphones. It can be used as a filter for sensitivity correction in a color photographing apparatus such as the above. In addition, the glass of the present embodiment can be used for a band-pass filter that absorbs infrared light and transmits only a specific wavelength during in-situ observation during processing using near-infrared laser light.

以下、実施例及び比較例を挙げて、本発明の近赤外吸収フィルタ用ガラスを具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and the glass for near infrared absorption filters of this invention is demonstrated concretely, this invention is not limited to these Examples.

(実施例1〜24、比較例1〜23)
表1〜4に記載の各成分の原料として、各々相当するメタリン酸塩、酸化物、炭酸塩、硝酸塩などを準備し、ガラス化した後の組成が表1〜4に記載の通りとなるように秤量し、混合し、調合原料とした。この調合原料を白金坩堝に投入し、電気炉にて1000〜1350℃の温度で数時間から数十時間熔融した。そして、撹拌により均質化及び清澄を行った後、金型に流し込み、除歪することにより、均質なガラスを得た。
(Examples 1-24, Comparative Examples 1-23)
As a raw material of each component described in Tables 1-4, the corresponding metaphosphate, oxide, carbonate, nitrate, etc. are prepared, and the composition after vitrification is as shown in Tables 1-4. Were weighed and mixed to prepare a blended raw material. This prepared raw material was put into a platinum crucible and melted at a temperature of 1000 to 1350 ° C. for several hours to several tens of hours in an electric furnace. Then, after homogenization and clarification by stirring, the mixture was poured into a mold and subjected to strain removal to obtain a homogeneous glass.

(比較例24〜26)
表5に記載の各成分の原料として、各々相当するメタリン酸塩、酸化物、炭酸塩、硝酸塩、フッ化物などを準備し、ガラス化した後の組成が表5に記載の通りとなるように秤量し、混合し、調合原料とした。この調合原料を白金坩堝に投入し、電気炉にて800〜900℃の温度で数時間から数十時間熔融した。そして、撹拌により均質化及び清澄を行った後、金型に流し込み、除歪することにより、均質なガラスを得た。
(Comparative Examples 24-26)
As a raw material of each component described in Table 5, the corresponding metaphosphate, oxide, carbonate, nitrate, fluoride, etc. are prepared, and the composition after vitrification is as shown in Table 5 Weighed, mixed, and used as a blended raw material. This prepared raw material was put into a platinum crucible and melted in an electric furnace at a temperature of 800 to 900 ° C. for several hours to several tens of hours. Then, after homogenization and clarification by stirring, the mixture was poured into a mold and subjected to strain removal to obtain a homogeneous glass.

(評価)
上述に従ってガラスを得る際に、以下に示す手順に従い、熔解温度の測定及び融液の安定性の評価を行うとともに、得られたガラスについて、以下に示す手順に従い、摩耗度の測定を行った。これらの結果を表1〜5に示す。更に、実施例2及び比較例2のガラスについては、以下に示す手順に従い、透過率を測定した。
(Evaluation)
When glass was obtained according to the above, the melting temperature was measured and the stability of the melt was evaluated according to the procedure shown below, and the degree of wear was measured for the obtained glass according to the procedure shown below. These results are shown in Tables 1-5. Furthermore, the transmittance | permeability was measured about the glass of Example 2 and the comparative example 2 according to the procedure shown below.

<熔解温度>
熔解温度は、温度設定がなされた電気炉に入れておいた白金坩堝に調合原料を投入し、1時間経過した後に、均一な液面(結晶が析出しておらず、膜が形成されていない状態)が観察されたときの、当該電気炉の温度とした。
<Melting temperature>
The melting temperature was set to a platinum crucible that had been set in an electric furnace in which the temperature was set, and after 1 hour had passed, a uniform liquid level (crystals were not precipitated and no film was formed) The temperature of the electric furnace when the state was observed.

<融液の安定性>
電気炉にて調合原料の熔融後、白金坩堝ごと炉外に取り出し、融液を撹拌してから失透が生じるまでの時間を計測した。そして、以下の基準に従い、安定性の評価を行った。
1分未満・・・×
1分以上2分未満・・・△
2分以上3分未満・・・○
3分以上・・・◎
<Stability of melt>
After the blended raw material was melted in an electric furnace, the entire platinum crucible was taken out of the furnace, and the time from when the melt was stirred until devitrification occurred was measured. Then, stability was evaluated according to the following criteria.
Less than 1 minute ... ×
1 minute to less than 2 minutes ... △
2 minutes or more and less than 3 minutes ... ○
More than 3 minutes ... ◎

<摩耗度>
得られたガラスを用い、日本光学硝子工業会規格「JOGIS10−1994(光学硝子の摩耗度の測定方法)」に準拠して、摩耗度を測定した。
<Degree of wear>
Using the obtained glass, the degree of wear was measured in accordance with the Japan Optical Glass Industry Association Standard “JOGIS10-1994 (Measurement Method of Abrasion Level of Optical Glass)”.

<透過率>
得られたガラスを、縦20mm×横20mm×厚み0.15〜0.30mmに加工し、両面を光学研磨してサンプルを得た。そして、厚みが異なるガラスサンプルを2枚測定し、シミュレーションにより内部透過率を算出した。実施例2及び比較例2のガラスサンプルを用いた場合の、分光透過率のシミュレーションデータを図1に示す。
<Transmissivity>
The obtained glass was processed into a length of 20 mm × width of 20 mm × thickness of 0.15 to 0.30 mm, and both surfaces were optically polished to obtain a sample. Then, two glass samples having different thicknesses were measured, and the internal transmittance was calculated by simulation. FIG. 1 shows the spectral transmittance simulation data when the glass samples of Example 2 and Comparative Example 2 were used.

Figure 2019043814
Figure 2019043814

Figure 2019043814
Figure 2019043814

Figure 2019043814
Figure 2019043814

Figure 2019043814
Figure 2019043814

Figure 2019043814
Figure 2019043814

表1,2より、実施例1〜24に係るガラスは、比較的低温(1250℃以下)で熔解可能であることから、可視光の透過率の悪化が抑制されていることが分かる。また、表1,2より、実施例1〜24に係るガラスは、融液の安定性が良好である上、摩耗度が比較的小さい(200以上350以下)ことから、研磨加工性に優れることが分かる。   As can be seen from Tables 1 and 2, since the glasses according to Examples 1 to 24 can be melted at a relatively low temperature (1250 ° C. or lower), deterioration of the transmittance of visible light is suppressed. Also, from Tables 1 and 2, the glasses according to Examples 1 to 24 have excellent melt processability because the melt stability is good and the degree of wear is relatively small (200 to 350). I understand.

これに対して、表3〜5に示した比較例1〜26に係るガラスは、熔解温度、融液の安定性及び摩耗度の少なくともいずれかが、良好ではないことが分かる。この結果については、以下のように考察される。   On the other hand, it can be seen that the glasses according to Comparative Examples 1 to 26 shown in Tables 3 to 5 are not good in at least one of the melting temperature, the stability of the melt, and the degree of wear. This result is considered as follows.

比較例1に係るガラスは、Pの量が多いため、磨耗度が大きい。
比較例2に係るガラスはPの量が少ないため、熔解温度が高く、融液の安定性も悪い。なお、図1に注目すると、比較例2においては、可視域(特に、波長およそ400〜450nm)の光の透過特性が、熔解温度の低い実施例2に比べて悪化していることが分かる。
比較例3に係るガラスは、Alの量が多すぎるため、熔解温度が高く、融液の安定性が悪い。
比較例4に係るガラスは、Alの量が少なすぎるため、磨耗度が大きい。
比較例5に係るガラスは、Bの量が多すぎるため、磨耗度が大きい。
比較例6に係るガラスは、Bの量が少なすぎるため、融液の安定性が悪い。
比較例7に係るガラスは、LiOの量が多すぎるため、磨耗度が大きい。
比較例8に係るガラスは、LiOの量が少なすぎるため、熔解温度が高く、融液の安定性が悪い。
比較例9に係るガラスは、KOの量が多すぎるため、磨耗度が高い。
比較例10に係るガラスは、KOの量が少なすぎるため、熔解温度が高い。
比較例11に係るガラスは、MgOの量が多すぎるため、熔解温度が高く、融液の安定性が良くない。
比較例12に係るガラスは、MgOの量が少なすぎるため、磨耗度が高い。
比較例13に係るガラスは、CuOの量が多すぎるため、熔解温度が高い。
比較例14に係るガラスは、R Oの量が多すぎるため、磨耗度が高い。
比較例15に係るガラスは、R Oの量が少なすぎるため、熔解温度が高い。
比較例16に係るガラスは、ROの量が多すぎるため、熔解温度が高い。
比較例17に係るガラスは、ROの量が少なすぎるため、磨耗度が高い。
比較例18に係るガラスは、xの値が多すぎる(3.0を超える)ため、磨耗度が高い。
比較例19に係るガラスは、xの値が少なすぎる(0.78未満である)ため、熔解温度が高い。
比較例20に係るガラスは、yの値が多すぎる(2.29を超える)ため、熔解温度が高く、融液の安定性が悪い。
比較例21に係るガラスは、yの値が少なすぎる(0.74未満である)ため、磨耗度が高い。
比較例22に係るガラスは、zの値が多すぎる(0.24を超える)ため、熔解温度が高く、融液の安定性が悪い。
比較例23に係るガラスは、zの値が少なすぎる(0.12未満である)ため、磨耗度が高い。
比較例24〜26に係るガラスは、Alの量が少なすぎるとともに、比較的多量にフッ素が含まれているなどのため、摩耗度が非常に高い。
Since the glass according to Comparative Example 1 has a large amount of P 2 O 5 , the degree of wear is large.
Since the glass according to Comparative Example 2 has a small amount of P 2 O 5 , the melting temperature is high and the melt stability is also poor. When attention is paid to FIG. 1, it can be seen that in Comparative Example 2, the light transmission characteristics in the visible region (in particular, the wavelength of about 400 to 450 nm) are worse than those in Example 2 where the melting temperature is low.
Glass according to Comparative Example 3, since the amount of Al 2 O 3 is too large, melting temperature is high, poor stability of the melt.
The glass according to Comparative Example 4 has a high degree of wear because the amount of Al 2 O 3 is too small.
The glass according to Comparative Example 5 has a high degree of wear because the amount of B 2 O 3 is too large.
The glass according to Comparative Example 6 has a poor melt stability because the amount of B 2 O 3 is too small.
The glass according to Comparative Example 7 has a high degree of wear because the amount of Li 2 O is too large.
Glass according to Comparative Example 8, since the amount of Li 2 O is too small, melting temperature is high, poor stability of the melt.
The glass according to Comparative Example 9 has a high degree of wear because the amount of K 2 O is too large.
The glass according to Comparative Example 10 has a high melting temperature because the amount of K 2 O is too small.
Since the glass which concerns on the comparative example 11 has too much amount of MgO, melting temperature is high and stability of a melt is not good.
The glass according to Comparative Example 12 has a high degree of wear because the amount of MgO is too small.
The glass according to Comparative Example 13 has a high melting temperature because the amount of CuO is too large.
The glass according to Comparative Example 14 has a high degree of wear because the amount of R 1 2 O is too large.
Glass according to Comparative Example 15, since the amount of R 1 2 O is too small, melting temperature is high.
The glass according to Comparative Example 16 has a high melting temperature because the amount of R 2 O is too large.
The glass according to Comparative Example 17 has a high degree of wear because the amount of R 2 O is too small.
Since the glass according to Comparative Example 18 has too many values of x (exceeds 3.0), the degree of wear is high.
The glass according to Comparative Example 19 has a high melting temperature because the value of x is too small (less than 0.78).
Since the glass according to Comparative Example 20 has too many values of y (exceeds 2.29), the melting temperature is high and the melt stability is poor.
The glass according to Comparative Example 21 has a high degree of wear because the value of y is too small (less than 0.74).
Since the glass which concerns on the comparative example 22 has too much value of z (exceeds 0.24), melting temperature is high and stability of a melt is bad.
The glass according to Comparative Example 23 has a high degree of wear because the value of z is too small (less than 0.12).
The glasses according to Comparative Examples 24-26 have a very high degree of wear because the amount of Al 2 O 3 is too small and a relatively large amount of fluorine is contained.

本発明によれば、可視光の透過特性が良好である上、研磨加工性に優れる、近赤外吸収フィルタ用ガラスを提供することができる。   According to the present invention, it is possible to provide a glass for a near-infrared absorption filter having good visible light transmission characteristics and excellent polishing workability.

Claims (4)

質量%で、
:65.0%以上75.0%以下
Al:10.0%以上16.0%以下
:1.5%以上7.0%以下
O:7.0%以上13.5%以下
LiO:1.0%以上3.5%以下
NaO:0%以上4.0%以下
O:2.0%以上10.0%以下
CsO:0%以上3.0%以下
O:0.5%以上6.0%以下
CaO:0%以上2.0%以下
SrO:0%以上3.0%以下
BaO:0%以上4.0%以下
ZnO:0%以上3.0%以下
MgO:0.5%以上6.0%以下
Nb:0%以上5.0%以下
(但し、R Oは、LiO、NaO、KO及びCsOの総和を示し、ROは、CaO、SrO、BaO、ZnO及びMgOの総和を示す)の組成を有し、
CuOを外割りで4.5%以上9.0%以下含み、且つ、
O/CuOをx、Al/R Oをy、Al/(P+B)をzとしたときに、下式(1)〜(3):
0.78≦x≦3.00 (1)
0.74≦y≦2.29 (2)
0.12≦z≦0.24 (3)
を満たす、ことを特徴とする、近赤外吸収フィルタ用ガラス。
% By mass
P 2 O 5 : 65.0% to 75.0% Al 2 O 3 : 10.0% to 16.0% B 2 O 3 : 1.5% to 7.0% R 1 2 O: 7.0% to 13.5% Li 2 O: 1.0% to 3.5% Na 2 O: 0% to 4.0% K 2 O: 2.0% to 10.0% Cs 2 O: 0% to 3.0% R 2 O: 0.5% to 6.0% CaO: 0% to 2.0% SrO: 0% to 3.0% BaO: 0% 4.0% or less ZnO: 0% or more and 3.0% or less MgO: 0.5% or more and 6.0% or less Nb 2 O 5 : 0% or more and 5.0% or less (provided that R 1 2 O is li 2 O, Na 2 O, shows the sum of K 2 O and Cs 2 O, R 2 O is, CaO, SrO, BaO, the composition of indicating the sum of ZnO and MgO) And,
CuO is included on the outer surface at 4.5% or more and 9.0% or less, and
When R 1 2 O / CuO is x, Al 2 O 3 / R 1 2 O is y, and Al 2 O 3 / (P 2 O 5 + B 2 O 3 ) is z, the following formulas (1) to (1) 3):
0.78 ≦ x ≦ 3.00 (1)
0.74 ≦ y ≦ 2.29 (2)
0.12 ≦ z ≦ 0.24 (3)
The glass for near-infrared absorption filters characterized by satisfy | filling.
フッ素を含まない、請求項1に記載の近赤外吸収フィルタ用ガラス。   The glass for near-infrared absorption filters according to claim 1 which does not contain fluorine. 日本光学硝子工業会規格「JOGIS10−1994」に準拠して測定される摩耗度が200以上350以下である、請求項1又は2に記載の近赤外吸収フィルタ用ガラス。   The near-infrared absorption filter glass according to claim 1 or 2, wherein the abrasion degree measured in accordance with the Japan Optical Glass Industry Association Standard "JOGIS10-1994" is 200 or more and 350 or less. 厚みが0.15mm〜0.30mmである、請求項1〜3のいずれかに記載の近赤外吸収フィルタ用ガラス。   The near-infrared absorption filter glass according to any one of claims 1 to 3, wherein the thickness is 0.15 mm to 0.30 mm.
JP2017169370A 2017-09-04 2017-09-04 Glass for near infrared absorption filter Active JP6913364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017169370A JP6913364B2 (en) 2017-09-04 2017-09-04 Glass for near infrared absorption filter
CN201810216489.4A CN109422460B (en) 2017-09-04 2018-03-15 Glass for near-infrared absorption filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169370A JP6913364B2 (en) 2017-09-04 2017-09-04 Glass for near infrared absorption filter

Publications (2)

Publication Number Publication Date
JP2019043814A true JP2019043814A (en) 2019-03-22
JP6913364B2 JP6913364B2 (en) 2021-08-04

Family

ID=65513700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169370A Active JP6913364B2 (en) 2017-09-04 2017-09-04 Glass for near infrared absorption filter

Country Status (2)

Country Link
JP (1) JP6913364B2 (en)
CN (1) CN109422460B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194592A (en) * 2019-06-25 2019-09-03 成都光明光电股份有限公司 A kind of glass, glass elements and optical filter
CN110194589A (en) * 2019-06-25 2019-09-03 成都光明光电股份有限公司 Near-infrared absorption glass, glassware, element and optical filter
JP2021043115A (en) * 2019-09-12 2021-03-18 株式会社東芝 Image processor, distance measuring device, method, and program
JP7468528B2 (en) 2019-06-27 2024-04-16 Agc株式会社 Near-infrared cut filter glass, optical filter and imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325245A (en) * 1986-07-17 1988-02-02 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JPH06107428A (en) * 1990-10-05 1994-04-19 Carl Zeiss:Fa Alumphosphate glass containing copper oxide ii
JP2006342045A (en) * 2005-04-22 2006-12-21 Schott Corp Aluminophosphate glass containing copper (ii) oxide and use thereof for light filtering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557437B (en) * 2010-12-20 2016-08-17 株式会社小原 Optical glass, optical element and preform
CN107686238A (en) * 2014-01-16 2018-02-13 成都光明光电股份有限公司 Glass composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325245A (en) * 1986-07-17 1988-02-02 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JPH06107428A (en) * 1990-10-05 1994-04-19 Carl Zeiss:Fa Alumphosphate glass containing copper oxide ii
JP2006342045A (en) * 2005-04-22 2006-12-21 Schott Corp Aluminophosphate glass containing copper (ii) oxide and use thereof for light filtering

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194592A (en) * 2019-06-25 2019-09-03 成都光明光电股份有限公司 A kind of glass, glass elements and optical filter
CN110194589A (en) * 2019-06-25 2019-09-03 成都光明光电股份有限公司 Near-infrared absorption glass, glassware, element and optical filter
CN110194589B (en) * 2019-06-25 2022-02-01 成都光明光电股份有限公司 Near-infrared light absorbing glass, glass product, element and optical filter
CN110194592B (en) * 2019-06-25 2022-04-15 成都光明光电股份有限公司 Glass, glass element and optical filter
JP7468528B2 (en) 2019-06-27 2024-04-16 Agc株式会社 Near-infrared cut filter glass, optical filter and imaging device
JP2021043115A (en) * 2019-09-12 2021-03-18 株式会社東芝 Image processor, distance measuring device, method, and program

Also Published As

Publication number Publication date
CN109422460A (en) 2019-03-05
JP6913364B2 (en) 2021-08-04
CN109422460B (en) 2021-12-31

Similar Documents

Publication Publication Date Title
TWI545098B (en) Optical glass, prefabricated and optical components
JP6448835B2 (en) Filter glass
TWI541213B (en) Optical glass, preform and optical element
EP1714948A2 (en) Alumninophosphate glass containing copper (II) oxide and uses thereof for light filtering
TWI731991B (en) Optical glass, preforms and optical components
CN109422460B (en) Glass for near-infrared absorption filter
TWI752046B (en) Optical Glass, Preforms and Optical Components
KR20120052349A (en) Optical glass
TW201718420A (en) Optical glass, preform, and optical element
CN108117257B (en) Optical glass, preform and optical element
JP7089844B2 (en) Optical glass, preforms and optical elements
KR20110065490A (en) Optical glass and method for suppressing the deterioration of spectral transmittance
TWI658021B (en) Optical glass, preform and optical element
TW201718421A (en) Optical glass, preform, and optical element
CN114590996A (en) Optical glass, preform, and optical element
JP2016121034A (en) Optical glass, preform and optical element
JP2016088774A (en) Optical glass, preform and optical element
JP2019147724A (en) Optical glass, preform, and optical element
KR20190008447A (en) Glass composition
JP2019064898A (en) Optical glass, preform and optical element
TW201833048A (en) Optical glass, preform, and optical element having functions of chromatic aberration correction, high refractive index and high dispersibility, and having low production cost
JP2016216282A (en) Optical glass and optical element
JP2016088835A (en) Optical glass, preform and optical element
JP6937540B2 (en) Optical glass, preforms and optics
JP2019147725A (en) Optical glass, preform, and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6913364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150