JP2019042626A - Organic phosphorus compound decomposition catalyst - Google Patents

Organic phosphorus compound decomposition catalyst Download PDF

Info

Publication number
JP2019042626A
JP2019042626A JP2017165594A JP2017165594A JP2019042626A JP 2019042626 A JP2019042626 A JP 2019042626A JP 2017165594 A JP2017165594 A JP 2017165594A JP 2017165594 A JP2017165594 A JP 2017165594A JP 2019042626 A JP2019042626 A JP 2019042626A
Authority
JP
Japan
Prior art keywords
iii
organophosphorus compound
decomposition catalyst
compound decomposition
organic phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017165594A
Other languages
Japanese (ja)
Other versions
JP6948057B2 (en
Inventor
山田 裕介
Yusuke Yamada
裕介 山田
博康 田部
Hiroyasu Tabe
博康 田部
千尋 寺島
Chihiro Terajima
千尋 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka City University
Original Assignee
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka City University filed Critical Osaka University NUC
Priority to JP2017165594A priority Critical patent/JP6948057B2/en
Publication of JP2019042626A publication Critical patent/JP2019042626A/en
Application granted granted Critical
Publication of JP6948057B2 publication Critical patent/JP6948057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a novel organic phosphorus compound decomposition catalyst that can decompose an organic phosphorus compound.SOLUTION: An organic phosphorus compound decomposition catalyst is represented by a general formula (1). M[M(CN)](1) [where, Mis at least one selected from the group consisting of Fe, Fe, Zn, Mn, Co, Ga, Mg, Ca, Cu, Ni, Sc, and Ag, Mis at least one selected from the group consisting of Fe, Co, Ir, Ru, Pt, Fe, and Mn, each of x and y is a positive number, excluding the case where Mis Feor Fe, and Mis Feor Fe].SELECTED DRAWING: None

Description

本発明は、新規な有機リン化合物分解触媒に関する。さらに、本発明は、当該有機リン化合物分解触媒を用いた有機リン化合物除去材料に関する。   The present invention relates to a novel organophosphorus compound decomposition catalyst. Furthermore, the present invention relates to an organophosphorus compound removing material using the organophosphorus compound decomposition catalyst.

従来、有機リン化合物などの人体に有毒な物質を除去する手法としては、活性炭を用いる方法が広く採用されている。   Heretofore, a method using activated carbon has been widely adopted as a method for removing substances toxic to the human body such as organic phosphorus compounds.

例えば、特許文献1には、繊維状活性炭からなるガス吸着層の両面に保護層をキルティング加工で積層し、さらにいずれかの保護層の面に熱可塑性繊維からなる布帛を無溶剤系接着剤によって接着して積層したことを特徴とする吸着シートが開示されている。   For example, in Patent Document 1, protective layers are laminated by quilting on both sides of a gas adsorption layer made of fibrous activated carbon, and a fabric made of thermoplastic fibers is further formed on a surface of any protective layer by a solventless adhesive. A suction sheet is disclosed which is characterized by adhesion and lamination.

しかしながら、活性炭は、有害物質を吸着により除去しているため、吸着量が飽和に達すると、その除去性能が失われるという問題がある。   However, since activated carbon removes harmful substances by adsorption, there is a problem that when the amount of adsorption reaches saturation, the removal performance is lost.

特開2012−192623号公報JP, 2012-192623, A

本発明は、有機リン化合物を分解できる新規な有機リン化合物分解触媒を提供することを主な目的とする。さらに、本発明は、当該有機リン化合物分解触媒を用いた有機リン化合物除去材料を提供することも目的とする。   An object of the present invention is to provide a novel organophosphorus compound decomposition catalyst capable of decomposing organophosphorus compounds. Furthermore, another object of the present invention is to provide an organophosphorus compound removing material using the organophosphorus compound decomposition catalyst.

本発明者らは、上記の課題を解決すべく鋭意検討を行った。その結果、下記一般式(1)で表される金属錯体、有機リン化合物の分解反応を触媒する機能を有することを見出した。   The present inventors diligently studied to solve the above-mentioned problems. As a result, they have found that they have a function of catalyzing the decomposition reaction of a metal complex represented by the following general formula (1) and an organic phosphorus compound.

N x[MC(CN)6y (1)
[一般式(1)中、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、Ga3+、Mg2+、Ca2+、Cu2+、Ni2+、Sc3+、及びAg+からなる群より選択される少なくとも1種であり、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、Fe3+、及びMn3+からなる群より選択される少なくとも1種であり、x及びyは、それぞれ、正数である。ただし、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合を除く。]
M N x [M C (CN) 6 ] y (1)
[In the general formula (1), M N is Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , Ga 3+ , Mg 2+ , Ca 2+ , Cu 2+ , Ni 2 And at least one selected from the group consisting of + , Sc 3+ , and Ag + , and M 2 C is Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , Fe 3+ , And Mn 3+, at least one selected from the group consisting of and x and y each is a positive number. However, M N is the Fe 2+ or Fe 3+, and, except when M C is Fe 2+ or Fe 3+. ]

本発明は、このような知見に基づいて、さらに検討を重ねることにより完成したものである。   The present invention has been completed by further studies based on such findings.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 下記一般式(1)で表される、有機リン化合物分解触媒。
N x[MC(CN)6y (1)
[一般式(1)中、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、Ga3+、Mg2+、Ca2+、Cu2+、Ni2+、Sc3+、及びAg+からなる群より選択される少なくとも1種であり、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、Fe3+、及びMn3+からなる群より選択される少なくとも1種であり、x及びyは、それぞれ、正数である。ただし、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合を除く。]
項2. 前記一般式(1)において、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、及びGa3+からなる群より選択される少なくとも1種であり、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、及びFe3+からなる群より選択される少なくとも1種であり、xは、1〜4の正数であり、yは、1〜3の正数である、項1に記載の有機リン化合物分解触媒。
項3. FeIII[CoIII(CN)6]、FeIII[IrIII(CN)6]、FeIII 4[RuII(CN)63、FeII 3[CoIII(CN)62、FeII 3[IrIII(CN)62、FeII 2[RuII(CN)6]、FeII[PtIV(CN)6]、ZnII 3[FeIII(CN)62、MnII 3[FeIII(CN)62、CoII 3[FeIII(CN)62、CoII 3[CoIII(CN)62、GaIII[FeIII(CN)6]、またはGaIII 4[FeII(CN)63で表される金属錯体である、項1又は2に記載の有機リン化合物分解触媒。
項4. 粒子状である、項1〜3のいずれかに記載の有機リン化合物分解触媒。
項5. 有機リンエステル化合物の分解に用いられる、項1〜4のいずれかに記載の有機リン化合物分解触媒。
項6. 通気性基材と、前記通気性基材に担持された項1〜5のいずれかに記載の有機リン化合物分解触媒とを含む、有機リン化合物除去材料。
That is, the present invention provides the invention of the aspects listed below.
Item 1. The organophosphorus compound decomposition catalyst represented by following General formula (1).
M N x [M C (CN) 6 ] y (1)
[In the general formula (1), M N is Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , Ga 3+ , Mg 2+ , Ca 2+ , Cu 2+ , Ni 2 And at least one selected from the group consisting of + , Sc 3+ , and Ag + , and M 2 C is Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , Fe 3+ , And Mn 3+, at least one selected from the group consisting of and x and y each is a positive number. However, M N is the Fe 2+ or Fe 3+, and, except when M C is Fe 2+ or Fe 3+. ]
Item 2. In the general formula (1), M N is at least one selected from the group consisting of Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , and Ga 3+ , and M C is at least one member selected from the group consisting of Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , and Fe 3+ , and x is a positive number of 1 to 4 Item 2. The organophosphorus compound decomposition catalyst according to item 1, wherein y is a positive number of 1 to 3.
Item 3. Fe III [Co III (CN) 6 ], Fe III [Ir III (CN) 6 ], Fe III 4 [Ru II (CN) 6 ] 3 , Fe II 3 [Co III (CN) 6 ] 2 , Fe II 3 [Ir III (CN) 6 ] 2 , Fe II 2 [Ru II (CN) 6 ], Fe II [Pt IV (CN) 6 ], Zn II 3 [Fe III (CN) 6 ] 2 , Mn II 3 [Fe III (CN) 6 ] 2 , Co II 3 [Fe III (CN) 6 ] 2 , Co II 3 [Co III (CN) 6 ] 2 , Ga III [Fe III (CN) 6 ], or Ga III 3. The organophosphorus compound decomposition catalyst according to item 1 or 2, which is a metal complex represented by 4 [Fe II (CN) 6 ] 3 .
Item 4. The organophosphorus compound decomposition catalyst according to any one of Items 1 to 3, which is in the form of particles.
Item 5. The organophosphorus compound decomposition catalyst according to any one of Items 1 to 4, which is used for the decomposition of the organophosphorus ester compound.
Item 6. An organophosphorus compound removing material, comprising: a breathable substrate; and the organophosphorus compound decomposing catalyst according to any one of Items 1 to 5 supported on the breathable substrate.

本発明によれば、有機リン化合物を分解できる新規な有機リン化合物分解触媒を提供することができる。さらに、本発明によれば、当該有機リン化合物分解触媒を用いた有機リン化合物除去材料を提供することもできる。   According to the present invention, a novel organophosphorus compound decomposition catalyst capable of decomposing organophosphorus compounds can be provided. Furthermore, according to the present invention, it is also possible to provide an organic phosphorus compound removing material using the organic phosphorus compound decomposition catalyst.

実施例1で合成した有機リン化合物分解触媒(FeIII[CoIII(CN)6])の存在下において、リン酸p−ニトロフェノールを分解した際の、反応溶液の紫外可視吸収スペクトルの経時変化を示すグラフである。Temporal change of UV-visible absorption spectrum of the reaction solution when p-nitrophenol phosphate is decomposed in the presence of the organophosphorus compound decomposition catalyst (Fe III [Co III (CN) 6 ]) synthesized in Example 1 Is a graph showing 実施例1で合成した有機リン化合物分解触媒(FeIII[CoIII(CN)6])の存在下において、リン酸p−ニトロフェノール(NPP)を分解した際の、反応時間(h)と生成物(p−ニトロフェノール[NP])の生成量(mM)との関係を示すグラフである。Reaction time (h) and formation when phosphoric acid p-nitrophenol (NPP) is decomposed in the presence of the organophosphorus compound decomposition catalyst (Fe III [Co III (CN) 6 ]) synthesized in Example 1 It is a graph which shows a relation with a production amount (mM) of a substance (p-nitrophenol [NP]).

(有機リン化合物分解触媒)
本発明の有機リン化合物分解触媒は、下記一般式(1)の組成式で表されることを特徴としている。
(Organophosphorus compound decomposition catalyst)
The organophosphorus compound decomposition catalyst of the present invention is characterized by being represented by a composition formula of the following general formula (1).

N x[MC(CN)6y (1) M N x [M C (CN) 6 ] y (1)

一般式(1)において、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、Ga3+、Mg2+、Ca2+、Cu2+、Ni2+、Sc3+、及びAg+からなる群より選択される少なくとも1種である。また、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、Fe3+、及びMn3+からなる群より選択される少なくとも1種である。ただし、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合を除く。本発明において、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合には、混合原子価状態を取るため、MNとMCの比が不定となりやすく、有機リン化合物の分解反応の再現性に劣る場合がある。 In the general formula (1), M N is Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , Ga 3+ , Mg 2+ , Ca 2+ , Cu 2+ , Ni 2+ , Sc 3+ , and Ag +, at least one selected from the group consisting of Further, M C is, Fe 2+, Co 3+, Ir 3+, Ru 2+, Pt 4+, is at least one selected from the group consisting of Fe 3+, and Mn 3+. However, M N is the Fe 2+ or Fe 3+, and, except when M C is Fe 2+ or Fe 3+. In the present invention, M N is the Fe 2+ or Fe 3+, and, when M C is Fe 2+ or Fe 3+, in order to take the mixed valence state, the ratio of M N and M C Is likely to be indeterminate, and the reproducibility of the decomposition reaction of the organophosphorus compound may be poor.

なお、「MN」との表記は、前記の金属イオンMに対して、シアノ配位子のN原子が配位することを意味している。また、「MC」との表記は、前記の金属イオンMに対して、シアノ配位子のC原子が配位することを意味している。 Note that the notation “M N ” means that the N atom of the cyano ligand is coordinated to the metal ion M described above. Further, the notation “M C ” means that the C atom of the cyano ligand is coordinated to the metal ion M described above.

また、一般式(1)において、x及びyは、それぞれ、正数である。   In the general formula (1), x and y are each a positive number.

本発明の有機リン化合物分解触媒は、固体触媒であり、より具体的には、配位高分子である。配位高分子とは、架橋性配位子を用いることで複数の金属イオンが連なった構造を持つ固体の金属錯体のポリマーである。一般式(1)で表される本発明の有機リン化合物分解触媒は、シアノ配位子を用いたシアノ架橋金属錯体ポリマーである。シアノ架橋金属錯体ポリマーは、溶液中でアニオン性の[MC(CN)6n-と適当な金属カチオン(MN)を反応させることで、三次元的にMC−CN−MNの構造を作りながらポリマーが生成するため、徐々に不溶化し、沈殿として得ることができる。一般式(1)で表される本発明の有機リン化合物分解触媒についても、同様にして得られる。なお、シアノ架橋金属錯体ポリマーとして、代表的なものはプルシアンブルーが挙げられる。 The organophosphorus compound decomposition catalyst of the present invention is a solid catalyst, more specifically, a coordination polymer. A coordination polymer is a polymer of a solid metal complex having a structure in which a plurality of metal ions are linked by using a crosslinkable ligand. The organophosphorus compound decomposition catalyst of the present invention represented by the general formula (1) is a cyano-bridged metal complex polymer using a cyano ligand. The cyano-bridged metal complex polymer is three-dimensionally M C -CN-M N by reacting an anionic [M C (CN) 6 ] n- with a suitable metal cation (M N ) in solution. Since a polymer is produced while forming a structure, it can be gradually insolubilized and obtained as a precipitate. The organic phosphorus compound decomposition catalyst of the present invention represented by the general formula (1) is also obtained in the same manner. In addition, as cyano bridge | crosslinking metal complex polymer, a typical thing is Prussian blue.

本発明の有機リン化合物分解触媒は、有機リン化合物の分解反応を触媒する機能を有しており、当該分解反応は、好適には加水分解反応である。加水分解反応においては、反応系中に存在する水を強く分極させて、有機リン化合物に求核攻撃するヒドロキシイオンの生成を促すことが重要である。本発明の有機リン化合物分解触媒は、前記一般式(1)で表される化学構造を有しており、金属イオンに水分子を配位させることが可能であり、金属イオンを加水分解反応の活性点として、ヒドロキシイオンを生成することができる。   The organophosphorus compound decomposition catalyst of the present invention has a function of catalyzing the decomposition reaction of the organophosphorus compound, and the decomposition reaction is preferably a hydrolysis reaction. In the hydrolysis reaction, it is important to strongly polarize the water present in the reaction system to promote the formation of a hydroxy ion that nucleophilicly attacks the organic phosphorus compound. The organophosphorus compound decomposition catalyst of the present invention has a chemical structure represented by the above general formula (1), is capable of coordinating water molecules to metal ions, and is capable of hydrolyzing metal ions As an active point, hydroxy ion can be generated.

本発明の有機リン化合物分解触媒には、通常、さらに溶媒が配位している。溶媒としては、好ましくは水が挙げられる。本発明の有機リン化合物分解触媒においては、MCが低原子価になる程、活性点となるMNに配位する水分子の数が多くなり、触媒活性が高くなる。一方、MNとMCの比が1からずれる程、配位高分子としての架橋構造が保たれなくなり、配位高分子としての安定性低くなる。これらの点を考慮して、有機リン化合物の分解反応に対して高い活性を有しつつ、より多くの水分子が配位し、さらに安定な配位高分子を形成するよう、さらに望ましいMNとMCの組み合わせを探索した結果、本発明においては、前記一般式(1)で表される金属錯体が、有機リン化合物の分解反応を好適に触媒することを見出した。 Usually, a solvent is further coordinated to the organophosphorus compound decomposition catalyst of the present invention. The solvent preferably includes water. In the organic phosphorus compound-decomposing catalyst of the present invention, as the M C is low valent, the greater the number of water molecules coordinated to the active site M N, the catalytic activity is high. On the other hand, as the ratio of M N and M C deviates from 1, no longer kept crosslinked structure as a coordination polymer, decreases the stability of the coordination polymers. Taking these points into consideration, it is further desirable to have M N that more molecules of water coordinate to form a more stable coordination polymer while having high activity for decomposition reaction of organophosphorus compounds. In the present invention, as a result of searching for a combination of and M 3 C , it was found that the metal complex represented by the above general formula (1) suitably catalyzes the decomposition reaction of the organic phosphorus compound.

有機リン化合物を好適に分解する観点から、一般式(1)において、MNが、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、及びGa3+からなる群より選択される少なくとも1種であり、MCが、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、及びFe3+からなる群より選択される少なくとも1種であり、xが1〜4の正数であり、yが1〜3の正数であることが好ましい。さらに、一般式(1)において、MNが、Fe2+、Fe3+、Mn2+、及びGa3+からなる群より選択される少なくとも1種であり、MCが、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、及びFe3+からなる群より選択される少なくとも1種であり、xが1〜4の正数であり、yが1〜3の正数であることが特に好ましい。ただし、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合を除く。 From the viewpoint of suitably decomposing the organophosphorus compound, in the general formula (1), M N is selected from the group consisting of Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , and Ga 3+ At least one selected, and M 2 C is at least one selected from the group consisting of Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , and Fe 3+ , It is preferable that x is a positive number of 1 to 4 and y is a positive number of 1 to 3. Further, in the general formula (1), M N is, Fe 2+, Fe 3+, is at least one selected from the group consisting of Mn 2+, and Ga 3+, M C is, Fe 2+, At least one selected from the group consisting of Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , and Fe 3+ , x is a positive number of 1 to 4 and y is 1 to 3 Particularly preferred is a positive number. However, M N is the Fe 2+ or Fe 3+, and, except when M C is Fe 2+ or Fe 3+.

さらに、有機リン化合物を好適に分解する観点から、一般式(1)において、MNがFe2+を含む場合には、MCがCo3+、Ir3+、Ru2+、及びPt4+からなる群より選択される少なくとも1種を含むことが好ましく、MNがFe3+を含む場合には、MCがCo3+、Ir3+、及びRu2+からなる群より選択される少なくとも1種を含むことが好ましく、MNがMn2+を含む場合には、MCがFe3+を含むことが好ましく、MNがGa3+を含む場合には、MCがFe3+及びFe2+の少なくとも一方を含むことが好ましい。有機リン化合物の分解活性が特に高いことから、MNはFe2+及びFe3+の少なくとも一方を含むことが好ましい。 Furthermore, from the viewpoint of suitably decomposing the organophosphorus compound, when M N contains Fe 2+ in the general formula (1), M 3 C is Co 3+ , Ir 3+ , Ru 2+ , and Pt 4 It is preferable to include at least one selected from the group consisting of + , and when M N includes Fe 3 + , M C is selected from the group consisting of Co 3 + , Ir 3 + , and Ru 2 + Preferably, when M N includes Mn 2+ , M C preferably includes Fe 3+, and when M N includes Ga 3 + , M C includes Fe. It is preferable to include at least one of 3+ and Fe 2+ . It is preferable that MN contains at least one of Fe 2+ and Fe 3+ because the decomposition activity of the organophosphorus compound is particularly high.

有機リン化合物を好適に分解する観点から、一般式(1)で表される金属錯体の特に好ましい具体例としては、FeIII[CoIII(CN)6]、FeIII[IrIII(CN)6]、FeIII 4[RuII(CN)63、FeII 3[CoIII(CN)62、FeII 3[IrIII(CN)62、FeII 2[RuII(CN)6]、FeII[PtIV(CN)6]、ZnII 3[FeIII(CN)62、MnII 3[FeIII(CN)62、CoII 3[FeIII(CN)62、CoII 3[CoIII(CN)62、GaIII[FeIII(CN)6]、またはGaIII 4[FeII(CN)63で表される金属錯体が挙げられる。 Particularly preferable examples of the metal complex represented by the general formula (1) from the viewpoint of suitably decomposing the organophosphorus compound include Fe III [Co III (CN) 6 ], Fe III [Ir III (CN) 6 ], Fe III 4 [Ru II (CN) 6 ] 3 , Fe II 3 [Co III (CN) 6 ] 2 , Fe II 3 [Ir III (CN) 6 ] 2 , Fe II 2 [Ru II (CN) 6 ], Fe II [Pt IV (CN) 6 ], Zn II 3 [Fe III (CN) 6 ] 2 , Mn II 3 [Fe III (CN) 6 ] 2 , Co II 3 [Fe III (CN) 6 ] 2, Co II 3 [Co III (CN) 6] 2, Ga III [Fe III (CN) 6], or Ga III 4 [metal complex represented by Fe II (CN) 6] 3 and the like.

本発明の有機リン化合物分解触媒の形状は、特に制限されず、例えば、粒子状が挙げられる。本発明の有機リン化合物分解触媒の形状が粒子状である場合、その直径としては、特に制限されないが、例えば10nmから100μm程度の範囲が挙げられる。   The shape of the organophosphorus compound decomposition catalyst of the present invention is not particularly limited, and examples thereof include particles. When the shape of the organophosphorus compound decomposition catalyst of the present invention is particulate, the diameter thereof is not particularly limited, and for example, the range of about 10 nm to 100 μm can be mentioned.

本発明の有機リン化合物分解触媒の製造方法としては、特に制限されず、公知の製造方法を採用することができる。例えば、MN源となる金属イオン水溶液と、MC源となる金属イオン水溶液とを混合し、沈殿物を回収することによって、一般式(1)で表される金属錯体が得られる。具体例としては、例えば、FeII 3[CoIII(CN)62で表される金属錯体は、実施例1に示すように、FeSO4水溶液を撹拌しながら、同量のK3[CoIII(CN)6]水溶液を滴下し、得られた濃青色沈殿物を遠心分離で回収することによって得られる。 It does not restrict | limit especially as a manufacturing method of the organophosphorus compound decomposition | disassembly catalyst of this invention, A well-known manufacturing method is employable. For example, a metal ion aqueous solution to be M N source, and mixing the aqueous metal ion solution as a M C source, by collecting the precipitate, the metal complex represented by the general formula (1) is obtained. As a specific example, as shown in Example 1, for example, the metal complex represented by Fe II 3 [Co III (CN) 6 ] 2 has the same amount of K 3 [Co Co 2 while stirring the aqueous FeSO 4 solution. III (CN) 6 aqueous solution is added dropwise, and the resulting dark blue precipitate is obtained by centrifugation.

本発明の有機リン化合物分解触媒を用いて有機リン化合物を分解する方法としては、特に制限されず、本発明の有機リン化合物分解触媒と有機リン化合物とを接触させればよい。このとき、有機リン化合物を加水分解によって分解する際には、水の存在下に、本発明の有機リン化合物分解触媒と有機リン化合物とを接触させる。   The method for decomposing the organophosphorus compound using the organophosphorus compound decomposition catalyst of the present invention is not particularly limited, and the organophosphorus compound decomposition catalyst of the present invention may be brought into contact with the organophosphorus compound. At this time, when the organic phosphorus compound is decomposed by hydrolysis, the organic phosphorus compound decomposition catalyst of the present invention is brought into contact with the organic phosphorus compound in the presence of water.

例えば、空気中には水分が存在しているため、有機リン化合物の気体と、本発明の有機リン化合物分解触媒とを空気中で接触させることにより、有機リン化合物を好適に加水分解することができる。また、水中において、有機リン化合物と本発明の有機リン化合物分解触媒とを接触させることにより、有機リン化合物を好適に加水分解することもできる。   For example, since moisture is present in the air, the organophosphorus compound is suitably hydrolyzed by bringing the gas of the organophosphorus compound into contact with the organophosphorus compound decomposition catalyst of the present invention in air. it can. Moreover, an organic phosphorus compound can also be suitably hydrolyzed by making an organic phosphorus compound and the organic phosphorus compound decomposition catalyst of this invention contact in water.

有機リン化合物の分解する際の反応温度としては、特に制限されず、使用環境に応じた温度とすればよいが、例えば、10〜80℃程度が挙げられる。また、反応時間について、使用環境に応じた時間とすればよい。例えば、マスクやフィルターなどに本発明の有機リン化合物分解触媒に用いる場合、反応時間は、有機リン化合物がマスクやフィルターを通過するごく短時間となるが、例えば、本発明の有機リン化合物分解触媒を活性炭などの吸着剤と共に用いることにより、活性炭などに一旦吸着された有機リン化合物を、本発明の有機リン化合物分解触媒で分解することができ、このような場合であれば、反応時間を長くすることができる。   It does not restrict | limit especially as reaction temperature at the time of decomposition | disassembly of an organic phosphorus compound, Although it may be set as the temperature according to use environment, about 10-80 degreeC is mentioned, for example. Moreover, what is necessary is just to set it as the time according to use environment about reaction time. For example, when it is used for the organophosphorus compound decomposition catalyst of the present invention for a mask or a filter, the reaction time is a very short time for the organophosphorus compound to pass through the mask or filter. The organophosphorus compound once adsorbed on activated carbon etc. can be decomposed by the organophosphorus compound decomposition catalyst of the present invention by using it together with an adsorbent such as activated carbon, and in such a case, the reaction time is prolonged can do.

本発明の有機リン化合物分解触媒が分解対象とする有機リン化合物としては、特に制限されないが、本発明の有機リン化合物分解触媒は、特に加水分解反応の触媒活性が高いため、加水分解される基(エステル基、アミド基、チオエステル基、エーテル基など)を有する有機リン化合物が好ましく、有機リンエステル化合物がさらに好ましい。有機リンエステル化合物などの有機リン化合物は、例えば農薬等として使用されている。本発明の有機リン化合物分解触媒を用いて有機リン化合物を分解することにより、農薬を吸引することなどによる中毒事故を防止することが可能となる。   The organophosphorus compound to be decomposed by the organophosphorus compound decomposition catalyst of the present invention is not particularly limited, but the organophosphorus compound decomposition catalyst of the present invention is a group to be hydrolyzed because the catalyst activity of hydrolysis reaction is particularly high. Organic phosphorus compounds having (an ester group, an amide group, a thioester group, an ether group, etc.) are preferable, and organic phosphorus ester compounds are more preferable. Organophosphorus compounds such as organophosphorus ester compounds are used, for example, as agricultural chemicals. By decomposing the organophosphorus compound using the organophosphorus compound decomposition catalyst of the present invention, it becomes possible to prevent a poisoning accident due to, for example, suctioning a pesticide.

(有機リン化合物除去材料)
本発明の有機リン化合物分解触媒を通気性基材に担持することにより、有機リン化合物除去材料とすることができる。すなわち、本発明の有機リン化合物除去材料は、通気性基材と、当該通気性基材に担持された本発明の有機リン化合物分解触媒とを含むことを特徴としている。
(Organic phosphorus compound removal material)
By supporting the organophosphorus compound decomposition catalyst of the present invention on a breathable substrate, an organophosphorus compound removing material can be obtained. That is, the organophosphorus compound-removing material of the present invention is characterized by including a breathable substrate and the organophosphorus compound decomposing catalyst of the present invention supported on the breathable substrate.

本発明の有機リン化合物除去材料の具体例としては、例えば、マスク、フィルター、防護服、作業衣、保護衣、手袋、靴などが挙げられる。   Specific examples of the organic phosphorus compound removal material of the present invention include masks, filters, protective clothes, work clothes, protective clothes, gloves, shoes and the like.

通気性基材としては、通気性を有しており、有機リン化合物分解触媒を担持できるものであれば特に制限されず、有機リン化合物除去材料の種類に応じて、適宜選択すればよく、例えば、織物、編物、不織布、フェルトなどが挙げられる。   The air-permeable substrate is not particularly limited as long as it has air-permeability and can support an organic phosphorus compound decomposition catalyst, and may be appropriately selected according to the type of organic phosphorus compound-removing material, for example , Woven fabric, knitted fabric, non-woven fabric, felt and the like.

有機リン化合物分解触媒を通気性基材に担持する方法としては、特に制限されず、例えば、通気性基材で有機リン化合物分解触媒を挟持する方法などが挙げられる。   It does not restrict | limit especially as a method to carry | support an organophosphorus compound decomposition catalyst on a breathable base material, For example, the method etc. of holding an organophosphorus compound decomposition catalyst by a breathable base material etc. are mentioned.

前述の通り、本発明の有機リン化合物分解触媒を活性炭などの吸着剤と共に用いることにより、活性炭などに一旦吸着された有機リン化合物を、本発明の有機リン化合物分解触媒で分解することができ、このような場合であれば、反応時間を長くすることができる。従って、本発明の有機リン化合物除去材料には、有機リン化合物分解触媒と共に、活性炭などの吸着剤がさらに担持されていてもよい。   As described above, by using the organophosphorus compound decomposition catalyst of the present invention together with an adsorbent such as activated carbon, the organophosphorus compound once adsorbed on activated carbon etc. can be decomposed by the organophosphorus compound decomposition catalyst of the present invention, In such a case, the reaction time can be extended. Therefore, the organophosphorus compound removing material of the present invention may further carry an adsorbent such as activated carbon along with the organophosphorus compound decomposition catalyst.

本発明の有機リン化合物除去材料において、通気性基材の厚みや大きさ、有機リン化合物分解触媒や活性炭の担持量などについては、有機リン化合物除去材料の種類に応じて、適宜設定すればよい。   In the organophosphorus compound-removing material of the present invention, the thickness and size of the air-permeable substrate, the supported amount of the organophosphorus compound decomposition catalyst and the activated carbon, etc. may be appropriately set according to the type of the organophosphorus compound-removing material .

以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。   The present invention will be more specifically described in the following examples, but the present invention is not limited thereto.

以下の実施例で合成した有機リン化合物分解触媒に含まれる金属イオンのモル比は、蛍光X線分光法により確認した。また、結晶構造は粉末X線回折、シアノ配位子の配位構造は赤外線吸収スペクトルで同定した。   The molar ratio of the metal ion contained in the organophosphorus compound decomposition catalyst synthesized in the following example was confirmed by X-ray fluorescence spectroscopy. The crystal structure was identified by powder X-ray diffraction, and the coordination structure of the cyano ligand was identified by infrared absorption spectrum.

実施例1:Fe III [Co III (CN) 6 ]の合成
Fe(NO33水溶液(0.20M)を撹拌しながら、同量のK3[CoIII(CN)6]水溶液(0.20M)を滴下した。この溶液を減圧濃縮し、黄色沈殿物を得た。沈殿物を遠心分離で回収し、蒸留水で2回洗浄した後、60℃で乾燥させて、FeIII[CoIII(CN)6]を得た。
Example 1: Fe III [Co III ( CN) 6] with stirring synthesized Fe (NO 3) 3 aqueous solution (0.20 M), the same amount of K 3 [Co III (CN) 6] solution (0. 20 M) was added dropwise. The solution was concentrated under reduced pressure to give a yellow precipitate. The precipitate was collected by centrifugation, washed twice with distilled water, and dried at 60 ° C. to obtain Fe III [Co III (CN) 6 ].

実施例2:Fe III [Ir III (CN) 6 ]の合成
Fe(NO33水溶液(0.12M)を撹拌しながら、同量のK3[IrIII(CN)6]水溶液(0.12M)を滴下した。この溶液を減圧濃縮し、黄緑色沈殿物を得た。沈殿物を遠心分離で回収し、蒸留水で3回洗浄した後、60℃で乾燥させて、FeIII[IrIII(CN)6]を得た。
Example 2: Synthesis of Fe III [Ir III (CN) 6 ] The same amount of K 3 [Ir III (CN) 6 ] aqueous solution (0. 1) as the Fe (NO 3 ) 3 aqueous solution (0.12 M) is stirred. 12 M) was added dropwise. The solution was concentrated under reduced pressure to give a yellow-green precipitate. The precipitate was collected by centrifugation, washed three times with distilled water and then dried at 60 ° C. to obtain Fe III [Ir III (CN) 6 ].

実施例3:Fe III 4 [Ru II (CN) 6 3 の合成
Fe(NO33水溶液(0.09M)を撹拌しながら、同量のK2[RuII(CN)6]水溶液(0.12M)を滴下した。その後、室温で2時間撹拌し、得られた濃紫色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄した後、60℃で乾燥させて、FeIII 4[RuII(CN)63を得た。
Example 3: Synthesis of Fe III 4 [Ru II (CN) 6 ] 3 The same amount of K 2 [Ru II (CN) 6 ] aqueous solution (Fe (NO 3 ) 3 aqueous solution (0.09 M) was stirred while stirring (0.09 M) 0.12 M) was added dropwise. Thereafter, the mixture was stirred at room temperature for 2 hours, and the obtained deep purple precipitate was collected by centrifugation. The precipitate was washed twice with distilled water and then dried at 60 ° C. to obtain Fe III 4 [Ru II (CN) 6 ] 3 .

実施例4:Fe II 3 [Co III (CN) 6 2 の合成
FeSO4水溶液(0.18M)を撹拌しながら、同量のK3[CoIII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた黄色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄した後、60℃で乾燥させて、FeII 3[CoIII(CN)62を得た。
Example 4: Synthesis of Fe II 3 [Co III (CN) 6 ] 2 The same amount of K 3 [Co III (CN) 6 ] aqueous solution (0.12 M) while stirring the FeSO 4 aqueous solution (0.18 M). Was dropped. Thereafter, the mixture was stirred at room temperature for 3 hours, and the obtained yellow precipitate was collected by centrifugation. The precipitate was washed twice with distilled water and then dried at 60 ° C. to obtain Fe II 3 [Co III (CN) 6 ] 2 .

実施例5:Fe II 3 [Ir III (CN) 6 2 の合成
FeSO4水溶液(0.18M)を撹拌しながら、同量のK3[IrIII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた黄緑色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄した後、60℃で乾燥させて、FeII 3[IrIII(CN)62を得た。
Example 5: Synthesis of Fe II 3 [Ir III (CN) 6 ] 2 The same amount of K 3 [Ir III (CN) 6 ] aqueous solution (0.12 M) while stirring FeSO 4 aqueous solution (0.18 M). Was dropped. Then, it stirred at room temperature for 3 hours, and the obtained yellowish green precipitate was collect | recovered by centrifugation. The precipitate was washed twice with distilled water and then dried at 60 ° C. to obtain Fe II 3 [Ir III (CN) 6 ] 2 .

実施例6:Fe II 2 [Ru II (CN) 6 ]の合成
FeSO4水溶液(0.20M)を撹拌しながら、同量のK4[RuII(CN)6]水溶液(0.10M)を滴下した。その後、室温で1時間撹拌し、得られた濃紫色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄した後、60℃で乾燥させて、FeII 2[RuII(CN)6]を得た。
Example 6: Synthesis of Fe II 2 [Ru II (CN) 6 ] The same amount of K 4 [Ru II (CN) 6 ] aqueous solution (0.10 M) as the aqueous FeSO 4 solution (0.20 M) is stirred. It dripped. Thereafter, the mixture was stirred at room temperature for 1 hour, and the obtained deep purple precipitate was collected by centrifugation. The precipitate was washed twice with distilled water and then dried at 60 ° C. to obtain Fe II 2 [Ru II (CN) 6 ].

実施例7:Fe II [Pt IV (CN) 6 ]の合成
FeSO4水溶液(0.20M)を撹拌しながら、同量のK2[PtIV(CN)6]水溶液(0.10M)を滴下した。この溶液を減圧濃縮し、白色沈殿物を得た。沈殿物を遠心分離で回収し、蒸留水で2回洗浄した後、60℃で乾燥させて、FeII[PtIV(CN)6]を得た。
Example 7: Synthesis of Fe II [Pt IV (CN) 6 ] The same amount of K 2 [Pt IV (CN) 6 ] aqueous solution (0.10 M) was added dropwise while stirring the FeSO 4 aqueous solution (0.20 M). did. The solution was concentrated under reduced pressure to obtain a white precipitate. The precipitate was collected by centrifugation, washed twice with distilled water, and dried at 60 ° C. to obtain Fe II [Pt IV (CN) 6 ].

実施例8:Zn II 3 [Fe III (CN) 6 2 の合成
ZnCl2水溶液(0.18M)を撹拌しながら、同量のK3[FeIII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた黄緑色沈殿物を遠心分離で回収した。この沈殿物を蒸留水2回洗浄し、生成物を60℃で乾燥させて、ZnII 3[FeIII(CN)62を得た。
Example 8: Synthesis of Zn II 3 [Fe III (CN) 6 ] 2 While stirring an aqueous ZnCl 2 solution (0.18 M), the same amount of aqueous K 3 [Fe III (CN) 6 ] aqueous solution (0.12 M) Was dropped. Then, it stirred at room temperature for 3 hours, and the obtained yellowish green precipitate was collect | recovered by centrifugation. The precipitate was washed twice with distilled water and the product was dried at 60 ° C. to give Zn II 3 [Fe III (CN) 6 ] 2 .

実施例9:Mn II 3 [Fe III (CN) 6 2 の合成
Mn(NO32水溶液(0.06M)を撹拌しながら、同量のK3[FeIII(CN)6]水溶液(0.06M)を滴下した。その後、室温で1時間撹拌し、得られた白色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で3回洗浄し、室温で真空乾燥させて、MnII 3[FeIII(CN)62を得た。
Example 9: Synthesis of Mn II 3 [Fe III (CN) 6 ] 2 The same amount of aqueous K 3 [Fe III (CN) 6 ] aqueous solution (0.06 M) was stirred while stirring the aqueous Mn (NO 3 ) 2 solution (0.06 M) 0.06 M) was dropped. Then, it stirred at room temperature for 1 hour, and the obtained white precipitate was collect | recovered by centrifugation. The precipitate was washed three times with distilled water and vacuum dried at room temperature to obtain Mn II 3 [Fe III (CN) 6 ] 2 .

実施例10:Co II 3 [Fe III (CN) 6 2 の合成
Co(NO32水溶液(0.18M)を撹拌しながら、同量のK3[FeIII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた赤紫色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で3回洗浄し、生成物を60℃で乾燥させて、CoII 3[FeIII(CN)62を得た。
Example 10: Synthesis of Co II 3 [Fe III (CN) 6 ] 2 While stirring a Co (NO 3 ) 2 aqueous solution (0.18 M), the same amount of K 3 [Fe III (CN) 6 ] aqueous solution ( 0.12 M) was added dropwise. Thereafter, the mixture was stirred at room temperature for 3 hours, and the obtained reddish purple precipitate was collected by centrifugation. The precipitate was washed 3 times with distilled water and the product was dried at 60 ° C. to obtain Co II 3 [Fe III (CN) 6 ] 2 .

実施例11:Co II 3 [Co III (CN) 6 2 の合成
Co(NO32水溶液(0.18M)を撹拌しながら、同量のK3[CoIII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた桃色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄し、生成物を60℃で乾燥させて、CoII 3[CoIII(CN)62を得た。
Example 11 Synthesis of Co II 3 [Co III (CN) 6 ] 2 The same amount of K 3 [Co III (CN) 6 ] aqueous solution (0.18 M) was stirred while stirring the aqueous solution of Co (NO 3 ) 2 (0.18 M). 0.12 M) was added dropwise. Thereafter, the mixture was stirred at room temperature for 3 hours, and the obtained pink precipitate was collected by centrifugation. The precipitate was washed twice with distilled water and the product was dried at 60 ° C. to give Co II 3 [Co III (CN) 6 ] 2 .

実施例12:Ga III [Fe III (CN) 6 ]の合成
Ga(NO32水溶液(0.12M)を撹拌しながら、同量のK3[FeIII(CN)6]水溶液(0.12M)を滴下した。この溶液を減圧濃縮し、徐々に溶媒を除去することで、水色沈殿物を得た。沈殿物を遠心分離で回収し、蒸留水で2回洗浄した後、60℃で乾燥させて、GaIII[FeIII(CN)6]を得た。
Example 12 Synthesis of Ga III [Fe III (CN) 6 ] The same amount of K 3 [Fe III (CN) 6 ] aqueous solution (0. 1) as the Ga (NO 3 ) 2 aqueous solution (0.12 M) is stirred. 12 M) was added dropwise. The solution was concentrated under reduced pressure and the solvent was gradually removed to obtain a water-colored precipitate. The precipitate was collected by centrifugation, washed twice with distilled water, and dried at 60 ° C. to obtain Ga III [Fe III (CN) 6 ].

実施例13:Ga III 4 [Fe II (CN) 6 3 の合成
Ga(NO33水溶液(0.16M)を撹拌しながら、同量のK4[FeII(CN)6]水溶液(0.12M)を滴下した。その後、室温で3時間撹拌し、得られた濃緑色沈殿物を遠心分離で回収した。この沈殿物を蒸留水で2回洗浄し、生成物を60℃で乾燥させて、GaIII 4[FeII(CN)63を得た。
Example 13: Ga III 4 [Fe II (CN) 6] with stirring 3 Synthesis Ga (NO 3) 3 solution (0.16 M), the same amount of K 4 [Fe II (CN) 6] solution ( 0.12 M) was added dropwise. Thereafter, the mixture was stirred at room temperature for 3 hours, and the obtained deep green precipitate was collected by centrifugation. The precipitate was washed twice with distilled water and the product was dried at 60 ° C. to obtain Ga III 4 [Fe II (CN) 6 ] 3 .

<有機リン化合物の分解反応>
100mMのHEPES緩衝液(pH8.3)に、基質であるリン酸p−ニトロフェノール(NPP、25mM)と、実施例1〜13で得られた各有機リン化合物分解触媒を1mol%加えた後、60°Cで24時間撹拌した。また、比較例1として、有機リン化合物分解触媒を用いなかったこと以外は、同様にして、反応を行った。転化率は24時間後のp−ニトロフェノール収量、初速度は反応開始後10分の反応進行度、ターンオーバー数(TOF)は反応開始後2時間での反応進行度から算出した。結果を表1に示す。
<Decomposition reaction of organophosphorus compounds>
After adding 1 mol% of phosphoric acid p-nitrophenol (NPP, 25 mM) as a substrate and each organophosphorus compound decomposition catalyst obtained in Examples 1 to 13 to 100 mM HEPES buffer (pH 8.3), Stirred at 60 ° C. for 24 hours. Moreover, as Comparative Example 1, the reaction was carried out in the same manner except that the organic phosphorus compound decomposition catalyst was not used. The conversion rate was calculated from the yield of p-nitrophenol after 24 hours, the initial rate by 10 minutes after the start of the reaction, and the turnover number (TOF) from the degree of reaction after 2 hours after the start of the reaction. The results are shown in Table 1.

<紫外可視吸収スペクトルの経時変化>
前記<有機リン化合物の分解反応>において、実施例1で合成した有機リン化合物分解触媒(FeIII[CoIII(CN)6])の存在下にリン酸p−ニトロフェノールを分解した際の、反応溶液の紫外可視吸収スペクトルの経時変化を示すグラフを図1に示す。図1に示されるように、310 nm付近の吸収が徐々に小さくなり、400nm 付近の吸収が徐々に大きくなったことから、加水分解反応生成物であるp−ニトロフェノールが生じていることが分かる。また、実施例8,10,11では、転化率は低いものの、比較例1より反応初速度が早いという特徴を有していた。
<Temporal change of UV-visible absorption spectrum>
In the above-mentioned <Decomposition reaction of organophosphorus compound>, when p-nitrophenol phosphate is decomposed in the presence of the organophosphorus compound decomposition catalyst (Fe III [Co III (CN) 6 ]) synthesized in Example 1, The graph which shows a time-dependent change of the ultraviolet visible absorption spectrum of the reaction solution is shown in FIG. As shown in FIG. 1, the absorption near 310 nm gradually decreases, and the absorption near 400 nm gradually increases, indicating that p-nitrophenol which is a hydrolysis reaction product is generated. . Moreover, in Examples 8, 10 and 11, although the conversion rate was low, it had the feature that the initial reaction rate was faster than Comparative Example 1.

<反応時間と生成物の生成量(mM)との関係>
前記<有機リン化合物の分解反応>において、実施例1で合成した有機リン化合物分解触媒(FeIII[CoIII(CN)6])の存在下にリン酸p−ニトロフェノールを分解した際の、反応時間(h)と生成物(p−ニトロフェノール[NP])の生成量(mM)との関係を示すグラフを図2に示す。
<Relationship between reaction time and amount of product (mM)>
In the above-mentioned <Decomposition reaction of organophosphorus compound>, when p-nitrophenol phosphate is decomposed in the presence of the organophosphorus compound decomposition catalyst (Fe III [Co III (CN) 6 ]) synthesized in Example 1, The graph which shows the relationship between reaction time (h) and the production amount (mM) of a product (p-nitrophenol [NP]) is shown in FIG.

Claims (6)

下記一般式(1)で表される、有機リン化合物分解触媒。
N x[MC(CN)6y (1)
[一般式(1)中、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、Ga3+、Mg2+、Ca2+、Cu2+、Ni2+、Sc3+、及びAg+からなる群より選択される少なくとも1種であり、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、Fe3+、及びMn3+からなる群より選択される少なくとも1種であり、x及びyは、それぞれ、正数である。ただし、MNがFe2+またはFe3+であり、かつ、MCがFe2+またはFe3+である場合を除く。]
The organophosphorus compound decomposition catalyst represented by following General formula (1).
M N x [M C (CN) 6 ] y (1)
[In the general formula (1), M N is Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , Ga 3+ , Mg 2+ , Ca 2+ , Cu 2+ , Ni 2 And at least one selected from the group consisting of + , Sc 3+ , and Ag + , and M 2 C is Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , Fe 3+ , And Mn 3+, at least one selected from the group consisting of and x and y each is a positive number. However, M N is the Fe 2+ or Fe 3+, and, except when M C is Fe 2+ or Fe 3+. ]
前記一般式(1)において、MNは、Fe2+、Fe3+、Zn2+、Mn2+、Co2+、及びGa3+からなる群より選択される少なくとも1種であり、MCは、Fe2+、Co3+、Ir3+、Ru2+、Pt4+、及びFe3+からなる群より選択される少なくとも1種であり、xは、1〜4の正数であり、yは、1〜3の正数である、請求項1に記載の有機リン化合物分解触媒。 In the general formula (1), M N is at least one selected from the group consisting of Fe 2+ , Fe 3+ , Zn 2+ , Mn 2+ , Co 2+ , and Ga 3+ , and M C is at least one member selected from the group consisting of Fe 2+ , Co 3+ , Ir 3+ , Ru 2+ , Pt 4+ , and Fe 3+ , and x is a positive number of 1 to 4 The organophosphorus compound decomposition catalyst according to claim 1, wherein y is a positive number of 1 to 3. FeIII[CoIII(CN)6]、FeIII[IrIII(CN)6]、FeIII 4[RuII(CN)63、FeII 3[CoIII(CN)62、FeII 3[IrIII(CN)62、FeII 2[RuII(CN)6]、FeII[PtIV(CN)6]、ZnII 3[FeIII(CN)62、MnII 3[FeIII(CN)62、CoII 3[FeIII(CN)62、CoII 3[CoIII(CN)62、GaIII[FeIII(CN)6]、またはGaIII 4[FeII(CN)63で表される金属錯体である、請求項1又は2に記載の有機リン化合物分解触媒。 Fe III [Co III (CN) 6 ], Fe III [Ir III (CN) 6 ], Fe III 4 [Ru II (CN) 6 ] 3 , Fe II 3 [Co III (CN) 6 ] 2 , Fe II 3 [Ir III (CN) 6 ] 2 , Fe II 2 [Ru II (CN) 6 ], Fe II [Pt IV (CN) 6 ], Zn II 3 [Fe III (CN) 6 ] 2 , Mn II 3 [Fe III (CN) 6 ] 2 , Co II 3 [Fe III (CN) 6 ] 2 , Co II 3 [Co III (CN) 6 ] 2 , Ga III [Fe III (CN) 6 ], or Ga III The organophosphorus compound decomposition catalyst according to claim 1 or 2, which is a metal complex represented by 4 [Fe II (CN) 6 ] 3 . 粒子状である、請求項1〜3のいずれかに記載の有機リン化合物分解触媒。   The organophosphorus compound decomposition catalyst according to any one of claims 1 to 3, which is in the form of particles. 有機リンエステル化合物の分解に用いられる、請求項1〜4のいずれかに記載の有機リン化合物分解触媒。   The organophosphorus compound decomposition catalyst according to any one of claims 1 to 4, which is used for the decomposition of the organophosphorus ester compound. 通気性基材と、前記通気性基材に担持された請求項1〜5のいずれかに記載の有機リン化合物分解触媒とを含む、有機リン化合物除去材料。   An organophosphorus compound removing material comprising: a breathable substrate; and the organophosphorus compound decomposing catalyst according to any one of claims 1 to 5 supported on the breathable substrate.
JP2017165594A 2017-08-30 2017-08-30 Organophosphorus compound decomposition catalyst Active JP6948057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017165594A JP6948057B2 (en) 2017-08-30 2017-08-30 Organophosphorus compound decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165594A JP6948057B2 (en) 2017-08-30 2017-08-30 Organophosphorus compound decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2019042626A true JP2019042626A (en) 2019-03-22
JP6948057B2 JP6948057B2 (en) 2021-10-13

Family

ID=65813536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165594A Active JP6948057B2 (en) 2017-08-30 2017-08-30 Organophosphorus compound decomposition catalyst

Country Status (1)

Country Link
JP (1) JP6948057B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367688A (en) * 1976-11-27 1978-06-16 Hoechst Ag Catalyst for reducing carbon monoxide with hydrogen
JPH08104741A (en) * 1994-09-08 1996-04-23 Arco Chem Technol Lp Solid 2 metal cyanide catalyst and its preparation
JP2013501841A (en) * 2009-08-13 2013-01-17 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Process for producing fatty acids
WO2015186819A1 (en) * 2014-06-06 2015-12-10 国立研究開発法人産業技術総合研究所 Ammonia adsorbent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367688A (en) * 1976-11-27 1978-06-16 Hoechst Ag Catalyst for reducing carbon monoxide with hydrogen
JPH08104741A (en) * 1994-09-08 1996-04-23 Arco Chem Technol Lp Solid 2 metal cyanide catalyst and its preparation
JP2013501841A (en) * 2009-08-13 2013-01-17 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Process for producing fatty acids
WO2015186819A1 (en) * 2014-06-06 2015-12-10 国立研究開発法人産業技術総合研究所 Ammonia adsorbent

Also Published As

Publication number Publication date
JP6948057B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Zhou et al. The synergistic effect of Ag/AgCl@ ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin
Carson et al. Framework isomerism in vanadium metal–organic frameworks: MIL-88B (V) and MIL-101 (V)
Lu et al. Resorcin [4] arene-based microporous metal–organic framework as an efficient catalyst for CO2 cycloaddition with epoxides and highly selective luminescent sensing of Cr2O72–
Lange et al. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3 (BTC) 2 metal–organic framework
Chiong et al. An exceptionally stable metal–organic framework constructed from chelate-based metal–organic polyhedra
Mian et al. Insights into catalytic hydrolysis of organophosphonates at M–OH sites of azolate-based metal organic frameworks
Breeze et al. Isomorphous substitution in a flexible metal–organic framework: Mixed-metal, mixed-valent MIL-53 type materials
Jimtaisong et al. Synthesis and Catalytic Epoxidation Activity with TBHP and H2O2 of Dioxo-, Oxoperoxo-, and Oxodiperoxo Molybdenum (VI) and Tungsten (VI) Compounds Containing Monodentate or Bidentate Phosphine Oxide Ligands: Crystal Structures of WCl2 (O) 2 (OPMePh2) 2, WCl2 (O)(O2)(OPMePh2) 2, MoCl2 (O) 2dppmO2⊙ C4H10O, WCl2 (O) 2dppmO2, Mo (O)(O2) 2dppmO2, and W (O)(O2) 2dppmO2
Sutradhar et al. Oxidovanadium (V) Complexes Anchored on Carbon Materials as Catalysts for the Oxidation of 1‐Phenylethanol
Wang et al. Tetravalent titanium, zirconium, and cerium oxo and peroxo complexes containing an imidodiphosphinate ligand
Qi et al. Syntheses and structures of two gold (I) coordination compounds derived from P–S hybrid ligands and their efficient catalytic performance in the photodegradation of nitroaromatics in water
Zhang et al. Organic–Inorganic hybrid materials based on basket-like {Ca⊂ P6Mo18O73} cages
Liu et al. Trinuclear zinc complexes for biologically relevant μ3-oxoanion binding and carbon dioxide fixation
Wang et al. Cu (I) Coordination Polymers as the Green Heterogeneous Catalysts for Direct C–H Bonds Activation of Arylalkanes to Ketones in Water with Spatial Confinement Effect
Mumtaz et al. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater
Yin et al. Structural diversification and photocatalytic properties of zinc (II) polymers modified by auxiliary N-containing ligands
Ren et al. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl) imidazo (4, 5-f)-(1, 10) phenanthroline ligand
Feng et al. Three new Strandberg-type phenylphosphomolybdate supports for immobilizing horseradish peroxidase and their catalytic oxidation performances
Tan et al. Synthesis of zinc-based metal–organic framework as highly efficient photocatalyst for decomposition of organic dyes in aqueous solution
Wang et al. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V 4 O 12] 4− and [V 10 O 28] 6− anions to the anionic [V 6 O 17] n 4n− coordination polymer
Basak et al. A trinuclear centrosymmetric zinc (II) Schiff base complex: Exploration of its photocatalytic and phosphatase mimicking activity
Ye et al. Mononuclear nickel complexes assembled into two-dimensional networks via hydrogen bonds and π–π stacking interactions
Jin et al. New types of di-, tetra-, hexa-and octanuclear Ag (I) complexes containing 1, 3-adamantanedicarboxylic acid
Sun et al. Tuning photoactive MIL-68 (In) by functionalized ligands for boosting visible-light nitrogen fixation
Hulvey et al. Structural diversity in coordination polymers composed of divalent transition metals, 2, 2′-bipyridine, and perfluorinated dicarboxylates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6948057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150