JP2019042616A - Reaction product manufacturing method using phase interface reaction and phase interface reaction device, plant cultivation method and plant cultivation device - Google Patents

Reaction product manufacturing method using phase interface reaction and phase interface reaction device, plant cultivation method and plant cultivation device Download PDF

Info

Publication number
JP2019042616A
JP2019042616A JP2017165082A JP2017165082A JP2019042616A JP 2019042616 A JP2019042616 A JP 2019042616A JP 2017165082 A JP2017165082 A JP 2017165082A JP 2017165082 A JP2017165082 A JP 2017165082A JP 2019042616 A JP2019042616 A JP 2019042616A
Authority
JP
Japan
Prior art keywords
reaction
phase interface
plasma
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017165082A
Other languages
Japanese (ja)
Other versions
JP6971717B2 (en
Inventor
春山 哲也
Tetsuya Haruyama
哲也 春山
大平 美智男
Michio Ohira
美智男 大平
高橋 秀一
Shuichi Takahashi
秀一 高橋
英夫 中田
Hideo Nakada
英夫 中田
佐藤 義雄
Yoshio Sato
義雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Ebara Jitsugyo Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Ebara Jitsugyo Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2017165082A priority Critical patent/JP6971717B2/en
Publication of JP2019042616A publication Critical patent/JP2019042616A/en
Application granted granted Critical
Publication of JP6971717B2 publication Critical patent/JP6971717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To enhance efficiency of a phase interface reaction.SOLUTION: The invention relates to a phase interface reaction device 31 having a reaction container 32, plasma supply means 33 for supplying a plasma-like material 36 into the reaction container 32, water solution supply means 35 for supplying water or solution 34 into the reaction container 32, and an ultraviolet ray irradiation means 38 for irradiating ultraviolet ray 37 to the plasma-like material 36 in the reaction container 32, in which the plasma-like material 36 and a solute containing water or the solution 34 are reacted at a phase interface in the reaction container 32, having a first reaction field 40 in which a first phase interface 39 directly receiving the ultraviolet ray irradiated by the ultraviolet ray irradiation means 38 is formed, and a second reaction field 42 arranged in an opposite side to the ultraviolet ray irradiation means 38 with sandwiching the first reaction field 40, in which a second phase interface 41 receiving the ultraviolet ray passing through the first reaction field 40 is formed, as reaction fields in which the phase interface is formed.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマ相と、このプラズマ相と接触する液相との相界面で反応を生じさせる相界面反応を用いた反応生成物製造方法及び相界面反応装置、ならびに植物栽培方法及び植物栽培装置に関する。   The present invention relates to a reaction product manufacturing method and a phase interface reaction apparatus using a phase interface reaction that causes a reaction at a phase interface between a plasma phase and a liquid phase in contact with the plasma phase, and a plant cultivation method and a plant cultivation apparatus. About.

従来から、反応容器中で紫外線を照射しながらプラズマ状の物質と霧状の水等を反応させて反応生成物を製造する相界面反応装置が知られている(特許文献1を参照)。この相界面反応装置を図11に示す。相界面反応装置10は、反応容器11と、反応容器11中にプラズマ状の物質を供給するプラズマ発生装置12と、被加熱容器19に貯められた水(又は水溶液)Xを加熱して霧化させる加熱器13と、紫外線を照射する紫外線照射手段14と、プラズマ状の物質及び霧状の水を反応容器11に拡散させる拡散ファン20等を備えている。   2. Description of the Related Art Conventionally, there has been known a phase interface reaction apparatus for producing a reaction product by reacting a plasma substance with mist water while irradiating ultraviolet rays in a reaction vessel (see Patent Document 1). This phase interface reaction apparatus is shown in FIG. The phase interface reactor 10 heats the reaction vessel 11, the plasma generator 12 that supplies a plasma substance into the reaction vessel 11, and the water (or aqueous solution) X stored in the heated vessel 19 to atomize it. And a diffusion fan 20 that diffuses a plasma substance and mist water into the reaction vessel 11.

反応容器11の底にはプラズマ供給口15,その他のガス等の供給口16及び排出口17が設けられている。プラズマ発生装置12で発生したプラズマは、配管18を通じてプラズマ供給口15から反応容器11に供給される。また、その他のガス等の供給口16には配管21が連結され、図示しないポンプ凹から被反応ガス等が供給できるよう構成されている。さらに、排出口17には配管22が連結され、生成ガス及び未反応ガス等が排出されるよう構成されている。   A plasma supply port 15, a supply port 16 for other gases, and a discharge port 17 are provided at the bottom of the reaction vessel 11. Plasma generated by the plasma generator 12 is supplied from the plasma supply port 15 to the reaction vessel 11 through the pipe 18. Further, a pipe 21 is connected to the supply port 16 for other gases and the like, and a reaction gas or the like can be supplied from a pump recess (not shown). Further, a pipe 22 is connected to the discharge port 17 so that generated gas, unreacted gas, and the like are discharged.

紫外線照射手段14による紫外線の照射により、反応容器11中でプラズマ状の物質と霧状の水とが相界面で反応する。プラズマ状の物質として、例えば酸素を用いた場合はヒドロキシルラジカル等を生成することができ、窒素を用いた場合はアンモニア等を生成することができる。   By the irradiation of the ultraviolet rays by the ultraviolet irradiation means 14, the plasma substance and the atomized water react at the phase interface in the reaction vessel 11. As the plasma substance, for example, oxygen can be used to generate hydroxyl radicals, and nitrogen can be used to generate ammonia and the like.

WO2015/198608号公報WO2015 / 198608 Publication

上記のような相界面反応装置では、反応生成物の生成量が相界面で行われる反応の効率に大きく影響されることから、反応の効率をより向上させたいとの要請がある。   In the phase interface reaction apparatus as described above, since the amount of reaction product produced is greatly influenced by the efficiency of the reaction performed at the phase interface, there is a demand for further improving the efficiency of the reaction.

上記要請に鑑みて、本発明は、反応の効率をより向上させることが可能な反応生成物製造方法及び相界面反応装置、ならびに植物栽培方法及び植物栽培装置を提供することを目的とする。   In view of the above requirements, an object of the present invention is to provide a reaction product production method and a phase interface reaction apparatus, a plant cultivation method, and a plant cultivation apparatus that can further improve the efficiency of the reaction.

上記目的を達成するため、一実施形態に係る反応生成物製造方法は、反応容器中にプラズマ状の物質を供給するプラズマ供給工程と、反応容器中に、水又は水溶液を供給する水・水溶液供給工程と、反応容器中のプラズマ状の物質に紫外線照射手段によって紫外線を照射する紫外線照射工程と、を有し、反応容器中でプラズマ状の物質と水又は水溶液に含まれる溶質とを相界面で反応させるものであって、相界面が形成される反応場として、紫外線照射手段により照射された紫外線を直接受ける第1の相界面が形成される第1の反応場と、第1の反応場を通り抜けた紫外線を受ける第2の相界面が形成される第2の反応場と、を形成するようにしている。   In order to achieve the above object, a reaction product manufacturing method according to an embodiment includes a plasma supply step for supplying a plasma substance into a reaction vessel, and a water / aqueous solution supply for supplying water or an aqueous solution into the reaction vessel. And an ultraviolet irradiation step of irradiating the plasma substance in the reaction vessel with ultraviolet rays by ultraviolet irradiation means, and the plasma substance and the solute contained in water or an aqueous solution in the reaction vessel at the phase interface. As a reaction field in which a phase interface is formed, a first reaction field in which a first phase interface that directly receives ultraviolet rays irradiated by ultraviolet irradiation means and a first reaction field are formed. And a second reaction field in which a second phase interface that receives ultraviolet light that has passed through is formed.

別の実施形態に係る反応生成物製造方法は、さらに、第1の相界面を、反応容器中に収容され且つ紫外線の通過が可能な案内部材の紫外線照射手段に望む表側面に水又は水溶液を流すことで形成し、第2の相界面を、案内部材の裏側面に水又は水溶液を流すことで形成するようにしても良い。   In the reaction product production method according to another embodiment, the first phase interface is further provided with water or an aqueous solution on the front side surface desired for the ultraviolet irradiation means of the guide member accommodated in the reaction vessel and capable of passing ultraviolet rays. It may be formed by flowing, and the second phase interface may be formed by flowing water or an aqueous solution on the back side surface of the guide member.

別の実施形態に係る反応生成物製造方法は、さらに、紫外線照射手段の発光部が筒形状を成しており、案内部材は、紫外線照射手段の発光部を囲む筒形状を成しているものでも良い。   In the reaction product manufacturing method according to another embodiment, the light emitting portion of the ultraviolet irradiation means has a cylindrical shape, and the guide member has a cylindrical shape surrounding the light emitting portion of the ultraviolet irradiation means. But it ’s okay.

別の実施形態に係る反応生成物製造方法は、さらに、第1の相界面を通り抜けた紫外線を反応容器中で反射させて第2の相界面に当てるようにしても良い。   In the reaction product manufacturing method according to another embodiment, the ultraviolet light that has passed through the first phase interface may be reflected in the reaction vessel and applied to the second phase interface.

別の実施形態に係る反応生成物製造方法は、さらに、上述のいずれかの反応生成物製造方法を実施する装置ユニットを複数並べ、一の装置ユニットの第1の相界面を通過した紫外線を他の装置ユニットの第2の相界面に当てるようにしても良い。   The reaction product manufacturing method according to another embodiment further includes a plurality of device units that perform any one of the above-described reaction product manufacturing methods, and the ultraviolet light that has passed through the first phase interface of the one device unit. It may be applied to the second phase interface of the device unit.

また、一実施形態に係る相界面反応装置は、反応容器と、反応容器中にプラズマ状の物質を供給するプラズマ供給手段と、反応容器中に、水又は水溶液を供給する水・水溶液供給手段と、反応容器中のプラズマ状の物質に紫外線を照射する紫外線照射手段と、を備え、反応容器中でプラズマ状の物質と水又は水溶液に含まれる溶質とを相界面で反応させるものであって、相界面が形成される反応場として、紫外線照射手段により照射された紫外線を直接受ける第1の相界面が形成される第1の反応場と、第1の反応場を挟んで紫外線照射手段とは反対側に設けられ、第1の反応場を通過した紫外線を受ける第2の相界面が形成される第2の反応場と、を有している。   In addition, a phase interface reaction apparatus according to an embodiment includes a reaction vessel, a plasma supply unit that supplies a plasma substance into the reaction vessel, and a water / aqueous solution supply unit that supplies water or an aqueous solution into the reaction vessel. And an ultraviolet irradiation means for irradiating the plasma substance in the reaction vessel with ultraviolet rays, and reacting the plasma substance and the solute contained in water or an aqueous solution at the phase interface in the reaction vessel, As a reaction field in which a phase interface is formed, a first reaction field in which a first phase interface that directly receives ultraviolet rays irradiated by ultraviolet irradiation means is formed, and an ultraviolet irradiation means across the first reaction field And a second reaction field that is provided on the opposite side and that forms a second phase interface that receives ultraviolet light that has passed through the first reaction field.

別の実施形態に係る相界面反応装置は、さらに、第1の相界面は、反応容器中に収容され且つ紫外線の通過が可能な案内部材の紫外線照射手段に望む表側面に水又は水溶液を流すことで形成され、第2の相界面は、案内部材の裏側面に水又は水溶液を流すことで形成されるものでも良い。   In the phase interface reaction apparatus according to another embodiment, further, the first phase interface is made to flow water or an aqueous solution on the front side surface desired for the ultraviolet irradiation means of the guide member accommodated in the reaction vessel and capable of passing ultraviolet rays. The second phase interface may be formed by flowing water or an aqueous solution on the back side surface of the guide member.

別の実施形態に係る相界面反応装置は、さらに、紫外線照射手段の発光部は柱状を成しており、案内部材は、紫外線照射手段の発光部を囲む筒形状を成しているものでも良い。   In the phase interface reaction apparatus according to another embodiment, the light emitting portion of the ultraviolet irradiation means may have a columnar shape, and the guide member may have a cylindrical shape surrounding the light emitting portion of the ultraviolet irradiation means. .

別の実施形態に係る相界面反応装置は、さらに、反応容器中に、案内部材を通り抜けた紫外線を第2の相界面に向けて反射させる反射部を備えるようにしても良い。   The phase interface reaction apparatus according to another embodiment may further include a reflection unit that reflects the ultraviolet rays that have passed through the guide member toward the second phase interface in the reaction container.

別の実施形態に係る相界面反応装置は、さらに、反応容器の案内部材に望む部位が案内部材を通り抜けた紫外線が透過可能な透過部となっており、反応容器と紫外線照射手段記案内部材とはユニット化されて複数設けられており、ユニットは透過部を対向させて複数並べられており、一のユニットの透過部を透過した紫外線を他のユニットの第2の相界面に当てるものでも良い。   The phase interface reaction apparatus according to another embodiment further includes a transmission part through which a portion desired for the guide member of the reaction vessel can pass through the guide member, and the reaction vessel and the ultraviolet irradiation means description guide member. A plurality of units are provided, and a plurality of units are arranged with the transmission parts facing each other, and the ultraviolet light transmitted through the transmission part of one unit may be applied to the second phase interface of the other unit. .

また、一実施形態に係る植物栽培方法は、上述のいずれかの相界面反応により生成した反応生成物を含む液肥を植物に与えるものである。   Moreover, the plant cultivation method which concerns on one Embodiment gives the liquid fertilizer containing the reaction product produced | generated by one of the above-mentioned phase interface reactions to a plant.

また、一実施形態に係る植物栽培装置は、上述のいずれかの相界面反応装置と、相界面反応装置によって生成した反応生成物を含む液肥を植物に与える液肥供給手段と、を備えるものである。   Moreover, the plant cultivation apparatus which concerns on one Embodiment is provided with the liquid fertilizer supply means which gives the plant the liquid fertilizer containing the reaction product produced | generated by one of the above-mentioned phase interface reaction apparatus and a phase interface reaction apparatus. .

本発明によれば、相界面反応の効率を向上させることができる。   According to the present invention, the efficiency of the phase interface reaction can be improved.

図1は、本発明の第1の実施形態に係る相界面反応装置の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of a phase interface reaction apparatus according to a first embodiment of the present invention. 図2は、相界面反応装置の反応容器に水又は水溶液を供給する系統と回収する系統、およびプラズマ状の物質を供給する系統と回収する系統の概念図を示す。FIG. 2 shows a conceptual diagram of a system for supplying water or an aqueous solution to a reaction vessel of a phase interface reactor and a system for recovering, and a system for supplying a plasma substance and a system for recovering. 図3は、相界面反応装置の案内部材とプラズマ供給経路の内側環状空間及び外側環状空間との位置関係の図を示す。FIG. 3 is a diagram showing the positional relationship between the guide member of the phase interface reaction apparatus and the inner annular space and the outer annular space of the plasma supply path. 図4は、相界面反応装置の案内部材と内側水供給経路及び外側水供給経路との位置関係の図を示す。FIG. 4 shows a diagram of the positional relationship between the guide member of the phase interface reactor, the inner water supply path, and the outer water supply path. 図5は、プラズマ供給経路、内側水供給経路及び外側水供給経路を横から見た状態の上端部の断面図を示す。FIG. 5 is a cross-sectional view of the upper end of the plasma supply path, the inner water supply path, and the outer water supply path as viewed from the side. 図6は、案内部材を通過した紫外線を反射部で反射させる様子を説明するための図を示す。FIG. 6 is a view for explaining a state in which the ultraviolet light that has passed through the guide member is reflected by the reflecting portion. 図7は、本発明の第2の実施形態に係る相界面反応装置を示し、装置ユニット70を複数並べた様子の概念図を示す。FIG. 7 shows a phase interface reaction apparatus according to the second embodiment of the present invention, and shows a conceptual diagram of a state in which a plurality of apparatus units 70 are arranged. 図8は、本発明の第1の実施形態に係る植物栽培装置の概略構成図を示す。FIG. 8: shows the schematic block diagram of the plant cultivation apparatus which concerns on the 1st Embodiment of this invention. 図9は、本発明の第2の実施形態に係る植物栽培装置の概略構成図を示す。FIG. 9: shows the schematic block diagram of the plant cultivation apparatus which concerns on the 2nd Embodiment of this invention. 図10は、各種条件によるアンモニア生成量を比較したグラフを示す。FIG. 10 shows a graph comparing the amount of ammonia produced under various conditions. 図11は、従来の相界面反応装置の概略構成図を示す。FIG. 11 shows a schematic configuration diagram of a conventional phase interface reaction apparatus.

次に、本発明に係る相界面反応を用いた反応生成物製造方法及び相界面反応装置、ならびに植物栽培方法及び植物栽培装置の各実施形態について、図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが本発明の解決手段に必須であるとは限らない。また、以下の説明では、反応生成物製造方法を相界面反応装置の実施形態の中で説明し、植物栽培方法を植物栽培装置の実施形態の中で説明する。   Next, embodiments of a reaction product manufacturing method and a phase interface reaction apparatus using a phase interface reaction according to the present invention, and a plant cultivation method and a plant cultivation apparatus will be described with reference to the drawings. The embodiments described below do not limit the present invention, and all the elements and combinations described in the embodiments are not necessarily essential to the solution means of the present invention. Absent. Moreover, in the following description, a reaction product manufacturing method is demonstrated in embodiment of a phase interface reaction apparatus, and a plant cultivation method is demonstrated in embodiment of a plant cultivation apparatus.

[相界面反応装置]
図1〜図6に、本発明に係る相界面反応装置の第1の実施形態を示す。相界面反応装置31は、反応容器32と、反応容器32中にプラズマ状の物質36を供給するプラズマ供給手段33と、反応容器32中に水又は水溶液34を供給する水・水溶液供給手段35と、反応容器32中のプラズマ状の物質36に紫外線37を照射する紫外線照射手段38と、を備え、反応容器32中でプラズマ状の物質36と水又は水溶液34に含まれる溶質とを相界面で反応させるものである。また、相界面が形成される反応場として、紫外線照射手段38により照射された紫外線37を直接受ける第1の相界面39が形成される第1の反応場40と、第1の反応場40を挟んで紫外線照射手段38とは反対側に設けられ、第1の反応場40を通過した紫外線37を受ける第2の相界面41が形成される第2の反応場42と、を有している。
[Phase interface reactor]
1 to 6 show a first embodiment of a phase interface reaction apparatus according to the present invention. The phase interface reactor 31 includes a reaction vessel 32, a plasma supply unit 33 that supplies a plasma substance 36 into the reaction vessel 32, and a water / aqueous solution supply unit 35 that supplies water or an aqueous solution 34 into the reaction vessel 32. And an ultraviolet irradiation means 38 for irradiating the plasma-like substance 36 in the reaction vessel 32 with ultraviolet rays 37, and the plasma-like substance 36 and the solute contained in water or the aqueous solution 34 in the reaction vessel 32 at the phase interface. It is what makes it react. In addition, as a reaction field in which a phase interface is formed, a first reaction field 40 in which a first phase interface 39 that directly receives the ultraviolet rays 37 irradiated by the ultraviolet irradiation means 38 and a first reaction field 40 are formed. A second reaction field 42 provided on the opposite side of the ultraviolet irradiation means 38 and having a second phase interface 41 for receiving the ultraviolet light 37 that has passed through the first reaction field 40. .

本実施形態では、第1の相界面39は、反応容器32中に収容され且つ紫外線37の通過が可能な案内部材43の紫外線照射手段38に望む表側面43aに水又は水溶液34を流すことで形成され、この第1の相界面39がプラズマ状の物質36と水又は水溶液34に含まれる溶質との反応が生じる第1の反応場40となる。また、第2の相界面41は、案内部材43の裏側面43bに水又は水溶液34を流すことで形成され、この第2の相界面41がプラズマ状の物質36と水又は水溶液34に含まれる溶質との反応が生じる第2の反応場42となる。   In the present embodiment, the first phase interface 39 is formed by flowing water or an aqueous solution 34 to the front side surface 43 a desired for the ultraviolet irradiation means 38 of the guide member 43 that is accommodated in the reaction vessel 32 and allows the ultraviolet ray 37 to pass therethrough. The first phase interface 39 is formed and becomes a first reaction field 40 in which the reaction between the plasma substance 36 and the solute contained in water or the aqueous solution 34 occurs. The second phase interface 41 is formed by flowing water or an aqueous solution 34 through the back side surface 43 b of the guide member 43, and the second phase interface 41 is included in the plasma substance 36 and the water or aqueous solution 34. The second reaction field 42 where the reaction with the solute occurs.

反応容器32は、上端部32aと、下端部32bと、これらの間に挟み込まれた周壁部32cとを主に備えて構成され、上端部32aのフランジ32dと下端部32bのフランジ32eとは複数の支柱32fによって連結されている。周壁部32cは、例えば円筒形状(筒形状の一例)を成している。本実施形態では、周壁部32cを例えばステンレス等の金属製とし、その内周面を鏡面加工することで、案内部材43を通り抜けた紫外線37を第2の反応場42に向けて反射させる反射部32gとしている。周壁部32cとして、例えばステンレススチール製のパイプの使用が可能である。周壁部32cの内周面を反射部32gとして利用することで、反射部32gを別の部品として設ける必要がなくなり、製造コストを安くすることができると共に、装置を軽量化及び小型化することができる。ただし、周壁部32cとは別の部品として反射部32gを設けることも可能である。   The reaction vessel 32 mainly includes an upper end portion 32a, a lower end portion 32b, and a peripheral wall portion 32c sandwiched between them, and there are a plurality of flanges 32d of the upper end portion 32a and flanges 32e of the lower end portion 32b. Are connected by a column 32f. The peripheral wall portion 32c has, for example, a cylindrical shape (an example of a cylindrical shape). In this embodiment, the peripheral wall 32c is made of a metal such as stainless steel and the inner peripheral surface thereof is mirror-finished to reflect the ultraviolet rays 37 that have passed through the guide member 43 toward the second reaction field 42. 32g. For example, a stainless steel pipe can be used as the peripheral wall portion 32c. By using the inner peripheral surface of the peripheral wall portion 32c as the reflecting portion 32g, it is not necessary to provide the reflecting portion 32g as a separate part, and the manufacturing cost can be reduced, and the device can be reduced in weight and size. it can. However, it is also possible to provide the reflecting portion 32g as a component different from the peripheral wall portion 32c.

紫外線照射手段38は、第1の反応場40及び第2の反応場42に紫外線37を照射可能な線源であり、例えば紫外線ランプ(例えば、185nmの紫外線を照射するランプ)等の使用が可能である。また、紫外線ランプとしては、例えばエキシマランプ(例えば、180nm以下の真空紫外線を放射するランプ)等の使用が可能であり、更に、光や電磁波によるエネルギー投入手段を用いても良い。紫外線照射手段38は反応容器32内の中央に配置され、その上下両端を上端部32a及び下端部32bによって支持されている。紫外線照射手段38の発光部38aは、例えば円柱形状(柱状の一例)を成しており、例えば円筒形状(筒形状の一例)のランプカバーガラス44内に収容されている。ただし、発光部38aは、上記形状に限定されるものではなく、板状等の他の形状のものでも良い。発光部38aとして、1または2以上のLEDを実装した板状、多角柱状、円柱状等の如何なる形状の部材でも良い。   The ultraviolet irradiation means 38 is a radiation source capable of irradiating the first reaction field 40 and the second reaction field 42 with the ultraviolet light 37, and for example, an ultraviolet lamp (for example, a lamp that irradiates 185 nm ultraviolet light) can be used. It is. In addition, as the ultraviolet lamp, for example, an excimer lamp (for example, a lamp that emits vacuum ultraviolet rays of 180 nm or less) can be used, and an energy input means using light or electromagnetic waves may be used. The ultraviolet irradiation means 38 is disposed in the center of the reaction vessel 32, and its upper and lower ends are supported by the upper end portion 32a and the lower end portion 32b. The light emitting portion 38a of the ultraviolet irradiation means 38 has, for example, a columnar shape (an example of a column shape), and is accommodated in, for example, a cylindrical (an example of a cylindrical shape) lamp cover glass 44. However, the light emitting portion 38a is not limited to the above shape, and may have another shape such as a plate shape. The light-emitting portion 38a may be a member having any shape such as a plate shape, a polygonal column shape, or a columnar shape on which one or more LEDs are mounted.

ランプカバーガラス44は紫外線37を良好に透過させる材料で形成された筒状部材で、その上下両端を上端部32a及び下端部32bによって支持されている。ランプカバーガラス44によって、反応容器32中に供給されたプラズマ状の物質36や水又は水溶液34から紫外線照射手段38を保護することができる。ランプカバーガラス44は、例えば合成石英ガラス等によって形成されているが、これに限るものではない。   The lamp cover glass 44 is a cylindrical member made of a material that allows the ultraviolet rays 37 to pass well. The upper and lower ends of the lamp cover glass 44 are supported by an upper end portion 32a and a lower end portion 32b. The lamp cover glass 44 can protect the ultraviolet irradiation means 38 from the plasma-like substance 36 and the water or aqueous solution 34 supplied into the reaction vessel 32. The lamp cover glass 44 is made of, for example, synthetic quartz glass, but is not limited thereto.

案内部材43は、紫外線照射手段38の発光部38aを囲む筒形状を成している。本実施形態では、案内部材43を円筒形状にしているが、円筒形状には限らず、六角筒形状、八角筒形状、あるいは略円筒であって側面視にて蛇腹状の形状等にしても良い。案内部材43は、例えば金網等の紫外線37を通過させる部材や、ガラス等の紫外線37を透過させる材料で形成された板材等で構成されている。ただし、紫外線37を通過又は透過させることができるものであれば、これらに限るものではない。案内部材43を金網製とした場合には、金網の網目の細かさを変化させることで水又は水溶液34を流したときの水相界面の表面積(反応場)を調節して反応の効率を向上させることができる。ただし、金網の網目の細かさを変化させると紫外線37の通過率も変化するので、水相界面の表面積と紫外線37の通過率とをバランスさせることが重要である。また、案内部材43をガラス製とした場合には、表面に凹凸を設けて水又は水溶液34を流したときの水相界面の表面積(反応場)を増加させて反応の効率を向上させることができる。案内部材43の上下両端は反応容器32の上端部32a及び下端部32bによって支持されている。   The guide member 43 has a cylindrical shape surrounding the light emitting portion 38 a of the ultraviolet irradiation means 38. In the present embodiment, the guide member 43 has a cylindrical shape. However, the guide member 43 is not limited to a cylindrical shape, and may be a hexagonal cylindrical shape, an octagonal cylindrical shape, or a substantially cylindrical shape having a bellows shape in a side view. . The guide member 43 is made of, for example, a member that transmits ultraviolet rays 37 such as a wire mesh, or a plate material formed of a material that transmits ultraviolet rays 37 such as glass. However, the present invention is not limited to these as long as it can pass or transmit the ultraviolet rays 37. When the guide member 43 is made of wire mesh, the surface area (reaction field) of the aqueous phase interface when water or the aqueous solution 34 flows is adjusted by changing the fineness of the mesh of the wire mesh to improve the efficiency of the reaction. Can be made. However, if the fineness of the wire mesh is changed, the passage rate of the ultraviolet rays 37 also changes. Therefore, it is important to balance the surface area of the aqueous phase interface and the passage rate of the ultraviolet rays 37. Further, when the guide member 43 is made of glass, it is possible to improve the efficiency of the reaction by increasing the surface area (reaction field) of the aqueous phase interface when water or an aqueous solution 34 is flowed by providing irregularities on the surface. it can. The upper and lower ends of the guide member 43 are supported by the upper end 32 a and the lower end 32 b of the reaction vessel 32.

反応容器32中にプラズマ状の物質36を供給するプラズマ供給手段33は、反応させる物質のプラズマを発生させ、発生したプラズマ(プラズマ状の物質36)を反応容器32中に供給する装置である。プラズマ発生装置(プラズマ供給手段33)としては、グロー放電等の放電を利用するものの他、高周波電磁場を利用するもの、マイクロ波を利用するものなど、公知のプラズマ発生装置を適宜用いることができる。反応させる物質が酸素である場合、プラズマ発生装置は公知のオゾン発生装置を用いることができる。プラズマ供給手段33と反応容器32とは配管45で連結されている。すなわち、プラズマ供給手段33で発生したプラズマは、配管45を通じて反応容器32の上端部32aのプラズマ供給口46に供給され、上端部32a内に設けられたプラズマ供給経路47を通じて反応容器32中に供給される。   The plasma supply means 33 for supplying the plasma substance 36 into the reaction vessel 32 is a device that generates plasma of the substance to be reacted and supplies the generated plasma (plasma substance 36) into the reaction vessel 32. As the plasma generation device (plasma supply means 33), a known plasma generation device such as a device using a discharge such as glow discharge, a device using a high frequency electromagnetic field, a device using a microwave, or the like can be used as appropriate. When the substance to be reacted is oxygen, a known ozone generator can be used as the plasma generator. The plasma supply means 33 and the reaction vessel 32 are connected by a pipe 45. That is, the plasma generated by the plasma supply means 33 is supplied to the plasma supply port 46 of the upper end portion 32a of the reaction vessel 32 through the pipe 45 and supplied into the reaction vessel 32 through the plasma supply path 47 provided in the upper end portion 32a. Is done.

プラズマ供給手段33には、原料ガス源が連結されている。本実施形態では、原料ガス源として、例えば酸素供給源48と窒素供給源49が連結されており、原料ガスとして供給可能なガスを酸素ガスと窒素ガスとで切り替え可能になっている。酸素供給源48及び窒素供給源49は、例えば3方電磁弁等の切替手段50を介してプラズマ供給手段33に連結されている。酸素供給源48は、例えば酸素ガスが加圧された状態で蓄えられた酸素ボンベであり、窒素供給源49は、例えば窒素ガスが加圧された状態で蓄えられた窒素ボンベである。切替手段50の切り替えによって酸素供給源48をプラズマ供給手段33に接続し、酸素供給源48の吐出口を開くと、プラズマ供給手段33に酸素ガスを供給することができる。酸素ガスを供給することで、プラズマ供給手段33によってプラズマ状の酸素(オゾンを含むいわゆる酸素プラズマ、すなわちプラズマ状の物質36)が生成される。また、切替手段50の切り替えによって窒素供給源49をプラズマ供給手段33に接続し、窒素供給源49の吐出口を開くと、プラズマ供給手段33に窒素ガスを供給することができる。窒素ガスを供給することで、プラズマ供給手段33によってプラズマ状の窒素(プラズマ状の物質36)が生成される。なお、原料ガスとして、上述の酸素ガス及び窒素ガスの混合ガス、あるいはそれら以外のガスを使用しても良い。   A source gas source is connected to the plasma supply means 33. In the present embodiment, for example, an oxygen supply source 48 and a nitrogen supply source 49 are connected as the source gas source, and the gas that can be supplied as the source gas can be switched between oxygen gas and nitrogen gas. The oxygen supply source 48 and the nitrogen supply source 49 are connected to the plasma supply unit 33 via a switching unit 50 such as a three-way solenoid valve. The oxygen supply source 48 is, for example, an oxygen cylinder stored in a state where oxygen gas is pressurized, and the nitrogen supply source 49 is, for example, a nitrogen cylinder stored in a state where nitrogen gas is pressurized. When the oxygen supply source 48 is connected to the plasma supply means 33 by switching the switching means 50 and the discharge port of the oxygen supply source 48 is opened, oxygen gas can be supplied to the plasma supply means 33. By supplying the oxygen gas, the plasma supply means 33 generates plasma-like oxygen (so-called oxygen plasma containing ozone, that is, the plasma-like substance 36). Further, when the nitrogen supply source 49 is connected to the plasma supply means 33 by switching the switching means 50 and the discharge port of the nitrogen supply source 49 is opened, nitrogen gas can be supplied to the plasma supply means 33. By supplying the nitrogen gas, plasma-like nitrogen (plasma-like substance 36) is generated by the plasma supply means 33. In addition, you may use the above-mentioned mixed gas of oxygen gas and nitrogen gas, or gas other than those as source gas.

反応容器32中に水又は水溶液34を供給する水・水溶液供給手段35は、例えば水又は水溶液34が貯えられたタンク51と、タンク51内の水又は水溶液34を圧送するポンプ52より主に構成されている。本実施形態では、第1の反応場40に水又は水溶液34を供給する水・水溶液供給手段35と、第2の反応場42に水又は水溶液34を供給する水・水溶液供給手段35とを別々に設けている。ただし、第1の反応場40用の水・水溶液供給手段35と第2の反応場42用の水・水溶液供給手段35とを1つの水・水溶液供給手段35で兼用しても良い。   The water / aqueous solution supply means 35 for supplying water or the aqueous solution 34 into the reaction vessel 32 mainly includes, for example, a tank 51 in which the water or the aqueous solution 34 is stored and a pump 52 that pumps the water or the aqueous solution 34 in the tank 51. Has been. In the present embodiment, water / aqueous solution supply means 35 for supplying water or aqueous solution 34 to the first reaction field 40 and water / aqueous solution supply means 35 for supplying water or aqueous solution 34 to the second reaction field 42 are separately provided. Provided. However, the water / aqueous solution supply means 35 for the first reaction field 40 and the water / aqueous solution supply means 35 for the second reaction field 42 may be combined into one water / aqueous solution supply means 35.

第1の反応場40用の水・水溶液供給手段35のポンプ52と反応容器32とは配管53で連結されている。すなわち、ポンプ52により吸い込まれたタンク51内の水又は水溶液34は、配管53を通じて反応容器32の上端部32aに設けられた内側給水口54に供給され、上端部32a内に設けられた内側水供給経路55を通じて反応容器32中の第1の反応場40に供給される。また、第2の反応場42用の水・水溶液供給手段35のポンプ52と反応容器32とは配管56で連結されている。すなわち、ポンプ52により吸い込まれたタンク51内の水又は水溶液34は、配管56を通じて反応容器32の上端部32aに設けられた外側給水口57に供給され、上端部32a内に設けられた外側水供給経路58を通じて反応容器32中の第2の反応場42に供給される。   The pump 52 of the water / aqueous solution supply means 35 for the first reaction field 40 and the reaction vessel 32 are connected by a pipe 53. That is, the water or aqueous solution 34 in the tank 51 sucked in by the pump 52 is supplied to the inner water supply port 54 provided in the upper end portion 32a of the reaction vessel 32 through the pipe 53, and the inner water provided in the upper end portion 32a. It is supplied to the first reaction field 40 in the reaction vessel 32 through the supply path 55. The pump 52 of the water / aqueous solution supply means 35 for the second reaction field 42 and the reaction vessel 32 are connected by a pipe 56. That is, the water or aqueous solution 34 in the tank 51 sucked in by the pump 52 is supplied to the outer water supply port 57 provided in the upper end portion 32a of the reaction vessel 32 through the pipe 56, and the outer water provided in the upper end portion 32a. It is supplied to the second reaction field 42 in the reaction vessel 32 through the supply path 58.

図3〜図5に、反応容器32の上端部32aに設けられたプラズマ供給経路47、内側水供給経路55及び外側水供給経路58を示す。図3は案内部材43とプラズマ供給経路47の内側環状空間47a及び外側環状空間47bとの位置関係を示す図、図4は案内部材43と内側水供給経路55及び外側水供給経路58との位置関係を示す図、図5はプラズマ供給経路47、内側水供給経路55及び外側水供給経路58を横から見た状態の上端部32aの断面図である。   3 to 5 show a plasma supply path 47, an inner water supply path 55, and an outer water supply path 58 provided at the upper end portion 32 a of the reaction vessel 32. 3 is a diagram showing the positional relationship between the guide member 43 and the inner annular space 47a and the outer annular space 47b of the plasma supply path 47, and FIG. 4 shows the positions of the guide member 43 and the inner water supply path 55 and the outer water supply path 58. FIG. 5 is a cross-sectional view of the upper end portion 32a when the plasma supply path 47, the inner water supply path 55, and the outer water supply path 58 are viewed from the side.

プラズマ供給経路47は、ランプカバーガラス44と案内部材43との間に設けられた環状の内側環状空間47aと、プラズマ供給口46に供給されたプラズマ状の物質36を内側環状空間47aに導く内側プラズマ連通路47dと、案内部材43と周壁部32cとの間に設けられた環状の外側環状空間47bと、プラズマ供給口46に供給されたプラズマ状の物質36を外側環状空間47bに導く外側プラズマ連通路47cより主に構成されている。内側環状空間47aは第1の反応場40に向けて開口し、外側環状空間47bは第2の反応場42に向けて開口している。したがって、プラズマ供給口46に供給されたプラズマ状の物質36は、内側プラズマ連通路47dと外側プラズマ連通路47cとに分かれて流入し、内側プラズマ連通路47dから内側環状空間47aへと流れて第1の反応場40に供給され、又は、外側プラズマ連通路47cから外側環状空間47bへと流れて第2の反応場42に供給される。   The plasma supply path 47 includes an annular inner annular space 47a provided between the lamp cover glass 44 and the guide member 43, and an inner side that guides the plasma substance 36 supplied to the plasma supply port 46 to the inner annular space 47a. The plasma communication passage 47d, the annular outer annular space 47b provided between the guide member 43 and the peripheral wall portion 32c, and the outer plasma for guiding the plasma substance 36 supplied to the plasma supply port 46 to the outer annular space 47b. It is mainly composed of the communication passage 47c. The inner annular space 47 a opens toward the first reaction field 40, and the outer annular space 47 b opens toward the second reaction field 42. Therefore, the plasma-like substance 36 supplied to the plasma supply port 46 flows into the inner plasma communication passage 47d and the outer plasma communication passage 47c, flows into the inner annular space 47a from the inner plasma communication passage 47d, and flows into the inner annular space 47a. The first reaction field 40 is supplied, or flows from the outer plasma communication passage 47 c to the outer annular space 47 b and is supplied to the second reaction field 42.

内側水供給経路55は、ランプカバーガラス44と案内部材43との間に設けられた環状の内側環状貯留部55aと、内側給水口54に供給された水又は水溶液34を内側環状貯留部55aに導く内側水連通路55bより主に構成されている。内側給水口54に供給された水又は水溶液34は内側水連通路55bを通じて内側環状貯留部55aに流入し一時的に貯留される。図5に示すように、内側環状貯留部55aの内周壁(内側プラズマ連通路47dとの間の周壁)55cは外周壁(案内部材43に対向する周壁)55dよりも高くなっている。そのため、内側環状貯留部55aの液位が上昇して所定値に達すると、内側環状貯留部55a内の水又は水溶液34が外周壁55dを乗り越えて溢れだし、案内部材43の表側面43aを伝わって流れ落ちる。すなわち、内側環状貯留部55a内の水又は水溶液34が第1の反応場40へと供給される。   The inner water supply path 55 includes an annular inner annular reservoir 55a provided between the lamp cover glass 44 and the guide member 43, and water or an aqueous solution 34 supplied to the inner water supply port 54 into the inner annular reservoir 55a. The inner water communication passage 55b is mainly constituted. The water or aqueous solution 34 supplied to the inner water supply port 54 flows into the inner annular reservoir 55a through the inner water communication passage 55b and is temporarily stored. As shown in FIG. 5, an inner peripheral wall (a peripheral wall between the inner plasma communication passage 47d) 55c of the inner annular reservoir 55a is higher than an outer peripheral wall (a peripheral wall facing the guide member 43) 55d. Therefore, when the liquid level of the inner annular reservoir 55a rises and reaches a predetermined value, the water or the aqueous solution 34 in the inner annular reservoir 55a overflows over the outer peripheral wall 55d and is transmitted to the front side surface 43a of the guide member 43. And run down. That is, the water or the aqueous solution 34 in the inner annular reservoir 55 a is supplied to the first reaction field 40.

内側環状貯留部55aの内側にはプラズマ供給経路47の内側プラズマ連通路47dが設けられているが、内側環状貯留部55aの内周壁55cは外周壁55dに比べて十分高くなっており、内側環状貯留部55a内の水又は水溶液34がその表面張力によって内側プラズマ連通路47d側に流入することはない。また、内側環状貯留部55aには、例えば電解研磨等の表面処理が施されており、濡れ性が改善されている。そのため、内側環状貯留部55a内には水又は水溶液34が広がりやすく、全周に亘って液面の高さを等しくすることができ、案内部材43の表側面43aの全周に均等に水又は水溶液34を供給することができる。   An inner plasma communication passage 47d of the plasma supply path 47 is provided inside the inner annular reservoir 55a, but the inner peripheral wall 55c of the inner annular reservoir 55a is sufficiently higher than the outer peripheral wall 55d, The water or aqueous solution 34 in the reservoir 55a does not flow into the inner plasma communication path 47d due to the surface tension. Further, the inner annular storage portion 55a is subjected to a surface treatment such as electrolytic polishing to improve wettability. Therefore, the water or aqueous solution 34 easily spreads in the inner annular storage portion 55a, the height of the liquid surface can be made equal over the entire circumference, and water or water can be evenly distributed over the entire circumference of the front side surface 43a of the guide member 43. An aqueous solution 34 can be supplied.

外側水供給経路58は、外側給水口57に供給された水又は水溶液34を貯める環状の外側環状貯留部58aと、案内部材43を囲み且つ案内部材43の裏側面43bに向けて開口する環状の環状流路58bと、外側環状貯留部58a内の水又は水溶液34を環状流路58bに導く複数の外側水連通路58cより主に構成されている。外側給水口57に供給された水又は水溶液34は外側環状貯留部58aに流入し一時的に貯留される。そして、外側環状貯留部58a内の液位がある程度高くなると、外側環状貯留部58a内の水又は水溶液34は各外側水連通路58cを通じて環状流路58bに流入し、案内部材43の裏側面43bを伝わって流れ落ちる。すなわち、環状流路58b内の水又は水溶液34が第2の反応場42へと供給される。   The outer water supply path 58 has an annular outer annular storage portion 58a for storing the water or the aqueous solution 34 supplied to the outer water supply port 57, and an annular outer ring that surrounds the guide member 43 and opens toward the back side surface 43b of the guide member 43. It is mainly composed of an annular channel 58b and a plurality of outer water communication passages 58c that guide the water or aqueous solution 34 in the outer annular reservoir 58a to the annular channel 58b. The water or aqueous solution 34 supplied to the outer water supply port 57 flows into the outer annular reservoir 58a and is temporarily stored. When the liquid level in the outer annular reservoir 58a increases to some extent, the water or aqueous solution 34 in the outer annular reservoir 58a flows into the annular channel 58b through the outer water communication passages 58c, and the back side surface 43b of the guide member 43. It flows down through. That is, the water or the aqueous solution 34 in the annular flow path 58 b is supplied to the second reaction field 42.

反応容器32の下端部32bには、周壁部32cと案内部材43との間の第2の反応場42を通り抜けたプラズマ状の物質36を回収する外側プラズマ回収経路59と、案内部材43とランプカバーガラス44との間の第1の反応場40を通り抜けたプラズマ状の物質36を回収する内側プラズマ回収経路60と、第1及び第2の反応場40,42を通り抜けた水又は水溶液34を回収する水・水溶液回収経路61とが設けられている。   At the lower end 32 b of the reaction vessel 32, an outer plasma recovery path 59 for recovering the plasma substance 36 that has passed through the second reaction field 42 between the peripheral wall portion 32 c and the guide member 43, the guide member 43 and the lamp An inner plasma recovery path 60 that recovers the plasma-like substance 36 that has passed through the first reaction field 40 between the cover glass 44 and water or an aqueous solution 34 that has passed through the first and second reaction fields 40, 42. A water / aqueous solution recovery path 61 for recovery is provided.

外側プラズマ回収経路59は、周壁部32cと案内部材43との間の空間62に向けて開口する環状溝59aと、環状溝59aに連通する外側プラズマ排出口59bより構成されている。周壁部32cと案内部材43との間の空間62を通り抜けたプラズマ状の物質36は環状溝59aに流入し、外側プラズマ排出口59bから排出される。   The outer plasma recovery path 59 includes an annular groove 59a that opens toward the space 62 between the peripheral wall portion 32c and the guide member 43, and an outer plasma discharge port 59b that communicates with the annular groove 59a. The plasma substance 36 that has passed through the space 62 between the peripheral wall portion 32c and the guide member 43 flows into the annular groove 59a and is discharged from the outer plasma discharge port 59b.

内側プラズマ回収経路60は、周壁部32cと案内部材43との間の空間62に形成される第2の反応場42、及び案内部材43とランプカバーガラス44との間の空間63に向けて開口する貯留部64と、貯留部64の比較的高い位置に連通する内側プラズマ排出口60aより構成されている。案内部材43とランプカバーガラス44との間の空間63を通り抜けたプラズマ状の物質36は貯留部64に流入し、内側プラズマ排出口60aから排出される。   The inner plasma recovery path 60 opens toward the second reaction field 42 formed in the space 62 between the peripheral wall portion 32 c and the guide member 43 and the space 63 between the guide member 43 and the lamp cover glass 44. And the inner plasma discharge port 60a that communicates with a relatively high position of the storage portion 64. The plasma-like substance 36 that has passed through the space 63 between the guide member 43 and the lamp cover glass 44 flows into the storage portion 64 and is discharged from the inner plasma discharge port 60a.

水・水溶液回収経路61は、貯留部64と、貯留部64の比較的低い位置に連通する水・水溶液回収排出口61aより構成されている。周壁部32cと案内部材43との間の空間62及び案内部材43とランプカバーガラス44との間の空間63を通り抜けた水又は水溶液34は貯留部64に流入し、水・水溶液回収排出口61aから排出される。すなわち、貯留部64は内側プラズマ回収経路60と水・水溶液回収経路61とで共有されており、流入したプラズマ状の物質36と水又は水溶液34とを気液分離させて内側プラズマ排出口60a又は水・水溶液回収排出口61aから排出する。   The water / aqueous solution recovery path 61 includes a storage unit 64 and a water / aqueous solution recovery discharge port 61 a communicating with a relatively low position of the storage unit 64. The water or aqueous solution 34 that has passed through the space 62 between the peripheral wall portion 32c and the guide member 43 and the space 63 between the guide member 43 and the lamp cover glass 44 flows into the storage portion 64, and the water / aqueous solution recovery discharge port 61a. Discharged from. That is, the reservoir 64 is shared by the inner plasma recovery path 60 and the water / aqueous solution recovery path 61, and the plasma-like substance 36 and the water or aqueous solution 34 that have flowed in are separated from each other by gas-liquid separation. It discharges from the water / aqueous solution recovery outlet 61a.

相界面反応装置31には、ランプカバーガラス44内の空気を不活性ガスに置き換える不活性ガス置換手段65が設けられている。不活性ガス置換手段65は、例えばヘリウム、窒素、アルゴン等の不活性ガスが加圧された状態で蓄えられたボンベである。この不活性ガス置換手段65と反応容器32とは配管66で連結されている。すなわち、不活性ガス置換手段65から供給される不活性ガスは、配管66を通じて反応容器32の上端部32aの不活性ガス供給口67に供給され、上端部32a内に設けられた不活性ガス供給経路68を通じて紫外線照射手段38とランプカバーガラス44との間の空間69に供給され、この空間69内の空気を不活性ガスに置き換える。紫外線照射手段38とランプカバーガラス44との間の空間69から押し出された空気、及びこの空間69に供給された不活性ガスは、その空間69の上方から排気される。これにより、ランプカバーガラス44内の気密性を高く維持して不活性ガスを充満させることができ、また、プラズマ状の物質36を回収する場合に不活性ガスとの混合を避けることができる。ただし、例えば、内側プラズマ回収経路60の貯留部64から内側プラズマ排出口60aを通じて上記の空気および不活性ガスを排出するようにしても良い。   The phase interface reactor 31 is provided with an inert gas replacement means 65 that replaces the air in the lamp cover glass 44 with an inert gas. The inert gas replacement means 65 is a cylinder in which an inert gas such as helium, nitrogen, argon or the like is stored in a pressurized state. The inert gas replacement means 65 and the reaction vessel 32 are connected by a pipe 66. That is, the inert gas supplied from the inert gas replacement means 65 is supplied to the inert gas supply port 67 of the upper end portion 32a of the reaction vessel 32 through the pipe 66, and the inert gas supply provided in the upper end portion 32a. It is supplied to the space 69 between the ultraviolet irradiation means 38 and the lamp cover glass 44 through the path 68, and the air in the space 69 is replaced with an inert gas. The air pushed out from the space 69 between the ultraviolet irradiation means 38 and the lamp cover glass 44 and the inert gas supplied to the space 69 are exhausted from above the space 69. Thereby, the airtightness in the lamp cover glass 44 can be maintained high and the inert gas can be filled, and when the plasma substance 36 is recovered, mixing with the inert gas can be avoided. However, for example, the air and the inert gas may be discharged from the storage portion 64 of the inner plasma recovery path 60 through the inner plasma discharge port 60a.

不活性ガス置換手段65は相界面反応装置31による反応生成物の製造前に使用され、ランプカバーガラス44内を予め不活性ガス雰囲気にしておくものである。ランプカバーガラス44内に酸素が存在すると、紫外線照射手段38が照射する紫外線37によってオゾンが発生し、紫外線37の透過性を悪化させることになるが、相界面反応装置31の使用前に不活性ガス置換手段65によってランプカバーガラス44内を不活性ガス雰囲気にしておくことで、紫外線37の透過性の悪化を防止することができる。   The inert gas replacement means 65 is used before the production of the reaction product by the phase interface reaction device 31, and the inside of the lamp cover glass 44 is previously set to an inert gas atmosphere. If oxygen is present in the lamp cover glass 44, ozone is generated by the ultraviolet rays 37 irradiated by the ultraviolet irradiation means 38, and the permeability of the ultraviolet rays 37 is deteriorated. By making the inside of the lamp cover glass 44 an inert gas atmosphere by the gas replacement means 65, it is possible to prevent the deterioration of the transmittance of the ultraviolet rays 37.

このような相界面反応装置31によって実施される本発明に係る相界面反応を用いた反応生成物製造方法は、反応容器32中にプラズマ状の物質36を供給するプラズマ供給工程と、反応容器32中に水又は水溶液34を供給する水・水溶液供給工程と、反応容器32中のプラズマ状の物質36に紫外線照射手段38によって紫外線37を照射する紫外線照射工程と、を有し、反応容器32中でプラズマ状の物質36と水又は水溶液34に含まれる溶質とを相界面で反応させるもので、相界面が形成される反応場として、紫外線照射手段38により照射された紫外線37を直接受ける第1の相界面39が形成される第1の反応場40と、第1の反応場40を通り抜けた紫外線37を受ける第2の相界面41が形成される第2の反応場42と、を形成するものである。   The reaction product manufacturing method using the phase interface reaction according to the present invention performed by such a phase interface reaction apparatus 31 includes a plasma supply step of supplying a plasma substance 36 into the reaction vessel 32, and a reaction vessel 32. A water / aqueous solution supplying step for supplying water or an aqueous solution 34 therein, and an ultraviolet irradiation step for irradiating the plasma-like substance 36 in the reaction vessel 32 with ultraviolet rays 37 by ultraviolet irradiation means 38. The plasma-like substance 36 and water or the solute contained in the aqueous solution 34 are reacted at the phase interface, and a first reaction field that directly receives the ultraviolet rays 37 irradiated by the ultraviolet irradiation means 38 is formed as a reaction field for forming the phase interface. A first reaction field 40 in which a phase interface 39 is formed, and a second reaction field 42 in which a second phase interface 41 that receives ultraviolet rays 37 passing through the first reaction field 40 is formed, It is intended to be formed.

本実施形態では、第1の相界面39を、反応容器32中に収容され且つ紫外線37の通過が可能な案内部材43の紫外線照射手段38に望む表側面43aに水又は水溶液34を流すことで形成し、この第1の相界面39を、プラズマ状の物質36と水又は水溶液34に含まれる溶質との反応が生じる第1の反応場40としている。また、第2の相界面41を、案内部材43の裏側面43bに水又は水溶液34を流すことで形成し、この第2の相界面41を、プラズマ状の物質36と水又は水溶液34に含まれる溶質との反応が生じる第2の反応場42としている。   In the present embodiment, water or an aqueous solution 34 is caused to flow through the first phase interface 39 on the front side surface 43 a that is desired in the ultraviolet irradiation means 38 of the guide member 43 that is accommodated in the reaction vessel 32 and can pass the ultraviolet rays 37. The first phase interface 39 is formed as a first reaction field 40 in which a reaction between the plasma substance 36 and a solute contained in water or the aqueous solution 34 occurs. In addition, the second phase interface 41 is formed by flowing water or an aqueous solution 34 through the back side surface 43 b of the guide member 43, and the second phase interface 41 is included in the plasma substance 36 and the water or aqueous solution 34. The second reaction field 42 in which a reaction with the solute is generated.

また、紫外線照射手段38の発光部38aを円筒形状にすると共に、案内部材43を紫外線照射手段38の発光部38aを囲む筒形状にしている。さらに、図6に示すように、第1の相界面39を通り抜けた紫外線37を反応容器32中で反射させて第2の相界面41に当てるようにしている。   Further, the light emitting portion 38 a of the ultraviolet irradiation means 38 has a cylindrical shape, and the guide member 43 has a cylindrical shape surrounding the light emitting portion 38 a of the ultraviolet irradiation means 38. Further, as shown in FIG. 6, the ultraviolet rays 37 that have passed through the first phase interface 39 are reflected in the reaction vessel 32 and applied to the second phase interface 41.

(プラズマ供給工程)
プラズマ供給手段33より配管45を通じて反応容器32のプラズマ供給口46に供給されたプラズマ状の物質36は、プラズマ供給経路47の内側プラズマ連通路47d又は外側プラズマ連通路47cを通じて内側環状空間47a又は外側環状空間47bに導かれる。そして、内側環状空間47aに導かれたプラズマ状の物質36は第1の反応場40に供給され、水又は水溶液34との間で相界面反応を生じさせながら流れ落ち、内側プラズマ回収経路60の貯留部64で気液分離された後、内側プラズマ排出口60aから回収される。一方、外側環状空間47bに導かれたプラズマ状の物質36は第2の反応場42に供給され、水又は水溶液34との間で相界面反応を生じさせながら流れ落ち、外側プラズマ回収経路59の環状溝59aから外側プラズマ排出口59bへと流れて回収される。
(Plasma supply process)
The plasma substance 36 supplied from the plasma supply means 33 to the plasma supply port 46 of the reaction vessel 32 through the pipe 45 passes through the inner plasma communication path 47d or the outer plasma communication path 47c of the plasma supply path 47 to the inner annular space 47a or the outer side. It is guided to the annular space 47b. The plasma-like substance 36 guided to the inner annular space 47 a is supplied to the first reaction field 40 and flows down while causing a phase interface reaction with water or the aqueous solution 34, and is stored in the inner plasma recovery path 60. After gas-liquid separation by the unit 64, the gas is collected from the inner plasma outlet 60a. On the other hand, the plasma-like substance 36 guided to the outer annular space 47 b is supplied to the second reaction field 42 and flows down while causing a phase interface reaction with water or the aqueous solution 34, and the annular substance of the outer plasma recovery path 59 is formed. It flows from the groove 59a to the outer plasma discharge port 59b and is collected.

(水・水溶液供給工程)
第1の反応場40用の水・水溶液供給手段35より配管53を通じて反応容器32の内側給水口54に供給された水又は水溶液34は、内側水供給経路55を通じて第1の反応場40へと供給され、プラズマ状の物質36との間で相界面反応を生じさせながら流れ落ち、水・水溶液回収経路61の貯留部64で気液分離された後、水・水溶液回収排出口61aから回収される。
(Water / aqueous solution supply process)
The water or aqueous solution 34 supplied from the water / aqueous solution supply means 35 for the first reaction field 40 to the inner water supply port 54 of the reaction vessel 32 through the pipe 53 passes through the inner water supply path 55 to the first reaction field 40. After being supplied and flowing down while causing a phase interface reaction with the plasma-like substance 36, gas-liquid separation is performed in the storage section 64 of the water / aqueous solution recovery path 61, and then recovered from the water / aqueous solution recovery outlet 61 a. .

また、第2の反応場42用の水・水溶液供給手段35より配管56を通じて反応容器32の外側給水口57に供給された水又は水溶液34は、外側水供給経路58を通じて第2の反応場42へと供給され、プラズマ状の物質36との間で相界面反応を生じさせながら流れ落ち、水・水溶液回収経路61の貯留部64で気液分離された後、水・水溶液回収排出口61aから回収される。   Further, the water or aqueous solution 34 supplied from the water / aqueous solution supply means 35 for the second reaction field 42 to the outer water supply port 57 of the reaction vessel 32 through the pipe 56 passes through the outer water supply path 58 to the second reaction field 42. , And flows down while causing a phase interface reaction with the plasma-like substance 36, and is separated from the gas / liquid in the reservoir 64 of the water / aqueous solution recovery path 61, and then recovered from the water / aqueous solution recovery outlet 61 a. Is done.

(反応生成物の回収)
第1及び第2の反応場40,42の相界面反応で生成された反応生成物は、水又は水溶液34に溶け込むものについては水又は水溶液34と一緒に回収され、水又は水溶液34に溶け込まないものについてはプラズマ状の物質36と一緒に回収される。
なお、回収した水又は水溶液34やプラズマ状の物質36を再度相界面反応装置31に供給しても良い。この場合には、反応生成物の濃度を高めることができる。
(Recovery of reaction products)
The reaction product generated by the phase interface reaction in the first and second reaction fields 40 and 42 is recovered together with the water or the aqueous solution 34 for the water or aqueous solution 34 and does not dissolve in the water or the aqueous solution 34. Things are recovered together with the plasma-like substance 36.
The recovered water or aqueous solution 34 or plasma substance 36 may be supplied to the phase interface reactor 31 again. In this case, the concentration of the reaction product can be increased.

(紫外線照射工程)
第1の反応場40には紫外線照射手段38からの紫外線37を直接照射させることができるので、紫外線37によって予め水又は水溶液34を励起させてから反応を生じさせることが可能となり、その反応速度を向上させることができる。また、第1の反応場40即ち案内部材43を通り抜けた紫外線37は、周壁部32cに設けられた反射部32gによって反射され、第2の反応場42に照射される。そのため、第2の反応場42についても、紫外線37によって予め水又は水溶液34を励起させてから反応を生じさせることが可能となり、その反応速度を向上させることができる。すなわち、紫外線照射手段38によって照射された紫外線37を相界面反応に有効に利用することができ、反応効率を向上させることができる。なお、一般的に波長が10nm以上400nm以下の波長をもつ紫外線37に代えて、紫外線37よりも波長の短い電子線や電磁波(放射線も含む)を用いることもできる。よって、本願における「紫外線」を「紫外線若しくはそれより短波長の電子線若しくは電磁波」と読み替えることもできる。
(UV irradiation process)
Since the first reaction field 40 can be directly irradiated with the ultraviolet rays 37 from the ultraviolet irradiation means 38, it is possible to cause the reaction after exciting the water or the aqueous solution 34 in advance with the ultraviolet rays 37. Can be improved. Further, the ultraviolet rays 37 that have passed through the first reaction field 40, that is, the guide member 43, are reflected by the reflection part 32 g provided on the peripheral wall part 32 c and are irradiated to the second reaction field 42. Therefore, also in the second reaction field 42, the reaction can be caused after the water or the aqueous solution 34 is excited in advance by the ultraviolet rays 37, and the reaction rate can be improved. That is, the ultraviolet rays 37 irradiated by the ultraviolet irradiation means 38 can be effectively used for the phase interface reaction, and the reaction efficiency can be improved. In general, instead of the ultraviolet ray 37 having a wavelength of 10 nm to 400 nm, an electron beam or electromagnetic wave (including radiation) having a shorter wavelength than the ultraviolet ray 37 can be used. Therefore, “ultraviolet rays” in the present application can be read as “ultraviolet rays or electron beams or electromagnetic waves having shorter wavelengths”.

相界面反応装置31は、紫外線照射手段38の発光部38aを細長い筒形状とし、この発光部38aを囲むように筒形状の案内部材43を配置し、第1及び第2の反応場40,42における水又は水溶液34とプラズマ状の物質36の流れを発光部38aに沿うように形成している。そのため、第1及び第2の反応場40,42の全域にわたって紫外線37を照射することができ、反応効率を向上させることができる。   In the phase interface reaction apparatus 31, the light emitting part 38a of the ultraviolet irradiation means 38 has an elongated cylindrical shape, and a cylindrical guide member 43 is disposed so as to surround the light emitting part 38a, and the first and second reaction fields 40, 42 are disposed. The flow of the water or aqueous solution 34 and the plasma-like substance 36 is formed along the light emitting portion 38a. Therefore, the ultraviolet rays 37 can be irradiated over the entire first and second reaction fields 40 and 42, and the reaction efficiency can be improved.

また、相界面反応装置31は、紫外線照射手段38の発光部38aを案内部材43で囲んでおり、照射される紫外線37を全て第1及び第2の反応場40,42に当てる構成となっている。そのため、紫外線照射手段38から照射される紫外線37を有効に利用することができ、反応効率を向上させることができる。   Further, the phase interface reaction device 31 surrounds the light emitting portion 38a of the ultraviolet irradiation means 38 with a guide member 43, and applies all the irradiated ultraviolet rays 37 to the first and second reaction fields 40 and 42. Yes. Therefore, the ultraviolet rays 37 irradiated from the ultraviolet irradiation means 38 can be used effectively, and the reaction efficiency can be improved.

なお、上述の説明では、第1の反応場40と第2の反応場42との両方に水又は水溶液34を供給して相界面反応を生じさせていたが、第1の反応場40にのみ水又は水溶液34を供給して相界面反応を生じさせるようにしても良い。すなわち、第1の反応場40のみを使用するようにしても良い。   In the above description, water or an aqueous solution 34 is supplied to both the first reaction field 40 and the second reaction field 42 to cause a phase interface reaction, but only in the first reaction field 40. Water or an aqueous solution 34 may be supplied to cause a phase interface reaction. That is, only the first reaction field 40 may be used.

(プラズマ供給工程についての説明)
プラズマ供給工程では、プラズマ供給手段33を稼動させることにより、反応容器32中にプラズマ状の物質36を供給する。ここで、プラズマ供給手段33に酸素ガス(酸素分子)を供給すると、酸素プラズマ(プラズマ状の酸素)として、オゾン(O)及び酸素原子(O)、その他、酸素分子や電離したイオンや電子等の混合物が、配管を通して、反応容器32に供給される。プラズマ供給手段33に窒素ガス(窒素分子)を供給すると、窒素プラズマ(プラズマ状の窒素)として、窒素原子(N)、その他窒素分子や電離したイオンや電子等の混合物が反応容器32に供給される。なお、プラズマ供給手段33に二酸化炭素を供給すると、酸化炭素プラズマ(プラズマ状の酸化炭素)として、一酸化炭素、炭素原子、酸素原子、二酸化炭素、その他イオンや電子等の混合物が反応容器32に供給される。また、プラズマ状態で反応容器32に供給される物質は、これら等の無機物に限定されるものではなく、その他有機物(炭化水素、アルコール、アンモニア等)であってもよい。さらに、1種のみの物質をプラズマ化してもよいし、2種以上の物質の混合物(例えば、空気等)をプラズマ化して反応容器32に供給してもよい。
(Description of plasma supply process)
In the plasma supply process, the plasma substance 36 is supplied into the reaction vessel 32 by operating the plasma supply means 33. Here, when oxygen gas (oxygen molecules) is supplied to the plasma supply means 33, as oxygen plasma (plasma-like oxygen), ozone (O 3 ) and oxygen atoms (O), and other oxygen molecules, ionized ions and electrons. And the like are supplied to the reaction vessel 32 through a pipe. When nitrogen gas (nitrogen molecules) is supplied to the plasma supply means 33, a mixture of nitrogen atoms (N), other nitrogen molecules, ionized ions and electrons is supplied to the reaction vessel 32 as nitrogen plasma (plasma-like nitrogen). The When carbon dioxide is supplied to the plasma supply means 33, a mixture of carbon monoxide, carbon atoms, oxygen atoms, carbon dioxide, and other ions and electrons is supplied to the reaction vessel 32 as carbon oxide plasma (plasma-like carbon oxide). Supplied. Further, the substance supplied to the reaction vessel 32 in the plasma state is not limited to these inorganic substances, and may be other organic substances (hydrocarbon, alcohol, ammonia, etc.). Furthermore, only one kind of substance may be converted into plasma, or a mixture of two or more kinds of substances (for example, air) may be converted into plasma and supplied to the reaction vessel 32.

プラズマ状の物質36の反応容器32への供給速度としては特に制限されず、装置サイズ等に応じて適宜設定されるが、例えば、0.1L/min〜100L/min程度とすることができる。   The supply speed of the plasma substance 36 to the reaction vessel 32 is not particularly limited and is appropriately set according to the apparatus size and the like, and can be, for example, about 0.1 L / min to 100 L / min.

(紫外線照射工程についての説明)
紫外線37の照射により、反応容器32中でプラズマ状の物質36と水(又は水溶液に含まれる溶質)とが相界面で反応する。このように、プラズマ相とプラズマ相と接触する液相との相界面で、プラズマ状の物質36と水又は水溶液34に含まれる溶質とを反応させるため、2成分の接触面積が広く、高効率で反応を行うことができる。
(Explanation about UV irradiation process)
By irradiation with ultraviolet rays 37, the plasma substance 36 and water (or a solute contained in the aqueous solution) react at the phase interface in the reaction vessel 32. Thus, since the plasma substance 36 and the solute contained in water or the aqueous solution 34 are reacted at the phase interface between the plasma phase and the liquid phase in contact with the plasma phase, the contact area of the two components is wide and high efficiency. The reaction can be carried out with

なお、プラズマ状の物質36としてプラズマ状の酸素(オゾンを含むいわゆる酸素プラズマ)を用いた場合は、以下の反応が進行する。
+hν(UV)→+O (1)
O+HO+hν(UV)→2HO・ (2)
+HO・→HOOO・ (3)
HOOO・+hν(UV)→+HO・ (4)
すなわち、(1)、(2)の反応によりヒドロキシラジカル(OH・ラジカル)が生じ、(3)、(4)の反応によりさらに一重項酸素が生じる。ヒドロキシラジカルおよび一重項酸素は、相界面反応により生成した反応生成物の一例である。
When plasma oxygen (so-called oxygen plasma containing ozone) is used as the plasma substance 36, the following reaction proceeds.
O 3 + hν (UV) → 3 O 2 + O (1)
O + H 2 O + hν (UV) → 2HO · (2)
3 O 2 + HO · → HOOO · (3)
HOOO · + hν (UV) → 1 O 2 + HO · (4)
That is, hydroxy radicals (OH radicals) are generated by the reactions (1) and (2), and singlet oxygen is further generated by the reactions (3) and (4). Hydroxy radicals and singlet oxygen are examples of reaction products generated by phase interface reactions.

プラズマ状の物質36としてプラズマ状の窒素を用いた場合は、窒素原子(プラズマ)が紫外線37照射により相界面で水と反応し、アンモニア等が生成する。アンモニアは、相界面反応により生成した反応生成物の一例である。ここで、さらに発生したアンモニアをプラズマ発生装置(放電装置)に供給すると、分解し、水素分子(及び窒素分子)を得ることができる(分解反応工程)。このように、原料として窒素(空気)及び水から、アンモニアを経て水素分子を得ることができる。   When plasma-like nitrogen is used as the plasma-like substance 36, nitrogen atoms (plasma) react with water at the phase interface when irradiated with ultraviolet rays 37 to generate ammonia and the like. Ammonia is an example of a reaction product generated by a phase interface reaction. Here, when the generated ammonia is further supplied to a plasma generator (discharge device), it can be decomposed to obtain hydrogen molecules (and nitrogen molecules) (decomposition reaction step). Thus, hydrogen molecules can be obtained from nitrogen (air) and water as raw materials via ammonia.

相界面反応を利用してアンモニアを合成する方法は、プラズマ中に生成する原子状気体が、水との相界面(プラズマ/水の相界面)において、自ら解離プロトンを効率良く供与される現象を利用するものであり、空気あるいは窒素と水を原料とする合成法である。プラズマ発生装置の放電空間に窒素分子を通過させると、窒素のプラズマ化が起こる。この窒素プラズマと水との相界面を速やかに形成すると、アンモニアが生成する。窒素プラズマ/水の相界面に、紫外線37を照射し、反応エネルギーを付与すると、アンモニア合成効率がより向上する。   The method of synthesizing ammonia using the phase interface reaction is a phenomenon in which the atomic gas generated in the plasma is efficiently supplied with dissociated protons by itself at the phase interface with water (plasma / water phase interface). It is a synthesis method that uses air or nitrogen and water as raw materials. When nitrogen molecules are passed through the discharge space of the plasma generator, nitrogen is turned into plasma. When the phase interface between the nitrogen plasma and water is rapidly formed, ammonia is generated. When the nitrogen plasma / water phase interface is irradiated with ultraviolet rays 37 to impart reaction energy, the ammonia synthesis efficiency is further improved.

アンモニアは常圧で気体であるが、水溶解度が非常に高い(20℃において、NH 702g/HO 100g)。このため、合成されたアンモニアは、水相に溶存する(反応系の条件によっては、一部が気体として雰囲気中に存在)。そのため、合成されたアンモニアは、水相溶存により容易に回収できる。また、高温では溶存率が大きく低下するので(例:100℃では溶存率は20℃のときの8分の1)、反応系条件によって気体として回収することも容易である。 Ammonia is a gas at normal pressure, but its water solubility is very high (at 20 ° C., NH 3 702 g / H 2 O 100 g). For this reason, the synthesized ammonia is dissolved in the aqueous phase (a part of the ammonia exists in the atmosphere as a gas depending on the conditions of the reaction system). Therefore, the synthesized ammonia can be easily recovered by dissolving the aqueous phase. In addition, since the dissolution rate greatly decreases at high temperatures (eg, the dissolution rate is 1/8 at 100 ° C. when it is 20 ° C.), it can be easily recovered as a gas depending on the reaction system conditions.

古くから公知のハーバー・ボッシュ法は高温・高圧・触媒系にてアンモニアを合成するが、上述の相界面反応は、常温・常圧・無触媒で反応を進行させることが出来る。従って、僅かなエネルギー投入量で、アンモニアの合成反応を進行させることが出来る点で極めて有利である。この技術は、原料がどこでも調達できること(輸送不要)、空気と水を原料としてアンモニアを合成できるので原料費が極めて低いこと、二酸化炭素を生成しないので、環境負荷が小さく、かつ二酸化炭素の輸送費も不要であること、装置が常温・常圧で軽装であること、低エネルギー反応系であること(相界面における非平衡化学反応系であること)、炭化水素燃料から水素を生成する必要がないため、エネルギーコストを大幅に削減できることなどの大きなアドバンテージを有する。空気と水からアンモニアを合成する場合、空気中には酸素があるので、窒素プラズマと酸素プラズマが反応し、気相中にNOが少量生成する。しかし、NOは水相に全く溶存せず、気体として容易に排気可能なので、液相中のアンモニアに混入しないと考えられる。アンモニアに比べてNOの水溶解度が著しく低いことは、NOの分離をしなくても良く、また、安価、かつ安全にアンモニアを製造できる点で優位であると考えられる。   Although the well-known Harbor Bosch method synthesizes ammonia at a high temperature, a high pressure, and a catalyst system for a long time, the above-mentioned phase interface reaction can proceed at room temperature, normal pressure, and no catalyst. Therefore, it is extremely advantageous in that the ammonia synthesis reaction can be advanced with a small amount of energy input. With this technology, raw materials can be procured everywhere (no transportation is required), ammonia can be synthesized using air and water as raw materials, and the raw material costs are extremely low. Is not required, the equipment is light at normal temperature and pressure, low energy reaction system (non-equilibrium chemical reaction system at the phase interface), and there is no need to generate hydrogen from hydrocarbon fuel Therefore, it has great advantages such as being able to significantly reduce energy costs. When ammonia is synthesized from air and water, since oxygen exists in the air, nitrogen plasma and oxygen plasma react to generate a small amount of NO in the gas phase. However, NO is not dissolved at all in the aqueous phase and can be easily exhausted as a gas, so it is considered that NO does not mix with ammonia in the liquid phase. It is considered that the fact that NO water solubility is remarkably lower than that of ammonia is advantageous in that it is not necessary to separate NO, and ammonia can be produced inexpensively and safely.

なお、プラズマ状の物質36として、プラズマ状の酸化炭素(一酸化炭素、二酸化炭素)を用いた場合、水等との反応により、炭化水素、アルコール等の有機物の合成が可能となる。なお、複数の物質、例えば、窒素と酸素(空気)等をプラズマ化して用いてもよい。   In the case where plasma-like carbon oxide (carbon monoxide, carbon dioxide) is used as the plasma-like substance 36, organic substances such as hydrocarbons and alcohols can be synthesized by reaction with water or the like. A plurality of substances, for example, nitrogen and oxygen (air) may be used in the form of plasma.

次に、本発明に係る相界面反応装置の第2の実施形態について説明する。なお、第1の実施形態における相界面反応装置31との相違点を中心に説明し、同一事項についての説明は省略する。   Next, a second embodiment of the phase interface reaction apparatus according to the present invention will be described. In addition, it demonstrates centering around difference with the phase interface reactor 31 in 1st Embodiment, and abbreviate | omits description about the same matter.

図7に、相界面反応装置31の第2の実施形態を示す。第2の実施形態の相界面反応装置31では、反応容器32の案内部材43に望む部位即ち周壁部32cを、案内部材43を通り抜けた紫外線37が透過可能な透過部32hとしている。また、反応容器32と紫外線照射手段38と案内部材43とはユニット化されて複数設けられている。そして、ユニット化された装置ユニット70は透過部32hを対向させて複数並べられており、一の装置ユニット70の透過部32hを透過した紫外線37を他の装置ユニット70の第2の相界面41に当てるようにしている。   FIG. 7 shows a second embodiment of the phase interface reactor 31. In the phase interface reaction apparatus 31 of the second embodiment, a portion desired for the guide member 43 of the reaction vessel 32, that is, the peripheral wall portion 32c is a transmission portion 32h through which the ultraviolet rays 37 passing through the guide member 43 can pass. A plurality of reaction vessels 32, ultraviolet irradiation means 38, and guide members 43 are provided as a unit. A plurality of unitized device units 70 are arranged with the transmission part 32 h facing each other, and the ultraviolet light 37 transmitted through the transmission part 32 h of one device unit 70 is transmitted to the second phase interface 41 of the other device unit 70. I try to hit it.

すなわち、第1の実施形態における相界面反応装置31では、反応容器32の周壁部32cを例えばステンレスパイプ製として反射部32gを形成し、案内部材43を通り抜けた紫外線37を第2の反応場42に向けて反射させていたが、第2の実施形態における相界面反応装置31では、反応容器32の周壁部32cを紫外線37が透過な可能な透過部32hとし、案内部材43を通り抜けた紫外線37を隣の装置ユニット70の第2の反応場42に当てるようにしている。   That is, in the phase interface reaction apparatus 31 in the first embodiment, the peripheral wall portion 32c of the reaction vessel 32 is made of, for example, a stainless steel pipe to form the reflection portion 32g, and the ultraviolet rays 37 that have passed through the guide member 43 are transmitted to the second reaction field 42. In the phase interface reaction device 31 in the second embodiment, the peripheral wall portion 32c of the reaction vessel 32 is a transmission portion 32h through which the ultraviolet rays 37 can be transmitted, and the ultraviolet rays 37 passing through the guide member 43 are reflected. Is applied to the second reaction field 42 of the adjacent device unit 70.

つまり、第1の実施形態における相界面反応装置31では、案内部材43を通り抜けた紫外線37を、同じ反応容器32内での相界面反応に利用しているが、第2の実施形態における相界面反応装置31では、案内部材43を通り抜けた紫外線37を、別の反応容器32内での相界面反応に利用している。複数の装置ユニット70を並べることで、隣り合う装置ユニット70同士で紫外線37を相互に利用し合うことができる。   That is, in the phase interface reaction apparatus 31 in the first embodiment, the ultraviolet rays 37 that have passed through the guide member 43 are used for the phase interface reaction in the same reaction vessel 32, but the phase interface in the second embodiment is used. In the reaction device 31, the ultraviolet rays 37 that have passed through the guide member 43 are used for the phase interface reaction in another reaction vessel 32. By arranging a plurality of device units 70, it is possible to mutually use the ultraviolet rays 37 between the adjacent device units 70.

この相界面反応装置31でも、第1の実施形態の相界面反応装置31と同様に、案内部材43を通り抜けた紫外線37を相界面反応に有効に利用することができ、反応効率を向上させることができる。   In this phase interface reaction apparatus 31 as well, as in the phase interface reaction apparatus 31 of the first embodiment, the ultraviolet rays 37 that have passed through the guide member 43 can be effectively used for the phase interface reaction, and the reaction efficiency is improved. Can do.

[植物栽培装置]
本発明に係る植物栽培装置について説明する。図8に、植物栽培装置の第1の実施形態を示す。植物栽培装置71は、相界面反応装置31と、相界面反応装置31によって生成した反応生成物を含む液肥72を植物73に与える液肥供給手段74と、を備えている。植物73は、水耕栽培されている。栽培容器75内の支持部材76によって多数の植物73が支持されている。植物73が根を伸ばす支持部材76の下の空間には培養液としての液肥72が満たされている。
[Plant cultivation equipment]
A plant cultivation apparatus according to the present invention will be described. In FIG. 8, 1st Embodiment of a plant cultivation apparatus is shown. The plant cultivation device 71 includes a phase interface reaction device 31 and a liquid fertilizer supply means 74 that supplies the plant 73 with a liquid manure 72 containing a reaction product generated by the phase interface reaction device 31. The plant 73 is hydroponically cultivated. Many plants 73 are supported by the support member 76 in the cultivation container 75. A liquid fertilizer 72 as a culture solution is filled in a space below the support member 76 where the plant 73 extends its root.

本実施形態では、液肥72として、窒素を含む培養液を使用するので、相界面反応装置31でアンモニアを製造し、培養液調整タンク77に供給する。すなわち、窒素供給源49からプラズマ供給手段33に窒素ガスを供給し、プラズマ供給手段33によってプラズマ状の窒素を発生させて反応容器32に供給する。反応容器32内での相界面反応によって製造されたアンモニアは水溶性であり、水又は水溶液34と一緒に回収される。このアンモニアを含む水又は水溶液34を、配管78を通して培養液調整タンク77に供給する。   In this embodiment, since the culture liquid containing nitrogen is used as the liquid fertilizer 72, ammonia is produced by the phase interface reaction apparatus 31 and supplied to the culture liquid adjustment tank 77. That is, nitrogen gas is supplied from the nitrogen supply source 49 to the plasma supply means 33, and plasma nitrogen is generated by the plasma supply means 33 and supplied to the reaction vessel 32. Ammonia produced by the phase interface reaction in the reaction vessel 32 is water-soluble and is recovered together with water or an aqueous solution 34. The ammonia-containing water or aqueous solution 34 is supplied to the culture solution adjustment tank 77 through the pipe 78.

培養液調整タンク77内の液肥72の成分はセンサ79によって監視されており、液肥72の窒素成分が不足すると相界面反応装置31を作動させて培養液調整タンク77内に窒素成分(アンモニア)が供給される。これにより、培養液としての液肥72中の窒素成分濃度が適切に調整され維持される。培養液調整タンク77内で調整された液肥72は、液肥供給手段74によって栽培容器75に供給され、これによって液肥72が培養液調整タンク77→液肥供給手段74→栽培容器75→培養液調整タンク77へと循環される。   The component of the liquid fertilizer 72 in the culture broth adjustment tank 77 is monitored by a sensor 79. When the nitrogen component of the liquid fertilizer 72 is insufficient, the phase interface reaction device 31 is activated to cause the nitrogen component (ammonia) to enter the culture broth adjustment tank 77. Supplied. Thereby, the nitrogen component density | concentration in the liquid fertilizer 72 as a culture solution is adjusted appropriately, and is maintained. The liquid fertilizer 72 adjusted in the culture liquid adjustment tank 77 is supplied to the cultivation container 75 by the liquid fertilizer supply means 74, whereby the liquid fertilizer 72 is transferred to the culture liquid adjustment tank 77 → liquid fertilizer supply means 74 → cultivation container 75 → culture liquid adjustment tank. Cycle to 77.

このように、植物栽培装置71では、相界面反応装置31によって製造したアンモニア(反応生成物)を含む液肥72を植物73に与えることができる。植物栽培装置71は相界面反応装置31を備えているので、オンサイトでアンモニアを生成させて液肥72の窒素成分を調整することができる。このため、液肥72の窒素成分調整が極めて容易になる。また、液肥72の窒素成分の調整のために大掛かりな機器類を設置する必要がなくなる。   Thus, in the plant cultivation apparatus 71, the liquid fertilizer 72 containing the ammonia (reaction product) manufactured by the phase interface reaction apparatus 31 can be given to the plant 73. Since the plant cultivation apparatus 71 includes the phase interface reaction apparatus 31, ammonia can be generated on site to adjust the nitrogen component of the liquid fertilizer 72. For this reason, the nitrogen component adjustment of the liquid fertilizer 72 becomes extremely easy. Moreover, it is not necessary to install large-scale equipment for adjusting the nitrogen component of the liquid fertilizer 72.

次に、植物栽培装置の第2の実施形態について説明する。図9に、植物栽培装置の第2の実施形態を示す。植物栽培装置71は、相界面反応装置31と、相界面反応装置31によって生成した反応生成物を含む液肥72を植物73に与える液肥供給手段74と、を備えている。植物73は、養液土栽培されている。培地80としての土に多数の植物73が植え付けられている。各植物73の根元に沿ってチューブ81が設けられている。チューブ81には、各植物73の根元付近に液肥72を供給するための孔(図示せず)が設けられている。   Next, a second embodiment of the plant cultivation apparatus will be described. In FIG. 9, 2nd Embodiment of a plant cultivation apparatus is shown. The plant cultivation device 71 includes a phase interface reaction device 31 and a liquid fertilizer supply means 74 that supplies the plant 73 with a liquid manure 72 containing a reaction product generated by the phase interface reaction device 31. The plant 73 is cultivated in hydroponic soil. Many plants 73 are planted in the soil as the medium 80. A tube 81 is provided along the root of each plant 73. The tube 81 is provided with a hole (not shown) for supplying the liquid fertilizer 72 near the root of each plant 73.

本実施形態でも、液肥72として、窒素を含む培養液を使用するので、相界面反応装置31でアンモニアを製造し、培養液調整タンク77に供給する。すなわち、窒素供給源49からプラズマ供給手段33に窒素ガスを供給し、プラズマ供給手段33によってプラズマ状の窒素を発生させて反応容器32に供給する。反応容器32内での相界面反応によって製造されたアンモニアは水溶性であり、水又は水溶液34と一緒に回収される。このアンモニアを含む水又は水溶液34を、配管78を通して培養液調整タンク77に供給する。   Also in this embodiment, since the culture liquid containing nitrogen is used as the liquid fertilizer 72, ammonia is produced by the phase interface reaction apparatus 31 and supplied to the culture liquid adjustment tank 77. That is, nitrogen gas is supplied from the nitrogen supply source 49 to the plasma supply means 33, and plasma nitrogen is generated by the plasma supply means 33 and supplied to the reaction vessel 32. Ammonia produced by the phase interface reaction in the reaction vessel 32 is water-soluble and is recovered together with water or an aqueous solution 34. The ammonia-containing water or aqueous solution 34 is supplied to the culture solution adjustment tank 77 through the pipe 78.

培養液調整タンク77内の液肥72の成分はセンサ79によって監視されており、液肥72の窒素成分が不足すると相界面反応装置31を作動させて培養液調整タンク77内に窒素成分(アンモニア)が供給される。これにより、培養液としての液肥72中の窒素成分濃度が適切に調整され維持される。培養液調整タンク77内で調整された液肥72は、液肥供給手段74によってチューブ81に供給され、各植物73の根元付近に設けられた孔から少量ずつ各植物73の根元付近に供給される。   The component of the liquid fertilizer 72 in the culture broth adjustment tank 77 is monitored by a sensor 79. When the nitrogen component of the liquid fertilizer 72 is insufficient, the phase interface reaction device 31 is activated to cause the nitrogen component (ammonia) to enter the culture broth adjustment tank 77. Supplied. Thereby, the nitrogen component density | concentration in the liquid fertilizer 72 as a culture solution is adjusted appropriately, and is maintained. The liquid fertilizer 72 adjusted in the culture liquid adjusting tank 77 is supplied to the tube 81 by the liquid fertilizer supply means 74 and is supplied little by little from the hole provided in the vicinity of the root of each plant 73 to the vicinity of the root of each plant 73.

このように、植物栽培装置71では、相界面反応装置31によって製造したアンモニア(反応生成物)を含む液肥72を植物73に与えることができる。植物栽培装置71は相界面反応装置31を備えているので、オンサイトでアンモニアを生成させて液肥72の窒素成分を調整することができる。このため、液肥72の窒素成分調整が極めて容易になる。また、液肥72の窒素成分の調整のために大掛かりな機器類を設置する必要がなくなる。   Thus, in the plant cultivation apparatus 71, the liquid fertilizer 72 containing the ammonia (reaction product) manufactured by the phase interface reaction apparatus 31 can be given to the plant 73. Since the plant cultivation apparatus 71 includes the phase interface reaction apparatus 31, ammonia can be generated on site to adjust the nitrogen component of the liquid fertilizer 72. For this reason, the nitrogen component adjustment of the liquid fertilizer 72 becomes extremely easy. Moreover, it is not necessary to install large-scale equipment for adjusting the nitrogen component of the liquid fertilizer 72.

なお、上述の説明では、水耕栽培及び養液土栽培に本発明の植物栽培装置71を使用していたが、水耕栽培及び養液土栽培の他の栽培方法にも適用可能である。例えば、上記の窒素や空気に代えて酸素ガスをプラズマ供給手段33に供給することにより反応生成物としてオゾン水を生成させることもできる。生成したオゾン水は、植物工場において、配管などの殺菌に利用できる。この結果、無菌状態での植物育成が可能となり、病気の発生を防止できる。アンモニア、アンモニア水、オゾン、オゾン水等は、反応生成物の一例である。   In the above description, the plant cultivation apparatus 71 of the present invention is used for hydroponics and hydroponic cultivation, but it can also be applied to other cultivation methods of hydroponic cultivation and hydroponic cultivation. For example, ozone water can also be generated as a reaction product by supplying oxygen gas to the plasma supply means 33 instead of the above nitrogen and air. The generated ozone water can be used for sterilization of piping and the like in a plant factory. As a result, it is possible to grow plants in aseptic conditions and prevent the occurrence of diseases. Ammonia, aqueous ammonia, ozone, ozone water, etc. are examples of reaction products.

図10は、放電により窒素プラズマガスを発生させ、紫外線の照射を行わずに窒素プラズマ相と水相との相界面反応を行わせてアンモニアを生成させる方法(A)と、当該(A)の相界面反応の場に紫外線(185nm+254nm)を照射して相界面反応を行わせてアンモニアを生成させる方法(B)と、水相表面に紫外線(185nm+254nm)を1200秒間照射して、その後に上記(B)と同様の方法で相界面反応を行わせてアンモニアを生成させる方法(C)とを比較したグラフである。その他の詳細な条件は、図10に示すとおりである。なお、全ての実験において、生成したアンモニアは、イオンクラマトグラフ装置(島津製作所製)で分析定量した。   FIG. 10 shows a method (A) in which ammonia is generated by generating a nitrogen plasma gas by discharge and causing a phase interface reaction between the nitrogen plasma phase and the water phase without irradiation with ultraviolet rays. A method (B) in which the phase interface reaction is irradiated with ultraviolet rays (185 nm + 254 nm) to generate ammonia by irradiating the phase interface reaction field with ultraviolet rays (185 nm + 254 nm), and then the ultraviolet phase (185 nm + 254 nm) is irradiated for 1200 seconds. It is the graph which compared with the method (C) which performs a phase interface reaction by the method similar to B), and produces | generates ammonia. Other detailed conditions are as shown in FIG. In all experiments, the produced ammonia was analyzed and quantified with an ion chromatograph apparatus (manufactured by Shimadzu Corporation).

この結果、紫外線を照射しない場合(A)に比べ、紫外線を照射した場合(B,C)の方がアンモニアの生成量が多く、また、相界面反応場に水を導く前に、水に紫外線を照射して励起する(C)の方がかかる事前励起のない(B)に比べてアンモニアの生成量が多いということがわかった。この結果は、本発明のように、第1の反応場40および第2の反応場42を形成することによる反応生成物の増大効果を支持するものである。   As a result, the amount of ammonia produced is larger in the case of irradiation with ultraviolet rays (B, C) than in the case of not irradiating with ultraviolet rays (A), and before the water is introduced into the phase interface reaction field, ultraviolet rays are introduced into the water. It was found that the amount of ammonia produced was higher in (C) excited by irradiation with (C) than in (B) without such pre-excitation. This result supports the effect of increasing the reaction product by forming the first reaction field 40 and the second reaction field 42 as in the present invention.

上記実施形態では、反応容器32中にプラズマ状の物質36を供給するプラズマ供給手段33を、反応容器32に通じる外部に配置しているが、次のように反応容器32の内部に備えることもできる。例えば、第1の反応場40(若しくは第2の反応場42)に供給される水または水溶液、あるいは案内部材43を挟んで対向電極を配置して、当該対向電極間に高電圧を印加すると、上記反応場40,42で放電してプラズマが発生する。このような方法により、反応容器32の内部にプラズマ供給手段を存在せしめても良い。さらには、反応容器32の内外の両方にプラズマ供給手段を存在せしめても良い。   In the above embodiment, the plasma supply means 33 for supplying the plasma substance 36 into the reaction vessel 32 is disposed outside the reaction vessel 32. However, it may be provided inside the reaction vessel 32 as follows. it can. For example, when water or an aqueous solution supplied to the first reaction field 40 (or the second reaction field 42) or a counter electrode is disposed across the guide member 43 and a high voltage is applied between the counter electrodes, Plasma is generated by discharge in the reaction fields 40 and 42. By such a method, the plasma supply means may exist inside the reaction vessel 32. Furthermore, plasma supply means may exist both inside and outside the reaction vessel 32.

本発明は、アンモニア水やオゾン水等の製造に使用できる。また、植物の栽培にも使用できる。   The present invention can be used for the production of ammonia water, ozone water and the like. It can also be used for plant cultivation.

31 相界面反応装置
32 反応容器
32g 反射部
32h 透過部
33 プラズマ供給手段
34 水又は水溶液
35 水・水溶液供給手段
36 プラズマ状の物質
37 紫外線
38 紫外線照射手段
38a 紫外線照射手段の発光部
39 第1の相界面
40 第1の反応場
41 第2の相界面
42 第2の反応場
43 案内部材
43a 案内部材の表側面
43b 案内部材の裏側面
70 装置ユニット
71 植物栽培装置
72 液肥
73 植物
74 液肥供給手段
31 Phase interface reaction device 32 Reaction vessel 32g Reflection unit 32h Transmission unit 33 Plasma supply unit 34 Water or aqueous solution 35 Water / aqueous solution supply unit 36 Plasma-like substance 37 Ultraviolet ray 38 Ultraviolet irradiation unit 38a Light emission unit 39 of ultraviolet irradiation unit First Phase interface 40 First reaction field 41 Second phase interface 42 Second reaction field 43 Guide member 43a Front side surface 43b of guide member Back side surface 70 of guide member Device unit 71 Plant cultivation device 72 Liquid fertilizer 73 Plant 74 Liquid fertilizer supply means

Claims (12)

反応容器中にプラズマ状の物質を供給するプラズマ供給工程と、
前記反応容器中に、水又は水溶液を供給する水・水溶液供給工程と、
前記反応容器中の前記プラズマ状の物質に紫外線照射手段によって紫外線を照射する紫外線照射工程と、
を有し、
前記反応容器中で前記プラズマ状の物質と前記水又は水溶液に含まれる溶質とを相界面で反応させる相界面反応を用いた反応生成物製造方法であって、
前記相界面が形成される反応場として、
前記紫外線照射手段により照射された紫外線を直接受ける第1の相界面が形成される第1の反応場と、
前記第1の反応場を通り抜けた紫外線を受ける第2の相界面が形成される第2の反応場と、
を形成する反応生成物製造方法。
A plasma supply step for supplying a plasma-like substance into the reaction vessel;
A water / aqueous solution supply step of supplying water or an aqueous solution into the reaction vessel;
An ultraviolet irradiation step of irradiating the plasma substance in the reaction vessel with ultraviolet rays by ultraviolet irradiation means;
Have
A reaction product manufacturing method using a phase interface reaction in which the plasma substance and a solute contained in the water or an aqueous solution are reacted at a phase interface in the reaction vessel,
As a reaction field where the phase interface is formed,
A first reaction field in which a first phase interface that directly receives ultraviolet rays irradiated by the ultraviolet irradiation means is formed;
A second reaction field in which a second phase interface is formed that receives ultraviolet light passing through the first reaction field;
The reaction product manufacturing method which forms.
前記第1の相界面を、前記反応容器中に収容され且つ前記紫外線の通過が可能な案内部材の前記紫外線照射手段に望む表側面に前記水又は水溶液を流すことで形成し、
前記第2の相界面を、前記案内部材の裏側面に前記水又は水溶液を流すことで形成する請求項1に記載の反応生成物製造方法。
Forming the first phase interface by flowing the water or the aqueous solution on the front side desired in the ultraviolet irradiation means of the guide member accommodated in the reaction vessel and capable of passing the ultraviolet rays;
The method for producing a reaction product according to claim 1, wherein the second phase interface is formed by flowing the water or an aqueous solution on the back side surface of the guide member.
前記紫外線照射手段の発光部は筒形状を成しており、
前記案内部材は、前記紫外線照射手段の発光部を囲む筒形状を成している
請求項2に記載の反応生成物製造方法。
The light emitting part of the ultraviolet irradiation means has a cylindrical shape,
The reaction product manufacturing method according to claim 2, wherein the guide member has a cylindrical shape surrounding a light emitting portion of the ultraviolet irradiation means.
前記第1の相界面を通り抜けた紫外線を前記反応容器中で反射させて前記第2の相界面に当てる請求項1から3のいずれか1項に記載の反応生成物製造方法。   4. The method for producing a reaction product according to claim 1, wherein the ultraviolet light that has passed through the first phase interface is reflected in the reaction vessel and applied to the second phase interface. 5. 請求項1から3のいずれか1項に記載の反応生成物製造方法を実施する装置ユニットを複数並べ、
一の装置ユニットの前記第1の相界面を通過した紫外線を他の装置ユニットの前記第2の相界面に当てる反応生成物製造方法。
A plurality of apparatus units for carrying out the reaction product production method according to any one of claims 1 to 3,
The reaction product manufacturing method which irradiates the ultraviolet-ray which passed through the said 1st phase interface of one apparatus unit to the said 2nd phase interface of another apparatus unit.
反応容器と、
前記反応容器中にプラズマ状の物質を供給するプラズマ供給手段と、
前記反応容器中に、水又は水溶液を供給する水・水溶液供給手段と、
前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射手段と、
を備え、
前記反応容器中で前記プラズマ状の物質と前記水又は水溶液に含まれる溶質とを相界面で反応させる相界面反応装置であって、
前記相界面が形成される反応場として、
前記紫外線照射手段により照射された紫外線を直接受ける第1の相界面が形成される第1の反応場と、
前記第1の反応場を挟んで前記紫外線照射手段とは反対側に設けられ、前記第1の反応場を通過した紫外線を受ける第2の相界面が形成される第2の反応場と、
を有する相界面反応装置。
A reaction vessel;
Plasma supply means for supplying a plasma substance into the reaction vessel;
Water / aqueous solution supply means for supplying water or an aqueous solution into the reaction vessel;
Ultraviolet irradiation means for irradiating the plasma substance in the reaction container with ultraviolet rays;
With
A phase interface reaction apparatus for reacting the plasma substance and a solute contained in water or an aqueous solution at a phase interface in the reaction vessel,
As a reaction field where the phase interface is formed,
A first reaction field in which a first phase interface that directly receives ultraviolet rays irradiated by the ultraviolet irradiation means is formed;
A second reaction field that is provided on the opposite side of the ultraviolet irradiation means across the first reaction field and that forms a second phase interface that receives the ultraviolet light that has passed through the first reaction field;
A phase interface reaction apparatus having:
前記第1の相界面は、前記反応容器中に収容され且つ前記紫外線の通過が可能な案内部材の前記紫外線照射手段に望む表側面に前記水又は水溶液を流すことで形成され、
前記第2の相界面は、前記案内部材の裏側面に前記水又は水溶液を流すことで形成される請求項6に記載の相界面反応装置。
The first phase interface is formed by flowing the water or aqueous solution to the front side surface desired for the ultraviolet irradiation means of the guide member accommodated in the reaction vessel and capable of passing the ultraviolet rays,
The phase interface reaction apparatus according to claim 6, wherein the second phase interface is formed by flowing the water or the aqueous solution on a back side surface of the guide member.
前記紫外線照射手段の発光部は柱状を成しており、
前記案内部材は、前記紫外線照射手段の発光部を囲む筒形状を成している
請求項7に記載の相界面反応装置。
The light emitting part of the ultraviolet irradiation means has a columnar shape,
The phase interface reaction apparatus according to claim 7, wherein the guide member has a cylindrical shape surrounding a light emitting portion of the ultraviolet irradiation means.
前記反応容器中に、前記案内部材を通り抜けた紫外線を前記第2の相界面に向けて反射させる反射部を備える請求項7又は8に記載の相界面反応装置。   The phase interface reaction apparatus according to claim 7 or 8, wherein the reaction container includes a reflection unit configured to reflect ultraviolet rays that have passed through the guide member toward the second phase interface. 前記反応容器の前記案内部材に望む部位は前記案内部材を通り抜けた紫外線が透過可能な透過部となっており、
前記反応容器と前記紫外線照射手段と前記案内部材とはユニット化されて複数設けられており、
前記ユニットは前記透過部を対向させて複数並べられており、
一のユニットの前記透過部を透過した紫外線を他のユニットの前記第2の相界面に当てる請求項7又は8に記載の相界面反応装置。
The desired part of the guide member of the reaction vessel is a transmission part capable of transmitting ultraviolet light that has passed through the guide member,
The reaction vessel, the ultraviolet irradiation means and the guide member are provided as a unit,
A plurality of the units are arranged with the transmission portions facing each other,
The phase interface reaction apparatus of Claim 7 or 8 which irradiates the ultraviolet-ray which permeate | transmitted the said permeation | transmission part of one unit to the said 2nd phase interface of another unit.
請求項1から5のいずれか1項に記載の相界面反応により生成した反応生成物を含む液肥を植物に与える植物栽培方法。   The plant cultivation method which gives the plant the liquid fertilizer containing the reaction product produced | generated by the phase interface reaction of any one of Claim 1 to 5. 請求項6から10のいずれか1項に記載の相界面反応装置と、
前記相界面反応装置によって生成した反応生成物を含む液肥を植物に与える液肥供給手段と、
を備える植物栽培装置。
A phase interface reactor according to any one of claims 6 to 10,
Liquid fertilizer supply means for giving a plant liquid fertilizer containing a reaction product generated by the phase interface reaction apparatus;
A plant cultivation apparatus comprising:
JP2017165082A 2017-08-30 2017-08-30 Phase interface reaction device, plant cultivation device and reaction product production method Active JP6971717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017165082A JP6971717B2 (en) 2017-08-30 2017-08-30 Phase interface reaction device, plant cultivation device and reaction product production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165082A JP6971717B2 (en) 2017-08-30 2017-08-30 Phase interface reaction device, plant cultivation device and reaction product production method

Publications (2)

Publication Number Publication Date
JP2019042616A true JP2019042616A (en) 2019-03-22
JP6971717B2 JP6971717B2 (en) 2021-11-24

Family

ID=65815072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165082A Active JP6971717B2 (en) 2017-08-30 2017-08-30 Phase interface reaction device, plant cultivation device and reaction product production method

Country Status (1)

Country Link
JP (1) JP6971717B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026194A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Organic matter removing apparatus
JP2008142647A (en) * 2006-12-11 2008-06-26 K2R:Kk Method and apparatus for producing functional water
JP2009247303A (en) * 2008-04-09 2009-10-29 Toyo Valve Co Ltd Hydroponics system
JP2012521240A (en) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド Improved air decontamination apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026194A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Organic matter removing apparatus
JP2008142647A (en) * 2006-12-11 2008-06-26 K2R:Kk Method and apparatus for producing functional water
JP2009247303A (en) * 2008-04-09 2009-10-29 Toyo Valve Co Ltd Hydroponics system
JP2012521240A (en) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド Improved air decontamination apparatus and method

Also Published As

Publication number Publication date
JP6971717B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
Gorbanev et al. Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production
JP5023481B2 (en) Liquid processing method and liquid processing apparatus
KR20170026482A (en) Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
JPH04227051A (en) Photochemical reactor
US20210130246A1 (en) Method And Apparatus For Producing Liquid Nitrogen Fertilizer And Plasma Activated Water
JP3213075U (en) Water treatment equipment
JP5317852B2 (en) UV irradiation equipment
US4199419A (en) Photochemical method for generating superoxide radicals (O2-) in aqueous solutions
CN103071165B (en) Liquid sterilization and disinfection device
JP2011200778A (en) Method and apparatus for producing ozone water
CZ9702008A3 (en) Process and apparatus for reducing contact of nitrates in water
JP6971717B2 (en) Phase interface reaction device, plant cultivation device and reaction product production method
KR101152961B1 (en) The Advanced oxidation process of waste water treatmemt
WO2016103762A1 (en) Method and apparatus for synthesizing hydrocarbon
JP2012245511A (en) High value-added substance conversion method and high value-added substance conversion device
KR20010088986A (en) waste water treating method and apparatus by microwave plasma
JP2014024751A (en) Hydrogen generation method and hydrogen generation apparatus
JP2021011407A (en) Photolysis method and apparatus
RU2188798C1 (en) Method of decontamination of liquid media
Luo et al. Electrodeless discharge in water: Reactive species in liquid and gas phase and energy cost for nitrogen fixation
KR101017272B1 (en) Device for treating drained nutrient solution and of hydroponic apparatus using the same
JP6452244B2 (en) Microwave excitation electrodeless lamp and aqueous solution treatment system using the same
KR102599719B1 (en) Hydroponics cultivation apparatus using aqua plasma method
Li et al. Distributed plasma-water-based nitrogen fixation system based on cascade discharge: Generation, regulation, and application
Zhu et al. Characteristics of UV-MicroO 3 Reactor and Its Application to Microcystins Degradation during Surface Water Treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6971717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150