JP2019041163A - ユーザ装置及び基地局装置 - Google Patents

ユーザ装置及び基地局装置 Download PDF

Info

Publication number
JP2019041163A
JP2019041163A JP2017159796A JP2017159796A JP2019041163A JP 2019041163 A JP2019041163 A JP 2019041163A JP 2017159796 A JP2017159796 A JP 2017159796A JP 2017159796 A JP2017159796 A JP 2017159796A JP 2019041163 A JP2019041163 A JP 2019041163A
Authority
JP
Japan
Prior art keywords
random access
base station
preamble
access procedure
user apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017159796A
Other languages
English (en)
Inventor
高橋 秀明
Hideaki Takahashi
秀明 高橋
徹 内野
Toru Uchino
徹 内野
尚人 大久保
Naohito Okubo
尚人 大久保
隆介 松川
Ryusuke Matsukawa
隆介 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2017159796A priority Critical patent/JP2019041163A/ja
Publication of JP2019041163A publication Critical patent/JP2019041163A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了すること。【解決手段】ユーザ装置は、基地局装置と通信を行い、前記基地局装置から個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを受信する受信部と、前記基地局装置にランダムアクセスプリアンブルを送信する送信部と、前記ランダムアクセスプリアンブルに対する前記基地局装置から送信されるランダムアクセスレスポンスから、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定する制御部とを有する。【選択図】図1

Description

本発明は、無線通信システムにおけるユーザ装置及び基地局装置に関する。
3GPP(3rd Generation Partnership Project)では、スループットを抑え、モデムの複雑性低下による端末コスト削減及び極めて低い消費電力を実現するNB−IoT(Narrow Band - Internet of Things)が検討されている(例えば非特許文献1)。
NB−IoTにおいては、例えば、帯域幅を200kHz以下に制限しながら、信号を繰り返し送信する技術を採用し、カバレッジの増大が実現される(例えば非特許文献2)。
3GPP TS 36.211 V14.3.0 (2017−06) 3GPP TS 36.213 V14.3.0 (2017−06)
NB−IoTにおいて、ユーザ装置は、初期アクセスに必要な情報を基地局装置から受信し、競合型ランダムアクセス(Contention Based Random Access)を行う。初期アクセスに必要な情報には、RACH(Random Access Channel)リソース及びプリアンブル信号形式を特定する情報が含まれる。また、ユーザ装置は、例えば、ハンドオーバ時のハンドオーバコマンドあるいは下りリンクデータ発生時のPDCCH(Physical Downlink Control Channel)を介して、基地局装置から特定のプリアンブル信号形式を通知され、非競合型ランダムアクセス(Non-contention Based Random Access)を行う。
ここで、ユーザ装置と基地局装置とで、競合型ランダムアクセスを行うか、非競合型ランダムアクセスを行うか、状態が一致されている必要があるが、当該状態に不一致が生じることがある。
本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了することを目的とする。
開示の技術によれば、基地局装置と通信を行い、前記基地局装置から個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを受信する受信部と、前記基地局装置にランダムアクセスプリアンブルを送信する送信部と、前記ランダムアクセスプリアンブルに対する前記基地局装置から送信されるランダムアクセスレスポンスから、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定する制御部とを有するユーザ装置が提供される。
開示の技術によれば、無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了することができる。
本発明の実施の形態における無線通信システムの構成例を示す図である。 本発明の実施の形態における初期アクセスのシーケンスの一例を示す図である。 本発明の実施の形態における競合型ランダムアクセス手順を説明するための図である。 本発明の実施の形態における非競合型ランダムアクセス手順を説明するための図である。 本発明の実施の形態におけるランダムアクセスレスポンスのMACペイロードの一例を示す図である。 本発明の実施の形態における非競合型ランダムアクセス手順におけるプリアンブルの選択を説明するための図である。 基地局装置100の機能構成の一例を示す図である。 ユーザ装置200の機能構成の一例を示す図である。 基地局装置100及びユーザ装置200のハードウェア構成の一例を示す図である。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、LTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE−Advanced、及び、LTE−Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
また、以下で説明する実施の形態では、既存のLTEで使用されているSS(Synchronization Signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical RACH)等の用語を使用しているが、これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。
<システム構成>
図1は、本発明の実施の形態における無線通信システムの構成例を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局装置100及びユーザ装置200を含む。図1には、基地局装置100及びユーザ装置200が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
基地局装置100は、1つ以上のセルを提供し、ユーザ装置200と無線通信を行う通信装置である。図1に示されるように、基地局装置100は、同期信号及びシステム情報をユーザ装置200に送信する。同期信号は、例えば、PSS及びSSSである。システム情報は、例えば、PBCHにて送信される。また、システム情報は、報知情報ともいう。基地局装置100及びユーザ装置200とはいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。ユーザ装置200は、NB−IoTに対応する通信用モジュールであり、また、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置であってもよい。ユーザ装置200は、基地局装置100に無線接続し、無線通信システムにより提供される各種通信サービスを利用する。初期アクセスの段階において、図1に示されるように、ユーザ装置200は、ランダムアクセスのプリアンブル信号を基地局装置100に送信する。当該ランダムアクセスは、基地局装置100から受信したPBCHによるシステム情報に加え、PDSCH(Physical downlink shared channel)によるシステム情報に基づいて行われる。
なお、本実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、以下の説明において、送信ビームを用いて信号を送信することは、プリコーディングベクトルが乗算された(プリコーディングベクトルでプリコードされた)信号を送信することとしてもよい。同様に、受信ビームを用いて信号を受信することは、所定の重みベクトルを受信した信号に乗算することとしてもよい。また、送信ビームを用いて信号を送信することは、特定のアンテナポートで信号を送信することと表現されてもよい。同様に、受信ビームを用いて信号を受信することは、特定のアンテナポートで信号を受信することと表現されてもよい。アンテナポートとは、3GPPの規格で定義されている論理アンテナポート又は物理アンテナポートを指す。
(実施例1)
以下、実施例1について説明する。
図2は、本発明の実施の形態における初期アクセスのシーケンスの一例を示す図である。初期アクセスが開始されると、ステップS1において、基地局装置100は、PSS、SSS及びPBCHを、ユーザ装置200に送信する。PBCHには、システム情報の一部が含まれる。
一方、ユーザ装置200は、基地局装置100から送信されるPSSを受信して、初期の時間及び周波数同期及びセルID(identity)の一部の特定に少なくとも使用する。また、ユーザ装置200は、基地局装置100から送信されるSSSを受信して、少なくともセルIDの一部の特定に使用する。また、ユーザ装置200は、基地局装置100から送信されるPBCHを受信して、初期アクセスに必要なシステム情報の一部、例えば、システムフレーム番号(SFN:System Frame Number)及び他のシステム情報を取得するための情報等を取得する。当該他のシステム情報は、PDSCHを介して受信されてもよく、ランダムアクセス手順を実行するためのリソース、すなわち、RACHリソース及びプリアンブルフォーマット等を特定する情報が含まれる。ユーザ装置200は、特定されたRACHリソースで、プリアンブルを送信しランダムアクセス手順を開始する(S2)。
ステップS2において、基地局装置100とユーザ装置200との間でランダムアクセス手順が成功すると、初期アクセスは完了し、通常の通信が開始される(S3)。
図3は、本発明の実施の形態における競合型ランダムアクセス手順を説明するための図である。ランダムアクセス手順が開始されると、ステップS11において、ユーザ装置200は、基地局装置100から受信したシステム情報に基づいて、ランダムアクセスプリアンブルを基地局装置100に送信する。
続いて、ステップS12において、基地局装置100は、ランダムアクセスレスポンスをユーザ装置200に送信する。ランダムアクセスレスポンスは、ランダムアクセスプリアンブルに対する応答であり、PDCCHにてRA−RNTI(Random Access - Radio Network Temporary Identifier)宛てに送信され、少なくともランダムアクセスプリアンブルの識別子、タイミングアライメント、初期上りリンクグラント及びテンポラリC−RNTI(Temporary Cell - Radio Network Temporary Identifier)を含む。
続いて、ステップS13において、ユーザ装置200は、ランダムアクセスレスポンスに含まれる上りリンクグラントに基づいて、上りリンク送信を行う。上りリンク送信において、少なくともRRC(Radio Resource Control)接続要求、NAS(Non-Access Stratum)UE(User Equipment)識別子が送信され、NB−IoTにおいては、後続する送信のSRB(Signalling Radio Bearer)又はDRB(Data Radio Bearer)でのデータ量を示す通知が送信されてもよい。
続いて、ステップS14において、競合解決が行われる。基地局装置100からユーザ装置200に、PDCCHにてテンポラリC−RNTI宛てに所定のMAC(Medium Access Control)制御要素が送信される。ユーザ装置200は、当該MAC制御要素がステップS13で送信したデータの一部と合致した場合、ランダムアクセスが成功したとみなし、テンポラリC−RNTIをC−RNTIとして、ランダムアクセス手順を完了する。
図4は、本発明の実施の形態における非競合型ランダムアクセス手順を説明するための図である。ランダムアクセス手順が開始されると、ステップS20において、ユーザ装置200は、ランダムアクセスプリアンブルを基地局装置100から受信する。当該ランダムアクセスプリアンブルは、ユーザ装置200に個別に割当てられたものであり、システム情報で報知される使用可能な競合型プリアンブルの範囲には含まれない。初期アクセスとは異なり、非競合型ランダムアクセス手順を開始するとき、ユーザ装置200はコネクテッド状態にある。個別に割当てられるランダムアクセスブリアンブルは、例えば、ハンドオーバ時にターゲットeNB(enhanced NodeB)にて生成され、ソースeNBから送信されるRRCのハンドオーバコマンド、下りリンクデータの発生、初期上りリンクタイミングアライメント調整時等にユーザ装置200に通知される。
続いて、ステップS21において、ユーザ装置200は、ステップS20で通知されたランダムアクセスプリアンブルを、基地局装置100に送信する。
続いて、ステップS22において、基地局装置100は、ランダムアクセスレスポンスをユーザ装置200に送信する。ランダムアクセスレスポンスは、ランダムアクセスプリアンブルに対する応答であり、PDCCHにてRA−RNTI(Random Access - Radio Network Temporary Identifier)宛てに送信され、少なくともランダムアクセスプリアンブルの識別子、タイミングアライメントを含む。ランダムアクセスレスポンスが正常に受信された場合、ユーザ装置200は、ランダムアクセスが成功したとみなし、ランダムアクセス手順を完了する。ランダムアクセスが成功したとみなされたとき、NB−IoTにおいて、ユーザ装置200は、当該PDCCH送信に含まれる上りリンクグラントは、設定されたキャリアのみにおいて有効であるとみなす。
ここで、3GPP Rel−13のNB−IoTにおけるユーザ装置200は、複雑性を低下させるため、非競合型ランダムアクセスをサポートしていない。ただし代用として、競合型ランダムアクセスプリアンブルのサブキャリアの開始位置を示すパラメータnprach−NumCBRA−StartSubcarriersを通知することで、競合しないランダムアクセスプリアンブルをユーザ装置200に送信することができる。使用できるランダムアクセスプリアンブルを2つのサブセットに分けて、一方は競合型ランダムプリアンブルとして使用し、もう一方は、非競合型ランダムアクセスプリアンブルとして使用する。しかしながら、ランダムアクセス手順は競合型ランダムアクセス手順が共通して用いられる。
一方、3GPP Rel−14のNB−IoTにおけるユーザ装置200は、非競合型ランダムアクセス手順をサポートすることが検討されている。すなわち、非競合型ランダムアクセス手順をサポートするNB−IoTユーザ装置200と、非競合型ランダムアクセス手順をサポートしないNB−IoTユーザ装置200とが、併存する可能性がある。
Rel−14のNB−IoTにおけるユーザ装置200は、上記のように非競合型ランダムアクセス手順をサポートするため、基地局装置100から使用するプリアンブルを通知されている場合、基地局装置100から送信されるランダムアクセスレスポンスの受信に成功すると、ランダムアクセス手順が成功して完了したと判定する。
ここで、例えば、下りリンクデータの発生等によるPDCCH orderによって使用するランダムアクセスプリアンブルが、基地局装置100からユーザ装置200に通知される場合の動作を考える。
Rel−13の基地局装置100は、個別にランダムアクセスプリアンブルをNB−IoTのユーザ装置200に通知した場合、競合型のランダムアクセス手順を想定して、ランダムアクセス動作を行う。したがって、NB−IoTのユーザ装置200が、Rel−13に準拠していた場合、基地局装置100及びユーザ装置200のいずれもが、競合型ランダムアクセス手順を想定してランダムアクセス動作を行うため、正常にランダムアクセス手順は完了する。
しかしながら、NB−IoTのユーザ装置200が、Rel−14に準拠していた場合、基地局装置100は、競合型ランダムアクセス手順を想定してランダムアクセス動作を行うのに対し、ユーザ装置200は、非競合型ランダムアクセス手順を想定してランダムアクセス動作を行うため、状態に不一致が生じ、正常にランダムアクセス手順を完了することができない。すなわち、基地局装置100は、図3に示されるステップS13のスケジュールされたUL送信を期待するにもかかわらず、ユーザ装置200は、図4に示されるステップS22のランダムアクセスレスポンスの受信の時点で、ランダムアクセス手順を完了してしまうため、ランダムアクセス手順は失敗する。
そこで、ランダムアクセスレスポンスに、当該ランダムアクセスレスポンスが、非競合型ランダムアクセス手順に対応するか、又は競合型ランダムアクセス手順に対応するかを示す情報を追加することで、基地局装置100とユーザ装置200とで想定するランダムアクセス手順を一致させることができる。
図5は、本発明の実施の形態におけるランダムアクセスレスポンスのMACペイロードの一例を示す図である。図5に示されるように、ランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドを設定し、例えば「CF=1」の場合に、ランダムアクセスレスポンスが、非競合型ランダムアクセス手順に対応するものであることを示し、「CF=0」の場合に、競合型ランダムアクセス手順に対応するものであることを示す。図5に示されるように、例えば、「CF」フィールドは、MACペイロードの4番目のオクテットのうちの1ビットに配置されてもよい。
また、「CF」フィールドを判定する処理が、ランダムアクセス手順に以下のように追加される。ただし、通知されるプリアンブルは「000000」ではないとする。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、「CF」フィールドが「1」である場合に、ランダムアクセス手順が完了したと判定する。
上記のように、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
図6は、本発明の実施の形態における非競合型ランダムアクセス手順におけるプリアンブルの選択を説明するための図である。NB−IoTにおいてユーザ装置200が、基地局装置100から非競合型ランダムアクセスにおけるプリアンブルを通知される場合、対応するリリース、すなわちRel−13又はRel−14によって選択されるプリアンブルのサブキャリアが異なる可能性が生じることを説明する。
Rel−14において、通知されるプリアンブルのサブキャリアは、以下の数式に基づいて選択される。
nprach−SubcarrierOffset + nprach−NumCBRA−StartSubcarriers + (ra−PreambleIndex modulo (nprach−NumSubcarriers − nprach−NumCBRA−StartSubcarriers))
パラメータnprach−SubcarrierOffsetは、NPRACHリソースの周波数軸上の位置を示す。
パラメータnprach−NumCBRA−StartSubcarriersは、ランダムに選択される競合型のNPRACHリソースが開始される周波数軸上の数を示す。NPRACHリソースの開始サブキャリアのインデックスは、nprach−SubcarrierOffset + [0, nprach−NumCBRA−StartSubcarriers − 1]で与えられる。
パラメータra−PreambleIndexは、プリアンブルの信号形式を指定するインデックスである。
パラメータnprach−NumSubcarriersは、NPRACHリソースのサブキャリアの数を示す。
一方、Rel−13において、通知されるプリアンブルのサブキャリアは、以下の数式に基づいて選択される。
nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)
図6に示されるプリアンブル選択の前提条件として、
nprach−SubcarrierOffset = 0, 12, 24 for each CE level
nprach−NumSubcarriers = 12
nprach−NumCBRA−StartSubcarriers = 8
とする。
図6Aに示されるように、ra−PreambleIndexが10の場合、上記の数式に基づいて選択されるプリアンブルのサブキャリアは、以下のように、Rel−13の基地局装置100、Rel−13のユーザ装置200及びRel−14のユーザ装置200で、インデックス「#10」に一致する。
Rel−13では、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)=nprach−SubcarrierOffset + (10 modulo 12)=nprach−SubcarrierOffset + 10となる。
Rel−14では、nprach−SubcarrierOffset + nprach−NumCBRA−StartSubcarriers + (ra−PreambleIndex modulo (nprach−NumSubcarriers − nprach−NumCBRA−StartSubcarriers))=nprach−SubcarrierOffset + 8 + (10 modulo (12−8)) = nprach−SubcarrierOffset + 10となる。
一方、図6Bに示されるように、ra−PreambleIndexが4の場合、上記の数式に基づいて選択されるプリアンブルのサブキャリアは、以下のように、Rel−13の基地局装置100及びRel−13のユーザ装置200はインデックス「#4」となる。しかしながら、Rel−14のユーザ装置200は、インデックス「#8」となる。
Rel−13では、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)=nprach−SubcarrierOffset + (4 modulo 12)=nprach−SubcarrierOffset + 4となる。
Rel−14では、nprach−SubcarrierOffset + nprach−NumCBRA−StartSubcarriers + (ra−PreambleIndex modulo (nprach−NumSubcarriers − nprach−NumCBRA−StartSubcarriers))=nprach−SubcarrierOffset + 8 + (4 modulo (12−8)) = nprach−SubcarrierOffset + 8となる。
したがって、Rel−13の基地局装置100と、Rel−14のユーザ装置200とで、想定するリソースの不一致が発生し、ランダムアクセス手順が失敗する。
そこで、ランダムアクセス手順において、プリアンブルのサブキャリアを選択する処理を以下のように変更する。
1)(ra−PreambleIndex modulo nprach−NumSubcarriers)>nprach−NumCBRA−StartSubcarriersである場合、選択されるプリアンブルのサブキャリアは、nprach−SubcarrierOffset + nprach−NumCBRA−StartSubcarriers + (ra−PreambleIndex modulo (nprach−NumSubcarriers − nprach−NumCBRA−StartSubcarriers))とする。
2)1)でない場合、すなわち(ra−PreambleIndex modulo nprach−NumSubcarriers)が、nprach−NumCBRA−StartSubcarriers以下である場合、選択されるプリアンブルのサブキャリアは、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)とする。
上記のように、ランダムアクセス手順において、プリアンブルのサブキャリアを選択する処理を、パラメータに応じて変更することで、基地局装置100と、ユーザ装置200とで、同一のプリアンブルのサブキャリアが選択されてリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
なお、ユーザ装置200は、図5に示される「CF」フィールドの値判定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値判定を実行してもよい。
なお、基地局装置100は、図5に示される「CF」フィールドの値の設定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値を「1」に設定してもよい。
上述の実施例1において、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。また、ランダムアクセス手順において、プリアンブルのサブキャリアを選択する処理を、パラメータに応じて変更することで、基地局装置100と、ユーザ装置200とで、同一のプリアンブルのサブキャリアが選択されてリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
すなわち、無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了することができる。
(実施例2)
以下、実施例2について説明する。実施例2では実施例1と異なる点について説明する。したがって、特に言及されない点については、実施例1と同様であってよい。
図5に示されるように、ランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドを設定し、例えば「CF=1」の場合に、ランダムアクセスレスポンスが、完了したことを示す。
また、「CF」フィールドを判定する処理が、ランダムアクセス手順に以下のように追加される。ただし、通知されるプリアンブルは「000000」ではないとする。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、「CF」フィールドが「1」である場合に、ランダムアクセス手順が完了したと判定する。
なお、ユーザ装置200は、図5に示される「CF」フィールドの値判定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値判定を実行してもよい。
なお、基地局装置100は、図5に示される「CF」フィールドの値の設定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値を「1」に設定してもよい。
上述の実施例2において、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が完了したことを明示的に通知することで、状態を一致させることができ、正しくランダムアクセス手順を完了できる。
(実施例3)
以下、実施例3について説明する。実施例3では実施例1と異なる点について説明する。したがって、特に言及されない点については、実施例1と同様であってよい。
図5に示されるランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドは設定せずに、新たにRRC情報要素「CFRAsupport」を導入して、非競合型ランダムアクセス手順に対応するか否かを示す情報を通知することで、基地局装置100とユーザ装置200とで想定するランダムアクセス手順を一致させることができる。
RRC情報要素「CFRAsupport」は、基地局装置100から、使用するプリアンブルと共に、又は別途、ユーザ装置200に通知される。当該通知は、基地局装置100から、個別のRRCメッセージを介してユーザ装置200に送信されてもよいし、報知情報でユーザ装置200に送信されてもよいし、非競合型ランダムアクセス手順を行う事前にユーザ装置200に通知されてもよい。個別のRRCメッセージで送信する場合は、RRCConnectionReconfigurationメッセージ内のMAC−MainConfig Information Elementに「CFRAsupport」が設定されてもよいし、若しくはRACH−ConfigCommon Information Elementに「CFRAsupport」が設定されてもよい。報知情報で送信する場合は、SystemInformationBlockType2メッセージ内のRadioResourceConfigCommonSIB Information Elementに含まれるRACH−ConfigCommon−NB Information Elementに「CFRAsupport」が設定されてもよい。
また、新たなRRC情報要素は、基地局装置100が、ユーザ装置200に非競合型ランダムアクセス手順の実行を許可する「CFRAenabled」と定義されて、基地局装置100からユーザ装置200に通知されてもよい。
また、RRC情報要素「CFRAsupport」を判定する処理が、ランダムアクセス手順に以下のように追加される 。ただし、通知されるプリアンブルは「000000」ではないとする。なお、以下の処理で判定されるRRC情報要素「CFRAsupport」は、「CFsupport」、「CFRAenabled」等の他の名称であってもよい。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、RRC情報要素「CFRAsupport」が当該通知に含まれていた場合に、ランダムアクセス手順が完了したと判定する。
上述の実施例3において、RRC情報要素「CFRAsupport」を導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
(実施例4)
以下、実施例4について説明する。実施例4では実施例1と異なる点について説明する。したがって、特に言及されない点については、実施例1と同様であってよい。
図6に示されるランダムアクセスプリアンブルのサブキャリアの選択に関して、Rel−13の基地局装置100において、nprach−NumCBRA−StartSubcarriersは定義されていることから、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)の値が、nprach−SubcarrierOffset+nprach−NumCBRA−StartSubcarriersより大きいか否か判定することで、基地局装置100は、プリアンブルがユーザ装置200に個別に割り当てられたか否かを判定することができる。
そこで、Rel−14におけるプリアンブルのサブキャリアの選択は、Rel−13と同様に下記の式に基づいて実行されるよう変更する。
nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)
当該変更により、Rel−14に対応するNB−IoTのユーザ装置200は、Rel−13の基地局装置100と同一のプリアンブルのサブキャリアを選択することが可能となりリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
実施例1と同様に、図5に示されるランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドを設定し、例えば「CF=1」の場合に、ランダムアクセスレスポンスが、非競合型ランダムアクセス手順に対応するものであることを示し、「CF=0」の場合に、競合型ランダムアクセス手順に対応するものであることを示す。図5に示されるように、例えば、「CF」フィールドは、MACペイロードの4番目のオクテットのうちの1ビットに配置されてもよい。
また、「CF」フィールドを判定する処理が、ランダムアクセス手順に以下のように追加される 。ただし、通知されるプリアンブルは「000000」ではないとする。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、「CF」フィールドが「1」である場合に、ランダムアクセス手順が完了したと判定する。
上記のように、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
なお、ユーザ装置200は、図5に示される「CF」フィールドの値判定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値判定を実行してもよい。
なお、基地局装置100は、図5に示される「CF」フィールドの値の設定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値を「1」に設定してもよい。
上述の実施例4において、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
(実施例5)
以下、実施例5について説明する。実施例5では実施例2と異なる点について説明する。したがって、特に言及されない点については、実施例2と同様であってよい。
図6に示されるランダムアクセスプリアンブルのサブキャリアの選択に関して、Rel−13の基地局装置100において、nprach−NumCBRA−StartSubcarriersは定義されていることから、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)の値が、nprach−SubcarrierOffset+nprach−NumCBRA−StartSubcarriersより大きいか否か判定することで、基地局装置100は、プリアンブルがユーザ装置200に個別に割り当てられたか否かを判定することができる。
そこで、Rel−14におけるプリアンブルのサブキャリアの選択は、Rel−13と同様に下記の式に基づいて実行されるよう変更する。
nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)
当該変更により、Rel−14に対応するNB−IoTのユーザ装置200は、Rel−13の基地局装置100と同一のプリアンブルのサブキャリアを選択することが可能となりリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
実施例2と同様に、図5に示されるランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドを設定し、例えば「CF=1」の場合に、ランダムアクセスレスポンスが、完了したことを示す。
また、「CF」フィールドを判定する処理が、ランダムアクセス手順に以下のように追加される。ただし、通知されるプリアンブルは「000000」ではないとする。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、「CF」フィールドが「1」である場合に、ランダムアクセス手順が完了したと判定する。
なお、ユーザ装置200は、図5に示される「CF」フィールドの値判定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値判定を実行してもよい。
なお、基地局装置100は、図5に示される「CF」フィールドの値の設定を、プリアンブルのサブキャリアに、非競合型のNPRACHリソースが割り当てられる場合に実行してもよい。すなわち、例えば図6に示されるプリアンブルのサブキャリアのインデックスにおいて、「#8」から「#11」の場合に、「CF」フィールドの値を「1」に設定してもよい。
上述の実施例5において、「CF」フィールドを導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が完了したことを明示的に通知することで、状態を一致させることができ、正しくランダムアクセス手順を完了できる。
(実施例6)
以下、実施例6について説明する。実施例6では実施例3と異なる点について説明する。したがって、特に言及されない点については、実施例3と同様であってよい。
図6に示されるランダムアクセスプリアンブルのサブキャリアの選択に関して、Rel−13の基地局装置100において、nprach−NumCBRA−StartSubcarriersは定義されていることから、nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)の値が、nprach−SubcarrierOffset+nprach−NumCBRA−StartSubcarriersより大きいか否か判定することで、基地局装置100は、プリアンブルがユーザ装置200に個別に割り当てられたか否かを判定することができる。
そこで、Rel−14におけるプリアンブルのサブキャリアの選択は、Rel−13と同様に下記の式に基づいて実行されるよう変更する。
nprach−SubcarrierOffset + (ra−PreambleIndex modulo nprach−NumSubcarriers)
当該変更により、Rel−14に対応するNB−IoTのユーザ装置200は、Rel−13の基地局装置100と同一のプリアンブルのサブキャリアを選択することが可能となりリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
実施例3と同様に、図5に示されるランダムアクセスレスポンスに含まれるMACペイロードに、新たに「CF」フィールドは設定せずに、新たにRRC情報要素「CFRAsupport」を導入して、非競合型ランダムアクセス手順に対応するか否かを示す情報を通知することで、基地局装置100とユーザ装置200とで想定するランダムアクセス手順を一致させることができる。
RRC情報要素「CFRAsupport」は、基地局装置100から、使用するプリアンブルと共に、又は別途、ユーザ装置200に通知される。当該通知は、基地局装置100から、個別のRRCメッセージを介してユーザ装置200に送信されてもよいし、報知情報でユーザ装置200に送信されてもよいし、非競合型ランダムアクセス手順を行う事前にユーザ装置200に通知されてもよい。個別のRRCメッセージで送信する場合は、RRCConnectionReconfigurationメッセージ内のMAC−MainConfig Information Elementに「CFRAsupport」が設定されてもよいし、若しくはRACH−ConfigCommon Information Elementに「CFRAsupport」が設定されてもよい。報知情報で送信する場合は、SystemInformationBlockType2メッセージ内のRadioResourceConfigCommonSIB Information Elementに含まれるRACH−ConfigCommon−NB Information Elementに「CFRAsupport」が設定されてもよい。
また、新たなRRC情報要素は、基地局装置100が、ユーザ装置200に非競合型ランダムアクセス手順の実行を許可する「CFRAenabled」と定義されて、基地局装置100からユーザ装置200に通知されてもよい。
また、RRC情報要素「CFRAsupport」を判定する処理が、ランダムアクセス手順に以下のように追加される 。ただし、通知されるプリアンブルは「000000」ではないとする。なお、以下の処理で判定されるRRC情報要素「CFRAsupport」は、「CFsupport」、「CFRAenabled」等の他の名称であってもよい。
1)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応しない場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、ユーザ装置200は、ランダムアクセス手順が完了したと判定する。
2)ランダムアクセスレスポンスの受信に成功した場合、かつユーザ装置200がNB−IoTに対応する場合、かつ基地局装置100からユーザ装置200にプリアンブルが通知されていた場合、さらに、ユーザ装置200は、RRC情報要素「CFRAsupport」が当該通知に含まれていた場合に、ランダムアクセス手順が完了したと判定する。
上述の実施例6において、RRC情報要素「CFRAsupport」を導入することで、基地局装置100及びユーザ装置200は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局装置100及びユーザ装置200の機能構成例を説明する。基地局装置100及びユーザ装置200はそれぞれ、少なくとも実施例1−6を実施する機能を含む。ただし、基地局装置100及びユーザ装置200はそれぞれ、実施例1−6の中の一部の機能のみを備えることとしてもよい。
<基地局装置100>
図7は、基地局装置100の機能構成の一例を示す図である。図7に示されるように、基地局装置100は、送信部110と、受信部120と、設定情報管理部130と、初期アクセス処理部140とを有する。図7に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部110は、ユーザ装置200側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、ユーザ装置200から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置200へPSS、SSS、PBCH、DL/UL制御信号等を送信する機能を有する。また、送信部110は、ユーザ装置200に送信電力制御に関する情報及びスケジューリングに関する情報を送信し、受信部120は、ユーザ装置200からプリアンブル及び初期アクセスに係るメッセージを受信する。
設定情報管理部130は、予め設定される設定情報、及び、ユーザ装置200に送信する各種の設定情報を格納する。設定情報の内容は、例えば、初期アクセスに使用する情報等である。
初期アクセス処理部140は、実施例1−6において説明した、基地局装置100におけるユーザ装置200への同期信号及び初期アクセスに使用する情報を含むシステム情報の送信に係る制御、及びユーザ装置200からの初期アクセス及びランダムアクセスに係る制御を行う。
<ユーザ装置200>
図8は、ユーザ装置200の機能構成の一例を示す図である。図8に示されるように、ユーザ装置200は、送信部210と、受信部220と、設定情報管理部230と、初期アクセス制御部240とを有する。図8に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置100から送信されるPSS、SSS、PBCH、DL/UL制御信号等を受信する機能を有する。また、送信部210は、基地局装置100にプリアンブル及び初期アクセスに係るメッセージを送信し、受信部120は、基地局装置100から初期アクセスに使用する情報を受信する。
設定情報管理部230は、受信部220により基地局装置100から受信した各種の設定情報を格納する。また、設定情報管理部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、初期アクセスに使用する情報等である。
初期アクセス制御部240は、実施例1−6において説明した、ユーザ装置200における初期アクセス及びランダムアクセスに係る制御を行う。なお、初期アクセス制御部240におけるプリアンブル信号送信等に関する機能部を送信部210に含め、初期アクセス制御部240におけるシステム情報受信等に関する機能部を受信部220に含めてもよい。
(ハードウェア構成)
上述の本発明の実施の形態の説明に用いた機能構成図(図7及び図8)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
また、例えば、本発明の一実施の形態における基地局装置100及びユーザ装置200はいずれも、本発明の実施の形態に係る処理を行うコンピュータとして機能してもよい。図9は、本発明の実施の形態に係る基地局装置100又はユーザ装置200である無線通信装置のハードウェア構成の一例を示す図である。上述の基地局装置100及びユーザ装置200はそれぞれ、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局装置100及びユーザ装置200のハードウェア構成は、図に示した1001〜1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局装置100及びユーザ装置200における各機能は、プロセッサ1001、記憶装置1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、補助記憶装置1003及び/又は通信装置1004から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図7に示した基地局装置100の送信部110、受信部120、設定情報管理部130、初期アクセス処理部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図8に示したユーザ装置200の送信部210と、受信部220と、設定情報管理部230、初期アクセス制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。記憶装置1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD−ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu−ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び/又は補助記憶装置1003を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、基地局装置100の送信部110及び受信部120は、通信装置1004で実現されてもよい。また、ユーザ装置200の送信部210及び受信部220は、通信装置1004で実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、基地局装置100及びユーザ装置200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(実施の形態のまとめ)
以上、説明したように、本発明の実施の形態によれば、基地局装置と通信を行うユーザ装置であって、前記基地局装置から個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを受信する受信部と、前記基地局装置にランダムアクセスプリアンブルを送信する送信部と、前記ランダムアクセスプリアンブルに対する前記基地局装置から送信されるランダムアクセスレスポンスから、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定する制御部とを有するユーザ装置が提供される。
上記の構成により、基地局装置及びユーザ装置は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。すなわち、無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了することができる。
前記制御部は、前記基地局装置から送信されるランダムアクセスレスポンスから、ランダムアクセス手順が完了したことを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定してもよい。当該構成により、基地局装置及びユーザ装置は、ランダムアクセス手順が完了したことを明示的に通知することで、状態を一致させることができ、正しくランダムアクセス手順を完了できる。
前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報は、前記個別のランダムアクセスプリアンブルの通知と共に、又は前記個別のランダムアクセスプリアンブルの通知とは別途、受信される情報に対応してもよい。当該構成により、基地局装置100及びユーザ装置200は、RRC情報要素を介して、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。
前記個別のランダムアクセスプリアンブルの通知を受信した場合、競合型ランダムアクセス手順で使用されるサブキャリア数に基づいて、ランダムアクセスプリアンブルのサブキャリアを選択する処理を変更してもよい。当該構成により、ランダムアクセス手順において、プリアンブルのサブキャリアを選択する処理を、パラメータに応じて変更することで、基地局装置100と、ユーザ装置200とで、同一のプリアンブルのサブキャリアが選択されてリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
競合型ランダムアクセス手順で使用されるサブキャリア数が、前記個別のランダムアクセスプリアンブルに含まれるプリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値未満である場合、前記個別のランダムアクセスプリアンブルのサブキャリア位置は、ランダムアクセスで使用されるサブキャリアのオフセット位置に、競合型ランダムアクセス手順で使用されるサブキャリア数と、前記プリアンブルインデックスをランダムアクセスで使用されるサブキャリア数から競合型ランダムアクセス手順で使用されるサブキャリア数を減じた値で剰余した値とを加えた位置であり、競合型ランダムアクセス手順で使用されるサブキャリア数が、前記個別のランダムアクセスプリアンブルに含まれるプリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値以上である場合、前記個別のランダムアクセスプリアンブルのサブキャリア位置は、ランダムアクセスで使用されるサブキャリアのオフセット位置に、前記プリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値を加えた位置であってもよい。当該構成により、ランダムアクセス手順において、パラメータに応じてプリアンブルのサブキャリアを適切に選択することで、基地局装置100と、ユーザ装置200とで、同一のプリアンブルのサブキャリアが選択されてリソースの不一致は発生せず、ランダムアクセス手順を正常に完了することができる。
ユーザ装置と通信を行う基地局装置であって、前記ユーザ装置に個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを送信する送信部と、前記ユーザ装置からランダムアクセスプリアンブルを受信する受信部と、前記ランダムアクセスプリアンブルに対するランダムアクセスレスポンスに、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を設定する処理部とを有する基地局装置が提供される。
上記の構成により、基地局装置及びユーザ装置は、ランダムアクセス手順が、非競合型ランダムアクセス手順である状態を一致させることができ、正しくランダムアクセス手順を完了できる。すなわち、無線通信システムにおいて、ユーザ装置と基地局装置とで実行されるランダムアクセス手順を正しく完了することができる。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置100及びユーザ装置200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD−ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、SUPER 3G、IMT−Advanced、4G、5G、FRA(Future Radio Access)、W−CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局装置100によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置100を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置200との通信のために行われる様々な動作は、基地局装置100及び/又は基地局装置100以外の他のネットワークノード(例えば、MME又はS−GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局装置100以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS−GW)であってもよい。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
ユーザ装置200は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局装置100は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、gNB、ベースステーション(Base Station)、又はいくつかの他の適切な用語で呼ばれる場合もある。
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
「含む(include)」、「含んでいる(including)」、及びそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示の全体において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
なお、本発明の実施の形態において、初期アクセス制御部240は、制御部の一例である。初期アクセス処理部140は、設定部の一例である。nprach−NumCBRA−StartSubcarriersは、競合型ランダムアクセス手順で使用されるサブキャリア数の一例である。ra−PreambleIndexは、プリアンブルインデックスの一例である。nprach−NumSubcarriersは、ランダムアクセスで使用されるサブキャリア数の一例である。nprach−SubcarrierOffsetは、ランダムアクセスで使用されるサブキャリアのオフセット位置を示す一例である。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
100 基地局装置
200 ユーザ装置
110 送信部
120 受信部
130 設定情報管理部
140 初期アクセス処理部
200 ユーザ装置
210 送信部
220 受信部
230 設定情報管理部
240 初期アクセス制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置

Claims (6)

  1. 基地局装置と通信を行うユーザ装置であって、
    前記基地局装置から個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを受信する受信部と、
    前記基地局装置にランダムアクセスプリアンブルを送信する送信部と、
    前記ランダムアクセスプリアンブルに対する前記基地局装置から送信されるランダムアクセスレスポンスから、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定する制御部とを有するユーザ装置。
  2. 前記制御部は、前記基地局装置から送信されるランダムアクセスレスポンスから、ランダムアクセス手順が完了したことを示す情報を取得し、前記情報に基づいて、ランダムアクセス手順が正常に完了したか否かを判定する請求項1記載のユーザ装置。
  3. 前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報は、前記個別のランダムアクセスプリアンブルの通知と共に、又は前記個別のランダムアクセスプリアンブルの通知とは別途、受信される情報である請求項1又は2記載のユーザ装置。
  4. 前記個別のランダムアクセスプリアンブルの通知を受信した場合、競合型ランダムアクセス手順で使用されるサブキャリア数に基づいて、ランダムアクセスプリアンブルのサブキャリアを選択する処理を変更する請求項1乃至3いずれか一項記載のユーザ装置。
  5. 競合型ランダムアクセス手順で使用されるサブキャリア数が、前記個別のランダムアクセスプリアンブルに含まれるプリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値未満である場合、前記個別のランダムアクセスプリアンブルのサブキャリア位置は、ランダムアクセスで使用されるサブキャリアのオフセット位置に、競合型ランダムアクセス手順で使用されるサブキャリア数と、前記プリアンブルインデックスをランダムアクセスで使用されるサブキャリア数から競合型ランダムアクセス手順で使用されるサブキャリア数を減じた値で剰余した値とを加えた位置であり、
    競合型ランダムアクセス手順で使用されるサブキャリア数が、前記個別のランダムアクセスプリアンブルに含まれるプリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値以上である場合、前記個別のランダムアクセスプリアンブルのサブキャリア位置は、ランダムアクセスで使用されるサブキャリアのオフセット位置に、前記プリアンブルインデックスをランダムアクセスで使用されるサブキャリア数で剰余した値を加えた位置である請求項4記載のユーザ装置。
  6. ユーザ装置と通信を行う基地局装置であって、
    前記ユーザ装置に個別のランダムアクセスプリアンブルの通知及びランダムアクセスレスポンスを送信する送信部と、
    前記ユーザ装置からランダムアクセスプリアンブルを受信する受信部と、
    前記ランダムアクセスプリアンブルに対するランダムアクセスレスポンスに、前記個別のランダムアクセスプリアンブルを使用する非競合型ランダムアクセス手順であるか又は競合型ランダムアクセス手順であるかを示す情報を設定する処理部とを有する基地局装置。
JP2017159796A 2017-08-22 2017-08-22 ユーザ装置及び基地局装置 Pending JP2019041163A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159796A JP2019041163A (ja) 2017-08-22 2017-08-22 ユーザ装置及び基地局装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159796A JP2019041163A (ja) 2017-08-22 2017-08-22 ユーザ装置及び基地局装置

Publications (1)

Publication Number Publication Date
JP2019041163A true JP2019041163A (ja) 2019-03-14

Family

ID=65727462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159796A Pending JP2019041163A (ja) 2017-08-22 2017-08-22 ユーザ装置及び基地局装置

Country Status (1)

Country Link
JP (1) JP2019041163A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615302A (zh) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 用户装置及通信方法
CN113711685A (zh) * 2019-04-26 2021-11-26 株式会社Ntt都科摩 用户装置以及基站装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615302A (zh) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 用户装置及通信方法
CN113615302B (zh) * 2019-03-28 2024-05-07 株式会社Ntt都科摩 用户装置及通信方法
CN113711685A (zh) * 2019-04-26 2021-11-26 株式会社Ntt都科摩 用户装置以及基站装置

Similar Documents

Publication Publication Date Title
WO2019159304A1 (ja) ユーザ装置及び基地局装置
US11483873B2 (en) User equipment and base station apparatus
KR20200089276A (ko) 유저장치
WO2019159294A1 (ja) ユーザ装置及び基地局装置
KR102568356B1 (ko) 유저장치 및 기지국장치
JP7079273B2 (ja) 端末、通信方法及び基地局
US20210298087A1 (en) User equipment and transmission method
WO2019064603A1 (ja) ユーザ装置及び基地局装置
JP2019041163A (ja) ユーザ装置及び基地局装置
JP7030179B2 (ja) 端末及び基地局装置
JP7245855B2 (ja) 端末、システム、及び、通信方法
JP2019212957A (ja) ユーザ装置及び基地局装置
CA3092291C (en) User equipment and base station apparatus
JP6933713B2 (ja) ユーザ装置及び基地局装置
WO2019203242A1 (ja) ユーザ装置及び基地局装置
CN114642070A (zh) 终端和通信方法