JP2019039924A - Light wave rangefinder - Google Patents

Light wave rangefinder Download PDF

Info

Publication number
JP2019039924A
JP2019039924A JP2018175094A JP2018175094A JP2019039924A JP 2019039924 A JP2019039924 A JP 2019039924A JP 2018175094 A JP2018175094 A JP 2018175094A JP 2018175094 A JP2018175094 A JP 2018175094A JP 2019039924 A JP2019039924 A JP 2019039924A
Authority
JP
Japan
Prior art keywords
intermittent
light
signal
measurement
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018175094A
Other languages
Japanese (ja)
Other versions
JP2019039924A5 (en
JP6609360B2 (en
Inventor
大友 文夫
Fumio Otomo
文夫 大友
熊谷 薫
Kaoru Kumagai
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2018175094A priority Critical patent/JP6609360B2/en
Publication of JP2019039924A publication Critical patent/JP2019039924A/en
Publication of JP2019039924A5 publication Critical patent/JP2019039924A5/ja
Application granted granted Critical
Publication of JP6609360B2 publication Critical patent/JP6609360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a light wave rangefinder that enables measurements in a short time.SOLUTION: A light wave rangefinder comprises: a light emitting element 11 that emits rangefinder light 28; signal generators 33, 34 that generate a plurality of proximity frequencies; an emission optical system that sequentially switches intermittent modulation rangefinder light having each of the plurality of proximity frequencies intermittently pulsed to a prescribed width for each proximity frequency to emit the intermittent modulation rangefinder light; a light reception unit 21 that receives reflection rangefinder light 28' from a measurement object to generate an intermittent light reception signal 29; a reference signal generator 31 that outputs a reference frequency signal; frequency conversion units 39, 43, and 48 that mix the intermittent light reception signal with the reference frequency signal to obtain an intermittent conversion signal; and a computation control unit 47. The computation control unit is configured to: obtain a phase of the intermittent light reception signal with respect to the plurality of proximity frequencies to compute a precision measurement distance; or obtain a phase difference between each intermittent conversion signal to compute a rough measurement distance value; and measure a distance on the basis of the rough measurement distance value and a precision measurement distance value.SELECTED DRAWING: Figure 2

Description

本発明は、変調された測定光を測定対象に照射し、測定対象からの反射測定光を受光して、測定光と反射測定光との位相差により測定対象迄の距離を測定する光波距離計に関するものである。   The present invention relates to a lightwave distance meter that irradiates a measurement object with modulated measurement light, receives reflected measurement light from the measurement object, and measures a distance to the measurement object based on a phase difference between the measurement light and the reflected measurement light. It is about.

測定光と反射測定光との位相差を検出して距離測定を行う光波距離計では、測定可能な距離、測定精度が変調周波数によって決まる。この為、近距離から遠距離迄測定可能にするには、複数の変調周波数の測距光を照射する必要がある。   In a light wave rangefinder that measures the distance by detecting the phase difference between the measurement light and the reflected measurement light, the measurable distance and measurement accuracy are determined by the modulation frequency. Therefore, in order to be able to measure from a short distance to a long distance, it is necessary to irradiate distance measuring light having a plurality of modulation frequencies.

例えば、30MHzの変調周波数、300KHzの変調周波数を使用した場合、それぞれの周波数では、5m及び500m迄の距離が測定できる。これ以上の距離を測定する為には、更なる周波数が必要である。従来は、高周波の位相を測定する為にヘテロダイン法を用い、周波数を下げてから位相測定を行っていた。例えば、30MHz及び300KHzの位相測定の為には、30MHz−30KHz、300KHz−30KHzの周波数を発生させ、その差周波数30KHzにて位相測定を行っていた。その際に発生させた、300KHz−30KHzを、第3の変調周波数として利用すれば、300KHzの変調信号との位相差を求めることにより、擬似的に30KHzで変調された位相と等価になり、5km迄の距離測定を可能としていた。   For example, when a modulation frequency of 30 MHz and a modulation frequency of 300 KHz are used, distances up to 5 m and 500 m can be measured at each frequency. In order to measure distances beyond this, additional frequencies are required. In the past, the heterodyne method was used to measure the high frequency phase, and the phase was measured after the frequency was lowered. For example, for phase measurement at 30 MHz and 300 KHz, frequencies of 30 MHz-30 KHz and 300 KHz-30 KHz are generated, and phase measurement is performed at the difference frequency of 30 KHz. If 300 KHz-30 KHz generated at that time is used as the third modulation frequency, the phase difference from the 300 KHz modulation signal is obtained, which is equivalent to the phase modulated at 30 KHz in a pseudo manner. Distance measurement was possible.

従来の光波距離計では、複数の周波数を作成し、更に複数の周波数毎に測距光を発し、又測距を行うので、回路構成が複雑となると共に測定時間が長くなるという問題があった。   In the conventional optical wave distance meter, since a plurality of frequencies are generated, and a distance measuring light is emitted for each of the plurality of frequencies and the distance is measured, there is a problem that the circuit configuration becomes complicated and the measurement time becomes long. .

特開平5−232232号公報JP-A-5-232232 特開2004−219285号公報JP 2004-219285 A

本発明は斯かる実情に鑑み、測定に必要な信号を効率よく作成し、短時間での測定を可能とする光波距離計を提供する。   In view of such circumstances, the present invention provides a lightwave distance meter that efficiently creates signals necessary for measurement and enables measurement in a short time.

本発明は、測距光を発する発光素子と、複数の近接周波数を生成する信号発生器と、前記複数の近接周波数をそれぞれ断続し、所定幅にパルス化した変調信号と、該変調信号により所定幅にパルス化した断続変調測距光を前記近接周波数毎に順次切替え射出する射出光学系と、測定対象物からの反射測距光を受光し、所定パルス幅の断続受光信号を発生する受光部と、それぞれの所定の周波数の差を有する基準周波数信号を発する基準信号発生器と、前記受光部からの前記断続受光信号を前記基準周波数信号とのミキシングにより周波数変換し、それぞれの近接周波数信号に対応し、パルス幅を有する断続変換信号を得る周波数変換部と、演算制御部とを具備し、前記断続受光信号のパルス幅が、前記断続変換信号の周期より長い時間幅となる様に設定され、前記演算制御部は、複数の近接周波数に対し前記断続受光信号の位相を求め精密測定距離を演算し、又前記各断続変換信号相互の位相差を求めて粗測定距離値を演算し、該粗測定距離値と精密測定距離値とを合わせることにより距離を測定する様構成した光波距離計に係るものである。 The present invention relates to a light emitting element that emits distance measuring light, a signal generator that generates a plurality of adjacent frequencies, a modulation signal that is intermittently pulsed to a plurality of the adjacent frequencies, and a predetermined width based on the modulation signal. An emission optical system that sequentially switches and emits intermittent modulation ranging light pulsed to a width for each adjacent frequency, and a light receiving unit that receives reflected ranging light from a measurement object and generates an intermittent light reception signal having a predetermined pulse width And a reference signal generator for generating a reference frequency signal having a difference between the respective predetermined frequencies, and the intermittent light reception signal from the light receiving unit is frequency-converted by mixing with the reference frequency signal, and each of the adjacent frequency signals is converted. Correspondingly, a frequency conversion unit for obtaining an intermittent conversion signal having a pulse width and an arithmetic control unit are provided, and the pulse width of the intermittent light reception signal is longer than the period of the intermittent conversion signal. Is set as the previous SL arithmetic control unit calculates a precise measured distance for a plurality of proximate frequencies obtains a phase of the intermittent light signal, and each intermittent converted signal mutual seeking retardation rough measurement distance value And a light wave distance meter configured to measure the distance by combining the rough measurement distance value and the precise measurement distance value.

又本発明は、前記断続変調測距光を所定の断続数で一巡する断続パターンを生成させ、前記断続変換信号を断続パターン毎に複数回積算し、得られた積算波形の断続幅、断続周期から、複数の近接周波数を特定し、それぞれの断続変換信号の平均位相を求め、平均位相から精密測定距離値を求め、前記各断続変換信号相互の平均位相差から粗測定距離値を求め、精密測定距離値と、粗測定距離値から測定対象物の距離を測定する光波距離計に係るものである。   Further, the present invention generates an intermittent pattern that makes a round of the intermittent modulation ranging light with a predetermined number of intermittent, integrates the intermittent conversion signal a plurality of times for each intermittent pattern, the intermittent width of the obtained integrated waveform, the intermittent period From the above, specify a plurality of adjacent frequencies, determine the average phase of each intermittent conversion signal, determine the precise measurement distance value from the average phase, determine the coarse measurement distance value from the average phase difference between the intermittent conversion signals, The present invention relates to a lightwave distance meter that measures the distance of a measurement object from a measurement distance value and a rough measurement distance value.

又本発明は、複数の近接周波数の内、少なくとも2つに対応する断続変換信号の周波数は同じである光波距離計に係るものである。   The present invention also relates to a lightwave distance meter in which the frequencies of intermittent conversion signals corresponding to at least two of a plurality of adjacent frequencies are the same.

又本発明は、前記演算制御部は、前記断続変調測距光の受光パルスの遅延時間で測距を行う光波距離計に係るものである。   Further, the present invention relates to a light wave distance meter in which the arithmetic control unit performs distance measurement with a delay time of a light reception pulse of the intermittent modulation distance measuring light.

又本発明は、前記演算制御部は、複数の近接周波数から得られた精密測定距離値と粗測定距離値の差が所定値以内でない場合、異常信号を発生させる光波距離計に係るものである。   Further, the present invention relates to the light wave distance meter for generating an abnormal signal when the difference between the precision measurement distance value and the rough measurement distance value obtained from a plurality of adjacent frequencies is not within a predetermined value. .

更に又本発明は、複数の近接周波数の断続切替えは、各周波数毎に、所定の周期ずらして行い、周波数変換された前記断続変換信号は、所定の周期ずらしてから位相測定を行う光波距離計に係るものである。   Further, according to the present invention, the intermittent switching of a plurality of adjacent frequencies is performed by shifting a predetermined cycle for each frequency, and the intermittent conversion signal subjected to frequency conversion performs phase measurement after shifting the predetermined cycle. It is related to.

本発明によれば、測距光を発する発光素子と、複数の近接周波数を生成する信号発生器と、前記複数の近接周波数をそれぞれ断続し、所定幅にパルス化した変調信号と、該変調信号により所定幅にパルス化した断続変調測距光を前記近接周波数毎に順次切替え射出する射出光学系と、測定対象物からの反射測距光を受光し、所定パルス幅の断続受光信号を発生する受光部と、それぞれの所定の周波数の差を有する基準周波数信号を発する基準信号発生器と、前記受光部からの前記断続受光信号を前記基準周波数信号とのミキシングにより周波数変換し、それぞれの近接周波数信号に対応し、パルス幅を有する断続変換信号を得る周波数変換部と、演算制御部とを具備し、前記断続受光信号のパルス幅が、前記断続変換信号の周期より長い時間幅となる様に設定され、前記演算制御部は、複数の近接周波数に対し前記断続受光信号の位相を求め精密測定距離を演算し、又前記各断続変換信号相互の位相差を求めて粗測定距離値を演算し、該粗測定距離値と精密測定距離値とを合わせることにより距離を測定する様構成したので、全ての変調周波数が精密測定と粗測定とに使用され、測定効率が高く、又測定時間が短縮される。更に、測距光を断続光とすることで、光出力を変調させている時間のみに集中でき、ピークパワーを増大でき、又発光時間が短縮されるので、S/Nが向上され、測定精度が向上する According to the present invention, a light emitting element that emits distance measuring light, a signal generator that generates a plurality of adjacent frequencies, a modulation signal that is intermittently pulsed to a predetermined width, and the modulation signal And an emission optical system that sequentially switches and emits intermittent modulation ranging light that has been pulsed to a predetermined width for each adjacent frequency, and receives reflected ranging light from a measurement object, and generates an intermittent light reception signal having a predetermined pulse width. The light receiving unit, a reference signal generator that generates a reference frequency signal having a difference between the respective predetermined frequencies, and the intermittent light reception signal from the light receiving unit are frequency-converted by mixing with the reference frequency signal, and each adjacent frequency A frequency conversion unit corresponding to the signal and obtaining an intermittent conversion signal having a pulse width, and an arithmetic control unit, wherein the pulse width of the intermittent light reception signal is longer than the period of the intermittent conversion signal Is set so as to be, pre-Symbol arithmetic control unit calculates a precise measured distance for a plurality of proximate frequencies obtains a phase of the intermittent light signal, also rough measurement seeking phase difference between the respective intermittent converting signals mutually Since the distance value is calculated and the distance is measured by combining the rough measurement distance value and the precision measurement distance value, all the modulation frequencies are used for the precision measurement and the rough measurement, and the measurement efficiency is high. Also, the measurement time is shortened. Furthermore, by using the ranging light as intermittent light, it is possible to concentrate only on the time during which the optical output is modulated, the peak power can be increased, and the light emission time is shortened, so the S / N is improved and the measurement accuracy is improved. Will improve .

又本発明によれば、前記断続変調測距光を所定の断続数で一巡する断続パターンを生成させ、前記断続変換信号を断続パターン毎に複数回積算し、得られた積算波形の断続幅、断続周期から、複数の近接周波数を特定し、それぞれの断続変換信号の平均位相を求め、平均位相から精密測定距離値を求め、前記各断続変換信号相互の平均位相差から粗測定距離値を求め、精密測定距離値と、粗測定距離値から測定対象物の距離を測定するので、要求される測定精度に対応して適宜断続数を設定することができる。   Further, according to the present invention, the intermittent modulation ranging light is generated in an intermittent pattern that makes a round with a predetermined number of intermittent, the intermittent conversion signal is integrated multiple times for each intermittent pattern, the intermittent width of the obtained integrated waveform, From the intermittent period, identify multiple adjacent frequencies, determine the average phase of each intermittent conversion signal, determine the precise measurement distance value from the average phase, and determine the coarse measurement distance value from the average phase difference between the intermittent conversion signals. Since the distance of the measurement object is measured from the precision measurement distance value and the rough measurement distance value, the number of intermittent points can be set as appropriate in accordance with the required measurement accuracy.

又本発明によれば、複数の近接周波数の内、少なくとも2つに対応する断続変換信号の周波数は同じであるので、電気回路上の構成要素は1つの周波数に対応するものでよく、回路構成が簡素になり、更に周波数が近接しているので、Qの低いフィルタ1つでよく、Qが低いので、近接周波数のそれぞれの位相ずれへの影響が少なくなり、精密測定と粗測定とのずれによる異常測定が生じにくい。   Further, according to the present invention, since the frequency of the intermittent conversion signal corresponding to at least two of the plurality of adjacent frequencies is the same, the component on the electric circuit may correspond to one frequency, and the circuit configuration Since the frequency is close, one filter with a low Q is sufficient, and since the Q is low, the influence of the adjacent frequency on each phase shift is reduced, and the difference between the precision measurement and the coarse measurement is reduced. Abnormal measurement due to is difficult to occur.

又本発明によれば、前記演算制御部は、前記断続変調測距光の受光パルスの遅延時間で測距を行うので、長距離測定が可能であり、長距離測定の為に要される変調周波数を省略できる。   Further, according to the present invention, the arithmetic control unit measures the distance by the delay time of the light receiving pulse of the intermittent modulation ranging light, so that a long distance measurement is possible, and the modulation required for the long distance measurement. Frequency can be omitted.

又本発明によれば、前記演算制御部は、複数の近接周波数から得られた精密測定距離値と粗測定距離値の差が所定値以内でない場合、異常信号を発生させるので、異常測定値を排除でき、測定の信頼性が向上する。   According to the present invention, the arithmetic control unit generates an abnormal signal when the difference between the fine measurement distance value and the coarse measurement distance value obtained from a plurality of adjacent frequencies is not within a predetermined value. It can be eliminated and the reliability of the measurement is improved.

更に又本発明によれば、複数の近接周波数の断続切替えは、各周波数毎に、所定の周期ずらして行い、周波数変換された前記断続変換信号は、所定の周期ずらしてから位相測定を行うので、誤差の少ない測定が可能となるという優れた効果を発揮する。   Furthermore, according to the present invention, intermittent switching of a plurality of adjacent frequencies is performed by shifting a predetermined cycle for each frequency, and the phase conversion is performed after shifting the intermittent conversion signal subjected to frequency conversion by a predetermined cycle. It exhibits an excellent effect that measurement with less error becomes possible.

本実施例に係る光波距離計の光学系の概略図である。It is the schematic of the optical system of the lightwave distance meter which concerns on a present Example. 本実施例に係る光波距離計の計測回路の概略図である。It is the schematic of the measuring circuit of the light wave distance meter which concerns on a present Example. (A)は測距光のパルス化した状態を示す説明図、(B)は受光信号を示す説明図、(C)は発光パターンを示す説明図、(D)は発光パターンの信号変換後の図であり、(E)はローパスフィルタ通過後のパルス変調光を拡大して示した説明図であり、又受光信号とA/D変換後の内部信号を示す図である。(A) is an explanatory view showing a pulsed state-finding light, (B) is an explanatory view showing a light reception signal, (C) is an explanatory view showing a light emission pattern, and (D) is a signal after signal conversion of the light emission pattern. (E) is an explanatory diagram showing enlarged pulse modulated light after passing through a low-pass filter, and is a diagram showing a light reception signal and an internal signal after A / D conversion. 遅延時間測定による距離測定の説明図であり、(A)は発光パターンの説明図、(B)は受光信号を示す説明図である。It is explanatory drawing of distance measurement by delay time measurement, (A) is explanatory drawing of a light emission pattern, (B) is explanatory drawing which shows a light reception signal. 各近接周波数毎に位相変化をさせた図であり、(A)は発光パターンを示す図、(B)は受光信号を示す説明図である。It is the figure which changed the phase for every proximity frequency, (A) is a figure which shows a light emission pattern, (B) is explanatory drawing which shows a light reception signal.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明の実施例に係る光波距離計の測距光学系1について説明する。   First, referring to FIG. 1, a distance measuring optical system 1 of a lightwave distance meter according to an embodiment of the present invention will be described.

図1中、該測距光学系1は射出光学系2、受光光学系3、視準光学系4から構成される。又、図1では測定対象物5が再帰反射体であるプリズムを示している。   In FIG. 1, the distance measuring optical system 1 includes an emission optical system 2, a light receiving optical system 3, and a collimating optical system 4. FIG. 1 shows a prism whose measurement object 5 is a retroreflector.

前記測距光学系1は前記測定対象物5に向けられる測距光軸6を有し、前記射出光学系2は射出光軸7、前記受光光学系3は受光光軸8、前記視準光学系4は視準光軸9を有する。   The distance measuring optical system 1 has a distance measuring optical axis 6 directed toward the measurement object 5, the emission optical system 2 is an emission optical axis 7, the light receiving optical system 3 is a light receiving optical axis 8, and the collimating optics. The system 4 has a collimating optical axis 9.

前記射出光軸7上に発光素子11、集光レンズ12、ハーフミラー13、光量調整器14が配設され、更に前記射出光軸7上には偏向ミラー15,16が配設され、前記射出光軸7は前記測距光軸6と合致する様に前記偏向ミラー15,16によって偏向される。   A light emitting element 11, a condenser lens 12, a half mirror 13, and a light amount adjuster 14 are disposed on the emission optical axis 7, and deflecting mirrors 15 and 16 are disposed on the emission optical axis 7. The optical axis 7 is deflected by the deflection mirrors 15 and 16 so as to coincide with the distance measuring optical axis 6.

前記発光素子11は、例えばレーザダイオードであり、不可視光の測距光を発する。   The light emitting element 11 is a laser diode, for example, and emits invisible ranging light.

前記測距光軸6上には対物レンズ17、ダイクロイックミラー18が設けられる。該ダイクロイックミラー18は、可視光を透過し、測距光を反射する様になっている。前記測距光軸6が前記ダイクロイックミラー18を透過した部分は前記視準光軸9となっており、該視準光軸9上には接眼レンズ19が設けられている。   An objective lens 17 and a dichroic mirror 18 are provided on the distance measuring optical axis 6. The dichroic mirror 18 transmits visible light and reflects distance measuring light. A portion of the distance measuring optical axis 6 that has passed through the dichroic mirror 18 is the collimating optical axis 9, and an eyepiece 19 is provided on the collimating optical axis 9.

前記対物レンズ17、前記ダイクロイックミラー18、前記接眼レンズ19等は、前記視準光学系4を構成する。   The objective lens 17, the dichroic mirror 18, the eyepiece lens 19, and the like constitute the collimating optical system 4.

前記集光レンズ12、前記ハーフミラー13、前記光量調整器14、前記偏向ミラー15,16、前記対物レンズ17等は、前記射出光学系2を構成する。   The condenser lens 12, the half mirror 13, the light amount adjuster 14, the deflection mirrors 15 and 16, the objective lens 17, and the like constitute the emission optical system 2.

前記測距光軸6が前記ダイクロイックミラー18によって反射された部分は、前記受光光軸8となっており、該受光光軸8上には受光素子21が設けられている。   The portion of the distance measuring optical axis 6 reflected by the dichroic mirror 18 is the light receiving optical axis 8, and a light receiving element 21 is provided on the light receiving optical axis 8.

前記対物レンズ17、前記ダイクロイックミラー18等は、前記受光光学系3を構成する。   The objective lens 17, the dichroic mirror 18 and the like constitute the light receiving optical system 3.

前記ハーフミラー13の反射光軸は、内部参照光軸23として反射鏡22を経て前記受光素子21に導かれている。前記ハーフミラー13、前記反射鏡22は、内部参照光学系24を構成している。   The reflected optical axis of the half mirror 13 is guided to the light receiving element 21 through the reflecting mirror 22 as the internal reference optical axis 23. The half mirror 13 and the reflecting mirror 22 constitute an internal reference optical system 24.

前記射出光軸7と前記内部参照光軸23とに掛渡り、光路切替え器25が設けられる。該光路切替え器25は、前記射出光軸7と前記内部参照光軸23とを択一的に遮断、開放を行うものであり、該光路切替え器25によって前記ハーフミラー13を透過した測距光が射出されるか、或は前記ハーフミラー13で反射された測距光の一部が前記内部参照光学系24に射出されるかが選択される様になっている。   An optical path switch 25 is provided across the emission optical axis 7 and the internal reference optical axis 23. The optical path switch 25 selectively cuts off and opens the exit optical axis 7 and the internal reference optical axis 23, and the distance measuring light transmitted through the half mirror 13 by the optical path switch 25. Is selected, or whether a part of the distance measuring light reflected by the half mirror 13 is emitted to the internal reference optical system 24 is selected.

前記発光素子11、前記受光素子21は、それぞれ演算処理部27に電気的に接続されている。   The light emitting element 11 and the light receiving element 21 are electrically connected to the arithmetic processing unit 27, respectively.

以下、前記測距光学系1の作用について説明する。   Hereinafter, the operation of the distance measuring optical system 1 will be described.

前記発光素子11からは変調された測距光28が発せられ、前記集光レンズ12で平行光束とされた測距光28は、前記光量調整器14で光量調整された後、前記対物レンズ17の中心部を透過して前記測定対象物5に射出される。   A modulated distance measuring light 28 is emitted from the light emitting element 11, and the distance measuring light 28 converted into a parallel light beam by the condenser lens 12 is adjusted in light amount by the light amount adjuster 14, and then the objective lens 17. Is transmitted through the center of the measurement object 5 and emitted to the measurement object 5.

該測定対象物5で反射された測距光は反射測距光28′として前記対物レンズ17に入射し、該対物レンズ17で集光され、前記ダイクロイックミラー18で反射され前記受光素子21に入射する。前記反射測距光28′は、該受光素子21で受光され、該受光素子21は断続受光信号29を発する。   The distance measuring light reflected by the measurement object 5 is incident on the objective lens 17 as reflected distance measuring light 28 ′, condensed by the objective lens 17, reflected by the dichroic mirror 18 and incident on the light receiving element 21. To do. The reflected distance measuring light 28 ′ is received by the light receiving element 21, and the light receiving element 21 generates an intermittent light receiving signal 29.

前記発光素子11で射出された測距光28の一部(内部参照光28′′)は、前記ハーフミラー13で反射される。前記光路切替え器25の光路切替えにより、前記内部参照光軸23が開放されると、前記内部参照光28′′が前記受光素子21に入射する。該受光素子21は前記内部参照光28′′の受光信号を発する。   A part of the ranging light 28 emitted from the light emitting element 11 (internal reference light 28 ″) is reflected by the half mirror 13. When the internal reference optical axis 23 is opened by switching the optical path of the optical path switch 25, the internal reference light 28 ″ enters the light receiving element 21. The light receiving element 21 emits a light receiving signal of the internal reference light 28 ''.

前記対物レンズ17を経て入射する可視光は、前記ダイクロイックミラー18を透過し、前記接眼レンズ19で集光される。測量者は前記接眼レンズ19を介して前記測定対象物5を視準することができる。   Visible light incident through the objective lens 17 passes through the dichroic mirror 18 and is collected by the eyepiece lens 19. The surveyor can collimate the measurement object 5 through the eyepiece lens 19.

前記演算処理部27は、前記発光素子11を駆動して変調光を射出させる。又、前記受光素子21から入力される反射測距光28′の断続受光信号29に基づき前記測定対象物5迄の距離を測定し、内部参照光28′′の断続受光信号29に基づき前記内部参照光学系24の光路長を測定する。最終的な測定値は反射測距光28′に基づく測定結果と内部参照光28′′の測定結果の差として得られる。反射測距光28′の測定結果と内部参照光28′′の測定結果との差を求めることで電気回路のドリフトによる影響を除去することができる。   The arithmetic processing unit 27 drives the light emitting element 11 to emit modulated light. Further, the distance to the measurement object 5 is measured based on the intermittent light receiving signal 29 of the reflected distance measuring light 28 ′ input from the light receiving element 21, and the internal light is detected based on the intermittent light receiving signal 29 of the internal reference light 28 ″. The optical path length of the reference optical system 24 is measured. The final measurement value is obtained as a difference between the measurement result based on the reflected distance measuring light 28 'and the measurement result of the internal reference light 28 ". By obtaining the difference between the measurement result of the reflected distance measuring light 28 ′ and the measurement result of the internal reference light 28 ″, the influence due to the drift of the electric circuit can be eliminated.

次に、前記演算処理部27について図2を参照して説明する。   Next, the arithmetic processing unit 27 will be described with reference to FIG.

図2中、図1中で示したものと同等のものには同符号を付してある。   In FIG. 2, the same components as those shown in FIG.

基準信号発生器31は所定の周波数の基準周波数信号s1を発する。尚、以下に示される数値は、測定距離、測定精度に応じて適宜変更が可能である。例えば、以下の説明では240MHzを基準周波数としている。   The reference signal generator 31 generates a reference frequency signal s1 having a predetermined frequency. In addition, the numerical value shown below can be suitably changed according to the measurement distance and the measurement accuracy. For example, in the following description, 240 MHz is the reference frequency.

前記基準信号発生器31から発せられた基準周波数信号s1は、分周器32によって240MHzが1/32され、7.5MHzの分周波信号s2が生成される。該分周波信号s2は、第1信号発生器33及び第2信号発生器34に入力される。   The reference frequency signal s1 emitted from the reference signal generator 31 is 1/32 of 240 MHz by the frequency divider 32 to generate a 7.5 MHz divided frequency signal s2. The frequency-divided signal s2 is input to the first signal generator 33 and the second signal generator 34.

前記第1信号発生器33では、前記分周波信号s2と前記基準周波数信号s1により240MHz+7.5MHzの第1変調信号s3を生成し、第1断続パルス発生器35に出力する。又、前記第2信号発生器34では、前記分周波信号s2と前記基準周波数信号s1により240MHz−7.5MHzの第2変調信号s4を生成し、第2断続パルス発生器36に出力する。   The first signal generator 33 generates a first modulation signal s3 of 240 MHz + 7.5 MHz from the divided frequency signal s2 and the reference frequency signal s1, and outputs the first modulation signal s3 to the first intermittent pulse generator 35. The second signal generator 34 generates a second modulated signal s4 of 240 MHz-7.5 MHz from the divided frequency signal s2 and the reference frequency signal s1, and outputs the second modulated signal s4 to the second intermittent pulse generator 36.

前記第1信号発生器33と、前記第2信号発生器34によって、周波数の近接した2つの変調信号、240MHz+7.5MHz及び240MHz−7.5MHzが生成される。   The first signal generator 33 and the second signal generator 34 generate two modulated signals having frequencies close to each other, 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz.

前記第1断続パルス発生器35では、連続信号である第1変調信号s3を所定時間幅で所定時間間隔毎に発せられる断続信号に変換する。即ち、連続信号の第1変調信号s3をパルス信号化する。前記第1断続パルス発生器35からアンド回路37にパルス化した第1パルス変調信号s5が入力される。   The first intermittent pulse generator 35 converts the first modulated signal s3, which is a continuous signal, into an intermittent signal that is generated at predetermined time intervals with a predetermined time width. That is, the first modulated signal s3 as a continuous signal is converted into a pulse signal. The first pulse modulation signal s5 pulsed from the first intermittent pulse generator 35 to the AND circuit 37 is input.

従って、該第1パルス変調信号s5のパルスには240MHz+7.5MHzの周波が含まれており、パルスは240MHz+7.5MHzの周波で構成されている。   Therefore, the pulse of the first pulse modulation signal s5 includes a frequency of 240 MHz + 7.5 MHz, and the pulse is composed of a frequency of 240 MHz + 7.5 MHz.

同様に、前記第2断続パルス発生器36に於いて、連続信号である第2変調信号s4を所定時間幅で所定時間間隔毎に発せられる断続信号に変換し、パルス信号化する。前記第2断続パルス発生器36から前記アンド回路37にパルス化した第2パルス変調信号s6が入力される。該第2パルス変調信号s6のパルスについても、前記第1パルス変調信号s5と同様、240MHz−7.5MHzの周波が含まれ、パルスは240MHz−7.5MHzの周波で構成されている。   Similarly, in the second intermittent pulse generator 36, the second modulation signal s4, which is a continuous signal, is converted into an intermittent signal that is generated at predetermined time intervals with a predetermined time width, and converted into a pulse signal. The second pulse modulated signal s6 is input from the second intermittent pulse generator 36 to the AND circuit 37. Similarly to the first pulse modulation signal s5, the pulse of the second pulse modulation signal s6 includes a frequency of 240 MHz to 7.5 MHz, and the pulse has a frequency of 240 MHz to 7.5 MHz.

前記基準信号発生器31が生成する基準周波数信号s1は、タイミング信号発生器39にも入力される。該タイミング信号発生器39は、基準周波数信号s1に基づき後述する各種タイミング信号を生成する。   The reference frequency signal s1 generated by the reference signal generator 31 is also input to the timing signal generator 39. The timing signal generator 39 generates various timing signals to be described later based on the reference frequency signal s1.

前記タイミング信号発生器39はタイミング信号を前記第1断続パルス発生器35及び前記第2断続パルス発生器36に発し、前記第1断続パルス発生器35、前記第2断続パルス発生器36からの第1パルス変調信号s5、第2パルス変調信号s6が、交互に且つ所定時間間隔で出力される様に制御する。   The timing signal generator 39 issues a timing signal to the first intermittent pulse generator 35 and the second intermittent pulse generator 36, and the first intermittent pulse generator 35 and the second intermittent pulse generator 36 output the timing signal. Control is performed so that the one-pulse modulated signal s5 and the second pulse-modulated signal s6 are output alternately and at predetermined time intervals.

又、前記タイミング信号発生器39からのタイミング信号は、切替えゲート40に入力される。該切替えゲート40からは切替え信号が前記アンド回路37に入力される。   The timing signal from the timing signal generator 39 is input to the switching gate 40. A switching signal is input to the AND circuit 37 from the switching gate 40.

前記アンド回路37は、前記切替えゲート40からの切替え信号に対応して第1パルス変調信号s5、第2パルス変調信号s6を交互にドライバ38に出力する。   The AND circuit 37 alternately outputs a first pulse modulation signal s5 and a second pulse modulation signal s6 to the driver 38 in response to the switching signal from the switching gate 40.

該ドライバ38は、第1パルス変調信号s5、第2パルス変調信号s6に基づき前記発光素子11を駆動し、240MHz+7.5MHzで変調された測距光、240MHz−7.5MHzで変調された測距光をそれぞれ所定の時間幅で、且つ所定の時間間隔で交互に発光させる(図3(C)参照)。   The driver 38 drives the light emitting element 11 based on the first pulse modulation signal s5 and the second pulse modulation signal s6, ranging light modulated by 240 MHz + 7.5 MHz, ranging measured by 240 MHz-7.5 MHz. Light is emitted alternately at predetermined time intervals and at predetermined time intervals (see FIG. 3C).

前記発光素子11は測距光28を断続的に発光し、測距光28はパルス光となる。更に交互に発せられるパルス光は、それぞれ240MHz+7.5MHzの変調光、240MHz−7.5MHzの変調光によって構成されている(以下、パルス変調光と称す)。   The light emitting element 11 intermittently emits the distance measuring light 28, and the distance measuring light 28 becomes pulsed light. Further, alternately emitted pulsed light is composed of 240 MHz + 7.5 MHz modulated light and 240 MHz-7.5 MHz modulated light (hereinafter referred to as pulse modulated light).

図3(A)、図3(C)は、240MHz+7.5MHzの変調光、240MHz−7.5MHzの変調光が交互に発光される状態を示している。又、本実施例では、パルス幅は933nsに設定されている。ここで、240MHz+7.5MHzの変調光、240MHz−7.5MHzの変調光の切替えタイミングは、測定対象物が移動体であった場合に、移動速度に比して高速度で切替え、測定対象物の移動が測定結果に影響しない様に設定される。   FIGS. 3A and 3C show a state in which 240 MHz + 7.5 MHz modulated light and 240 MHz-7.5 MHz modulated light are emitted alternately. In this embodiment, the pulse width is set to 933 ns. Here, the switching timing of 240 MHz + 7.5 MHz modulated light and 240 MHz-7.5 MHz modulated light is switched at a higher speed than the moving speed when the measuring object is a moving object. It is set so that the movement does not affect the measurement result.

ここで、前記変調光を断続化した場合の、パルス幅は差周波の1周期よりも長くなる様に設定する。更に、断続の周期(パルス発生周期)、は移動体の移動による差周波信号の位相変化が無視できる早さとする。   Here, when the modulated light is intermittent, the pulse width is set to be longer than one period of the difference frequency. Further, the intermittent period (pulse generation period) is set to a speed at which the phase change of the difference frequency signal due to the movement of the moving body can be ignored.

更に、測距光28が断続的に発光、即ちパルス発光されることで、発光素子(レーザダイオード:LD)11の発光負荷率が低下する。発光負荷率が低下した分ピーク値を増大させ得るので、眼に対する安全性を損うことなく、測距光の光強度を増大させ、遠距離測定が可能となる。尚、所定時間幅及び所定時間間隔は、測定状況に応じて適宜選択される。   Further, the distance measuring light 28 is intermittently emitted, that is, pulsed, thereby reducing the light emission load factor of the light emitting element (laser diode: LD) 11. Since the peak value can be increased by the decrease in the light emission load factor, the light intensity of the distance measuring light can be increased and the long distance measurement can be performed without impairing the safety for the eyes. The predetermined time width and the predetermined time interval are appropriately selected according to the measurement situation.

測距光28は、前記測定対象物5に向けて射出され、前記測定対象物5で反射され、前記受光光学系3を経て前記受光素子21に受光される。該受光素子21は断続受光信号29を発生する。使用される受光素子としては、例えば、フォトダイオード、更にアバランシフォトダイオード(APD)が用いられる。   The distance measuring light 28 is emitted toward the measurement object 5, reflected by the measurement object 5, and received by the light receiving element 21 through the light receiving optical system 3. The light receiving element 21 generates an intermittent light receiving signal 29. As the light receiving element to be used, for example, a photodiode and further an avalanche photodiode (APD) are used.

更に、前記光路切替え器25により光路が切替えられて、測距光28の一部は内部参照光28′′として前記内部参照光学系24を経て、前記受光素子21で受光される。尚、反射測距光28′を受光した際の受光信号の処理と、内部参照光28′′についての受光信号の処理は同様であるので、以下は反射測距光28′の受光信号の処理について説明する。   Further, the optical path is switched by the optical path switch 25, and a part of the distance measuring light 28 is received by the light receiving element 21 through the internal reference optical system 24 as internal reference light 28 ″. Since the processing of the received light signal when the reflected distance measuring light 28 'is received and the processing of the received light signal for the internal reference light 28' 'are the same, the following is the processing of the received light signal of the reflected distance measuring light 28'. Will be described.

前記受光素子21は、反射測距28′として、240MHz+7.5MHzのパルス変調光、240MHz−7.5MHzのパルス変調光を交互に受光する。従って、前記受光素子21の受光信号は、パルス出力となると共にパルス内部は240MHz+7.5MHz、240MHz−7.5MHzの周波数を有する断続受光信号29となる。   The light receiving element 21 alternately receives 240 MHz + 7.5 MHz pulse-modulated light and 240 MHz-7.5 MHz pulse-modulated light as the reflection distance measuring 28 ′. Therefore, the light receiving signal of the light receiving element 21 becomes a pulse output and the inside of the pulse becomes an intermittent light receiving signal 29 having frequencies of 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz.

図3(B)は受光信号の発生状態を示している。尚、受光信号では、発光パルスとの間で距離に対応した遅延時間(パルス遅延)が生じる。   FIG. 3B shows the generation state of the received light signal. In the light reception signal, a delay time (pulse delay) corresponding to the distance occurs between the light emission pulse.

受光信号は増幅器42で増幅され、増幅された信号はミキシング回路43に入力される。該ミキシング回路43には前記基準信号発生器31からアンド回路48を介して240MHzの基準周波数信号s1が入力される。該基準周波数信号s1の入力されるタイミングは、240MHz+7.5MHzのパルス変調光の受光信号(断続信号)、240MHz−7.5MHzのパルス変調光の受光信号(断続信号)とにそれぞれミキシングされる様に、前記タイミング信号発生器39からのタイミング信号によって制御される。   The received light signal is amplified by the amplifier 42, and the amplified signal is input to the mixing circuit 43. The mixing circuit 43 receives a reference frequency signal s1 of 240 MHz from the reference signal generator 31 via the AND circuit 48. The input timing of the reference frequency signal s1 is mixed with a light receiving signal (intermittent signal) of 240 MHz + 7.5 MHz pulse modulated light and a light receiving signal (intermittent signal) of 240 MHz-7.5 MHz pulse modulated light, respectively. Further, the timing signal is controlled by the timing signal from the timing signal generator 39.

240MHz+7.5MHzのパルス変調光の受光信号、240MHz−7.5MHzのパルス変調光の受光信号と基準周波数信号s1とのミキシングによって周波数変換され、それぞれ±7.5MHzの周波数及び加算された周波数240MHz+240MHz+7.5MHz、周波数240MHz+240MHz−7.5MHzが得られる。更に、前記ローパスフィルタ44を通り、高周波成分は除去され、±7.5MHzの差周波が残る。尚、±7.5MHzの差周波信号は、240MHz+7.5MHzのパルス変調光、240MHz−7.5MHzのパルス変調光に対応するものであるので、パルス状の差周波信号(断続変換信号)となっている。   The frequency conversion is performed by mixing the light receiving signal of 240 MHz + 7.5 MHz pulse modulated light, the light receiving signal of pulse modulated light of 240 MHz-7.5 MHz and the reference frequency signal s1, and the frequency of ± 7.5 MHz and the added frequency 240 MHz + 240 MHz + 7. 5 MHz and a frequency of 240 MHz + 240 MHz-7.5 MHz are obtained. Further, the high-frequency component is removed through the low-pass filter 44, and a difference frequency of ± 7.5 MHz remains. The ± 7.5 MHz difference frequency signal corresponds to 240 MHz + 7.5 MHz pulse-modulated light and 240 MHz-7.5 MHz pulse-modulated light, and thus becomes a pulse-like difference frequency signal (intermittent conversion signal). ing.

更に、2つの差周波では、1つは時間的に位相が進行する7.5MHzの差周波信号であり、もう1つは時間的に位相が後退する7.5MHzの差周波信号である(図3(E)参照)。従って、両差周波間では、距離(時間)に対応した位相ずれ(位相差)が生じる。   Further, of the two difference frequencies, one is a 7.5 MHz difference frequency signal whose phase advances in time, and the other is a 7.5 MHz difference frequency signal whose phase reverses in time (see FIG. 3 (E)). Therefore, a phase shift (phase difference) corresponding to the distance (time) occurs between the two difference frequencies.

ここで、前記基準信号発生器31、前記タイミング信号発生器39、前記アンド回路48、前記ミキシング回路43等は周波数変換部として機能する。   Here, the reference signal generator 31, the timing signal generator 39, the AND circuit 48, the mixing circuit 43 and the like function as a frequency conversion unit.

各差周波は、ローパスフィルタ44を通り、高周波が除去され、A/Dコンバータ45へ入力される。前記ローパスフィルタ44の帯域は、差周波7.5MHzに十分な、10MHz程度に設定される。前記A/Dコンバータ45による変換後は、記憶手段としてのメモリ46に記憶される。   Each difference frequency passes through the low-pass filter 44, is removed from the high frequency, and is input to the A / D converter 45. The band of the low-pass filter 44 is set to about 10 MHz, which is sufficient for the difference frequency of 7.5 MHz. After the conversion by the A / D converter 45, it is stored in a memory 46 as a storage means.

図3(E)は、前記ミキシング回路43に於けるミキシングで、パルス内に含まれる信号が、7.5MHzの差周波の信号となっていることを示している。   FIG. 3E shows that the signal contained in the pulse is a signal having a difference frequency of 7.5 MHz by mixing in the mixing circuit 43.

前記メモリ46に保存された信号は、演算制御部47によって距離演算の為に読込まれ、各差周波信号毎に位相差が演算される。即ち各パルス信号に含まれる、240MHz+7.5MHz、240MHz−7.5MHzの周波数毎の、更に一周期の波形毎に位相が求められ、それぞれ精密測定に用いられる。又2種類の差周波信号毎に、且つ一周期の差周波毎に位相差が検出され、両差周波間の位相差が求められ、該位相差は粗測定に用いられる。前記演算制御部47は、精密測定用の位相と粗測定用の位相差を用い光速に基づき距離を演算する(図3(E)参照)。   The signal stored in the memory 46 is read by the calculation control unit 47 for distance calculation, and the phase difference is calculated for each difference frequency signal. That is, the phase is obtained for each waveform of one cycle and each frequency of 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz included in each pulse signal, and each phase is used for precision measurement. Further, a phase difference is detected for each of the two types of difference frequency signals and for each difference frequency of one cycle, and a phase difference between the two difference frequencies is obtained, and the phase difference is used for rough measurement. The calculation control unit 47 calculates the distance based on the speed of light using the phase for precise measurement and the phase difference for coarse measurement (see FIG. 3E).

又、7.5MHzの差周波と、−7.5MHzの差周波の、両差周波を加算平均化することで、パルス内に於ける波形は開始点に位相ずれの無い位相波形が得られる。又、それぞれの近接周波数に対応して、加算平均化することで精度の高い位相測定が可能となる。   Further, by averaging the difference frequencies of the difference frequency of 7.5 MHz and the difference frequency of −7.5 MHz, a waveform having no phase shift at the starting point can be obtained. In addition, it is possible to perform highly accurate phase measurement by averaging the corresponding frequencies.

240MHz+7.5MHz、240MHz−7.5MHzの各周波数の位相から求められる測定距離は最大でそれぞれ60.6cm、64.5cmであり、短距離高精度の測定が可能である。又、測定時間間隔が極めて短いので、移動体の距離測定も可能である。   The maximum measurement distances obtained from the phases of the respective frequencies of 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz are 60.6 cm and 64.5 cm, respectively, and short-range and high-precision measurement is possible. Further, since the measurement time interval is extremely short, the distance of the moving body can be measured.

更に、±7.5MHz差周波間の位相差から求められる測定距離は最大で10mであり、中距離の測定(粗距離測定)が可能である。従って、240MHz+7.5MHz、240MHz−7.5MHzの位相検出による距離測定と±7.5MHz差周波間の位相差検出による距離測定とを組合わせることで短距離から中距離迄の高精度の距離測定が可能となる。   Furthermore, the maximum measurement distance obtained from the phase difference between the ± 7.5 MHz difference frequencies is 10 m, and a medium distance measurement (coarse distance measurement) is possible. Therefore, high-precision distance measurement from short distance to medium distance by combining distance measurement by phase detection of 240MHz + 7.5MHz, 240MHz-7.5MHz and distance measurement by detection of phase difference between ± 7.5MHz difference frequency Is possible.

更に、距離測定の組合わせは、中距離測定(粗測定)の最小単位以下の距離を、精密測定で補うことになるが、中距離測定値(粗測定距離値)と精密距離測定値との差が所定値以内でない場合は、測定が異常である旨の信号を発する様にしてもよい。測定値が異常であることが判断でき、測定の信頼性が向上する。   In addition, the combination of distance measurement supplements the distance below the minimum unit of medium distance measurement (coarse measurement) with precision measurement, but the medium distance measurement value (coarse measurement distance value) and the precision distance measurement value If the difference is not within a predetermined value, a signal indicating that the measurement is abnormal may be issued. It can be determined that the measured value is abnormal, and the reliability of the measurement is improved.

又、位相を演算する回路、演算された位相に基づき距離を演算する演算回路は、240MHz+7.5MHz、240MHz−7.5MHzが近接した周波数であり、又±7.5MHz差周波は同一の差周波であり、共通の処理回路でよい。従って、前記演算制御部47の回路構成が簡略となる。   In addition, the circuit for calculating the phase and the circuit for calculating the distance based on the calculated phase are frequencies close to 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz, and the ± 7.5 MHz difference frequency is the same difference frequency. A common processing circuit may be used. Therefore, the circuit configuration of the arithmetic control unit 47 is simplified.

更に、測定精度は近接した周波数240MHz+7.5MHz、240MHz−7.5MHzで、同程度であり、両周波数で測定した測距結果は平均化処理するデータとして使用することができる。而して、少ない回路構成で、多くの測距結果を平均化することができ、測定精度が向上する。   Furthermore, the measurement accuracy is similar at the adjacent frequencies of 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz, and the distance measurement results measured at both frequencies can be used as data to be averaged. Thus, with a small circuit configuration, many distance measurement results can be averaged, and the measurement accuracy is improved.

尚、上記した様に位相及び位相差による距離測定は、1周波毎に実行され、1周波毎に得られた測定結果が平均化されるので、前記パルス変調光内に含まれる周波の数によって測定回数が決定される。従って、平均回数を多くして測定値の精度を向上させる場合は、パルス幅を広くして測定回数を多くすればよい。パルス幅、パルス間隔の決定は測定精度を勘案することでも、変更することができる。   As described above, the distance measurement based on the phase and the phase difference is performed for each frequency, and the measurement results obtained for each frequency are averaged. Therefore, the distance measurement is performed according to the number of frequencies included in the pulse modulated light. The number of measurements is determined. Therefore, when the average number of times is increased to improve the accuracy of the measurement value, the pulse width may be widened to increase the number of times of measurement. The determination of the pulse width and the pulse interval can be changed by taking the measurement accuracy into consideration.

次に、長距離測定を行う場合について説明する。   Next, a case where long distance measurement is performed will be described.

長距離測定では、前記パルス変調光をパルス光として処理し、パルス光の往復時間(遅延時間)に基づき距離測定を行う(TOF:Time of Flight)ことができる。   In long-distance measurement, the pulse-modulated light is processed as pulsed light, and distance measurement can be performed based on the round-trip time (delay time) of the pulsed light (TOF: Time of Flight).

図4(A)に示される様に、パルス変調光のパルス幅を所定時間間隔毎に変更する。例えば、通常のパルス幅を933nsとし、パルス間隔を20μsとし、160μs間隔毎に、即ちパルス変調光毎にパルス幅を800nsとする。160μsは6.2KHzであり、24kmのパルス遅延時間に相当する。パルス幅は、狭くしても、広くしてもよいが、他のパルスから識別できる様にし、識別可能としたパルスを基準パルス光として設定する。   As shown in FIG. 4A, the pulse width of the pulse-modulated light is changed every predetermined time interval. For example, the normal pulse width is set to 933 ns, the pulse interval is set to 20 μs, and the pulse width is set to 800 ns every 160 μs interval, that is, for each pulse modulated light. 160 μs is 6.2 KHz and corresponds to a pulse delay time of 24 km. Although the pulse width may be narrowed or widened, the pulse that can be identified from other pulses is set as the reference pulse light.

而して、前記基準パルス光を検出することで8パルス毎に(8断続数毎に)一巡する断続パターンが形成される。尚、断続数は適宜設定されることは言う迄もない。   Thus, by detecting the reference pulse light, an intermittent pattern is formed that makes a round every 8 pulses (every 8 intermittent numbers). Needless to say, the intermittent number is set as appropriate.

尚、240MHz+7.5MHz、240MHz−7.5MHzのパルス変調光が交互に射出されるので、パルス間隔自体は10μsとなっている。   Since pulse-modulated light of 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz are alternately emitted, the pulse interval itself is 10 μs.

パルス幅800nsの基準パルス光の受光信号の遅延時間を検出することで、往復24km迄の測定が可能となる(図4(B)参照)。基準パルス光の発光間隔は、任意に設定することができるので、要求される最大測距距離に対応させ、適宜設定することができる。   By detecting the delay time of the received light signal of the reference pulse light having a pulse width of 800 ns, it is possible to measure up to 24 km in both directions (see FIG. 4B). Since the emission interval of the reference pulse light can be set arbitrarily, it can be set as appropriate according to the required maximum distance.

更に、断続パターンを形成することで、断続パターン毎に複数回積算し、積算波形を求め、得られた積算波形の断続幅、断続周期から複数の近接周波数を特定し、それぞれの断続変換信号の平均位相を求め、平均位相から精密測定値を求め、平均位相差から粗測定距離値を求め、精密測定値と、粗測定距離値から測定対象物の距離を測定してもよい。   Furthermore, by forming an intermittent pattern, it integrates multiple times for each intermittent pattern, obtains an integrated waveform, specifies multiple adjacent frequencies from the intermittent width and intermittent period of the obtained integrated waveform, and determines each intermittent conversion signal An average phase may be obtained, a precise measurement value may be obtained from the average phase, a coarse measurement distance value may be obtained from the average phase difference, and a distance of the measurement object may be measured from the precise measurement value and the coarse measurement distance value.

尚、上記実施例では、2つの近接周波数を生成したが、3以上の近接周波数を生成する様にしてもよく、或は2組以上の近接周波数を生成する様にしてもよい。   In the above embodiment, two adjacent frequencies are generated. However, three or more adjacent frequencies may be generated, or two or more sets of adjacent frequencies may be generated.

図5(A)は、240MHz+7.5MHz、240MHz−7.5MHz毎に位相を1/2周期シフトさせた発光パターンを示しており、1/2周期シフトした受光信号を240MHz+7.5MHz、240MHz−7.5MHz毎に加算平均化することで精度の高い位相測定が可能となる(図5(B)参照)。   FIG. 5A shows a light emission pattern in which the phase is shifted by 1/2 cycle every 240 MHz + 7.5 MHz and 240 MHz-7.5 MHz, and the received light signal shifted by 1/2 cycle is 240 MHz + 7.5 MHz, 240 MHz-7. Accurate phase measurement is possible by performing averaging for every 5 MHz (see FIG. 5B).

如上の毎く、本発明では、全ての変調周波数が精密測定と粗測定とに使用され、測定効率が高く、又測定時間が短縮される。更に、測距光を断続光とすることで、光出力を変調させている時間のみに集中でき、ピークパワーを増大でき、又発光時間が短縮されるので、S/Nが向上され、測定精度が向上する。   As described above, in the present invention, all modulation frequencies are used for precision measurement and coarse measurement, so that the measurement efficiency is high and the measurement time is shortened. Furthermore, by using the ranging light as intermittent light, it is possible to concentrate only on the time during which the optical output is modulated, the peak power can be increased, and the light emission time is shortened, so the S / N is improved and the measurement accuracy is improved. Will improve.

又近接した、2つの変調周波数の測距光で距離測定を行う様構成したので、共通の処理回路で信号処理、距離演算を行うことができ、回路構成が簡略化する。   In addition, since the distance measurement is performed using the distance measuring light of two modulation frequencies which are close to each other, signal processing and distance calculation can be performed by a common processing circuit, and the circuit configuration is simplified.

更に、連続した変調波を断続信号とし、パルス的に発光させるので、射出される測距光のピーク値を増大させることができ、受光光量が増大し、測定精度が向上すると共に遠距離測定が可能となる。   Furthermore, since continuous modulated waves are used as intermittent signals and emitted in pulses, the peak value of emitted ranging light can be increased, the amount of received light is increased, measurement accuracy is improved, and long-distance measurement is performed. It becomes possible.

又、パルス発光させることで、パルス光の往復時間に基づき長距離測定を行うことができ、而も測距の対象となるパルス光の発光間隔を任意に設定できるので、最大測定距離を、測定状況に応じて容易に変更できる。   In addition, by emitting pulses, long distance measurement can be performed based on the round trip time of the pulsed light, and the light emission interval of the pulsed light that is the object of distance measurement can be arbitrarily set, so the maximum measurement distance can be measured. It can be easily changed according to the situation.

尚、上記実施例では、2つの近接周波数を生成したが、3以上の近接周波数を生成する様にしてもよく、或は2組以上の近接周波数を生成する様にしてもよい。   In the above embodiment, two adjacent frequencies are generated. However, three or more adjacent frequencies may be generated, or two or more sets of adjacent frequencies may be generated.

又前記断続信号の周期は前記測定対象物が移動体であった場合に、該移動体の移動による前記断続変換信号の位相変化が無視できる早さに設定されるので測定対象物が移動体であっても距離測定が可能となる。   The period of the intermittent signal is set to a speed at which the phase change of the intermittent conversion signal due to the movement of the moving object is negligible when the measuring object is a moving object. Even if it exists, distance measurement becomes possible.

又断続変調測距光を所定の断続数で一巡する断続パターンを生成させ、前記断続変換信号を断続パターン毎に複数回積算され、得られた積算波形の断続幅、断続周期から、複数の近接周波数を特定し、それぞれの断続変換信号の平均位相を求め、平均位相から精密測定値を求め、平均位相差から粗測定距離値を求め、精密測定距離値と、粗測定距離値から測定対象物の距離を測定するので、要求される測定精度に対応して適宜断続数を設定することができる。   In addition, an intermittent pattern that makes a cycle of intermittent modulation ranging light at a predetermined intermittent number is generated, and the intermittent conversion signal is integrated a plurality of times for each intermittent pattern, and from the intermittent width and intermittent period of the obtained integrated waveform, a plurality of proximity patterns are obtained. The frequency is specified, the average phase of each intermittent conversion signal is obtained, the precise measurement value is obtained from the average phase, the coarse measurement distance value is obtained from the average phase difference, and the measurement object is obtained from the precise measurement distance value and the coarse measurement distance value. Therefore, the intermittent number can be set as appropriate according to the required measurement accuracy.

又電気回路上の構成要素は1つの周波数に対応するものでよく、回路構成が簡素になり、更に周波数が近接しているので、Qの低いフィルタ1つでよく、Qが低いので、近接周波数のそれぞれの位相ずれへの影響が少なくなり、精密測定と粗測定とのずれによる異常測定が生じにくい。   Also, the components on the electric circuit may correspond to one frequency, the circuit configuration is simplified, and the frequencies are close to each other, so only one filter with a low Q is sufficient, and the Q is low, so The influence on each phase shift is reduced, and abnormal measurement due to the shift between the precise measurement and the coarse measurement is less likely to occur.

又断続変調測距光の受光パルスの遅延時間で測距を行うので、長距離測定が可能であり、長距離測定の為に要される変調周波数を省略でき、更にパルス光の発光間隔を任意に設定できるので、最大測定距離を、測定状況に応じて容易に変更できる。   In addition, since distance measurement is performed with the delay time of the light reception pulse of intermittent modulation ranging light, long distance measurement is possible, the modulation frequency required for long distance measurement can be omitted, and the pulse light emission interval can be arbitrarily set Therefore, the maximum measurement distance can be easily changed according to the measurement situation.

又複数の近接周波数から得られた精密測定距離値と粗測定距離値の差が所定値以内でない場合、異常信号を発生させるので、異常測定値を排除でき、測定の信頼性が向上する。   Further, when the difference between the precise measurement distance value and the rough measurement distance value obtained from a plurality of adjacent frequencies is not within a predetermined value, an abnormal signal is generated, so that the abnormal measurement value can be eliminated and the measurement reliability is improved.

又複数の近接周波数の断続切替えは、各周波数毎に、所定の周期ずらして行い、周波数変換された前記断続変換信号は、所定の周期ずらしてから位相測定を行うので、誤差の少ない測定が可能となる。   In addition, intermittent switching of multiple adjacent frequencies is performed with a predetermined period shifted for each frequency, and the phase conversion is performed after shifting the predetermined frequency of the intermittent conversion signal after frequency conversion. It becomes.

1 測距光学系
2 射出光学系
3 受光光学系
4 視準光学系
5 測定対象物
6 測距光軸
7 射出光軸
8 受光光軸
9 視準光軸
11 発光素子
14 光量調整器
18 ダイクロイックミラー
21 受光素子
24 内部参照光学系
25 光路切替え器
27 演算処理部
31 基準信号発生器
33 第1信号発生器
34 第2信号発生器
35 第1断続パルス発生器
36 第2断続パルス発生器
39 タイミング信号発生器
43 ミキシング回路
47 演算制御部
DESCRIPTION OF SYMBOLS 1 Distance measuring optical system 2 Emission optical system 3 Light receiving optical system 4 Collimating optical system 5 Measuring object 6 Distance measuring optical axis 7 Ejecting optical axis 8 Receiving optical axis 9 Collimating optical axis 11 Light emitting element 14 Light quantity adjuster 18 Dichroic mirror DESCRIPTION OF SYMBOLS 21 Light receiving element 24 Internal reference optical system 25 Optical path switch 27 Operation processing part 31 Reference signal generator 33 1st signal generator 34 2nd signal generator 35 1st intermittent pulse generator 36 2nd intermittent pulse generator 39 Timing signal Generator 43 Mixing circuit 47 Operation control unit

Claims (6)

測距光を発する発光素子と、複数の近接周波数を生成する信号発生器と、前記複数の近接周波数をそれぞれ断続し、所定幅にパルス化した変調信号と、該変調信号により所定幅にパルス化した断続変調測距光を前記近接周波数毎に順次切替え射出する射出光学系と、測定対象物からの反射測距光を受光し、所定パルス幅の断続受光信号を発生する受光部と、それぞれの所定の周波数の差を有する基準周波数信号を発する基準信号発生器と、前記受光部からの前記断続受光信号を前記基準周波数信号とのミキシングにより周波数変換し、それぞれの近接周波数信号に対応し、パルス幅を有する断続変換信号を得る周波数変換部と、演算制御部とを具備し、前記断続受光信号のパルス幅が、前記断続変換信号の周期より長い時間幅となる様に設定され、前記演算制御部は、複数の近接周波数に対し前記断続受光信号の位相を求め精密測定距離を演算し、又前記各断続変換信号相互の位相差を求めて粗測定距離値を演算し、該粗測定距離値と精密測定距離値とを合わせることにより距離を測定する様構成したことを特徴とする光波距離計。 A light emitting element that emits distance measuring light, a signal generator that generates a plurality of adjacent frequencies, a modulation signal that is intermittently pulsed to each of the plurality of adjacent frequencies, and pulsed to a predetermined width by the modulation signal An emission optical system that sequentially switches and emits the intermittent modulation ranging light for each proximity frequency, a light receiving unit that receives reflected ranging light from the measurement object, and generates an intermittent light reception signal having a predetermined pulse width; A reference signal generator that emits a reference frequency signal having a predetermined frequency difference, and frequency conversion of the intermittent light reception signal from the light receiving unit by mixing with the reference frequency signal, corresponding to each adjacent frequency signal, pulse A frequency conversion unit that obtains an intermittent conversion signal having a width; and an arithmetic control unit, wherein the pulse width of the intermittent light reception signal is set to be longer than the period of the intermittent conversion signal. It is, before Symbol arithmetic control unit calculates a precise measured distance for a plurality of proximate frequencies obtains a phase of the intermittent light signal, also the calculated coarse measurement distance value seeking phase difference between the intermittent converted signals mutually A light wave distance meter configured to measure a distance by combining the rough measurement distance value and the precision measurement distance value. 前記断続変調測距光を所定の断続数で一巡する断続パターンを生成させ、前記断続変換信号を断続パターン毎に複数回積算し、得られた積算波形の断続幅、断続周期から、複数の近接周波数を特定し、それぞれの断続変換信号の平均位相を求め、平均位相から精密測定距離値を求め、前記各断続変換信号相互の平均位相差から粗測定距離値を求め、精密測定距離値と、粗測定距離値から測定対象物の距離を測定する請求項1に記載の光波距離計。   The intermittent modulation ranging light is generated with an intermittent pattern that makes a round with a predetermined number of intermittent pulses, the intermittent conversion signal is integrated multiple times for each intermittent pattern, and a plurality of proximity is obtained from the intermittent width and intermittent period of the obtained integrated waveform. Specify the frequency, determine the average phase of each intermittent conversion signal, determine the precise measurement distance value from the average phase, determine the coarse measurement distance value from the average phase difference between each of the intermittent conversion signals, precise measurement distance value, The light wave distance meter according to claim 1, wherein the distance of the measurement object is measured from the rough measurement distance value. 複数の近接周波数の内、少なくとも2つに対応する断続変換信号の周波数は同じである請求項1に記載の光波距離計。   The light wave rangefinder according to claim 1, wherein the frequencies of the intermittent conversion signals corresponding to at least two of the plurality of adjacent frequencies are the same. 前記演算制御部は、前記断続変調測距光の受光パルスの遅延時間で測距を行う請求項1に記載の光波距離計。   The lightwave distance meter according to claim 1, wherein the arithmetic control unit performs distance measurement based on a delay time of a light reception pulse of the intermittent modulation ranging light. 前記演算制御部は、複数の近接周波数から得られた精密測定距離値と粗測定距離値の差が所定値以内でない場合、異常信号を発生させる請求項1に記載の光波距離計。   2. The optical rangefinder according to claim 1, wherein the arithmetic control unit generates an abnormal signal when a difference between a precision measurement distance value and a coarse measurement distance value obtained from a plurality of adjacent frequencies is not within a predetermined value. 複数の近接周波数の断続切替えは、各周波数毎に、所定の周期ずらして行い、周波数変換された前記断続変換信号は、所定の周期ずらしてから位相測定を行う請求項1に記載の光波距離計。   2. The optical distance meter according to claim 1, wherein intermittent switching of a plurality of adjacent frequencies is performed with a predetermined period shifted for each frequency, and the phase conversion is performed after shifting the intermittent conversion signal subjected to frequency conversion by a predetermined period. .
JP2018175094A 2018-09-19 2018-09-19 Light wave distance meter Active JP6609360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175094A JP6609360B2 (en) 2018-09-19 2018-09-19 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175094A JP6609360B2 (en) 2018-09-19 2018-09-19 Light wave distance meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015040504A Division JP6410258B2 (en) 2015-03-02 2015-03-02 Light wave distance meter

Publications (3)

Publication Number Publication Date
JP2019039924A true JP2019039924A (en) 2019-03-14
JP2019039924A5 JP2019039924A5 (en) 2019-05-23
JP6609360B2 JP6609360B2 (en) 2019-11-20

Family

ID=65726446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175094A Active JP6609360B2 (en) 2018-09-19 2018-09-19 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP6609360B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491363A (en) * 1977-12-28 1979-07-19 Tokyo Optical Light wave range finder with selffchecking function
JPS56132580A (en) * 1980-03-10 1981-10-16 Tokyo Optical Co Ltd Light wave rangemeter
JPH03239984A (en) * 1990-02-19 1991-10-25 Sokkisha Co Ltd Range-finding method for light wave range-finder
JP2001051044A (en) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd Distance measuring apparatus
JP2001183458A (en) * 1999-12-28 2001-07-06 Tadanori Miyauchi Distance sensor
JP2001255369A (en) * 2000-02-14 2001-09-21 Hilti Ag Method for photoelectronically measuring distance and apparatus based on the method
JP2004219285A (en) * 2003-01-16 2004-08-05 Topcon Corp Optical wave range finder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491363A (en) * 1977-12-28 1979-07-19 Tokyo Optical Light wave range finder with selffchecking function
JPS56132580A (en) * 1980-03-10 1981-10-16 Tokyo Optical Co Ltd Light wave rangemeter
JPH03239984A (en) * 1990-02-19 1991-10-25 Sokkisha Co Ltd Range-finding method for light wave range-finder
JP2001051044A (en) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd Distance measuring apparatus
JP2001183458A (en) * 1999-12-28 2001-07-06 Tadanori Miyauchi Distance sensor
JP2001255369A (en) * 2000-02-14 2001-09-21 Hilti Ag Method for photoelectronically measuring distance and apparatus based on the method
JP2004219285A (en) * 2003-01-16 2004-08-05 Topcon Corp Optical wave range finder

Also Published As

Publication number Publication date
JP6609360B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6410258B2 (en) Light wave distance meter
US7623222B2 (en) Single-channel heterodyne distance-measuring method
JP4104991B2 (en) Light wave distance meter
JP2896782B2 (en) Pulse type lightwave distance meter
JP6514920B2 (en) Light range finder
US7940378B2 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
US8692981B2 (en) Evaluation device, measuring arrangement and method for path length measurement
JP2008524563A5 (en)
JP3583906B2 (en) Optical rangefinder
JP2015094760A (en) Synthetic wave laser ranging sensors and methods
JPH0552957A (en) Distance-measuring device
US11269074B2 (en) Electro-optical distance meter and electro-optical distance measurement method
JP6609360B2 (en) Light wave distance meter
US20060132754A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JP6902902B2 (en) Light wave rangefinder
US20200309951A1 (en) Light wave distance meter
JP7192959B2 (en) Ranging device and ranging method
US20230015894A1 (en) Light wave distance meter
JP6902901B2 (en) Light wave rangefinder
JPH05323028A (en) Distance measurement method by light wave range finder
JPH04118579A (en) Distance measuring device
JPS63266302A (en) Length measuring instrument by laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6609360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250