JP2019038717A - Single crystal film having crystal structure of columbite, electronic apparatus and optical instrument - Google Patents
Single crystal film having crystal structure of columbite, electronic apparatus and optical instrument Download PDFInfo
- Publication number
- JP2019038717A JP2019038717A JP2017161674A JP2017161674A JP2019038717A JP 2019038717 A JP2019038717 A JP 2019038717A JP 2017161674 A JP2017161674 A JP 2017161674A JP 2017161674 A JP2017161674 A JP 2017161674A JP 2019038717 A JP2019038717 A JP 2019038717A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- film
- crystal film
- columbite
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、コロンバイトの結晶構造(a crystal structure of columbite)を有する単結晶膜に関し、特に、コロンバイトの結晶構造を有する酸化スズ単結晶膜に関する。さらに、本発明は、コロンバイトの結晶構造を有する単結晶膜を含む電子機器及び光学機器に関する。 The present invention relates to a single crystal film having a crystal structure of columbite, and more particularly to a tin oxide single crystal film having a crystal structure of columbite. Furthermore, the present invention relates to an electronic apparatus and an optical apparatus including a single crystal film having a Columbite crystal structure.
携帯端末(PDA)等の電子表示機器分野において、その表示装置やセンサーの電極には、インジウム(In)、亜鉛(Zn)、錫(Sn)等に、所望により、他の不純物を添加した酸化物、窒化物、酸窒化物などにより、形成される透明導電膜や、銅やその合金等により形成される金属膜が用いられている。中でも透明導電膜は、電子表示機器の表示装置に設置されるタッチパネルの構成要素であることから、その需要が高まっている。 In the field of electronic display devices such as personal digital assistants (PDAs), the electrodes of display devices and sensors are oxidized by adding other impurities to indium (In), zinc (Zn), tin (Sn), etc. as desired. A transparent conductive film formed of an oxide, nitride, oxynitride, or the like, or a metal film formed of copper or an alloy thereof is used. In particular, the demand for transparent conductive films is increasing because they are components of touch panels installed in display devices of electronic display devices.
近年では、電子表示機器分野などにおいて、透明導電膜の光学電気特性の向上が課題となってきており、電子表示装置に使用される液晶パネルの高精細化に伴い、画素ピッチの縮小に対応して透明導電膜の導電率向上や透過率向上が求められている。特許文献1には、基材上に積層するためのITO膜及びFTO膜からなる透明電極膜であって、FTO膜の表面の結晶構造の一部又は全部が斜方晶であることを特徴とする透明電極膜が記載されている。しかしながら、膜に含まれる多結晶部分や非晶部分によって、表面凹凸があり、光透過率や導電率において、必ずしも満足のいくものではなかった。 In recent years, in the field of electronic display devices and the like, improvement of the opto-electrical properties of transparent conductive films has become a challenge, and with the increase in the definition of liquid crystal panels used in electronic display devices, the reduction of pixel pitch is supported. Therefore, there is a demand for improving the conductivity and transmittance of the transparent conductive film. Patent Document 1 is a transparent electrode film composed of an ITO film and an FTO film to be laminated on a substrate, wherein a part or all of the crystal structure on the surface of the FTO film is orthorhombic. A transparent electrode film is described. However, the polycrystalline portion and the amorphous portion included in the film have surface irregularities, and the light transmittance and conductivity are not always satisfactory.
本発明は、表面平滑性に優れ、光学電気特性に優れた単結晶膜を提供することを目的とする。また、本発明は、光学電気特性に優れた単結晶膜を含む電子機器及び光学機器を提供することも目的とする。 It is an object of the present invention to provide a single crystal film having excellent surface smoothness and excellent optoelectric properties. Another object of the present invention is to provide an electronic device and an optical device including a single crystal film having excellent optoelectric characteristics.
本発明者らは、上記目的を達成すべく鋭意検討した結果、2価のハロゲン化スズを用いてミストCVD法により、YSZ基板上に酸化スズを形成すると、驚くべきことに、コロンバイトの結晶構造を有する酸化スズの単結晶膜が形成できることを見出し、得られた単結晶膜が、表面平滑性に優れ、光透過性が高いこと等を種々知見し、このような単結晶膜が従来の問題を一挙に解決できるものであることを見出した。
また、本発明者らは、上記知見を得た後、さらに検討を重ね、本発明を完成させるに至った。
As a result of intensive studies to achieve the above object, the present inventors surprisingly found that when tin oxide was formed on a YSZ substrate by mist CVD using divalent tin halide, the crystal of Columbite was The inventors have found that a single crystal film of tin oxide having a structure can be formed, and variously found that the obtained single crystal film has excellent surface smoothness and high light transmittance. I found that the problem can be solved at once.
Moreover, after obtaining the said knowledge, the present inventors repeated examination further, and came to complete this invention.
すなわち、本発明は、以下の発明に関する。
[1] コロンバイトの結晶構造を有する単結晶からなり、実質的に炭素を含まないことを特徴とする単結晶膜。
[2] 単結晶が金属酸化物を含む、前記[1]に記載の単結晶膜。
[3] 金属酸化物がスズ(Sn)を含む、前記[2]に記載の単結晶膜。
[4] 単結晶が酸化スズ(SnO2)を含む、前記[1]〜[3]のいずれかに記載の単結晶膜。
[5] さらに、ドーパントを含む、前記[1]〜[4]のいずれかに記載の単結晶膜。
[6] ドーパントは、フッ素、銀、又はアンチモンを含む、前記[5]に記載の単結晶膜。
[7] 主面が、(100)結晶面又は(200)結晶面である前記[1]〜[6]のいずれかに記載の単結晶膜。
[8] 単結晶膜と、非晶膜とが、直接又は他の層を介して積層されている積層構造体であって、単結晶膜が、コロンバイトの結晶構造を有する単結晶からなり、非晶膜が少なくともスズを含むことを特徴とする積層構造体。
[9] 前記[1]〜[7]のいずれかに記載の単結晶膜又は前記[8]に記載の積層構造体を含む、電子機器又は光学機器。
That is, the present invention relates to the following inventions.
[1] A single crystal film comprising a single crystal having a columbite crystal structure and substantially not containing carbon.
[2] The single crystal film according to [1], wherein the single crystal includes a metal oxide.
[3] The single crystal film according to [2], wherein the metal oxide includes tin (Sn).
[4] The single crystal film according to any one of [1] to [3], wherein the single crystal includes tin oxide (SnO 2 ).
[5] The single crystal film according to any one of [1] to [4], further including a dopant.
[6] The single crystal film according to [5], wherein the dopant includes fluorine, silver, or antimony.
[7] The single crystal film according to any one of [1] to [6], wherein the main surface is a (100) crystal plane or a (200) crystal plane.
[8] A laminated structure in which a single crystal film and an amorphous film are laminated directly or via another layer, and the single crystal film is made of a single crystal having a Columbite crystal structure, A laminated structure, wherein the amorphous film contains at least tin.
[9] An electronic device or an optical device including the single crystal film according to any one of [1] to [7] or the laminated structure according to [8].
本発明の単結晶膜は、表面平滑性に優れ、光学電気特性に優れている。また、本発明の電子機器及び光学機器はそれぞれ、前記単結晶膜の光学電気特性の効果を奏する。 The single crystal film of the present invention has excellent surface smoothness and optoelectric properties. In addition, each of the electronic apparatus and the optical apparatus according to the present invention has the effect of the optoelectric characteristics of the single crystal film.
本発明の単結晶膜は、コロンバイトの結晶構造を有する単結晶からなり、実質的に炭素を含まないことを特長とする。前記単結晶はコロンバイトの結晶構造を有していれば特に限定されず、通常、金属酸化物を含む。前記金属酸化物としては、金属と酸素を含む化合物であれば特に限定されないが、例えば、周期律表第14族金属の酸化物などが挙げられる。周期律表第14族金属としては、例えば、スズ(Sn)、ゲルマニウム(Ge)、鉛(Pb)などが挙げられる。本発明においては、前記金属酸化物が、酸化スズ(SnO2)であるのが、光学電気特性がより向上するので好ましい。なお、「実質的に炭素を含まない」とは、前記単結晶膜を、SIMS装置と標準試料を用いてイオン濃度に換算し、炭素がバックグラウンドノイズと同等であり、存在の有無が確認できないほど微量、つまり、実質的に含有していないことを意味する。また、「周期律表」は、国際純正応用化学連合(International Union of Pure and Applied Chemistry)(IUPAC)にて定められた周期律表を意味する。 The single crystal film of the present invention is made of a single crystal having a Columbite crystal structure and is substantially free of carbon. The single crystal is not particularly limited as long as it has a columbite crystal structure, and usually includes a metal oxide. Although it will not specifically limit if it is a compound containing a metal and oxygen as said metal oxide, For example, the oxide of a periodic table group 14 metal etc. are mentioned. Examples of the Periodic Table Group 14 metal include tin (Sn), germanium (Ge), and lead (Pb). In the present invention, it is preferable that the metal oxide is tin oxide (SnO 2 ) because the optical and electrical characteristics are further improved. Note that “substantially no carbon” means that the single crystal film is converted to an ion concentration using a SIMS device and a standard sample, and carbon is equivalent to background noise, and the presence or absence cannot be confirmed. It means that it is very small, that is, it is not substantially contained. In addition, the “periodic table” means a periodic table defined by the International Union of Pure and Applied Chemistry (IUPAC).
前記単結晶膜は、ドーパントを含んでいてもよい。前記ドーパントは、n型ドーパント及びp型ドーパント等のいずれであってもよく、公知のドーパントであってよい。本発明においては、前記ドーパントが、フッ素、銀、又はアンチモンを含むのが好ましい。ドーパントの含有量は、特に限定されないが、前記単結晶膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%〜20原子%であるのがより好ましく、0.00001原子%〜10原子%であるのが最も好ましい。このような好ましい範囲とすることで、前記単結晶膜の電気特性をより向上させることができる。 The single crystal film may contain a dopant. The dopant may be any of an n-type dopant and a p-type dopant, and may be a known dopant. In the present invention, the dopant preferably contains fluorine, silver, or antimony. The content of the dopant is not particularly limited, but is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic% in the composition of the single crystal film, and 0.00001. Most preferably, it is from atomic percent to 10 atomic percent. By setting it as such a preferable range, the electrical property of the said single crystal film can be improved more.
また、前記単結晶膜の面方位等は特に限定されないが、本発明においては、主面が(100)結晶面又は(200)結晶面であるのが、透過性により優れたものになるので好ましい。また、前記単結晶膜は、オフ角を有していてもよい。「オフ角」とは、所定の結晶面(主面)を基準面として形成される傾斜角をいい、通常、所定の結晶面(主面)と結晶成長面とのなす角度をいう。前記オフ角の傾斜方向は特に限定されないが、好適には例えば0.2°〜8.0°などが挙げられる。このような好ましいオフ角を有することにより、前記単結晶膜の電気特性がさらにより優れたものになる。 Further, although the plane orientation and the like of the single crystal film are not particularly limited, in the present invention, it is preferable that the main surface is the (100) crystal plane or the (200) crystal plane because the transparency is excellent. . The single crystal film may have an off angle. The “off angle” refers to an inclination angle formed with a predetermined crystal plane (main surface) as a reference plane, and usually refers to an angle formed between the predetermined crystal surface (main surface) and the crystal growth surface. The inclination direction of the off angle is not particularly limited, but preferably includes 0.2 ° to 8.0 °, for example. By having such a preferable off angle, the electrical characteristics of the single crystal film are further improved.
以下、前記単結晶膜の好ましい製造方法について説明するが、本発明はこれら好ましい製造方法に限定されない。 Hereinafter, although the preferable manufacturing method of the said single crystal film is demonstrated, this invention is not limited to these preferable manufacturing methods.
前記単結晶膜の好ましい製造方法としては、例えば図1のようなミストCVD装置を用いて、原料溶液を霧化又は液滴化し(霧化・液滴化工程)、得られたミスト又は液滴をキャリアガスで成膜室内に搬送し(搬送工程)、ついで成膜室内で前記ミスト又は液滴を熱反応させることによって、基板上に、単結晶膜を成膜する(成膜工程)ことなどが挙げられる。 As a preferable method for producing the single crystal film, for example, a mist CVD apparatus as shown in FIG. 1 is used to atomize or drop the raw material solution (atomization / droplet forming step), and the obtained mist or droplets are obtained. Is transferred into the film forming chamber with a carrier gas (transfer process), and then the mist or droplet is thermally reacted in the film forming chamber to form a single crystal film on the substrate (film forming process). Is mentioned.
(基板)
前記基板としては、特に限定されないが、主面の全部又は一部に、正方晶の結晶構造を有している基板などが好適な例として挙げられ、より好適には、主面が(100)結晶面又は(200)結晶面の正方晶の結晶構造を有している基板などが挙げられる。また、前記結晶基板は、オフ角を有してしてもよい。前記結晶基板の基板形状は、板状であって、前記単結晶膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよい。前記基板の形状は、特に限定されず、略円形状(例えば、円形、楕円形など)であってもよいし、多角形状(例えば、3角形、正方形、長方形、5角形、6角形、7角形、8角形、9角形など)であってもよく、様々な形状を好適に用いることができる。また、本発明においては、大面積の基板を用いることもでき、このような大面積の基板を用いることによって、前記単結晶膜の面積を大きくすることができる。前記結晶基板の基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。例えば、イットリウム安定化ジルコニア(YSZ)などが挙げられる。また、前記結晶基板の表面には、バッファ層等が設けられていてもよい。前記バッファ層としては、斜方晶の金属酸化膜や単結晶膜材料の非晶膜などが挙げられる。なお、このようなバッファ層を用いて形成された単結晶膜とバッファ層との積層構造体も本発明に含まれる。前記積層構造体は、前記単結晶膜と、非晶膜との積層構造体が好ましく、前記非晶膜は、特に限定されないが、本発明においては、少なくともスズを含むのが好ましく、酸化スズであるのがより好ましい。
(substrate)
Although it does not specifically limit as said board | substrate, The board | substrate etc. which have a tetragonal crystal structure in all or one part of the main surface are mentioned as a suitable example, More preferably, a main surface is (100). Examples thereof include a substrate having a crystal structure of a tetragonal crystal plane or a (200) crystal plane. The crystal substrate may have an off angle. The substrate shape of the crystal substrate is not particularly limited as long as it is a plate shape and serves as a support for the single crystal film. It may be an insulator substrate, a semiconductor substrate, or a conductive substrate. The shape of the substrate is not particularly limited, and may be a substantially circular shape (for example, a circle or an ellipse), or a polygonal shape (for example, a triangle, a square, a rectangle, a pentagon, a hexagon, a heptagon). , Octagons, 9-gons, etc.), and various shapes can be suitably used. In the present invention, a large-area substrate can also be used, and the area of the single crystal film can be increased by using such a large-area substrate. The substrate material of the crystal substrate is not particularly limited as long as the object of the present invention is not impaired, and may be a known material. Examples thereof include yttrium stabilized zirconia (YSZ). In addition, a buffer layer or the like may be provided on the surface of the crystal substrate. Examples of the buffer layer include an orthorhombic metal oxide film and an amorphous film made of a single crystal film material. Note that a stacked structure of a single crystal film formed using such a buffer layer and the buffer layer is also included in the present invention. The laminated structure is preferably a laminated structure of the single crystal film and an amorphous film, and the amorphous film is not particularly limited, but in the present invention, it preferably contains at least tin, and is composed of tin oxide. More preferably.
(霧化・液滴化工程)
霧化・液滴化工程は、原料溶液を霧化又は液滴化する。原料溶液の霧化手段又は液滴化手段は、原料溶液を霧化又は液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段又は液滴化手段が好ましい。超音波を用いて得られたミスト又は液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは0.1〜10μmである。
(Atomization / droplet forming process)
In the atomization / droplet forming step, the raw material solution is atomized or dropletized. The atomizing means or the droplet forming means of the raw material solution is not particularly limited as long as the raw material solution can be atomized or formed into droplets, and may be a known means, but in the present invention, a mist using ultrasonic waves is used. The forming means or the droplet forming means is preferred. Mist or droplets obtained using ultrasonic waves are preferable because they have an initial velocity of zero and float in the air.For example, instead of spraying like a spray, they can be suspended in a space and transported as a gas. Since it is a possible mist, there is no damage due to collision energy, which is very suitable. The droplet size is not particularly limited, and may be a droplet of about several mm, but is preferably 50 μm or less, more preferably 0.1 to 10 μm.
(原料溶液)
前記原料溶液は、ミストCVDにより、前記単結晶膜が得られる溶液であれば特に限定されない。前記原料溶液としては、例えば、2価の前記金属(好ましくは周期律表第14族金属)のハロゲン化物(例えばフッ化物、塩化物、臭化物又はヨウ化物等)の水溶液などが挙げられる。原料溶液中の前記金属の含有量は、本発明の目的を阻害しない限り特に限定されないが、好ましくは、0.001モル%〜50モル%であり、より好ましくは0.01モル%〜50モル%である。
(Raw material solution)
The raw material solution is not particularly limited as long as the single crystal film can be obtained by mist CVD. Examples of the raw material solution include an aqueous solution of a divalent metal (preferably a group 14 metal of the periodic table) halide (eg, fluoride, chloride, bromide, or iodide). The content of the metal in the raw material solution is not particularly limited as long as the object of the present invention is not impaired, but is preferably 0.001 mol% to 50 mol%, more preferably 0.01 mol% to 50 mol. %.
また、原料溶液には、前記ドーパントが含まれていてもよい。原料溶液にドーパントを含ませることにより、イオン注入等を行わずに、結晶構造を壊すことなく、単結晶膜の導電性を容易に制御することができる。前記ドーパントとしては、例えば前記金属が少なくともスズ(Sn)を含む場合には、フッ素、銀又はアンチモン等が挙げられる。前記ドーパントの濃度は、通常、約1×1016/cm3〜1×1022/cm3であってもよいし、また、ドーパントの濃度を例えば約1×1017/cm3以下の低濃度にしてもよいし、ドーパントを約1×1020/cm3以上の高濃度で含有させてもよい。 Further, the dopant may be contained in the raw material solution. By including the dopant in the raw material solution, the conductivity of the single crystal film can be easily controlled without performing ion implantation or the like and without breaking the crystal structure. Examples of the dopant include fluorine, silver, and antimony when the metal contains at least tin (Sn). The concentration of the dopant may be generally about 1 × 10 16 / cm 3 to 1 × 10 22 / cm 3 , and the concentration of the dopant is, for example, a low concentration of about 1 × 10 17 / cm 3 or less. Alternatively, the dopant may be contained at a high concentration of about 1 × 10 20 / cm 3 or more.
原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水又は水とアルコールとの混合溶媒であるのがより好ましく、水であるのが最も好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明においては、超純水が好ましい。 The solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent. In the present invention, the solvent preferably contains water, more preferably water or a mixed solvent of water and alcohol, and most preferably water. More specifically, examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. Ultrapure water is preferred.
(搬送工程)
搬送工程では、キャリアガスでもって前記ミスト又は前記液滴を成膜室内に搬送する。前記キャリアガスは、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。希釈ガスを用いる場合には、希釈ガスの流量が、0.001〜5L/分であるのが好ましく、0.1〜5L/分であるのがより好ましい。
(Conveying process)
In the transfer step, the mist or the droplet is transferred into the film forming chamber with a carrier gas. The carrier gas is not particularly limited as long as it does not hinder the object of the present invention. For example, oxygen, ozone, an inert gas such as nitrogen or argon, or a reducing gas such as hydrogen gas or forming gas can be mentioned as a suitable example. . Further, the type of carrier gas may be one, but it may be two or more, and a diluent gas with a reduced flow rate (for example, 10-fold diluted gas) is further used as the second carrier gas. Also good. Further, the supply location of the carrier gas is not limited to one location but may be two or more locations. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min. When the dilution gas is used, the flow rate of the dilution gas is preferably 0.001 to 5 L / min, and more preferably 0.1 to 5 L / min.
(成膜工程)
成膜工程では、成膜室内で前記ミスト又は液滴を熱反応させることによって、前記結晶基板上に、単結晶膜を成膜する。熱反応は、熱でもって前記ミスト又は液滴が反応すればそれでよく、化学反応であってもよいし、物理反応であってもよい。その他の反応であってもよい。反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、200℃〜500℃がより好ましく、250℃〜450℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下及び減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、設定することができる。
(Film formation process)
In the film forming step, a single crystal film is formed on the crystal substrate by thermally reacting the mist or droplets in the film forming chamber. The thermal reaction may be a thermal reaction as long as the mist or droplet reacts with heat, and may be a chemical reaction or a physical reaction. Other reactions may be used. The reaction conditions are not particularly limited as long as the object of the present invention is not impaired. In this step, the thermal reaction is usually performed at a temperature equal to or higher than the evaporation temperature of the solvent, but is preferably not too high (for example, 1000 ° C.) or less, more preferably 200 ° C. to 500 ° C., more preferably 250 ° C. to 450 ° C. Is most preferred. Further, the thermal reaction may be performed under any atmosphere such as a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere and an oxygen atmosphere as long as the object of the present invention is not impaired. Although it may be carried out under any conditions of reduced pressure and reduced pressure, it is preferably carried out under atmospheric pressure in the present invention. The film thickness can be set by adjusting the film formation time.
上記のようにして得られた単結晶膜又は積層構造体は、表面平滑性が良好であり、光学電気特性に優れており、工業的に有用なものである。前記単結晶膜又は前記積層構造体は、そのままで又は必要に応じて表面処理等が施されて、各種機器又はその部品等に用いられる。前記機器としては、電子機器又は光学機器などが好適な例として挙げられる。前記電子機器又は光学機器としては、光学物品、電気機器、電子部品、燃料電池、太陽電池、車両、産業用機器などが挙げられ、より具体的には、例えば、タッチスクリーン、色素増感型太陽電池、薄膜太陽電池、キャパシタ、レンズ、窓材などが挙げられる。 The single crystal film or laminated structure obtained as described above has good surface smoothness, excellent optical and electrical characteristics, and is industrially useful. The single crystal film or the laminated structure is used as it is or after being subjected to surface treatment or the like as necessary, for various devices or parts thereof. Preferred examples of the device include an electronic device and an optical device. Examples of the electronic device or the optical device include an optical article, an electric device, an electronic component, a fuel cell, a solar cell, a vehicle, and an industrial device. More specifically, for example, a touch screen, a dye-sensitized solar device A battery, a thin film solar cell, a capacitor, a lens, a window material, etc. are mentioned.
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
(実施例1)
1.成膜装置
図1を用いて、本実施例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
Example 1
1. Film Forming Apparatus The mist CVD apparatus used in this example will be described with reference to FIG. The mist CVD apparatus 19 includes a susceptor 21 on which the substrate 20 is placed, a carrier gas supply means 22a for supplying a carrier gas, and a flow rate adjusting valve 23a for adjusting the flow rate of the carrier gas sent from the carrier gas supply means 22a. The carrier gas (dilution) supply means 22b for supplying the carrier gas (dilution), the flow rate adjusting valve 23b for adjusting the flow rate of the carrier gas sent from the carrier gas (dilution) supply means 22b, and the raw material solution 24a are accommodated. Mist generating source 24, a container 25 in which water 25a is placed, an ultrasonic vibrator 26 attached to the bottom surface of the container 25, a supply pipe 27 made of a quartz tube having an inner diameter of 40 mm, and a peripheral portion of the supply pipe 27 And a heater 28 installed in the vehicle. The susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal plane. Both the supply pipe 27 and the susceptor 21 serving as a film formation chamber are made of quartz, so that impurities derived from the apparatus are prevented from being mixed into the film formed on the substrate 20.
2.原料溶液の作製
二塩化スズ水溶液(SnCl2・2H2O)0.05mol/Lを原料溶液24aとした。
2. Preparation of raw material solution An aqueous tin dichloride solution (SnCl 2 .2H 2 O) 0.05 mol / L was used as the raw material solution 24a.
3.成膜準備
上記2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、YSZ(100)基板をサセプタ21上に設置し、ヒーター28を作動させて成膜室27内の温度を400℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2.5L/minに調節した。なお、キャリアガス(希釈)は用いなかった。また、キャリアガスとして窒素を用いた。
3. Preparation of film formation The raw material solution 24a obtained in the above was accommodated in the mist generating source 24. Next, a YSZ (100) substrate was placed on the susceptor 21 as the substrate 20, and the heater 28 was operated to raise the temperature in the film forming chamber 27 to 400 ° C. Next, the flow control valves 23a and 23b are opened, the carrier gas is supplied from the carrier gas supply means 22a and 22b as the carrier gas source into the film forming chamber 27, and the atmosphere in the film forming chamber 27 is sufficiently filled with the carrier gas. After the replacement, the flow rate of the carrier gas was adjusted to 2.5 L / min. Carrier gas (dilution) was not used. Nitrogen was used as a carrier gas.
4.単結晶膜の形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて原料微粒子を生成した。この原料微粒子が、キャリアガスによって成膜室27内に導入され、大気圧下、400℃にて、供給管27内でミストが反応して、基板20上に単結晶膜が形成された。なお、成膜時間は20分間であった。
4). Formation of Single Crystal Film Next, the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a, whereby the raw material solution 24a was made fine and raw material fine particles were generated. . The raw material fine particles were introduced into the film forming chamber 27 by the carrier gas, and the mist reacted in the supply pipe 27 at 400 ° C. under atmospheric pressure to form a single crystal film on the substrate 20. The film formation time was 20 minutes.
(評価)
上記で得られた単結晶膜について、X線回折装置を用いて、それぞれの結晶構造を測定評価した。結果を図2示す。図2から明らかなとおり、単結晶膜は、コロンバイトの結晶構造を有することがわかる。また、SEMにて単結晶膜を観察した。結果を図3に示す。図3から明らかなように、表面凹凸がなく、非常にきれいな表面であることがわかる。
(Evaluation)
About the single crystal film obtained above, each crystal structure was measured and evaluated using an X-ray diffractometer. The results are shown in FIG. As is apparent from FIG. 2, the single crystal film has a columbite crystal structure. Moreover, the single crystal film was observed with SEM. The results are shown in FIG. As is clear from FIG. 3, it can be seen that the surface is very clean and has no surface irregularities.
(比較例1)
原料溶液として、二塩化スズ水溶液(SnCl2・2H2O)の代わりに、四塩化スズ水溶液(SnCl4・5H2O)を用いたこと以外は、実施例1と同様にして酸化スズを成膜した。得られた膜につき、X線回折装置にて膜の同定を行ったところ、コロンバイトの結晶構造を形成することができなかった。なお、実施例1と比較例1のXRD測定結果を図4に示す。
(Comparative Example 1)
As a raw material solution, tin oxide was formed in the same manner as in Example 1 except that an aqueous solution of tin tetrachloride (SnCl 4 .5H 2 O) was used instead of the aqueous solution of tin dichloride (SnCl 2 .2H 2 O). Filmed. When the obtained film was identified by an X-ray diffractometer, a Columbite crystal structure could not be formed. The XRD measurement results of Example 1 and Comparative Example 1 are shown in FIG.
(実施例2)
成膜温度を500℃としたこと以外は、実施例1と同様にして酸化スズを成膜した。得られた膜の断面を断面SEMにて観察した。結果を図5に示す。図5から明らかなように、得られた単結晶膜は、非常に表面がきれいであることがわかる。
(Example 2)
A tin oxide film was formed in the same manner as in Example 1 except that the film formation temperature was 500 ° C. The cross section of the obtained film was observed with a cross section SEM. The results are shown in FIG. As is apparent from FIG. 5, the obtained single crystal film has a very clean surface.
本発明の単結晶膜は、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができる。 The single crystal film of the present invention can be used in various fields such as electronic parts / electric equipment parts, optical / electrophotographic-related devices, and industrial members.
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
19 Mist CVD apparatus 20 Substrate 21 Susceptor 22a Carrier gas supply means 22b Carrier gas (dilution) supply means 23a Flow control valve 23b Flow control valve 24 Mist generation source 24a Raw material solution 25 Container 25a Water 26 Ultrasonic vibrator 27 Supply pipe 28 Heater 29 Exhaust port
Claims (9)
An electronic device or an optical device comprising the single crystal film according to claim 1 or the laminated structure according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161674A JP7131739B2 (en) | 2017-08-24 | 2017-08-24 | Single crystal film having columbite crystal structure, electronic device and optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161674A JP7131739B2 (en) | 2017-08-24 | 2017-08-24 | Single crystal film having columbite crystal structure, electronic device and optical device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019038717A true JP2019038717A (en) | 2019-03-14 |
JP2019038717A5 JP2019038717A5 (en) | 2020-10-08 |
JP7131739B2 JP7131739B2 (en) | 2022-09-06 |
Family
ID=65726254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017161674A Active JP7131739B2 (en) | 2017-08-24 | 2017-08-24 | Single crystal film having columbite crystal structure, electronic device and optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7131739B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258691A (en) * | 1989-03-31 | 1990-10-19 | Agency Of Ind Science & Technol | Method for manufacturing transparent conductive film |
WO2009157177A1 (en) * | 2008-06-24 | 2009-12-30 | 日本曹達株式会社 | Transparent conductive film having fto/ito multilayer body |
JP2011063452A (en) * | 2009-09-15 | 2011-03-31 | Shinshu Univ | Laminated body and method for manufacturing the same |
JP2016126988A (en) * | 2015-01-08 | 2016-07-11 | 株式会社Flosfia | Transparent conductive film and laminate structure |
-
2017
- 2017-08-24 JP JP2017161674A patent/JP7131739B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258691A (en) * | 1989-03-31 | 1990-10-19 | Agency Of Ind Science & Technol | Method for manufacturing transparent conductive film |
WO2009157177A1 (en) * | 2008-06-24 | 2009-12-30 | 日本曹達株式会社 | Transparent conductive film having fto/ito multilayer body |
JP2011063452A (en) * | 2009-09-15 | 2011-03-31 | Shinshu Univ | Laminated body and method for manufacturing the same |
JP2016126988A (en) * | 2015-01-08 | 2016-07-11 | 株式会社Flosfia | Transparent conductive film and laminate structure |
Also Published As
Publication number | Publication date |
---|---|
JP7131739B2 (en) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110094577A1 (en) | Conductive metal oxide films and photovoltaic devices | |
JP3227449B2 (en) | Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same | |
US8642377B2 (en) | Method of producing conductive thin film | |
NO144140B (en) | PROCEDURE FOR PREPARING TRANSPARENT FILM TINNOXY MOVIES | |
JP6701472B2 (en) | Crystalline oxide semiconductor film and semiconductor device | |
WO2012143707A1 (en) | Method for coating substrates | |
JP2008078113A (en) | Device for manufacturing transparent conductive substrate | |
JP6876893B2 (en) | Method for manufacturing yttrium oxide film | |
CN101477846B (en) | Transparent substrate with transparent conductive film, method for producing the same, and photoelectric conversion element including the substrate | |
JP2016126988A (en) | Transparent conductive film and laminate structure | |
US4331707A (en) | Process for thin film deposition of cadmium sulfide | |
US20100288348A1 (en) | Solar cell device and method for fabricating the same | |
JP6638152B2 (en) | Method for producing phosphor composition and light emitting device | |
JP2017110287A (en) | Film deposition method of inorganic oxide film | |
JP7453605B2 (en) | Method for manufacturing single crystal film | |
JP7131739B2 (en) | Single crystal film having columbite crystal structure, electronic device and optical device | |
JP2021163946A (en) | Method of manufacturing crystal film | |
US8337943B2 (en) | Nano-whisker growth and films | |
JPWO2008117605A1 (en) | Large-area transparent conductive film and method for producing the same | |
JP2017147231A (en) | Manufacturing method of transparent conductive film and laminate structure | |
JP2017162816A (en) | Manufacturing method of transparent conductive film and laminate structure | |
JP2016157879A (en) | Crystalline oxide semiconductor film and semiconductor device | |
JP6774593B2 (en) | Crystalline oxide film | |
KR101039667B1 (en) | CIS light absorption layer manufacturing method | |
US20050156167A1 (en) | Substrate for photoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200820 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210420 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220118 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7131739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |