JP2019036346A - 画像処理装置、画像処理方法およびプログラム - Google Patents

画像処理装置、画像処理方法およびプログラム Download PDF

Info

Publication number
JP2019036346A
JP2019036346A JP2018200112A JP2018200112A JP2019036346A JP 2019036346 A JP2019036346 A JP 2019036346A JP 2018200112 A JP2018200112 A JP 2018200112A JP 2018200112 A JP2018200112 A JP 2018200112A JP 2019036346 A JP2019036346 A JP 2019036346A
Authority
JP
Japan
Prior art keywords
image processing
time
dimensional shape
processing apparatus
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200112A
Other languages
English (en)
Inventor
知宏 西山
Tomohiro Nishiyama
知宏 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2019036346A publication Critical patent/JP2019036346A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/292Multi-camera tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Abstract

【課題】本発明の画像処理装置は、複雑な処理を必要とすることなく、オブジェクトを高精度に追跡することができる。【解決手段】本発明の画像処理装置は、着目フレーム画像群より時間的に前に得られる先行フレーム画像群から生成された3次元形状モデルに対応するオブジェクトの位置と、前記オブジェクトの移動方向に関する情報とに基づいて、前記着目フレーム画像群におけるオブジェクトの検出範囲を決定する決定手段と、前記先行フレーム画像群のオブジェクトと、前記決定手段により決定された検出範囲内に位置する前記着目フレーム画像群のオブジェクトとを対応付ける対応付手段と、を有することを特徴とする。【選択図】図1

Description

本発明は、オブジェクトの画像処理技術に関するものである。
スポーツ中継などの映像技術分野において、オブジェクトの追跡を支援する画像処理装置が提案されている。このようなオブジェクトの追跡では、移動する人を撮像した画像からオブジェクトを抽出し、抽出したオブジェクトの位置情報を画像ごとに記憶する。このようなオブジェクトの位置情報を参照することにより、画像処理装置は例えば、特定人物の走行距離などの情報を取得することができる。特許文献1には、位置関係の時間変化量が小さなオブジェクトのグループを検出し、当該グループを構成するオブジェクトの位置関係に基づいて、オブジェクトの追跡ミスを防止することが記載されている。
また、仮想カメラの位置及び姿勢に基づく映像を生成する仮想視点映像システムが知られており、仮想視点映像の生成のため、複数のカメラで撮影した映像を用いてオブジェクトの3次元形状モデルを生成することも知られている。この点、特許文献2には、三次元モデルを高速に生成することを目的として、最初に三次元モデルの概形をVisualHullで求め、詳細を特徴量のマッチングを用いて求めることが記載されている。
特開2016−085675号公報 特開2003−271928号公報
しかしながら、オブジェクトを処理するための演算量の削減はこれまで不十分であった。例えば、特許文献1で用いられているパーティクルフィルタは、確率分布に基づく予測手法であるが、オブジェクトごとに複数の予測位置が算出される。したがって、高精度にオブジェクトを追跡する場合には演算量が増大してしまう恐れがあった。また、例えば、3次元形状モデルの概形を求めてから詳細を求めるという手法を採用したとしても、高精度な3次元形状モデルを生成する場合の演算量は依然として大きかった。
本発明に係る画像処理装置は、複数のカメラがオブジェクトを撮影することにより得られる複数の画像に基づいて生成される3次元形状データに関する処理を行う画像処理装置であって、第1時刻におけるオブジェクトの位置情報と前記オブジェクトの属性情報とに基づいて、前記第1時刻より後の第2時刻における前記オブジェクトの3次元形状データに関する処理範囲を設定する設定手段と、前記設定手段により設定される処理範囲に対して、前記第2時刻における前記オブジェクトの3次元形状データに関する処理を行う処理手段と、を有することを特徴とする。
本発明によれば、低計算コストで、高精度にオブジェクトの処理を行うことができる、という効果を奏する。
は、実施形態1に係る画像処理システムの構成例を示す図である。 は、実施形態1に係る画像処理装置のハードウェア構成例を示す図である。 は、実施形態1に係る画像処理装置の機能構成例を示すブロック図である。 は、実施形態1に係るオブジェクトの追跡手順例を示すフローチャートである。 は、実施形態1に係る検出範囲の設定手順例を示す概念図である。 は、実施形態1において3次元形状モデルを誤って追跡した場合の例を示す模式図である。 は、実施形態2に係る検出範囲の設定手順例を示すフローチャートである。 は、実施形態2に係る検出範囲の一例を示す模式図である。 は、実施形態3に係る検出範囲の設定手順例を示す概念図である。
以下、本発明を実施するための形態について図面を参照して説明する。ただし、この実施形態に記載されている構成はあくまで例示であり、本発明の範囲をそれらに限定する趣旨のものではない。
[実施形態1]
まず、本実施形態に係る画像処理システム1の構成例について、図1を参照して説明する。図1に示される通り、カメラ101a〜101jそれぞれは、動画像を撮像するカメラであり、競技場などのフィールド10の周囲に該フィールド10に向けて配置されている。カメラ101a〜101jそれぞれが撮像した動画像を構成する画像群は、画像処理装置100に対して送出される。図1に示される通り、本実施形態では、フィールド10上を移動する人物11,12が、カメラ101a〜101jにより撮影されるオブジェクトである例が示されている。
画像処理装置100は、まず、カメラ101a〜101jそれぞれから送出された画像群からオブジェクトの輪郭を抽出する。画像処理装置100は、次いで、該抽出した輪郭を用いて該オブジェクトの3次元形状モデルを生成する。つまり画像処理装置100は、該画像に含まれるオブジェクトの撮像時刻ごとの3次元形状モデルを生成することができる。この3次元形状モデルは、例えば、オブジェクト上の点群によって構成される。なお、画像に複数のオブジェクトが含まれている場合、それぞれのオブジェクトについて3次元形状モデルが生成される。画像群に含まれているオブジェクトの輪郭から該オブジェクト上の点群を取得する技術については、画像処理技術の分野において公知であるため、この技術に関する説明を省略する。なお、オブジェクトの3次元形状モデルを取得するための方法は上記の方法に限られない。また、3次元形状モデルは、ボクセルやポリゴンなど、点群以外の形式を用いて表現されてもよい。
表示装置102は、画像処理装置100が生成した3次元形状モデルなど、各種の情報を表示することができる。キーボード103aおよびマウス103bは、画像処理装置100に各種の指示や情報を入力するために、ユーザが操作するユーザインターフェースの一例である。なお、図1に示したシステム構成は一例に過ぎず、例えば、カメラの数やカメラが注視する位置、カメラと画像処理装置100との間のネットワーク構成などは図1に示したシステム構成に限らない。
次に、画像処理装置100のハードウェア構成例について、図2のブロック図を用いて説明する。CPU201は、RAM202やROM203などの記憶領域に格納されているコンピュータプログラムやデータを用いて各種の処理を実行する。これによりCPU201は、画像処理装置100全体の動作制御を行う。RAM202には、2次記憶装置204、外部記憶装置104、ROM203などからロードされたコンピュータプログラムやデータを格納するための領域を有する。さらにRAM202は、CPU201が各種の処理を実行および制御する際に用いるワークエリアを有する。このようにRAM202は各種のワークエリアを適宜提供することができる。ROM203には、書き換え不要の設定データやコンピュータプログラムなどが格納されている。2次記憶装置204は、ハードディスクドライブ装置に代表される大容量情報記憶装置である。2次記憶装置204には、OS(オペレーティングシステム)や、後述する各処理をCPU201に実行させるためのコンピュータプログラムやデータが保存されている。2次記憶装置204に保存されているコンピュータプログラムやデータは、CPU201による制御に従って適宜RAM202にロードされ、CPU201による処理対象となる。操作部103は、上記キーボード103aやマウス103bを含み、ユーザによる操作を受け付け、各種指示を、入力インターフェース205を介してCPU201に送出することができる。図2のブロック図において、撮像装置101は、上記カメラ101a〜101jに対応している。したがって、以下の説明において、撮像装置101から出力される着目画像群とは、カメラ101a〜101jのそれぞれから出力された着目画像群を意味する。撮像装置101から出力される画像群は、RAM202や2次記憶装置204に格納される。RAM202や2次記憶装置204に格納された先行画像群は、後述の位置予測部303による処理に用いられる。外部記憶装置104は、CD−RW、DVD−RWなどの記憶媒体に対するコンピュータプログラムやデータの読み出しおよび書き込みを行う。外部記憶装置104が記憶媒体から読み出したコンピュータプログラムやデータは入力インターフェース205を介してRAM202や2次記憶装置204に送出される。一方、外部記憶装置104が記憶媒体に書き込むコンピュータプログラムやデータは、RAM202や2次記憶装置204から出力インターフェース206を介して外部記憶装置104に送出される。また、2次記憶装置204に保存されているものとして説明したコンピュータプログラムおよびデータを記憶媒体に格納しておき、外部記憶装置104によって記憶媒体からRAM202や2次記憶装置204に読み出すようにしてもよい。表示装置102はCRTや液晶画面などにより構成されており、CPU201による処理結果を画像や文字などで表示する。なお、操作部103と表示装置102とを一体化させてタッチパネル画面を構成してもよい。そして、CPU201、RAM202、ROM203、2次記憶装置204、入力インターフェース205、出力インターフェース206、はいずれもバス207を介して相互に通信可能に接続されている。
図3は、本実施形態に係る画像処理装置100の機能構成例を示すブロック図である。図4は、本実施形態に係る画像処理装置100のオブジェクトの処理手順例を示すフローチャートである。以下、図3のブロック図と図4のフローチャートとを参照して、本実施形態に係るオブジェクトの追跡手順例について説明する。図3に示される各ブロックの処理、および、図4に示されるフローチャートの処理は、CPU201がROM203などに記憶されているプログラムコードをRAM202に展開し実行することにより行われる。以下の各記号Sは、フローチャートにおけるステップであることを意味する。これらは図7のフローチャートについても同様である。
S401において、3次元形状モデル生成部302は、画像取得部301が撮像装置101から取得した画像群に含まれるオブジェクトの3次元形状モデルを生成する。以下では、S401で生成した3次元形状モデルをM(1),M(2)・・・,M(i),・・・M(I)と表記する。ここで、iは3次元形状モデルの数を示す変数であり、IはS401で生成される3次元形状モデルの総数を示す。なお、変数i≠1であった場合、S401の処理が実行される前に変数iの値が「1」に初期化される。
S402において、S401で生成された3次元形状モデルM(1)・・・M(I)が、最初の画像から生成されたか否かが判定される。ここで、nは、画像処理装置100に入力された動画像の長さ(時間)における時刻(何枚目の画像か)を示す変数であり、Nは、上記動画像を構成する画像の総数を示す。n≠1の場合(S402:NO)、S403に移行する。一方、n=1の場合(S402:Yes)、S403〜S404をスキップしてS405に移行する。なお、図4のフローチャートが開始される際に変数n≠1であった場合、S401の処理が実行される前に変数nの値が「1」に初期化される。
S403において、位置予測部303は、時刻nにおける3次元形状モデルM(i)の位置Qi(n)を予測する。具体的な予測手順例は以下の通りである。まず、位置予測部303は、先行画像である時刻n−1(第1時刻)における3次元形状モデルM(i)の3次元位置と、速度ベクトルとを2次記憶装置204などの記憶領域から読み出す。次いで、位置予測部303は、これらの情報に基づいて時刻nにおける3次元形状モデルの予測位置Qi(n)の座標を判定する。以後、3次元形状モデルM(i)の位置情報や、上記予測に必要な速度ベクトル情報が記憶されるRAM202、2次記憶装置204、外部記憶装置104のいずれかまたは複数を、単に「記憶領域」と記す。
以下では、説明を簡略化するために、時刻n−1における3次元形状モデルM(i)の3次元座標Pi(n−1)と、3次元速度ベクトルVi(n−1)とから、時刻nにおける3次元形状モデルの予測位置Qi(n)の座標を判定する例を説明する。この予測位置Qi(n)と速度ベクトルVi(n)とは、以下の(式1)(式2)を用いて算出される。
Qi(n)=Pi(n−1)+Δt・Vi(n−1)・・・(式1)
Vi(n)=[Pi(n)―Pi(n−1)]/Δt・・・(式2)
上記(式1)及び(式2)においてΔtは、動画を構成する画像1枚分の時間を示す。例えば、60fpsの動画であれば、Δt=1/60secとなる。なお、予測位置Qi(n)の判定方法は上記(式1)に限定されるものではなく、時刻n−1よりも前の情報が用いられてもよいし、加速度など高次の情報が用いられてもよい。また、運動モデルに基づいて予測位置Qi(n)が算出されてもよい。
S404において、検出範囲設定部304は、S403で予測した予測位置Qi(n)を含む検出範囲Ri(n)を設定する。時刻nにおける3次元形状モデルM(i)の検出範囲Ri(n)の設定方法については後述する。
S405において、位置取得部305は、検出範囲Ri(n)に対して3次元形状モデルM(i)の位置Pi(n)を検出するための処理を行う。すなわち、位置取得部305は、時刻n−1(第1時刻)におけるオブジェクトの位置情報に基づいて、時刻n(第2時刻)における当該オブジェクトの3次元形状モデルの処理のための検出範囲Ri(n)を特定する。上記の通り、本実施形態における3次元形状モデルは点群によって構成されている。そのため、位置取得部305は、点群を構成する点同士の位置関係から重心位置を求め、この重心位置を3次元形状モデルの位置とすることができる。なお、点群の位置は、カメラ101a〜101jの位置とそれらの焦点距離などとから取得することができる。つまり、検出範囲Riは、上記重心位置に対応する座標を探索する範囲として設定される。ただし、3次元形状モデルの位置を重心以外の位置(人物の3次元形状モデルであれば、例えば、頭部の中心など)としてもよい。
位置取得部305は、3次元形状モデルM(i)を構成する点群のうち、S404で設定された検出範囲Ri(n)に含まれる点群の重心位置に対応する3次元座標を、当該3次元形状モデルM(i)の位置Pi(n)として取得する。なお、位置取得部305は、必ずしも検出範囲Riに含まれる全ての点群から重心位置を導出しなくてもよい。例えば、検出範囲Riを複数の立方体で分割し、3次元形状モデルを構成する点やボクセルを最も多く含む立方体の座標が位置Piとして取得されてもよい。また、S402においてn=1と判定されている場合(S402:YES)、検出範囲Riは設定されていないため、3次元形状モデルM(i)を構成する点群の重心位置に対応する3次元座標を、当該3次元形状モデルM(i)の位置Piとして取得する。この場合も、位置取得部305は、必ずしも全ての点群から重心位置を導出しなくてもよい。例えば、3次元形状モデルM(i)を構成する点群のうち、人物11,12の頭部に対応する点群の重心位置に対応する3次元座標が位置Piとして取得されてもよい。
S406において、記憶制御部306は、3次元形状モデルM(i)の識別情報と、位置Piとを関連付けて記憶領域に記憶する。上記識別情報は、3次元形状モデルM(i)を一意に識別するために用いられる識別子である。S406の処理により、本実施形態の位置予測部303は、この識別情報に基づいて、対応する3次元形状モデルM(i)の位置Piを記憶領域から読み出すことができる。言い換えると、S406の処理により、時刻n−1以前における人物Aと、時刻nにおける人物Aとの対応付けがなされる。
S407において、変数iが1つインクリメントされる。そして、S408において、時刻nにおける全ての3次元形状モデルM(i)の処理が完了したか否かが判定される。すなわち、i=Iである場合(S408:YES)、S409に移行する。一方、i<Iである場合(S408:NO)、再びS402に戻り、未処理の3次元形状モデルM(i)についてS402〜S408の処理が繰り返される。
S409において、全ての画像について処理が完了したか否かが判定される。すなわち、n=Nである場合(S409:YES)、本フローチャートの処理を終了する。一方、n≠Nである場合(S409:NO)、S410に移行する。そして、S410において、変数nが1つインクリメントされ、再びS401に戻り、画像取得部301が取得した次の画像群について、S401〜S409の処理が繰り返される。
次に、検出範囲Riの設定方法(S403)について、図5〜図6を参照して詳細に説明する。図5は、本実施形態における検出範囲の設定手順例を示す概念図である。図5において、3次元空間の外延が、符号500で模式的に表されている。そして、時刻n−1における3次元形状モデルM(i)が符号501で表されており、時刻n−1における速度ベクトルVi(n−1)が符号502で表されている。時刻nにおいて予測される3次元形状モデルM(i)の予測位置Qi(n)が符号503で表されており、時刻nにおける実際の3次元形状モデルM(i)の位置Pi(n)が符号504で表されている。また、図5に示されている通り、検出範囲Ri(n)が符号505で表されている。さらに、時刻nにおける3次元形状モデルM(i)504とは異なる、j番目の3次元形状モデルM(j)の位置Pj(n)が符号506で表されている。図5に示される通り、時刻nにおいて、3次元形状モデルM(i)504と3次元形状モデルM(j)506とは3次元座標系内で近接している。
一般的に、人が方向を転換したり急に動き出したりしても、人は急激に加速しにくい。そのため、撮像装置101が人物11,12を撮像し、撮像画像群からオブジェクト(人物)が抽出された場合、このようなオブジェクトの位置の予測精度はそれほど劣化することはない。本実施形態では、予測位置Qi(n)を中心に、3次元形状モデルM(i)501を丁度含む程度の大きさの直方体が検出範囲Ri(n)として設定される。例えば、オブジェクトが人物を示す場合、縦:0.6m、横:0.6m、高さ:2.0m程度の直方体が検出範囲Riとして設定されれば、おおむねオブジェクトをこの検出範囲Riに含めることができる。上記のようなサイズの検出範囲Riが設定されることにより、例えば、3次元形状モデルM(j)506が、3次元形状モデルM(i)504の検出範囲Ri(n)505に含まれにくくなる。そして、同一人物でない人物を誤って関連付けてしまう可能性を低減できる。つまり、高精度に人物の追跡処理を行うことができる。また、本実施形態の画像処理装置100は、検出範囲Ri(n)に限って3次元形状モデルM(i)の位置Pi(n)を検出するための処理を行う。つまり、画像処理装置100は、時刻n−1(第1時刻)におけるオブジェクトの位置情報に基づいて、時刻n(第2時刻)におけるオブジェクトの3次元形状モデルに関する処理範囲を特定している。これにより、3次元空間全体に対して検出処理を行うよりも小さい処理負荷でオブジェクトの対応付け処理を実現できる。なお、検出範囲Ri(n)のサイズは上記の例に限るものではない。また、検出範囲Ri(n)は人物の大きさや動きの速さ、人物の密集度合などに応じて異なる値が設定されるようにしても良い。
図6は、本来追跡すべき3次元形状モデルとは異なる3次元形状モデルを誤って追跡した場合の例を示す模式図である。
図6において、時刻nにおける3次元空間の外延600と、時刻n+1における3次元空間の外延610とが、模式的に示されている。さらに図6において、時刻nから時刻n+1にかけて、3次元形状モデルM(i)601と3次元形状モデルM(j)602とが互いに交差する様子が示されている。このとき、3次元形状モデルM601,602が互いに接近したときに、検出範囲が3次元形状モデルM601,602を含む大きさに設定されてしまうと、本来追跡すべき3次元形状モデルとは異なる3次元形状モデルを誤って追跡してしまう恐れがある。図6は、時刻n+1において、3次元形状モデルM(i)601に近接する3次元形状モデルM(j)602が誤って追跡されてしまっている。
また、人物11,12がジャンプすると、オブジェクトの高さ位置が変化する場合がある。このような場合においても、本実施形態のオブジェクトの追跡方法は有効である。すなわち、本実施形態の画像処理装置100は、3次元座標空間におけるオブジェクトの予測位置と、オブジェクトの大きさとに基づいて検出範囲を設定するので、人物11,12がジャンプする高さ方向に、オブジェクトを追跡することができる。
以上説明した通り、本実施形態の画像処理装置は、時刻n−1(第1時刻)におけるオブジェクトの位置情報に基づいて、時刻n(第2時刻)におけるオブジェクトの3次元形状モデルに関する処理範囲を特定する。これにより、低計算コストで、高精度にオブジェクトの3次元位置を追跡することができる。
なお、説明を簡単にするために、過去(時刻n−1)におけるオブジェクトの位置情報をオブジェクトの追跡処理のために用いる場合の例を中心に説明してきたが過去の位置情報の用途は追跡処理に限らない。別の用途として、例えば、3次元形状モデルの生成対象となるオブジェクトを時刻nの画像から検出するための検出処理を行う場合に、時刻n−1のオブジェクトの位置情報を用いることができる。これによっても、計算コストの削減が可能である。例えば、図4のS403において説明した通り、時刻n−1における人物Aの3次元座標Pi(n−1)と、3次元速度ベクトルVi(n−1)とから、当該人物Aの予測位置Qi(n)が求まり、予測位置Qi(n)から検出範囲Ri(n)が求まる。そこで、カメラ101a〜101jの撮影により得られる画像から人物Aを検出するための検出範囲を検出範囲Ri(n)に基づいて設定することができる。この場合、S401の処理は、例えば、S402とS403の間のタイミングで実行される。すなわち、3次元形状モデル生成部302は、時刻n−1(第1時刻)におけるオブジェクトの3次元空間上の位置情報に基づいて、時刻n(第2時刻)おける撮影に基づく1又は複数の画像から当該オブジェクトを検出するための検出範囲を特定する。そして、3次元形状モデル生成部302は、特定された検出範囲に対して検出処理を行うことでオブジェクトを検出し、当該オブジェクトの3次元形状モデルを生成する。このように、予測位置Qi(n)や検出範囲Ri(n)の情報を用いてオブジェクトの検出のための処理範囲を限定することによって、検出精度を維持しつつ、計算コストを削減することができる。
なお、検出範囲Ri(n)は3次元空間上の領域を表す情報であっても良いが、2次元空間上の領域を表す情報であっても良い。2次元空間上の領域を表す検出範囲Ri(n)は、3次元空間中における検出範囲Ri(n)の位置情報と、各カメラ101a〜101jのそれぞれの撮影領域内の位置との関連付けに基づいて得ることができる。より具体的には、3次元空間上の検出範囲Ri(n)を表す複数の座標のそれぞれをカメラ101a〜101jのそれぞれの画像上に射影することで、各画像上における検出範囲Ri(n)の領域を表す情報が得られる。
また、例えば、カメラ101aによる時刻n−1の撮影画像から求めた人物Aの位置情報に基づいて、カメラ101aによる時刻nの撮影画像から人物Aを検出するための検出範囲を特定するようにしても良い。つまり、本実施形態の3次元形状モデル生成部302は、時刻n−1(第1時刻)に関連付けられた画像内におけるオブジェクトの位置情報に基づいて、時刻n(第2時刻)に関連付けられた画像からオブジェクトを検出するための処理範囲を特定できる。そして、3次元形状モデル生成部302は、時刻nに関連付けられた複数の画像(カメラ101a〜jが時刻nに撮影した複数の画像)のうち、当該特定された処理範囲に対して、オブジェクトを検出するための検出処理を実行する。そして、3次元形状モデル生成部302は、当該検出処理によって複数の画像のそれぞれから検出されたオブジェクトの画像に基づいて、時刻nにおけるオブジェクトの3次元形状モデルを生成する。本段落の説明は、以下の実施形態においても適用できる。
[実施形態2]
実施形態1では、オブジェクトの予測位置Qiとオブジェクトの大きさとに基づいて、検出範囲Riを設定する例を中心に説明した。これに対し、本実施形態のオブジェクトの追跡方法では、検出範囲Riを画像ごとに動的に変更できるようにする。これにより、本実施形態の画像処理装置は、オブジェクトの追跡ミスを抑制しつつ、オブジェクトの3次元位置を高精度に追跡することができる。以下、本実施形態におけるオブジェクトの追跡方法について説明する。なお、実施形態1と共通する部分については説明を簡略化ないし省略し、以下では本実施形態に特有な点を中心に説明する。
図7は、本実施形態に係る検出範囲Riの設定手順を示すフローチャートである。本実施形態では、図4のフローチャートにおけるS404に代えて、図7に示されるS404aおよびS404bの処理が実行される。以下、図7を参照して本実施形態における検出範囲Riの設定手順について説明する。
S404aにおいて、検出範囲設定部304は、時刻nにおける3次元形状モデルM(i)の予測位置Qi(n)に基づいて、3次元形状モデルM(i)が存在する可能性が高い領域を特定する。例えば、実施形態1で説明したように、検出範囲設定部304は、予測位置Qiを中心として、平均的な3次元形状モデルMのサイズを含む直方体を、オブジェクトが存在する可能性が高い予測領域として特定することができる。図8は、本実施形態において、3次元形状モデルM(i)が存在する可能性が高い予測領域を表した図である。このように、CPU201はS404aにおいて3次元形状モデルM(i)が存在する可能性が高い領域を予測する処理を行う。
図8(a)には、3次元形状モデルM(i)の予測位置Qiが符号801で、3次元形状モデルM(i)とは異なる他の3次元形状モデルM(j)の予測位置Qjが符号811でそれぞれ表されている。また、3次元形状モデルM(i)が存在する可能性の高い予測領域が符号802で、3次元形状モデルM(j)が存在する可能性が高い予測領域が符号812でそれぞれ表されている。そして、図8(a)には、時刻nにおける3次元形状モデルM(i)の実際の位置が、符号803で表されている。
S404bにおいて、検出範囲設定部304は、3次元形状モデルM(j)が存在する可能性が高い予測領域812を含まないように、3次元形状モデルM(i)の検出範囲Riを設定する。図8(a)には、S404bにおいて設定される検出範囲Riが符号804で表されている。本実施形態では、検出範囲Ri804は、3次元形状モデルM(j)が存在する可能性が高い予測領域812を含まない範囲で、3次元形状モデルM(i)が存在する可能性の高い予測領域802よりも大きな領域として設定される。この場合、検出範囲Ri804のサイズには上限があり、この上限は、例えば3次元形状モデルM(i)のサイズと重心位置の移動可能範囲とから規定される。
図8(b)は、検出範囲Ri804の最大サイズを示す平面図である。図8(b)において、検出範囲Ri804内に存在する楕円805は、3次元形状モデルM(i)が再現する人物11,12の腹部付近の断面を表している。なお、本実施形態において、検出範囲Ri804は正方形で区画されているが、検出範囲Ri804が区画される形状は正方形に限定されない。図8(b)の検出範囲Ri804において、符号806は楕円805の長径の長さを、符号807は3次元形状モデルM(i)が1画像で移動可能な距離をそれぞれ示している。例えば、撮像装置101が60fpsで人物11,12を撮像した場合、人の最大移動速度は10m/sec程度であるため、1画像あたりの平面方向の移動可能距離は約0.2mとなる。図8(b)において、楕円805の長径の長さを0.3mとし、3次元形状モデルM(i)(楕円805)の移動可能距離807を0.2mとすると、検出範囲Ri804の一辺の長さは、2×(0.2+0.3)=1.0mとなる。上記では、検出範囲Ri804の平面方向のサイズを決定する方法について説明したが、検出範囲Ri804の高さ方向のサイズについても、同様の方法によって決定することができる。すなわち、被写体である人の背の高さと、人がジャンプして到達することができる高さとに基づいて、検出範囲Ri804の高さ方向のサイズを決定することができる。
以上説明した通り、本実施形態によれば、検出範囲を画像ごとに動的に変更できる。そのため、本実施形態の画像処理装置は、低計算コストで、より高精度にオブジェクトの3次元位置を追跡することができる。
[実施形態3]
次に、オブジェクトの軸の傾きに応じて検出範囲Riを回転させることにより、オブジェクトの追跡ミスを抑制しつつ、高精度のオブジェクトの3次元位置を追跡することができる態様を実施形態3として説明する。なお、実施形態1,2と共通する部分については説明を簡略化ないし省略し、以下では本実施形態に特有な点を中心に説明する。
図9は、本実施形態における検出範囲の設定手順例を示す概念図である。図9において、時刻nにおける3次元空間の外延が、符号900で模式的に表されている。さらに、図9では、3次元形状モデルM(i)の軸901の傾きに基づいて回転された検出範囲Ri(n)が符号902で表されている。3次元形状モデルM(i)の軸901は、オブジェクトの追跡処理(図4)の実行前に事前に取得した3次元形状モデルM_pre(i)をフィッティングすることにより取得してもよいし、3次元形状モデルM(i)を推定することにより取得してもよい。
このようにオブジェクトの軸の傾きに応じて検出範囲Riが回転されるため、例えば被写体である人物11,12が転倒するような場合においても、高精度にオブジェクトの3次元位置を追跡することができる。
[実施形態4]
実施形態1〜3に係る画像処理システム1は、撮像装置101が撮像したオブジェクト(人物)の位置を追跡して、追跡した位置情報を記憶領域に記憶することができる。このような画像処理システム1は、例えば、サッカーやラグビーなどの試合において、フィールド10上の選手の位置を追跡し、当該選手の走行距離を計測するなどの用途に使用され得る。主にこのような用途において、画像処理装置100は、撮像装置101によって撮像された画像群から、ボールの3次元形状モデルを生成し、当該3次元形状モデルの位置を画像ごとに追跡してもよい。例えば、ボールの形状および大きさは、フィールド10において催される競技に応じて規定される。そのため、画像処理装置100は、ボールに対応する形状や特徴量に基づいて画像群を探索し、画像群のそれぞれの座標から三角測量を利用して、3次元位置を特定することができる。
また、本実施形態によれば、図4のフローチャートにおいて検出範囲Riの設定方法を変更することにより、ボールに対応するオブジェクトの3次元位置を特定することも可能となる。選手がボールを蹴った場合、ボールは急激に移動する方向が変化したり、急激に加速する。
そこで、本実施形態では、図4のフローチャートにおけるS403に代えて、S404において、検出範囲設定部304が、ボールの移動可能距離とボールの大きさとに基づいて、検出範囲Riを設定する。例えば、サッカーボールの半径は約0.1mである。そして、撮像装置101が60fpsでサッカーボールを撮像した場合、サッカーボールの最大移動速度は時速150km程度であるため、1画像あたりの移動可能距離は約0.7mである。この場合、図8(b)と同様の考え方を適用して、検出範囲Riは、2×0.1+0.7=0.9mを半径とする球形状に設定されてもよい。
以上説明した通り、本実施形態によれば、オブジェクトの種類に応じた追跡方法を選択することにより、選手やボールなどの種類ごとに、高精度にオブジェクトの位置を追跡することができる。
[その他の実施例]
実施形態1〜4では、検出範囲Riとして区画される形状が直方体および球形状である実施例が説明された。しかしながら、検出範囲Riとして区画される形状は直方体および球形状に限定されず、立方体、角錐形、円錐形、紡錘形などの形状を適用することができる。
また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。

Claims (22)

  1. 複数のカメラがオブジェクトを撮影することにより得られる複数の画像に基づいて生成される3次元形状データに関する処理を行う画像処理装置であって、
    第1時刻におけるオブジェクトの位置情報と前記オブジェクトの属性情報とに基づいて、前記第1時刻より後の第2時刻における前記オブジェクトの3次元形状データに関する処理範囲を設定する設定手段と、
    前記設定手段により設定される処理範囲に対して、前記第2時刻における前記オブジェクトの3次元形状データに関する処理を行う処理手段と、
    を有することを特徴とする画像処理装置。
  2. 前記オブジェクトの属性情報は、前記オブジェクトの種類に関する情報を含むことを特徴とする請求項1に記載の画像処理装置。
  3. 前記設定手段は、前記オブジェクトの種類に応じた大きさの処理範囲を設定することを特徴とする請求項2に記載の画像処理装置。
  4. 前記設定手段により設定される処理範囲の大きさは、前記オブジェクトが人物である場合と前記オブジェクトがボールである場合とで異なることを特徴とする請求項3に記載の画像処理装置。
  5. 前記設定手段は、前記オブジェクトの種類に応じた形状の前記処理範囲を設定することを特徴とする請求項2乃至4のいずれか1項に記載の画像処理装置。
  6. 前記設定手段により設定される処理範囲の形状は、前記オブジェクトが人物である場合と前記オブジェクトがボールである場合とで異なることを特徴とする請求項5に記載の画像処理装置。
  7. 前記設定手段は、前記オブジェクトの種類に応じた設定方法により処理範囲を設定することを特徴とする請求項2乃至6のいずれか1項に記載の画像処理装置。
  8. 前記オブジェクトの属性情報は、前記オブジェクトの大きさに関する情報を含むことを特徴とする請求項1に記載の画像処理装置。
  9. 前記設定手段は、前記オブジェクトの大きさに応じた大きさの処理範囲を設定することを特徴とする請求項8に記載の画像処理装置。
  10. 前記設定手段は、前記第1時刻における前記オブジェクトの位置情報に基づいて、前記処理範囲として前記第2時刻における前記オブジェクトの検出範囲を設定し、
    前記処理手段は、前記3次元形状データに関する処理として、前記検出範囲において検出された前記オブジェクトの3次元形状データと前記第1時刻における前記オブジェクトの識別情報とを対応付ける処理を行うことを特徴とする請求項1乃至9のいずれか1項に記載の画像処理装置。
  11. 前記設定手段は、前記第1時刻における前記オブジェクトの位置情報に基づいて、前記処理範囲として、前記第2時刻に関連付けられた複数の画像において前記オブジェクトの検出範囲を設定し、
    前記処理手段は、前記3次元形状データに関する処理として、前記第2時刻に関連付けられた複数の画像において、前記設定手段により設定された前記検出範囲から検出された前記オブジェクトの画像に基づいて、前記第2時刻における前記オブジェクトの3次元形状データを生成する処理を行うことを特徴とする請求項1乃至9のいずれか1項に記載の画像処理装置。
  12. 前記第1時刻における前記オブジェクトの位置情報は、前記第1時刻における前記オブジェクトの3次元空間上の3次元位置情報、又は前記第1時刻に関連付けられた画像における前記オブジェクトの2次元位置情報であることを特徴とする請求項1乃至11のいずれか1項に記載の画像処理装置。
  13. 前記設定手段は、前記第1時刻における前記オブジェクトの速度、加速度、及び運動モデルの少なくとも1つをさらに用いることによって、前記処理範囲を設定することを特徴とする請求項1乃至12のいずれか1項に記載の画像処理装置。
  14. 前記3次元形状データは、仮想視点画像の生成のために用いられることを特徴とする請求項1乃至13のいずれか1項に記載の画像処理装置。
  15. 複数のカメラがオブジェクトを撮影することにより得られる複数の画像に基づいて生成される3次元形状データに関する処理を行う画像処理方法であって、
    第1時刻におけるオブジェクトの位置情報と前記オブジェクトの属性情報とに基づいて、前記第1時刻より後の第2時刻における前記オブジェクトの3次元形状データに関する処理範囲を設定する設定ステップと、
    前記設定ステップにより設定される処理範囲に対して、前記第2時刻における前記オブジェクトの3次元形状データに関する処理を行う処理ステップと、
    を有することを特徴とする画像処理方法。
  16. 前記オブジェクトの属性情報は、前記オブジェクトの種類に関する情報を含むことを特徴とする請求項15に記載の画像処理方法。
  17. 前記設定ステップにおいて、前記オブジェクトの種類に応じた大きさの処理範囲が設定されることを特徴とする請求項16に記載の画像処理方法。
  18. 前記設定ステップにおいて、前記オブジェクトの種類に応じた形状の処理範囲が設定されることを特徴とする請求項16又は17に記載の画像処理方法。
  19. 前記設定ステップにおいて、前記オブジェクトの種類に応じた設定方法により処理範囲が設定されることを特徴とする請求項16乃至18のいずれか1項に記載の画像処理方法。
  20. 前記オブジェクトの属性情報は、前記オブジェクトの大きさに関する情報を含むことを特徴とする請求項15に記載の画像処理方法。
  21. 前記設定ステップにおいて、前記オブジェクトの大きさに応じた大きさの処理範囲が設定されることを特徴とする請求項20に記載の画像処理方法。
  22. コンピュータを、請求項1乃至14のいずれか1項に記載の画像処理装置の各手段として動作させるためのプログラム。
JP2018200112A 2017-08-14 2018-10-24 画像処理装置、画像処理方法およびプログラム Pending JP2019036346A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156480 2017-08-14
JP2017156480 2017-08-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018074669A Division JP6425847B1 (ja) 2017-08-14 2018-04-09 画像処理装置、画像処理方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2019036346A true JP2019036346A (ja) 2019-03-07

Family

ID=64379109

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018074669A Active JP6425847B1 (ja) 2017-08-14 2018-04-09 画像処理装置、画像処理方法およびプログラム
JP2018200112A Pending JP2019036346A (ja) 2017-08-14 2018-10-24 画像処理装置、画像処理方法およびプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018074669A Active JP6425847B1 (ja) 2017-08-14 2018-04-09 画像処理装置、画像処理方法およびプログラム

Country Status (2)

Country Link
US (1) US10726620B2 (ja)
JP (2) JP6425847B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044900A1 (ja) * 2020-08-31 2022-03-03 ソニーグループ株式会社 情報処理装置、情報処理方法、および記録媒体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817770B2 (ja) * 2016-09-30 2021-01-20 キヤノン株式会社 画像処理装置、画像処理方法
JP7033865B2 (ja) 2017-08-10 2022-03-11 キヤノン株式会社 画像生成装置、画像生成方法、及びプログラム
TWI767179B (zh) * 2019-01-24 2022-06-11 宏達國際電子股份有限公司 混合實境中偵測真實世界光源的方法、混合實境系統及記錄媒體
JP7446756B2 (ja) * 2019-10-02 2024-03-11 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN110942481B (zh) * 2019-12-13 2022-05-20 西南石油大学 一种基于图像处理的纵跳检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194901A (ja) * 2014-03-31 2015-11-05 セコム株式会社 追跡装置および追尾システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567066B2 (ja) * 1997-10-31 2004-09-15 株式会社日立製作所 移動体組合せ検出装置および方法
JP2001236505A (ja) * 2000-02-22 2001-08-31 Atsushi Kuroda 座標推定方法、座標推定装置および座標推定システム
JP4014140B2 (ja) 2002-03-13 2007-11-28 日本放送協会 三次元モデリング装置及びその方法及びそのプログラム
JP6029394B2 (ja) * 2012-09-11 2016-11-24 株式会社キーエンス 形状測定装置
JP2014211404A (ja) * 2013-04-22 2014-11-13 株式会社ノビテック モーションキャプチャー方法
JP6280020B2 (ja) 2014-10-28 2018-02-14 セコム株式会社 移動物体追跡装置
JP2017021759A (ja) 2015-07-15 2017-01-26 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP6702329B2 (ja) * 2015-09-03 2020-06-03 ソニー株式会社 映像処理装置、映像処理方法、及び、プログラム
JP6641163B2 (ja) * 2015-12-02 2020-02-05 日本放送協会 オブジェクト追跡装置及びそのプログラム
US10818018B2 (en) 2016-11-24 2020-10-27 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory computer-readable storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194901A (ja) * 2014-03-31 2015-11-05 セコム株式会社 追跡装置および追尾システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冨山仁博,外3名: "視体積交差法とステレオマッチング法を用いた多視点画像からの3次元動オブジェクト生成手法", 映像情報メディア学会誌 第58巻 第6号, vol. 第58巻, JPN6019035402, 2004, JP, pages 797 - 806, ISSN: 0004250454 *
長瀬琢也,外1名: "多視点映像を用いたサッカーにおける選手のプレー判定", 映像情報メディア学会誌 第60巻 第10号, vol. 第60巻, JPN6019035401, 2006, JP, pages 1664 - 1671, ISSN: 0004250453 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044900A1 (ja) * 2020-08-31 2022-03-03 ソニーグループ株式会社 情報処理装置、情報処理方法、および記録媒体

Also Published As

Publication number Publication date
JP6425847B1 (ja) 2018-11-21
US10726620B2 (en) 2020-07-28
US20190051045A1 (en) 2019-02-14
JP2019036288A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6425847B1 (ja) 画像処理装置、画像処理方法およびプログラム
JP5950973B2 (ja) フレームを選択する方法、装置、及びシステム
US11025878B2 (en) Image processing apparatus, image processing method thereof and storage medium
TWI467494B (zh) 使用深度圖進行移動式攝影機定位
US8401225B2 (en) Moving object segmentation using depth images
US11037325B2 (en) Information processing apparatus and method of controlling the same
JP7017689B2 (ja) 情報処理装置、情報処理システムおよび情報処理方法
KR102387891B1 (ko) 화상 처리장치, 화상 처리장치의 제어방법, 및 컴퓨터 판독가능한 기억매체
US10861185B2 (en) Information processing apparatus and method of controlling the same
CN108629799B (zh) 一种实现增强现实的方法及设备
JP2015075429A (ja) マーカ、マーカの評価方法、情報処理装置、情報処理方法、及びプログラム
US11373329B2 (en) Method of generating 3-dimensional model data
JP2019003428A (ja) 画像処理装置、画像処理方法及びプログラム
US20210019900A1 (en) Recording medium, object detection apparatus, object detection method, and object detection system
CN113362441A (zh) 三维重建方法、装置、计算机设备和存储介质
JP7068586B2 (ja) 映像処理装置、映像処理方法、及び映像処理プログラム
JP5356036B2 (ja) モーションキャプチャにおけるグループトラッキング
CN110891168A (zh) 信息处理装置、信息处理方法和存储介质
US11468258B2 (en) Information processing apparatus, information processing method, and storage medium
US20230224576A1 (en) System for generating a three-dimensional scene of a physical environment
JP6817770B2 (ja) 画像処理装置、画像処理方法
Kim et al. Pose initialization method of mixed reality system for inspection using convolutional neural network
CN116385273B (zh) 步进式全景漫游中点位间的移动方法、系统及存储介质
WO2023058545A1 (ja) 情報処理装置および方法、プログラム
Lau et al. Real-Time Object Pose Tracking System With Low Computational Cost for Mobile Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407