JP2019032941A - Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode - Google Patents

Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode Download PDF

Info

Publication number
JP2019032941A
JP2019032941A JP2017151790A JP2017151790A JP2019032941A JP 2019032941 A JP2019032941 A JP 2019032941A JP 2017151790 A JP2017151790 A JP 2017151790A JP 2017151790 A JP2017151790 A JP 2017151790A JP 2019032941 A JP2019032941 A JP 2019032941A
Authority
JP
Japan
Prior art keywords
positive electrode
particles
active material
manufacturing
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017151790A
Other languages
Japanese (ja)
Inventor
文博 内川
Fumihiro Uchikawa
文博 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017151790A priority Critical patent/JP2019032941A/en
Publication of JP2019032941A publication Critical patent/JP2019032941A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a method of deciding manufacturing conditions of composite particles for positive electrode capable of increasing bonding force between positive electrode active material particles, each having a surface of a core part coated with a surface layer of a different material from the core part, and conductive assistant particles while suppressing the positive electrode active material particles from being damaged, and a method of manufacturing the composite particles for positive electrode.SOLUTION: A method of deciding manufacturing conditions of composite particles 10 for positive electrode has: a manufacturing process (S2) of setting a peripheral speed of a rotary body 120 and a processing time of mixing processing (S1) and manufacturing the composite particles for positive electrode; a conductivity measuring process (S3) of measuring conductivity of the composite particles for positive electrode; a pH measuring process (S5) of measuring pH of a solution having the composite particles for positive electrode dispersed in water; and determination processes (S4, S6) of determining, based upon results obtained through the conductivity measuring process and pH measuring process, whether the peripheral speed of the rotary body and the processing time of the mixing processing set in the manufacturing process indicate effective set values.SELECTED DRAWING: Figure 3

Description

本発明は、正極用複合粒子の製造条件の決定方法、および正極用複合粒子の製造方法に関する。   The present invention relates to a method for determining production conditions for composite particles for positive electrode and a method for producing composite particles for positive electrode.

二次電池は、車両搭載用電源として重要性が高まっている。二次電池は、例えば、リチウムイオン等の金属イオンを可逆的に吸蔵および放出し得る正極活物質の層が正極集電体上に形成された正極を備えている。正極活物質は、導電性を確保するために導電助剤と混合して用いられる場合がある。   Secondary batteries are becoming increasingly important as on-vehicle power supplies. The secondary battery includes, for example, a positive electrode in which a layer of a positive electrode active material capable of reversibly occluding and releasing metal ions such as lithium ions is formed on a positive electrode current collector. The positive electrode active material may be used as a mixture with a conductive auxiliary agent in order to ensure conductivity.

例えば、下記特許文献1には、粉体を乾式で混合処理する混合装置によって、正極活物質粒子の粉体および導電助剤粒子の粉体を混合して正極用複合粒子を製造する方法が開示されている。この方法によれば、混合時の機械的エネルギーを各粉体に作用させることで、メカノケミカル反応によって正極活物質粒子と導電助剤粒子とを結合させている。メカノケミカル反応によれば、正極活物質粒子と導電助剤粒子との結合力を高めることができる。また、正極活物質粒子と導電助剤粒子との結合力を得るためにバインダーを添加する必要がなくなる。このため、二次電池の内部抵抗を低下させることができる。   For example, the following Patent Document 1 discloses a method of producing composite particles for positive electrodes by mixing powders of positive electrode active material particles and powders of conductive additive particles with a mixing device that mixes powders in a dry manner. Has been. According to this method, the mechanical energy at the time of mixing is made to act on each powder, The positive electrode active material particle and the conductive support agent particle are combined by mechanochemical reaction. According to the mechanochemical reaction, the binding force between the positive electrode active material particles and the conductive auxiliary particles can be increased. Further, it is not necessary to add a binder in order to obtain a binding force between the positive electrode active material particles and the conductive auxiliary particles. For this reason, the internal resistance of the secondary battery can be reduced.

また、二次電池に用いられる正極活物質粒子としては、例えば、下記特許文献2のように、コア部の表面にコア部と異なる材料からなる表面層が形成されてなるコア・シェル粒子が開発されている。このようなコア・シェル粒子は、コア部のみで構成される正極活物質粒子に比べて、サイクル特性、耐久性、機械的強度、耐溶剤性(耐電解液性)、耐酸化性等の特性(性能)等を向上することができる。   In addition, as positive electrode active material particles used for secondary batteries, for example, as disclosed in Patent Document 2 below, core / shell particles in which a surface layer made of a material different from the core part is formed on the surface of the core part have been developed. Has been. Such core / shell particles have characteristics such as cycle characteristics, durability, mechanical strength, solvent resistance (electrolytic solution resistance), oxidation resistance, etc., compared to positive electrode active material particles composed of only the core portion. (Performance) etc. can be improved.

特開2007−220510号公報JP 2007-220510 A 特許第5905086号公報Japanese Patent No. 5905086

混合装置が粉体に作用する機械的エネルギーは、回転体の周速や混合処理の処理時間によって変動する。回転体の周速が遅い場合や処理時間が短い場合は、粉体に作用する機械的エネルギーが小さいため、十分なメカノケミカル反応が得られず、正極活物質粒子と導電助剤粒子との結合力が弱くなってしまう。これにより、正極用複合粒子の導電率が低下し、電池の要求性能が得られなくなってしまう。   The mechanical energy acting on the powder by the mixing apparatus varies depending on the peripheral speed of the rotating body and the processing time of the mixing process. When the peripheral speed of the rotating body is slow or the processing time is short, the mechanical energy acting on the powder is small, so that a sufficient mechanochemical reaction cannot be obtained, and the positive electrode active material particles and the conductive auxiliary agent particles are combined. Power is weakened. Thereby, the electrical conductivity of the composite particles for positive electrode is lowered, and the required performance of the battery cannot be obtained.

一方で、十分なメカノケミカル反応を得るために回転体の周速を過度に速くすると、特許文献2のような、コア部の表面に表面層を被覆した正極活物質粒子では、表面層が損傷して剥離してしまう可能性がある。   On the other hand, when the peripheral speed of the rotating body is excessively increased in order to obtain a sufficient mechanochemical reaction, the surface layer is damaged in the positive electrode active material particles having the surface layer coated on the surface of the core as in Patent Document 2. And may peel off.

本発明の目的は、コア部の表面にコア部と異なる材料の表面層を被覆した正極活物質粒子の損傷を抑制しつつ、正極活物質粒子と導電助剤粒子との結合力を高められる正極用複合粒子の製造条件の決定方法、および正極用複合粒子の製造方法を提供することである。   An object of the present invention is to provide a positive electrode capable of increasing the binding force between the positive electrode active material particles and the conductive auxiliary particles while suppressing damage to the positive electrode active material particles whose surface is coated with a surface layer made of a material different from that of the core portion. It is providing the determination method of the manufacturing conditions of the composite particle for laser, and the manufacturing method of the composite particle for positive electrodes.

上記目的を達成する本発明に係る正極用複合粒子の製造条件の決定方法は、収容部内に回転体が備えられた混合装置の当該収容部内に、コア部の表面にコア部と異なる材料からなる表面層を被覆した正極活物質粒子の粉体、および導電助剤粒子の粉体を投入して、回転体を回転させて乾式で混合する混合処理を行って、正極活物質粒子と導電助剤粒子とを結合させた正極用複合粒子を製造するための製造条件の決定方法である。この製造条件の決定方法は、回転体の周速および混合処理の処理時間を設定して、正極用複合粒子を製造する製造工程と、正極用複合粒子の導電率を測定する導電率測定工程と、正極用複合粒子を水に分散させた溶液のpHを測定するpH測定工程と、導電率測定工程およびpH測定工程によって得られた結果に基づいて、製造工程において設定した回転体の周速および混合処理の処理時間が有効な設定値か否かを判断する判断工程と、を有する。   The method for determining the manufacturing condition of the composite particles for positive electrode according to the present invention that achieves the above object comprises a material different from the core part on the surface of the core part in the accommodating part of the mixing device provided with the rotating body in the accommodating part. The positive electrode active material particles and the conductive auxiliary agent are mixed by charging the powder of the positive electrode active material particles coated with the surface layer and the powder of the conductive auxiliary agent particles, rotating the rotating body and mixing them in a dry manner. This is a method for determining production conditions for producing composite particles for a positive electrode combined with particles. The method for determining the manufacturing conditions includes a manufacturing process for manufacturing the composite particles for positive electrode by setting the peripheral speed of the rotating body and the processing time of the mixing process, and a conductivity measuring process for measuring the conductivity of the composite particles for positive electrode. The peripheral speed of the rotating body set in the manufacturing process based on the pH measurement step for measuring the pH of the solution in which the composite particles for positive electrode are dispersed in water, and the results obtained by the conductivity measurement step and the pH measurement step A determination step of determining whether or not the processing time of the mixing process is an effective set value.

上記目的を達成する本発明に係る正極用複合粒子の製造方法は、収容部内に回転体が備えられた混合装置の当該収容部内に、コア部の表面にコア部と異なる材料からなる表面層を被覆した正極活物質粒子の粉体、および導電助剤粒子の粉体を投入して、回転体を回転させて乾式で混合する混合処理を行って、正極活物質粒子と導電助剤粒子とを結合させた正極用複合粒子を製造する正極用複合粒子の製造方法である。この正極用複合粒子の製造方法は、上記正極用複合粒子の製造条件の決定方法により有効とされた設定値を、回転体の周速および混合処理の処理時間として用いる。   The manufacturing method of the composite particles for positive electrodes according to the present invention that achieves the above object includes a surface layer made of a material different from the core portion on the surface of the core portion in the housing portion of the mixing device provided with a rotating body in the housing portion. The coated positive electrode active material particle powder and conductive auxiliary agent particle powder are charged, and a mixing process is performed in which the rotating body is rotated and mixed in a dry manner to obtain the positive electrode active material particles and the conductive auxiliary agent particles. It is the manufacturing method of the composite particle for positive electrodes which manufactures the composite particle for positive electrodes combined. This positive electrode composite particle manufacturing method uses the set values made effective by the method for determining the positive electrode composite particle manufacturing conditions as the peripheral speed of the rotating body and the processing time of the mixing process.

本発明に係る正極用複合粒子の製造条件の決定方法によれば、正極活物質粒子の粉体と導電助剤粒子の粉体を乾式で混合する正極用複合粒子の製造において、回転体の周速および混合処理の処理時間の許容値を決定することができる。特に、コア部とその表面層を有する正極活物質粒子においては、表面層の損傷を抑制することができる適切な周速を得られる。これにより、混合装置の構成や材料設計に依らずに、正極活物質粒子の表面層の損傷を抑制しつつ、正極活物質粒子と導電助剤粒子との結合力を高めて電池の内部抵抗を低下させることができる製造条件を決定することができる。   According to the method for determining production conditions for composite particles for positive electrode according to the present invention, in the production of composite particles for positive electrode in which the powder of the positive electrode active material particles and the powder of the conductive additive particles are dry mixed, Tolerances for speed and processing time of the mixing process can be determined. In particular, in a positive electrode active material particle having a core portion and its surface layer, an appropriate peripheral speed capable of suppressing damage to the surface layer can be obtained. As a result, the internal resistance of the battery can be increased by increasing the bonding force between the positive electrode active material particles and the conductive auxiliary particles while suppressing damage to the surface layer of the positive electrode active material particles, regardless of the configuration and material design of the mixing device. Manufacturing conditions that can be reduced can be determined.

本発明に係る正極用複合粒子の製造方法によれば、混合装置の構成や材料設計に依らずに、正極活物質粒子の表面層の損傷を抑制しつつ、正極活物質粒子と導電助剤粒子との結合力を高めて電池の内部抵抗を低下させることができる。   According to the method for producing a composite particle for positive electrode according to the present invention, the positive electrode active material particle and the conductive auxiliary agent particle are suppressed while suppressing damage to the surface layer of the positive electrode active material particle without depending on the configuration of the mixing device or the material design. The internal resistance of the battery can be reduced by increasing the binding force.

正極用複合粒子の一実施形態を示す断面概略図である。It is a cross-sectional schematic diagram which shows one Embodiment of the composite particle for positive electrodes. 混合装置の一例を示す断面概略図である。It is the cross-sectional schematic which shows an example of a mixing apparatus. 正極用複合粒子の製造条件の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the manufacturing conditions of the composite particle for positive electrodes. 回転体の周速が異なる条件で製造した正極用複合粒子を用いて導電率を測定した場合に得られる、正極用複合粒子に加える圧力と正極用複合粒子の導電率との関係を示す概念図である。The conceptual diagram which shows the relationship between the pressure added to the composite particle for positive electrodes, and the electrical conductivity of the composite particle for positive electrodes obtained when measuring electrical conductivity using the composite particle for positive electrodes manufactured on the conditions from which the peripheral speed of a rotary body differs It is. 混合処理の処理時間が異なる条件で製造した正極用複合粒子を用いて導電率を測定した場合に得られる、正極用複合粒子に加える圧力と正極用複合粒子の導電率との関係を示す概念図である。The conceptual diagram which shows the relationship between the pressure added to the composite particle for positive electrodes, and the electrical conductivity of the composite particle for positive electrodes obtained when the electrical conductivity is measured using the composite particle for positive electrodes manufactured on the conditions from which the process time of a mixing process differs It is. 正極用複合粒子を水に投入してから経過した時間とpH値との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the time which passed since throwing the composite particle for positive electrodes into water, and pH value.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the meaning of the technical scope and terms described in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.

<正極用複合粒子>
図1は、正極用複合粒子10の一実施形態を示す断面概略図である。
<Composite particles for positive electrode>
FIG. 1 is a schematic cross-sectional view showing one embodiment of composite particle 10 for positive electrode.

正極用複合粒子10は、図1に示すように、正極活物質粒子11と、正極活物質粒子11の表面を被覆した導電助剤粒子12とを有する。正極用複合粒子10は、正極活物質粒子11の表面に導電助剤粒子12を結合させることによって、正極活物質粒子11単体に比べて、導電性を向上させることができる。   As shown in FIG. 1, the positive electrode composite particle 10 includes positive electrode active material particles 11 and conductive auxiliary agent particles 12 that coat the surfaces of the positive electrode active material particles 11. The composite particle 10 for positive electrode can improve electroconductivity compared with the positive electrode active material particle 11 single-piece | unit by couple | bonding the conductive support agent particle | grains 12 with the surface of the positive electrode active material particle 11. FIG.

(正極活物質粒子)
正極活物質粒子11は、図1に示すように、コア部11aと、コア部11aの表面を被覆する表面層11bと、を有する。表面層11bは、コア部11aの表面の全体を被覆することが好ましい。本実施形態の正極活物質粒子11は、コア部11aの表面に表面層11bが形成されてなるもの(以下、単に「コア・シェル粒子」とも称する)であれば特に制限されるものではなく、従来公知のコア・シェル粒子を利用することができる。従来から、既存の正極活物質材料のみで構成される正極活物質粒子に比べて、サイクル特性、耐久性、機械的強度、耐溶剤性(耐電解液性)、耐酸化性等の特性(性能)をより一層向上する等の目的に応じて多種多様なコア・シェル粒子が開発されている。
(Positive electrode active material particles)
As illustrated in FIG. 1, the positive electrode active material particle 11 includes a core portion 11 a and a surface layer 11 b that covers the surface of the core portion 11 a. The surface layer 11b preferably covers the entire surface of the core portion 11a. The positive electrode active material particles 11 of the present embodiment are not particularly limited as long as the surface layer 11b is formed on the surface of the core portion 11a (hereinafter also simply referred to as “core / shell particles”). Conventionally known core / shell particles can be used. Conventionally, characteristics (performance) such as cycle characteristics, durability, mechanical strength, solvent resistance (electrolytic solution resistance), oxidation resistance, etc., compared to positive electrode active material particles composed only of existing positive electrode active material A wide variety of core / shell particles have been developed for the purpose of further improving the above.

後述する本実施形態に係る正極用複合粒子10の製造条件の決定方法および製造方法は、こうした多種多様なコア・シェル粒子の何れにも対応し得るものである。すなわち、多種多様なコア・シェル粒子のコア部11aと表面層11bとの結合強度は一様ではなく様々である。本実施形態に係る正極用複合粒子10の製造条件の決定方法および製造方法は、結合強度の違いに応じて当該表面層11bがひび割れたり剥離したりせず、かつ、導電助剤粒子12の結合力を高めることができるものである。   The method for determining the manufacturing conditions and the manufacturing method of the composite particle for positive electrode 10 according to the present embodiment, which will be described later, can correspond to any of a wide variety of such core-shell particles. That is, the bonding strength between the core portion 11a and the surface layer 11b of various core / shell particles is not uniform and varies. The method for determining the manufacturing conditions and the manufacturing method of the composite particles for positive electrode 10 according to the present embodiment are such that the surface layer 11b does not crack or peel according to the difference in bonding strength, and the bonding of the conductive auxiliary agent particles 12 occurs. It can increase your power.

正極活物質粒子11のコア部11aとしては、特に制限されるものではなく、既存の正極活物質材料を使用用途に応じて適宜用いることができる。例えば、LiMn、LiCoO、LiNiO、Li(Ni−Mn−Co)O、およびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられ、さらに好ましくはLi(Ni−Mn−Co)O、およびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)が用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持つ。遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。 The core portion 11a of the positive electrode active material particle 11 is not particularly limited, and an existing positive electrode active material can be appropriately used according to the intended use. For example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2 , and lithium-transition metal composite oxides in which a part of these transition metals is substituted with other elements , Lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, and the like. In some cases, two or more positive electrode active materials may be used in combination. Preferably, a lithium-transition metal composite oxide is used as the positive electrode active material from the viewpoint of capacity and output characteristics. More preferably, a composite oxide containing lithium and nickel is used, and more preferably Li (Ni—Mn—Co) O 2 , and a part of these transition metals substituted with other elements (hereinafter referred to as “lower”). Simply referred to as “NMC composite oxide”). The NMC composite oxide has a layered crystal structure in which lithium atomic layers and transition metal (Mn, Ni, and Co are arranged in order) atomic layers are alternately stacked via oxygen atomic layers. One Li atom is contained per one atom of the transition metal M, and the amount of Li that can be taken out is twice that of the spinel-based lithium manganese oxide, that is, the supply capacity is doubled, and a high capacity can be obtained.

NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられる。好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crである。より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。   As described above, the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element. Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn and the like. Preferred are Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr. More preferred are Ti, Zr, P, Al, Mg, and Cr, and further preferred are Ti, Zr, Al, Mg, and Cr from the viewpoint of improving cycle characteristics.

NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiaNibMncCodMxOで表される組成を有する。一般式(1)中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。 Since the NMC composite oxide has a high theoretical discharge capacity, it preferably has a composition represented by the general formula (1): LiaNibMncCodMxO 2 . In the general formula (1), a, b, c, d and x are 0.9 ≦ a ≦ 1.2, 0 <b <1, 0 <c ≦ 0.5, 0 <d ≦ 0.5, 0 ≦ x ≦ 0.3 and b + c + d = 1 are satisfied. M is at least one element selected from Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr. Here, a represents the atomic ratio of Li, b represents the atomic ratio of Ni, c represents the atomic ratio of Co, d represents the atomic ratio of Mn, and x represents the atomic ratio of M. Represents. From the viewpoint of cycle characteristics, it is preferable that 0.4 ≦ b ≦ 0.6 in the general formula (1). The composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.

一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化される。その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。   In general, nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity and output characteristics from the viewpoint of improving the purity of materials and improving electronic conductivity. Ti or the like partially replaces the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, it is preferable that a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 <x ≦ 0.3 in the general formula (1). The crystal structure is stabilized by dissolving at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr and Cr. As a result, it is considered that even when charging and discharging are repeated, a decrease in battery capacity can be prevented and excellent cycle characteristics can be realized.

より好ましい実施形態としては、一般式(1)において、b、cおよびdが、0.49≦b≦0.51、0.29≦c≦0.31、0.19≦d≦0.21であることが、容量と寿命特性とのバランスを向上させるという観点からは好ましい。例えば、LiNiMn0.3Co0.2は、一般的な民生電池で実績のあるLiCoO、LiMn2O、LiNi1/3Mn1/3Co1/3などと比較して、単位重量あたりの容量が大きく、エネルギー密度の向上が可能となる。そのため、コンパクトかつ高容量の電池を作製できるという利点を有しており、航続距離の観点からも好ましい。なお、より容量が大きいという点ではLiNiCoAlがより有利であるが、寿命特性に難がある。これに対し、LiNiMnCoは、LiNi1/3Mn1/3Co1/3並みに優れた寿命特性を有している。 In a more preferred embodiment, in the general formula (1), b, c and d are 0.49 ≦ b ≦ 0.51, 0.29 ≦ c ≦ 0.31, 0.19 ≦ d ≦ 0.21. It is preferable from the viewpoint of improving the balance between capacity and life characteristics. For example, LiNi 0 . 5 Mn 0.3 Co 0.2 O 2 is a unit weight compared to LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2, etc., which have been proven in general consumer batteries. The per unit capacity is large, and the energy density can be improved. Therefore, it has the advantage that a compact and high capacity battery can be produced, which is preferable from the viewpoint of cruising distance. It should be noted that LiNi 0 . 8 Co 0 . 1 Al 0 . 1 O 2 is more advantageous, but there are difficulties in life characteristics. In contrast, LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 has life characteristics as excellent as LiNi 1/3 Mn 1/3 Co 1/3 O 2 .

また、正極活物質層に含まれる正極活物質粒子11のコア部11aの平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。なお、本明細書中において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される正極活物質粒子11やコア部11aの輪郭線(観察面)上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。なお、表面層11bの厚さは、正極活物質粒子11の平均粒子径とコア部11aの平均粒子径との差分として、容易に算出できる。   Moreover, the average particle diameter of the core part 11a of the positive electrode active material particles 11 contained in the positive electrode active material layer is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 20 μm from the viewpoint of increasing the output. . In the present specification, the “particle diameter” means the positive electrode active material particle 11 or the core portion 11a observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among the distances between any two points on the contour line (observation surface). As the value of “average particle diameter”, the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted. The particle diameters and average particle diameters of other components can be defined in the same manner. In addition, the thickness of the surface layer 11b can be easily calculated as a difference between the average particle diameter of the positive electrode active material particles 11 and the average particle diameter of the core portion 11a.

また、正極活物質粒子11のコア部11aの製造方法としては、特に制限されるものではなく、コア・シェル粒子以外の既存の正極活物質粒子の製造方法を幅広く用いることができる。例えば、共沈法、スプレードライ法など、種々公知の方法を選択して調製することができる。複合酸化物の調製が容易であることから、共沈法を用いることが好ましい。例えば、共沈法により、ニッケル−コバルト−マンガン複合水酸化物を製造する。その後、ニッケル−コバルト−マンガン複合水酸化物と、リチウム化合物とを混合して焼成することによりNMC複合酸化物からなるコア部11aを得ることができる。   The method for producing the core portion 11a of the positive electrode active material particles 11 is not particularly limited, and a wide variety of existing methods for producing positive electrode active material particles other than the core / shell particles can be used. For example, various known methods such as a coprecipitation method and a spray drying method can be selected and prepared. The coprecipitation method is preferably used because the composite oxide is easy to prepare. For example, a nickel-cobalt-manganese composite hydroxide is produced by a coprecipitation method. Thereafter, the nickel-cobalt-manganese composite hydroxide and the lithium compound are mixed and fired to obtain the core portion 11a made of the NMC composite oxide.

正極活物質粒子11の表面層11bとしては、コア部11aと異なる材料からなるものであれば特に制限されず、既存のコア・シェル粒子の表面層材料を使用用途に応じて適宜用いることができる。以下に既存の表面層材料の中から幾つかの例を示すが、本実施形態はこれらの例によって、何ら制限されるものではない。例えば、表面層材料としては、コア部11aを構成する正極活物質材料中の金属元素(例えば、Mn、Ni、Co等)の一部を他の元素に一部置換した材料が挙げられる。また、コア部11aを構成する正極活物質材料の岩塩型層状構造、ジグザク型層状構造、スピネル型層状構造等の結晶構造中に他の元素を挿入(ドープ)した材料が挙げられる。これら正極活物質材料中の金属元素の一部を置換または挿入(ドープ)する元素としては、例えば、Li、B、P、N、Mg、Al、Ca、V、Ti、Cr、Ni、Mn、Fe、Co、Cu、Zn、Sr、Zr、Nb、Mo、Sn等の元素が挙げられる。これらの元素は1種だけもよいし、2種以上を組み合わせて用いてもよい。さらに表面層材料としては、コア部11aを構成する正極活物質材料またはその一部(元素または化合物等)と、無機N系酸化物の混合物または複合酸化物からなる材料が挙げられる。ここで、前記Nとしては、例えば、Mg、Ti、Fe、Cu、Al、Ca、Ba、Y、Sn、Sb、Na、Zn、ZrおよびSi等の元素が挙げられる。これらの元素は1種だけもよいし、2種以上を組み合わせて用いてもよい。また表面層材料としては、Al等の上記無機N系の酸化物、窒化物、酸窒化物等またはこれらを組み合わせてなる材料が挙げられる。あるいは、表面層材料としては、ROLi(Rは、直鎖アルキル基または直鎖アシル基である)で表される化合物におけるR部分の水素原子の40〜70%がフッ素原子で置換されたフッ素化化合物を含む材料が挙げられる。なお、上記以外の正極活物質粒子11の表面層11bを構成する表面層材料が用いられてもよいことは勿論である。また、表面層11bの各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。 The surface layer 11b of the positive electrode active material particle 11 is not particularly limited as long as it is made of a material different from that of the core portion 11a, and an existing surface layer material of core / shell particles can be appropriately used depending on the intended use. . Some examples of the existing surface layer materials are shown below, but the present embodiment is not limited to these examples. For example, as the surface layer material, a material in which a part of a metal element (for example, Mn, Ni, Co, etc.) in the positive electrode active material constituting the core portion 11a is partially substituted with another element can be cited. Moreover, the material which inserted (dope) another element in crystal structures, such as the rock salt type | mold layered structure of the positive electrode active material material which comprises the core part 11a, a zigzag type | mold layered structure, and a spinel type | mold layered structure, is mentioned. Examples of the elements that substitute or insert (dope) part of the metal elements in the positive electrode active material include, for example, Li, B, P, N, Mg, Al, Ca, V, Ti, Cr, Ni, Mn, Examples of the element include Fe, Co, Cu, Zn, Sr, Zr, Nb, Mo, and Sn. These elements may be used alone or in combination of two or more. Furthermore, examples of the surface layer material include a material made of a mixture or composite oxide of a positive electrode active material or a part thereof (element or compound, etc.) constituting the core portion 11a and an inorganic N-based oxide. Here, examples of N include elements such as Mg, Ti, Fe, Cu, Al, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr, and Si. These elements may be used alone or in combination of two or more. Examples of the surface layer material include the above inorganic N-based oxides such as Al 2 O 3 , nitrides, oxynitrides, and the like, or a combination of these. Alternatively, as the surface layer material, fluorination in which 40 to 70% of hydrogen atoms in the R portion in the compound represented by ROLi (R is a linear alkyl group or a linear acyl group) is substituted with a fluorine atom. Examples include materials containing compounds. Of course, a surface layer material constituting the surface layer 11b of the positive electrode active material particles 11 other than the above may be used. The composition of each element of the surface layer 11b can be measured by, for example, inductively coupled plasma (ICP) emission analysis.

また、コア部11aに表面層11bを形成する方法としては、特に制限されるものではなく、既存のコア・シェル粒子の製造方法における表面層の形成方法を用いることができる。以下に既存のコア・シェル粒子の製造方法における表面層の形成方法の中から幾つかの例を示すが、本実施形態はこれらの例によって、何ら制限されるものではない。例えば、コア部11aの表面を上記したような既存の表面層材料またはこれを含む溶液を用いて、コア部11aを被覆して表面層11bを形成する方法が挙げられる。かかる方法としては、例えば、浸漬・焼結法、塗布・焼結法、混練(焼結)法、噴霧・焼結法、溶射法、CVD法等の既存の形成方法が適用できる。あるいは、コア部11aの表層部を上記したような既存の表面層材料またはその一部を用いて改質して表面(改質)層11bを形成する方法が挙げられる。かかる方法としては、例えば、金属や金属化合物(酸化物、窒化物、酸窒化物等)を挿入(ドープ)する方法(例えば、イオン注入法、合金法、拡散法等)等の既存の形成方法が適用できる。なお、表面層11bは、1層(単層)であってもよいし、2層以上で構成していてもよい。   The method for forming the surface layer 11b on the core portion 11a is not particularly limited, and the surface layer forming method in the existing method for producing core / shell particles can be used. Some examples of the surface layer forming method in the existing core / shell particle manufacturing method will be described below, but the present embodiment is not limited to these examples. For example, there is a method of forming the surface layer 11b by covering the core portion 11a with the existing surface layer material as described above or a solution containing the same as the surface of the core portion 11a. As such a method, for example, an existing forming method such as a dipping / sintering method, a coating / sintering method, a kneading (sintering) method, a spraying / sintering method, a thermal spraying method, or a CVD method can be applied. Alternatively, a method of forming the surface (modified) layer 11b by modifying the surface layer portion of the core portion 11a using the existing surface layer material as described above or a part thereof may be used. As such a method, for example, an existing forming method such as a method of inserting (doping) a metal or a metal compound (oxide, nitride, oxynitride, etc.) (for example, an ion implantation method, an alloy method, a diffusion method, etc.) Is applicable. The surface layer 11b may be a single layer (single layer) or may be composed of two or more layers.

また、正極活物質粒子11の表面層11bの厚さ(被覆厚さまたは改質深さ)は、表面層11bの形成目的(例えば、サイクル特性、耐久性、機械的強度、耐溶剤性(耐電解液性)、耐酸化性等の特性向上目的)毎に最適化された既存の厚さ範囲から適宜選択すればよい。   Further, the thickness (coating thickness or modified depth) of the surface layer 11b of the positive electrode active material particles 11 depends on the purpose of forming the surface layer 11b (for example, cycle characteristics, durability, mechanical strength, solvent resistance (resistance to resistance). What is necessary is just to select suitably from the existing thickness range optimized for every characteristic improvement purpose (electrolyte property), oxidation resistance, etc.).

また、正極活物質層に含まれる正極活物質粒子11(コア部11a+表面層11b)の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。   Further, the average particle diameter of the positive electrode active material particles 11 (core portion 11a + surface layer 11b) contained in the positive electrode active material layer is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 from the viewpoint of high output. ˜20 μm.

(導電助剤粒子)
導電助剤粒子12は、正極活物質粒子11の導電性を向上させるために配合される炭素材料である。炭素材料としては、例えば、アセチレンブラック、ファーネスブラック、カーボンブラック、チャンネルブラック、グラファイト、カーボンナノチューブなどが挙げられる。これらのうち、導電性に優れることから、カーボンブラックを使用することがより好ましい。
(Conductive aid particles)
The conductive auxiliary agent particles 12 are a carbon material blended to improve the conductivity of the positive electrode active material particles 11. Examples of the carbon material include acetylene black, furnace black, carbon black, channel black, graphite, and carbon nanotube. Among these, it is more preferable to use carbon black because of its excellent conductivity.

また、用いられる炭素材料は、活物質に被覆するときに使用する方法によって適宜変更されうる。したがって、活物質に対する炭素材料の被覆方法によっては、上記以外の炭素材料であってもよい。例えば、以下に詳説する焼結法により被覆する場合は、ポリビニルアルコール、スクロース等の水溶性高分子が活物質を被覆するための炭素源として好ましく用いられる。これらの中でも、ポリビニルアルコールが好ましい。   Moreover, the carbon material to be used can be appropriately changed according to the method used when coating the active material. Therefore, depending on the method for coating the active material with the carbon material, a carbon material other than the above may be used. For example, when coating by the sintering method described in detail below, a water-soluble polymer such as polyvinyl alcohol and sucrose is preferably used as a carbon source for coating the active material. Among these, polyvinyl alcohol is preferable.

導電助剤粒子12の形状(活物質に被覆された状態における形状)もまた、特に制限されず、粒子形態でも繊維形態でもよい。被覆のしやすさの点から、粒子形態が好ましく、導電性の点からは、繊維形態が好ましい。   The shape of the conductive auxiliary agent particles 12 (the shape in a state of being coated with the active material) is not particularly limited, and may be in the form of particles or fibers. From the viewpoint of easy coating, a particle form is preferable, and from a conductive point, a fiber form is preferable.

導電助剤粒子12の大きさもまた、特に限定されないが、メカノケミカル反応を十分に起こす観点から、導電助剤粒子12の平均粒子径は、正極活物質粒子11の平均粒子径の10分の1以下であることが好ましい。例えば、炭素材料が粒子形態の場合には、平均粒子径(2次粒子径)が、好ましくは10〜200nmであり、より好ましくは20〜150nmである。また、炭素材料が繊維形態の場合には、直径が、好ましくは20〜500nmであり、より好ましくは50〜300nmであり、長さが、好ましくは5〜20μmであり、より好ましくは8〜15μmである。このような大きさであれば、炭素材料が容易にかつ均一に正極活物質粒子11の表面に被覆される。   The size of the conductive auxiliary agent particles 12 is not particularly limited, but from the viewpoint of sufficiently causing a mechanochemical reaction, the average particle size of the conductive auxiliary agent particles 12 is 1/10 of the average particle size of the positive electrode active material particles 11. The following is preferable. For example, when the carbon material is in the form of particles, the average particle size (secondary particle size) is preferably 10 to 200 nm, more preferably 20 to 150 nm. When the carbon material is in a fiber form, the diameter is preferably 20 to 500 nm, more preferably 50 to 300 nm, and the length is preferably 5 to 20 μm, more preferably 8 to 15 μm. It is. With such a size, the surface of the positive electrode active material particle 11 is easily and uniformly coated with the carbon material.

<混合装置>
図2は、正極用複合粒子10を製造するために用いられる混合装置100の一例を示す断面概略図である。
<Mixing device>
FIG. 2 is a schematic cross-sectional view showing an example of a mixing device 100 used for manufacturing the composite particles 10 for positive electrode.

混合装置100は、容器(収容部に相当)110と、容器110内で容器110に対して相対的に回転する翼部(回転体に相当)120と、を有する。混合装置100は、正極活物質粒子11の粉体および導電助剤粒子12の粉体を、容器110内において翼部120によって流動させて乾式で混合する混合処理を行う。これにより、混合装置100は、正極活物質粒子11と導電助剤粒子12とを結合させた正極用複合粒子10を製造する。   The mixing apparatus 100 includes a container (corresponding to an accommodating part) 110 and a wing part (corresponding to a rotating body) 120 that rotates relative to the container 110 in the container 110. The mixing apparatus 100 performs a mixing process in which the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12 are flowed by the blades 120 in the container 110 and mixed in a dry manner. Thereby, the mixing apparatus 100 manufactures the composite particles 10 for the positive electrode in which the positive electrode active material particles 11 and the conductive additive particles 12 are combined.

なお、混合装置100の構成は、正極活物質粒子11の粉体および導電助剤粒子12の粉体の混合処理を行うことができる限りにおいて、図2に示す混合装置100に限定されず、公知の混合装置(ミキサー)を用いることができる。   The configuration of the mixing apparatus 100 is not limited to the mixing apparatus 100 shown in FIG. 2 as long as it can perform the mixing process of the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12, and is publicly known. The mixing device (mixer) can be used.

<正極用複合粒子の製造条件の決定方法>
正極用複合粒子10の製造条件の決定方法について説明する。図3は、正極用複合粒子10の製造条件の決定方法を示すフローチャートである。
<Method for determining production conditions of composite particles for positive electrode>
A method for determining the manufacturing conditions of the composite particles 10 for the positive electrode will be described. FIG. 3 is a flowchart showing a method for determining manufacturing conditions for the composite particles 10 for positive electrode.

まず、作業者は、混合装置100の翼部120の周速および混合処理の処理時間を設定する(ステップ1(以下、「S1」と称する。他のS数字についても以下同様である。))。   First, the operator sets the peripheral speed of the blade portion 120 of the mixing device 100 and the processing time of the mixing process (step 1 (hereinafter referred to as “S1”; the same applies to other S numbers)). .

次に、作業者は、混合装置100を用いて正極用複合粒子10を製造する製造工程を行う(S2)。より具体的には、正極活物質粒子11の粉体および導電助剤粒子12の粉体を、混合装置100の容器110内に投入する。そして、混合装置100は、S1で設定された周速および処理時間で、翼部120を作動する。これにより、正極活物質粒子11の粉体および導電助剤粒子12の粉体を流動させて混合する混合処理を行う。   Next, an operator performs the manufacturing process which manufactures the composite particle 10 for positive electrodes using the mixing apparatus 100 (S2). More specifically, the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12 are put into the container 110 of the mixing apparatus 100. And the mixing apparatus 100 operates the wing | blade part 120 with the circumferential speed and processing time which were set by S1. Thereby, the mixing process which makes the powder of the positive electrode active material particle 11 and the powder of the conductive support agent particle 12 flow and mix is performed.

混合装置100は、混合処理によって、正極活物質粒子11の粉体および導電助剤粒子12の粉体に対して圧縮力、せん断力、摩擦力等の機械的エネルギーを作用する。機械的エネルギーは、正極活物質粒子11および導電助剤粒子12の表面を活性化させて、いわゆるメカノケミカル反応を引き起こす。これにより、混合装置100は、メカノケミカル反応によって正極活物質粒子11と導電助剤粒子12とを結合(被覆)させた正極用複合粒子10を製造する。なお、本明細書中において、「周速」とは、回転体である翼部120の最外周位置(最大半径位置)における速度であり、単位時間あたりの回転数をn、最大半径をR、とすると翼部120の周速=2πnRとなる。   The mixing apparatus 100 applies mechanical energy such as compression force, shear force, friction force, and the like to the powder of the positive electrode active material particles 11 and the powder of the conductive additive particles 12 by the mixing process. The mechanical energy activates the surfaces of the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 to cause a so-called mechanochemical reaction. Thereby, the mixing apparatus 100 manufactures the composite particles 10 for the positive electrode in which the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 are bonded (coated) by a mechanochemical reaction. In the present specification, the “circumferential speed” is a speed at the outermost peripheral position (maximum radius position) of the wing part 120 that is a rotating body, the rotation number per unit time is n, the maximum radius is R, Then, the peripheral speed of the wing part 120 = 2πnR.

次に、作業者は、JIS K1469(2003)に準拠して正極用複合粒子10の導電率を測定する導電率測定工程を行う(S3)。より具体的には、作業者は、まず、負極を備える円筒状の容器に、正極用複合粒子10の乾燥した粉体である試料を所定量(例えば、1g)充填する。次に、試料を充填した容器に正極を挿入する。その後、試料に対して治具で圧力を加えて圧縮する。この状態で、2端子法により、試料の導電率を測定する。さらに、試料に加える圧力を増加させて、所定の圧力を加えた際の試料の導電率を測定する。これにより、正極用複合粒子10に加える圧力と正極用複合粒子10の導電率との関係を得ることができる。   Next, an operator performs the electrical conductivity measurement process which measures the electrical conductivity of the composite particle 10 for positive electrodes based on JISK1469 (2003) (S3). More specifically, the operator first fills a cylindrical container having a negative electrode with a predetermined amount (for example, 1 g) of a sample that is a dry powder of the positive electrode composite particles 10. Next, the positive electrode is inserted into a container filled with the sample. Thereafter, the sample is compressed by applying pressure with a jig. In this state, the conductivity of the sample is measured by the two-terminal method. Furthermore, the pressure applied to the sample is increased, and the conductivity of the sample when a predetermined pressure is applied is measured. Thereby, the relationship between the pressure applied to the composite particles 10 for positive electrodes and the electrical conductivity of the composite particles 10 for positive electrodes can be obtained.

ここで、正極用複合粒子10を製造する際の周速および処理時間と、導電率との関係を説明する。   Here, the relationship between the peripheral speed and processing time when producing the positive electrode composite particles 10 and the conductivity will be described.

図4は、翼部120の周速が異なる条件で製造した正極用複合粒子10を用いて導電率を測定した場合に得られる、正極用複合粒子10に加える圧力と正極用複合粒子10の導電率との関係を示す概念図である。   FIG. 4 shows the pressure applied to the positive electrode composite particles 10 and the conductivity of the positive electrode composite particles 10 obtained when the conductivity is measured using the positive electrode composite particles 10 manufactured under different conditions of the peripheral speed of the wing 120. It is a conceptual diagram which shows the relationship with a rate.

翼部120の周速を変えて、正極用複合粒子10を製造した複数の試料を作製する。図4に示した例では、「周速1」により混合処理した場合、周速1より遅い「周速2」により混合処理した場合、および混合装置100を使用せずに、低速で混合処理した「処理なし」の場合を示した。ここで、「低速で混合処理する」とは、メカノケミカル反応が生じない程度の低速で撹拌して混合することを意味する。低速で混合処理する場合の混合速度は、例えば、10rpm以下とすることができる。また、図4にはさらに、基準となる導電率のカーブを導電率基準値として示した。なお、導電率基準値については、後述において詳細に説明する。   By changing the peripheral speed of the wing part 120, a plurality of samples in which the positive electrode composite particles 10 are manufactured are prepared. In the example shown in FIG. 4, when the mixing process is performed at “circumferential speed 1”, when the mixing process is performed at “peripheral speed 2” slower than the peripheral speed 1, and at the low speed without using the mixing device 100, the mixing process is performed. The case of “no processing” is shown. Here, “mixing at low speed” means stirring and mixing at a low speed that does not cause a mechanochemical reaction. The mixing speed when mixing at a low speed can be, for example, 10 rpm or less. Further, in FIG. 4, a reference conductivity curve is shown as a conductivity reference value. The conductivity reference value will be described in detail later.

図4に示したように、各試料とも、測定時の圧力が高くなるに従って、導電率が上昇している。これは、正極用複合粒子10に高い圧力を加えることで、粒子の密度が高くなり、粒子同士が近接して導電しやすくなったためである。また、導電率がある程度上昇したところでは、それ以上圧力を上げても導電率は上昇せずに飽和している。これは測定時の密度がそれ以上上がらなくなったかまたは密度が上がっても導電率には影響しない程度となってしまったためである。   As shown in FIG. 4, the conductivity of each sample increases as the pressure during measurement increases. This is because by applying a high pressure to the composite particles 10 for the positive electrode, the density of the particles is increased, and the particles are close to each other and are easily conductive. Further, where the conductivity has increased to some extent, the conductivity is saturated without increasing even if the pressure is increased further. This is because the density at the time of measurement no longer increases, or even if the density increases, the conductivity is not affected.

このように、導電率は測定時の圧力が上がると上昇する。このため、周速を決定する際の導電率基準値も、圧力ごとに異なる値を設ける必要がある。このため導電率基準値は、図4に示したように、圧力が上がると上昇するカーブとなっている。   Thus, the conductivity increases as the measurement pressure increases. For this reason, it is necessary to provide a different conductivity reference value for each pressure as well when determining the peripheral speed. Therefore, as shown in FIG. 4, the conductivity reference value is a curve that increases as the pressure increases.

翼部120の周速は、周速1の方がこれより遅い周速2よりも導電率が高くなっている。これは周速が速い方がメカノケミカル反応を効果的に発生させることができて、正極用複合粒子10そのものの導電率が高くなったためである。   As for the peripheral speed of the wing portion 120, the peripheral speed 1 has a higher conductivity than the peripheral speed 2 which is slower than this. This is because the higher the peripheral speed, the more effectively the mechanochemical reaction can be generated, and the positive electrode composite particle 10 itself has a higher electrical conductivity.

図5は、混合処理の処理時間が異なる条件で製造した正極用複合粒子10を用いて導電率を測定した場合に得られる、正極用複合粒子10に加える圧力と正極用複合粒子10の導電率との関係を示す概念図である。   FIG. 5 shows the pressure applied to the composite particle for positive electrode 10 and the electrical conductivity of the composite particle for positive electrode 10 obtained when the electrical conductivity is measured using the composite particle for positive electrode 10 manufactured under different conditions for the mixing treatment time. It is a conceptual diagram which shows the relationship.

混合処理の処理時間を変えて、正極用複合粒子10を製造した複数の試料を作製する。図5に示した例では、「処理時間1」で混合処理した場合、処理時間1より短い「処理時間2」で混合処理した場合、および混合装置100を使用せずに、低速で混合処理した「処理なし」の場合を示す。また、図5にも、図4と同様に、基準となる導電率のカーブを導電率基準値として示した。   A plurality of samples in which the composite particles for positive electrode 10 are manufactured are manufactured by changing the processing time of the mixing process. In the example shown in FIG. 5, when the mixing process is performed at “processing time 1”, the mixing process is performed at “processing time 2” shorter than the processing time 1, and the mixing process is performed without using the mixing apparatus 100. The case of “no processing” is shown. Further, in FIG. 5, similarly to FIG. 4, a reference conductivity curve is shown as the conductivity reference value.

図5に示したように、測定時の圧力を高くすると導電率が高くなるのは、図4と同様である。基準導電率が圧力と共に上昇するカーブになるのも既に説明したとおりである。   As shown in FIG. 5, when the pressure at the time of measurement is increased, the conductivity increases as in FIG. As described above, the reference conductivity becomes a curve that increases with pressure.

一方、処理時間1の方がこれより短い処理時間2よりも導電率が上がっている。これは処理時間を長くすることで、メカノケミカル反応を効果的に発生させることができて、正極用複合粒子10そのものの導電率が高くなったためである。   On the other hand, the conductivity is higher in the processing time 1 than in the processing time 2 shorter than this. This is because by increasing the treatment time, a mechanochemical reaction can be effectively generated, and the conductivity of the positive electrode composite particle 10 itself is increased.

次に、作業者は、導電率測定工程(S3)によって得られた図4、図5に示すような結果に基づいて、導電率が予め決められた導電率基準値以上か否かを判断する(S4:第1判断工程)。これにより、作業者は、S1で設定した翼部120の周速および混合処理の処理時間が有効な設定値か否かを判断することができる。   Next, the operator determines whether or not the conductivity is equal to or higher than a predetermined conductivity reference value based on the results shown in FIGS. 4 and 5 obtained by the conductivity measurement step (S3). (S4: 1st judgment process). Thus, the operator can determine whether or not the peripheral speed of the wing 120 and the processing time of the mixing process set in S1 are valid set values.

ここで、「導電率基準値」は、例えば、混合装置100による混合処理を行っていない正極用複合粒子10の粉体(図4および図5に示す「処理なし」)の導電率から所定の割合X%だけ上昇した値とすることができる。割合X%は、電池に求められる要求性能に応じて適宜設定することができるが、例えば、1〜50%程度、より好ましくは、30〜50%程度に設定することができる。   Here, the “conductivity reference value” is a predetermined value based on, for example, the conductivity of the powder of the composite particles 10 for positive electrode not subjected to the mixing process by the mixing apparatus 100 (“no treatment” shown in FIGS. 4 and 5). The value can be increased by a percentage X%. The ratio X% can be appropriately set according to the required performance required for the battery. For example, the ratio X% can be set to about 1 to 50%, more preferably about 30 to 50%.

図4に示した場合は、周速1の導電率は、導電率基準値以上であるため、周速1は有効な設定値である。一方、周速2の導電率は、導電率基準値未満であるため、周速2は有効な設定値ではない。同様に、図5に示した場合は、処理時間1の導電率は、導電率基準値以上であるため、処理時間1は有効な設定値である。一方、処理時間2の導電率は、導電率基準値未満であるため、処理時間2は有効な設定値ではない。   In the case shown in FIG. 4, the peripheral speed 1 is an effective set value because the conductivity at the peripheral speed 1 is equal to or higher than the conductivity reference value. On the other hand, since the conductivity of the peripheral speed 2 is less than the conductivity reference value, the peripheral speed 2 is not an effective set value. Similarly, in the case shown in FIG. 5, the processing time 1 is an effective set value because the conductivity of the processing time 1 is equal to or higher than the conductivity reference value. On the other hand, since the conductivity of the processing time 2 is less than the conductivity reference value, the processing time 2 is not an effective set value.

混合装置100による混合処理を行っていない正極用複合粒子10は、メカノケミカル反応が起きていないため、正極活物質粒子11と導電助剤粒子12との結合力が弱い。また、翼部120の周速が遅い場合や混合処理の処理時間が短い場合においても、粉体に作用する機械的エネルギーが小さいため、十分なメカノケミカル反応が得られず、正極活物質粒子11と導電助剤粒子12との結合力が弱い。正極活物質粒子11と導電助剤粒子12との結合力が弱いと、正極用複合粒子10の導電率が低くなる。したがって、作業者は、正極用複合粒子10の導電率の測定によって、正極活物質粒子11と導電助剤粒子12との結合力を十分に得ることができる翼部120の周速および混合処理の処理時間を判断することができる。   Since the mechanochemical reaction does not occur in the positive electrode composite particles 10 that are not subjected to the mixing treatment by the mixing apparatus 100, the bonding force between the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 is weak. Further, even when the peripheral speed of the wing portion 120 is low or the processing time of the mixing process is short, the mechanical energy acting on the powder is small, so that a sufficient mechanochemical reaction cannot be obtained, and the positive electrode active material particles 11 The bonding strength between the conductive auxiliary particles 12 is weak. When the binding force between the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 is weak, the conductivity of the positive electrode composite particles 10 becomes low. Therefore, the operator can measure the peripheral speed of the wing part 120 and the mixing treatment that can sufficiently obtain the bonding force between the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 by measuring the conductivity of the positive electrode composite particles 10. Processing time can be determined.

なお、図4および図5においては、導電率基準値も圧力の変化と共に変化するカーブとして示した。しかし、実際の製造工程においては、導電率測定のための圧力を一定値に決めて、その一定圧力のときの導電率基準値を一点だけ決めてもよいし、複数の圧力ごとに導電率基準値を決めてもよい。   In FIGS. 4 and 5, the conductivity reference value is also shown as a curve that changes as the pressure changes. However, in the actual manufacturing process, the pressure for measuring the conductivity may be set to a constant value, and only one point of the conductivity reference value at that constant pressure may be determined, or the conductivity reference for each of a plurality of pressures. You may decide the value.

導電率測定工程(S3)によって得られた導電率が予め決められた導電率基準値未満の場合(S4:NO)、作業者は、製造工程において設定した翼部120の周速および混合処理の処理時間が有効な設定値ではないと判断する(S11)。より具体的には、翼部120の周速が遅いか、あるいは混合処理の処理時間が短いと判断する。この結果を受けて、周速および処理時間の設定値を変更して再設定し(S12)、S2へ戻り、製造工程を行う。以降これを繰り返すことで、有効な周速および処理時間を絞り込むことができる。   When the electrical conductivity obtained by the electrical conductivity measurement step (S3) is less than a predetermined electrical conductivity reference value (S4: NO), the operator performs the peripheral speed of the wing 120 and the mixing process set in the manufacturing process. It is determined that the processing time is not a valid set value (S11). More specifically, it is determined that the peripheral speed of the wing part 120 is slow or the processing time of the mixing process is short. In response to this result, the setting values of the peripheral speed and processing time are changed and reset (S12), and the process returns to S2 to perform the manufacturing process. By repeating this thereafter, the effective peripheral speed and processing time can be narrowed down.

具体的には、S12において、翼部120の周速を現在の設定よりも速く、あるいは混合処理の処理時間を現在の設定よりも長く設定する。このとき周速および処理時間をどの程度上げて再設定するかは任意であるが、例えば、S3で測定された導電率と導電率基準値の関係から決めることができる。S3で測定された導電率が導電率基準値に近ければ、周速および処理時間の上げ幅を少なくし、導電率が導電率基準値から離れていれば上げ幅を大きくする。   Specifically, in S12, the peripheral speed of the wing 120 is set faster than the current setting, or the processing time of the mixing process is set longer than the current setting. At this time, how much the peripheral speed and the processing time are increased and reset is arbitrary, but can be determined from the relationship between the conductivity measured in S3 and the conductivity reference value, for example. If the conductivity measured in S3 is close to the conductivity reference value, the increase rate of the peripheral speed and processing time is reduced, and if the conductivity is far from the conductivity reference value, the increase rate is increased.

一方、導電率測定工程(S3)によって得られた導電率が予め決められた導電率基準値以上の場合(S4:YES)、作業者は、正極用複合粒子10のpHを測定するpH測定工程を行う(S5)。より具体的には、所定量の正極用複合粒子10を所定量の水に投入し、撹拌して正極用複合粒子10を水に分散させた溶液を調整する。pH測定工程に用いる水は、pH6〜8程度、好ましくはpH7で、pH測定が行える程度に極端な金属汚染がない限りにおいて特に限定されない。例えば、市販の精製水や純水(イオン交換水や蒸留水)を用いることができる。pHの測定は、公知のpHメーターを用いることができる。   On the other hand, when the electrical conductivity obtained by the electrical conductivity measurement step (S3) is equal to or higher than a predetermined electrical conductivity reference value (S4: YES), the operator measures the pH of the composite particle for positive electrode 10 by a pH measurement step. (S5). More specifically, a predetermined amount of the composite particles for positive electrode 10 is put into a predetermined amount of water, and stirred to prepare a solution in which the composite particles for positive electrode 10 are dispersed in water. The water used in the pH measurement step is not particularly limited as long as the pH is about 6 to 8, preferably pH 7, and there is no extreme metal contamination to the extent that pH measurement can be performed. For example, commercially available purified water or pure water (ion exchange water or distilled water) can be used. A known pH meter can be used for measuring the pH.

図6は、正極用複合粒子10をpH7の水に投入してから経過した時間とpH値との関係を示す概念図である。   FIG. 6 is a conceptual diagram showing the relationship between the time elapsed since the positive electrode composite particles 10 were put into water having a pH of 7 and the pH value.

正極用複合粒子10の粉体をpH7の水に投入した時点から経過した時間ごとに溶液のpHを測定することで、図6に示すような経過時間とpH値との関係を得ることができる。図6に示した例では、前記した図4の場合の翼部120の周速1よりもさらに速い「周速3」により混合処理した場合と、混合装置100を使用せずに、低速で混合処理した「処理なし」の場合を示した。   By measuring the pH of the solution for each time that has elapsed since the time when the powder of the composite particle for positive electrode 10 was introduced into water having a pH of 7, a relationship between the elapsed time and the pH value as shown in FIG. 6 can be obtained. . In the example shown in FIG. 6, the mixing process is performed at “peripheral speed 3” which is faster than the peripheral speed 1 of the wing part 120 in the case of FIG. The case of "no processing" processed is shown.

次に、作業者は、pH測定工程によって得られた正極用複合粒子10のpH値とpH基準値との差分が予め決められた乖離量以下か否かを判断する(S6:第2判断工程)。これにより、作業者は、翼部120の周速が有効な設定値か否かを判断する。この段階では、既にS4において導電率基準値により判断した結果、有効となった周速に対して判断することになる。   Next, the operator determines whether or not the difference between the pH value of the positive electrode composite particles 10 obtained by the pH measurement step and the pH reference value is equal to or less than a predetermined deviation amount (S6: second determination step). ). Thus, the operator determines whether or not the peripheral speed of the wing 120 is an effective set value. At this stage, the effective peripheral speed is determined as a result of the determination based on the conductivity reference value in S4.

ここで、「pH基準値」は、例えば、混合装置100による混合処理を行わずに正極活物質粒子11の粉体および導電助剤粒子12の粉体を混合した粉体を水に分散させた溶液のpH値とすることができる(図6に示す「処理なし」)。また、pHの「予め決められた乖離量」は、例えば、0.5〜6程度、より好ましくは1〜5程度とすることができる。   Here, the “pH reference value” is obtained by, for example, dispersing a powder obtained by mixing the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12 in water without performing the mixing process by the mixing apparatus 100. It can be the pH value of the solution (“no treatment” shown in FIG. 6). Further, the “predetermined deviation amount” of the pH can be set to, for example, about 0.5 to 6, more preferably about 1 to 5.

図6に示したように、pH基準値では、時間が経過してもpH値にほとんど変動はない。一方、周速3では、時間の経過に伴いpH値が上昇している。これにより、周速3におけるpH値とpH基準値との差分が予め決められた乖離量(図6に示す「乖離量」)を超えている。これは、混合処理の際に、周速を速くし過ぎたために正極活物質粒子11の表面層11bが破壊されてしまって、水にコア部11aを形成している金属成分が徐々に溶け出したためである。したがって、周速3は、有効な設定値ではない。   As shown in FIG. 6, with the pH reference value, there is almost no change in the pH value over time. On the other hand, at the peripheral speed 3, the pH value increases with time. As a result, the difference between the pH value at the peripheral speed 3 and the pH reference value exceeds a predetermined deviation amount (“deviation amount” shown in FIG. 6). This is because the surface layer 11b of the positive electrode active material particles 11 is destroyed because the peripheral speed is excessively increased during the mixing process, and the metal component forming the core portion 11a is gradually dissolved in water. This is because. Therefore, the peripheral speed 3 is not an effective set value.

本実施形態では、正極活物質粒子11はリチウムイオンを含むため、正極活物質粒子11の表面層11bが破損している場合、水に分散させた正極活物質粒子11のLiが徐々に溶出して、水と反応して水酸化リチウム(LiOH)が生成される。水酸化リチウムは、水に溶けてアルカリ性を示す。このため、正極活物質粒子11の表面層11bが破損している場合は、溶液のpH値が時間の経過と共に上昇する。したがって、作業者は、pHの測定によって、正極活物質粒子11の表面層11bが破損しているか否かを判断することができる。その結果、作業者は、正極活物質粒子11の表面層11bが破損しない翼部120の周速を判断することができる。なお、正極活物質粒子11の表面層11bが破損している場合、本実施形態のように時間の経過と共にpH値が上昇する場合に限定されず、コア部11aを形成している金属成分によって、時間の経過と共にpH値が減少する場合においても本発明を適用することができる。   In the present embodiment, since the positive electrode active material particles 11 contain lithium ions, when the surface layer 11b of the positive electrode active material particles 11 is damaged, Li of the positive electrode active material particles 11 dispersed in water is gradually eluted. And reacts with water to produce lithium hydroxide (LiOH). Lithium hydroxide dissolves in water and exhibits alkalinity. For this reason, when the surface layer 11b of the positive electrode active material particles 11 is damaged, the pH value of the solution rises with time. Therefore, the operator can determine whether or not the surface layer 11b of the positive electrode active material particles 11 is damaged by measuring the pH. As a result, the operator can determine the peripheral speed of the wing part 120 at which the surface layer 11b of the positive electrode active material particles 11 is not damaged. In addition, when the surface layer 11b of the positive electrode active material particle 11 is damaged, it is not limited to the case where the pH value increases with the passage of time as in the present embodiment, but depending on the metal component forming the core portion 11a. The present invention can be applied even when the pH value decreases with the passage of time.

なお、pHの測定は、製造した正極用複合粒子10を水に投入した直後ではなく、多少時間が経過した後に行うことが好ましい。これは、上記説明のとおり、製造した正極用複合粒子10において、表面層11bに損傷がある場合に金属成分が溶け出すまでに多少時間がかかることがあるためである。例えば、1〜60分程度、好ましくは5〜30分待てばよい。また、時間経過と共に、所定時間ごとに何度か測定するようにしてもよい。なお、基準となる混合処理なしの場合は時間が経過しても、ほとんど金属成分が溶け出すことはないので、待たなくてもよい。ただし、測定条件を合わせるために、正極用複合粒子10のpH測定に合わせて同じ時間だけ経過してから測定してもよい。   In addition, it is preferable to perform the measurement of pH after a certain amount of time has passed, not immediately after the produced composite particles 10 for positive electrode are put into water. This is because, as described above, in the manufactured composite particle for positive electrode 10, it may take some time for the metal component to dissolve when the surface layer 11 b is damaged. For example, it may be about 1 to 60 minutes, preferably 5 to 30 minutes. Moreover, you may make it measure several times for every predetermined time with progress of time. In the case where there is no standard mixing treatment, the metal component hardly dissolves even after a lapse of time, so there is no need to wait. However, in order to match the measurement conditions, the measurement may be performed after the same time has elapsed in accordance with the pH measurement of the positive electrode composite particles 10.

正極用複合粒子10のpH値とpH基準値との差分が予め決められた乖離量を超えている場合(S6:NO)、作業者は、製造工程において設定した翼部120の周速が有効な設定値ではないと判断する(S11)。以降、S12において、翼部120の周速の設定値を変更して再設定する。この時点では、現在の設定値よりも周速が遅くなるように設定する。   When the difference between the pH value of the positive electrode composite particle 10 and the pH reference value exceeds a predetermined amount of deviation (S6: NO), the operator can effectively use the peripheral speed of the wing 120 set in the manufacturing process. It is determined that the set value is not correct (S11). Thereafter, in S12, the setting value of the peripheral speed of the wing 120 is changed and reset. At this point, the peripheral speed is set to be slower than the current set value.

一方、正極用複合粒子10のpH値とpH基準値との差分が予め決められた乖離量以下の場合(S6:YES)、作業者は、正極用複合粒子10を用いて試験用セルを作製する(S7)。試験用セルは、例えば、小型の試験用セルとすることができる。   On the other hand, when the difference between the pH value of the composite particle for positive electrode 10 and the pH reference value is equal to or less than a predetermined deviation (S6: YES), the operator uses the composite particle for positive electrode 10 to produce a test cell. (S7). The test cell can be, for example, a small test cell.

より具体的には、まず、作業者は、正極用複合粒子10を含む正極、および負極を作製する。作製した正極および負極を、ポンチを用いて打ち抜く。さらに、セパレータ(例えば、ポリプロピレン微多孔膜)を準備する。また、電解液(例えば、エチレンカーボネートとプロピレンカーボネートとの等体積混合液にリチウム塩であるLiPFを1Mの濃度に溶解させたもの)を準備する。 More specifically, first, the worker produces a positive electrode including the positive electrode composite particles 10 and a negative electrode. The produced positive electrode and negative electrode are punched out using a punch. Furthermore, a separator (for example, a polypropylene microporous film) is prepared. In addition, an electrolytic solution (for example, LiPF 6 that is a lithium salt dissolved in an equal volume mixed solution of ethylene carbonate and propylene carbonate at a concentration of 1M) is prepared.

上記で得られた負極、セパレータ、および正極をこの順に積層して電池要素を作製し、セパレータに電解液を注入する。そして、負極および正極にそれぞれ電流取り出し用端子を接続し、電流取り出し用端子が外部に露出するように電池要素をアルミニウム製のラミネートフィルム中に入れ、真空に封止して、試験用セルを作製する。   The negative electrode, separator, and positive electrode obtained above are laminated in this order to produce a battery element, and an electrolyte is injected into the separator. Then, a current extraction terminal is connected to each of the negative electrode and the positive electrode, and the battery element is placed in an aluminum laminate film so that the current extraction terminal is exposed to the outside, and sealed in a vacuum to produce a test cell. To do.

次に、作業者は、初回充放電後、放電状態での試験用セルの内部抵抗を測定する内部抵抗測定工程を行う(S8)。ここでは試験用セルの内部抵抗として、直流抵抗(DCR:Direct Current Resistance)を測定する。   Next, the operator performs an internal resistance measurement step of measuring the internal resistance of the test cell in the discharged state after the first charge / discharge (S8). Here, a direct current resistance (DCR) is measured as the internal resistance of the test cell.

DCRの測定は、製造した正極用複合粒子10を用いて正極活物質を製造したときに、基準となる直流抵抗(DCR基準値)の範囲内か否かを判断するために使用する。このため、初回充放電後のDCRを測定するだけでもよい。もちろん、複数回の充放電サイクル後のDCRを測定してもよく、これにより実使用に近い状態での正極用複合粒子10の良否を判断することも可能である。   The measurement of DCR is used to determine whether or not the positive electrode active material is manufactured using the manufactured positive electrode composite particles 10 and is within the range of a standard direct current resistance (DCR reference value). For this reason, only the DCR after the first charge / discharge may be measured. Of course, the DCR after a plurality of charge / discharge cycles may be measured, whereby the quality of the composite particle for positive electrode 10 in a state close to actual use can be determined.

DCRの測定は、例えば、SOC(State Of Charge)100%になるまで定電流定電圧充電を行い、その後、一定時間(または一定電圧になるまで)、定電流放電を行う。そして定電流放電過程におけるSOC100%時の開放電圧から放電終了時の電圧までの電圧差(差分の電圧値)を定電流放電の電流値で割ることでDCR値が得られる。なお、DCRの測定はその他の方法でもよいし、DCR測定機能の付いたケミカルイピーダンスアナライザーによって測定してもよい。   For the measurement of DCR, for example, constant current and constant voltage charging is performed until SOC (State Of Charge) reaches 100%, and then constant current discharging is performed for a certain time (or until reaching a certain voltage). A DCR value is obtained by dividing the voltage difference (voltage value of the difference) from the open circuit voltage at 100% SOC in the constant current discharge process to the voltage at the end of discharge by the current value of constant current discharge. The DCR may be measured by other methods or by a chemical impedance analyzer having a DCR measurement function.

次に、作業者は、内部抵抗測定工程によって得られた結果に基づいて、測定したDCR値がDCR基準値(抵抗基準値に相当)以下か否かを判断する(S9:第3判断工程)。   Next, the operator determines whether or not the measured DCR value is equal to or less than the DCR reference value (corresponding to the resistance reference value) based on the result obtained in the internal resistance measurement step (S9: third determination step). .

ここで、「DCR基準値」は、例えば、バインダーと共に正極活物質粒子11の粉体および導電助剤粒子12の粉体を含む溶媒中で混合して調整したスラリーを用いて上記試験用セル同様のセルを作成してDCR値を測定する。したがって、DCR基準値を求める際には、本実施形態のように粉体の乾式での混合処理を行わない試験用セルを使用する。   Here, the “DCR reference value” is, for example, the same as in the test cell described above, using a slurry prepared by mixing in a solvent containing the powder of the positive electrode active material particles 11 and the powder of the conductive additive particles 12 together with the binder. And the DCR value is measured. Therefore, when obtaining the DCR reference value, a test cell that does not perform the powder dry mixing process as in this embodiment is used.

二次電池の内部抵抗は、反応抵抗成分、オーミック抵抗成分および拡散抵抗成分の3種の抵抗成分に分解することができる。反応抵抗成分は、活物質の化学反応に由来する抵抗成分である。オーミック抵抗成分は、構成素材(金属部材)同士の接触抵抗、および構成素材内の導電抵抗等から構成される抵抗成分である。拡散抵抗成分は、活物質中や溶液中のイオン拡散を表す抵抗成分である。混合処理の処理時間が過度に長いと、正極活物質粒子11に被覆された導電助剤粒子12が過度に高密度化してしまう。これにより、導電助剤粒子12は、正極活物質粒子11の電池反応、ここでは特に正極側でのリチウムイオンの移動を制限し、当該リチウムイオンの可逆的な吸蔵および放出に伴う電池の充電および放電反応を阻害してしまう。その結果、試験用セルの反応抵抗が高くなるため、内部抵抗値が高くなってしまう。したがって、作業者は、内部抵抗値(ここではDCR)の測定によって、混合処理の処理時間が過度に長くないか否かを判断することができる。   The internal resistance of the secondary battery can be decomposed into three types of resistance components: a reaction resistance component, an ohmic resistance component, and a diffusion resistance component. The reaction resistance component is a resistance component derived from a chemical reaction of the active material. The ohmic resistance component is a resistance component composed of contact resistance between constituent materials (metal members) and conductive resistance in the constituent materials. The diffusion resistance component is a resistance component that represents ion diffusion in the active material or in the solution. If the treatment time of the mixing treatment is excessively long, the conductive auxiliary agent particles 12 covered with the positive electrode active material particles 11 are excessively densified. Thereby, the conductive auxiliary agent particles 12 limit the battery reaction of the positive electrode active material particles 11, particularly the movement of lithium ions on the positive electrode side, and charge and recharge of the battery accompanying the reversible occlusion and release of the lithium ions. Discharges the discharge reaction. As a result, the reaction resistance of the test cell is increased, and the internal resistance value is increased. Therefore, the operator can determine whether the processing time of the mixing process is not excessively long by measuring the internal resistance value (DCR in this case).

内部抵抗測定工程によって得られた試験用セルのDCR値がDCR基準値よりも高い場合(S9:NO)、作業者は、S4で有効とされた混合処理の処理時間が、電池反応としては有効な設定値ではないと判断する(S11)。より具体的には、混合処理の処理時間が過度に長いと判断する。以降、S12により処理時間の設定値を変更して再設定を行うことになる。この段階では、混合処理の処理時間を現在の設定値よりも短くする設定する。   When the DCR value of the test cell obtained by the internal resistance measurement process is higher than the DCR reference value (S9: NO), the operator can use the processing time of the mixing process made effective in S4 as the battery reaction. It is determined that the set value is not correct (S11). More specifically, it is determined that the processing time of the mixing process is excessively long. Thereafter, the setting value of the processing time is changed and reset by S12. At this stage, the processing time of the mixing process is set to be shorter than the current set value.

一方、内部抵抗測定工程によって得られた試験用セルのDCR値がDCR基準値以下の場合(S9:YES)、作業者は、翼部120の周速および混合処理の処理時間が有効な設定値であると判断する(S10)。この時点で設定されている周速および処理時間が最終的に有効な設定値として決定される。   On the other hand, when the DCR value of the test cell obtained by the internal resistance measurement step is equal to or less than the DCR reference value (S9: YES), the operator sets the effective speed of the wing 120 and the processing time of the mixing process. (S10). The peripheral speed and processing time set at this time are finally determined as effective set values.

このようにして、周速および処理時間の有効な設定値が決定したなら、その設定値を用いて、正極用複合粒子10を製造する。正極用複合粒子10の製造方法は、既に説明した混合装置100の容器110内に、正極活物質粒子11の粉体および導電助剤粒子12の粉体を投入し、決定した周速および処理時間を用いて、これらを乾式で混合することにより行う。   Thus, if the effective setting value of a peripheral speed and processing time is determined, the composite particle 10 for positive electrodes will be manufactured using the setting value. In the manufacturing method of the composite particles 10 for the positive electrode, the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12 are introduced into the container 110 of the mixing apparatus 100 described above, and the determined peripheral speed and processing time are determined. By mixing them dry.

以上のとおり、説明した本実施形態は、以下の効果を奏する。   As described above, the described embodiment has the following effects.

本実施形態に係る正極用複合粒子10の製造条件の決定方法は、容器(収容部)110内に翼部(回転体)120が備えられた混合装置100の当該容器110内に、コア部11aの表面にコア部11aと異なる材料からなる表面層11bを被覆した正極活物質粒子11の粉体、および導電助剤粒子12の粉体を投入して、翼部120を回転させて乾式で混合する混合処理を行って、正極活物質粒子11と導電助剤粒子12とを結合させた正極用複合粒子10を製造するための製造条件の決定方法である。当該製造条件の決定方法は、翼部120の周速および混合処理の処理時間を設定して(S1)、正極用複合粒子10を製造する製造工程(S2)と、正極用複合粒子10の導電率を測定する導電率測定工程(S3)と、正極用複合粒子10を水に分散させた溶液のpHを測定するpH測定工程(S5)と、導電率測定工程およびpH測定工程によって得られた結果に基づいて、製造工程において設定した翼部120の周速および混合処理の処理時間が有効な設定値か否かを判断する判断工程(S4、S6)と、を有する。   In the method for determining the manufacturing condition of the composite particle for positive electrode 10 according to the present embodiment, the core part 11a is provided in the container 110 of the mixing apparatus 100 provided with the wing part (rotating body) 120 in the container (accommodating part) 110. The positive electrode active material particle 11 powder coated with the surface layer 11b made of a material different from the core part 11a and the conductive auxiliary agent particle 12 powder are put on the surface of the wing part 120, and the wing part 120 is rotated and mixed in a dry manner. This is a method for determining manufacturing conditions for manufacturing the composite particles 10 for the positive electrode in which the positive electrode active material particles 11 and the conductive additive particles 12 are bonded by performing the mixing process. The manufacturing conditions are determined by setting the peripheral speed of the wing 120 and the processing time of the mixing process (S1), the manufacturing process (S2) for manufacturing the composite particles for positive electrode 10, and the conductivity of the composite particles for positive electrode 10 Obtained by a conductivity measuring step (S3) for measuring the rate, a pH measuring step (S5) for measuring the pH of a solution in which the composite particles for positive electrode 10 are dispersed in water, a conductivity measuring step and a pH measuring step. And a determination step (S4, S6) for determining whether the peripheral speed of the wing portion 120 set in the manufacturing process and the processing time of the mixing process are effective set values based on the result.

上記正極用複合粒子10の製造条件の決定方法によれば、正極活物質粒子11の粉体と導電助剤粒子12の粉体を乾式で混合する正極用複合粒子10の製造において、翼部120の周速および混合処理の処理時間の許容値を決定することができる。特に、コア部11aとその表面層11bを有する正極活物質粒子11においては、表面層11bの損傷を抑制することができる適切な周速を得られる。これにより、混合装置100の構成や材料設計に依らずに、正極活物質粒子11の表面層11bの損傷を抑制しつつ、正極活物質粒子11と導電助剤粒子12との結合力を高めて電池の内部抵抗を低下させることができる製造条件を決定することができる。   According to the method for determining the manufacturing condition of the composite particle for positive electrode 10 described above, in the manufacture of the composite particle for positive electrode 10 in which the powder of the positive electrode active material particle 11 and the powder of the conductive additive particle 12 are dry-mixed, the wing part 120 is used. The permissible values of the peripheral speed and the processing time of the mixing process can be determined. In particular, in the positive electrode active material particles 11 having the core portion 11a and the surface layer 11b, an appropriate peripheral speed capable of suppressing damage to the surface layer 11b can be obtained. Thereby, the binding force between the positive electrode active material particles 11 and the conductive additive particles 12 is increased while suppressing damage to the surface layer 11b of the positive electrode active material particles 11 without depending on the configuration or material design of the mixing device 100. Manufacturing conditions that can reduce the internal resistance of the battery can be determined.

また、判断工程は、導電率測定工程によって得られた導電率が予め決められた導電率基準値以上の場合には、製造工程において設定した翼部120の周速および混合処理の処理時間が有効な設定値であると判断する第1判断工程(S4:YES)を有する。これにより、正極活物質粒子11と導電助剤粒子12との結合力を高めて電池の内部抵抗を低下させることができる。   In addition, in the determination process, when the conductivity obtained by the conductivity measurement process is equal to or higher than a predetermined conductivity reference value, the peripheral speed of the wing 120 and the processing time of the mixing process set in the manufacturing process are effective. 1st judgment process (S4: YES) which judges that it is an easy setting value. Thereby, the bond strength between the positive electrode active material particles 11 and the conductive auxiliary agent particles 12 can be increased, and the internal resistance of the battery can be reduced.

また、判断工程は、混合処理前の正極活物質粒子11の粉体および導電助剤粒子12の粉体を水に分散させた溶液のpH値をpH基準値として、pH測定工程によって得られたpH値と当該pH基準値との差分が予め決められた乖離量以下の場合に、製造工程において設定した翼部120の周速が有効な設定値であると判断する第2判断工程(S6:YES)を有する。これにより、正極用複合粒子10の製造において、正極活物質粒子11の表面層11bが損傷することを抑制することができる。   Further, the determination step was obtained by the pH measurement step using the pH value of the solution in which the powder of the positive electrode active material particles 11 and the powder of the conductive auxiliary agent particles 12 before the mixing treatment were dispersed in water as the pH reference value. A second determination step (S6: determining that the peripheral speed of the wing part 120 set in the manufacturing process is an effective set value when the difference between the pH value and the pH reference value is equal to or less than a predetermined deviation amount. YES). Thereby, in manufacture of the composite particle 10 for positive electrodes, it can suppress that the surface layer 11b of the positive electrode active material particle 11 is damaged.

また、本実施形態に係る正極用複合粒子10の製造条件の決定方法は、正極用複合粒子10を正極に含むセルの内部抵抗値を測定する内部抵抗測定工程(S8)をさらに有する。そして、判断工程において、さらに内部抵抗測定工程によって得られた結果に基づいて、混合処理の処理時間が有効な設定値か否かを判断する(S9)。これにより、混合処理の処理時間が過度に長くないか否かを判断して、導電助剤粒子12が正極活物質粒子11の電池反応を阻害してしまうことを防止することができる。これにより、電池の内部抵抗をより一層低下させることができる。   In addition, the method for determining the manufacturing condition of the composite particle for positive electrode 10 according to the present embodiment further includes an internal resistance measurement step (S8) for measuring the internal resistance value of a cell including the composite particle for positive electrode 10 in the positive electrode. In the determination step, it is further determined whether the processing time of the mixing process is an effective set value based on the result obtained in the internal resistance measurement step (S9). Thereby, it can be judged whether the processing time of a mixing process is not too long, and it can prevent that the conductive support agent particle 12 inhibits the battery reaction of the positive electrode active material particle 11. Thereby, the internal resistance of the battery can be further reduced.

また、判断工程は、内部抵抗測定工程によって得られた内部抵抗値が予め決められた抵抗基準値以下の場合に、製造工程において設定した混合処理の処理時間が有効な設定値であると判断する第3判断工程(S9:YES)を有する。これにより、混合処理の処理時間が過度に長くならないようにして、導電助剤粒子12が正極活物質粒子11の電池反応を阻害してしまうことを防止することができる。これにより、電池の内部抵抗をより一層低下させることができる。   Further, the determining step determines that the processing time of the mixing process set in the manufacturing process is an effective set value when the internal resistance value obtained in the internal resistance measuring process is equal to or less than a predetermined resistance reference value. It has a 3rd judgment process (S9: YES). Thereby, it is possible to prevent the conductive auxiliary agent particles 12 from inhibiting the battery reaction of the positive electrode active material particles 11 by preventing the processing time of the mixing treatment from becoming excessively long. Thereby, the internal resistance of the battery can be further reduced.

また、本実施形態に係る正極用複合粒子10の製造方法は、容器110内に翼部120が備えられた混合装置100の当該容器110内に、コア部11aの表面にコア部11aと異なる材料からなる表面層11bを被覆した正極活物質粒子11の粉体、および導電助剤粒子12の粉体を投入して、翼部120を回転させて乾式で混合する混合処理を行って、正極活物質粒子11と導電助剤粒子12とを結合させた正極用複合粒子10を製造する正極用複合粒子10の製造方法である。正極用複合粒子10の製造方法は、上記正極用複合粒子10の製造条件の決定方法により有効とされた設定値を、翼部120の周速および混合処理の処理時間として用いる。これにより、混合装置100の構成や材料設計に依らずに、正極活物質粒子11の表面層11bの損傷を抑制しつつ、正極活物質粒子11と導電助剤粒子12との結合力を高めて電池の内部抵抗を低下させることができる。   Moreover, the manufacturing method of the composite particle 10 for positive electrodes which concerns on this embodiment is a material different from the core part 11a on the surface of the core part 11a in the said container 110 of the mixing apparatus 100 with which the wing | blade part 120 was equipped in the container 110. The powder of the positive electrode active material particles 11 coated with the surface layer 11b and the powder of the conductive auxiliary agent particles 12 are charged, and a mixing process is performed in which the wing 120 is rotated and mixed in a dry manner to perform positive electrode active This is a method for producing a composite particle for positive electrode 10 that produces composite particles for positive electrode 10 in which substance particles 11 and conductive additive particles 12 are bonded. In the method for producing the composite particle for positive electrode 10, the set values made effective by the method for determining the production condition of the composite particle for positive electrode 10 are used as the peripheral speed of the wing 120 and the processing time of the mixing process. Thereby, the binding force between the positive electrode active material particles 11 and the conductive additive particles 12 is increased while suppressing damage to the surface layer 11b of the positive electrode active material particles 11 without depending on the configuration or material design of the mixing device 100. The internal resistance of the battery can be reduced.

以上、実施形態を通じて本発明に係る正極用複合粒子の製造条件の決定方法および正極用複合粒子の製造方法を説明したが、本発明は実施形態において説明した内容のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。   As mentioned above, although the determination method of the manufacturing conditions of the composite particles for positive electrodes and the manufacturing method of the composite particles for positive electrodes according to the present invention have been described through the embodiments, the present invention is not limited only to the contents described in the embodiments, Modifications can be made as appropriate based on the description of the scope of claims.

例えば、混合装置は、粉体を流動させることができる限りにおいて、実施形態において説明した構成に限定されず、公知のミキサー等を用いることができる。また、混合装置の収容部は、粉体を流動させるために収容する空間を有する限りにおいて、実施形態において説明した容器に限定されず、例えば、2以上の部材間に形成された空間によって構成されてもよい。さらに、混合装置の回転体は、粉体を流動させる機械的エネルギーを作用することができる限りにおいて、実施形態において説明した翼部に限定されず、例えば、回転盤であってもよい。   For example, the mixing device is not limited to the configuration described in the embodiment as long as the powder can be flowed, and a known mixer or the like can be used. In addition, the storage unit of the mixing device is not limited to the container described in the embodiment as long as it has a space for storing powder to flow, and is configured by a space formed between two or more members, for example. May be. Furthermore, the rotating body of the mixing device is not limited to the wing part described in the embodiment as long as mechanical energy for flowing the powder can be applied, and may be a rotating disk, for example.

また、正極活物質粒子や導電助剤粒子を構成する材料や粒径などは、実施形態において説明した構成に特に限定されない。   Moreover, the material, particle size, etc. which comprise positive electrode active material particle | grains and conductive support agent particle | grains are not specifically limited to the structure demonstrated in embodiment.

また、実施形態において正極用複合粒子の製造条件の決定方法は、試験用セルの内部抵抗測定工程およびその結果を判断する第3判断工程を含むとして説明したが、これに限定されず内部抵抗測定工程および第3判断工程を含まなくてもよい。   In the embodiment, the method for determining the manufacturing condition of the composite particles for positive electrode has been described as including the internal resistance measurement step of the test cell and the third determination step of determining the result thereof, but is not limited thereto, and the internal resistance measurement is performed. The process and the third determination process may not be included.

また、実施形態では、導電率測定工程に続いて第1判断工程、その後、pH測定工程に続いて第2判断工程としたが、これらは逆の順番でもよい。すなわち、pH測定工程に続いて第2判断工程を先に行い、その後、導電率測定工程に続いて第1判断工程としてもよい。また、導電率測定工程に続いてまたは並行してpH測定工程を行った後、第1判断工程および第2判断工程をまとめて行ってもよい。第1判断工程および第2判断工程をまとめて行うことで、導電率が低ければ周速を速くしたり処理時間を長くしたりし、pH値の乖離量が大きければ周速を遅くするなどの設定変更を一度に行うことができる。さらに、内部抵抗の測定と続く第3判断工程も、正極用複合粒子の製造工程の後であればどの順で行ってもよいし、第1〜第3判断工程を一つの判断工程として行ってもよい。   In the embodiment, the first determination step is performed after the conductivity measurement step, and then the second determination step is performed subsequent to the pH measurement step. However, these steps may be performed in the reverse order. That is, the second determination step may be performed first after the pH measurement step, and then the first determination step may be performed subsequent to the conductivity measurement step. In addition, the first determination step and the second determination step may be performed together after performing the pH measurement step following or concurrently with the conductivity measurement step. By performing the first determination step and the second determination step together, the peripheral speed can be increased or the processing time can be lengthened if the conductivity is low, and the peripheral speed can be decreased if the difference in pH value is large. You can change settings at once. Further, the measurement of internal resistance and the subsequent third determination step may be performed in any order as long as they are after the manufacturing process of the composite particles for positive electrode, and the first to third determination steps are performed as one determination step. Also good.

10 正極用複合粒子、
11 正極活物質粒子、
11a 正極活物質粒子のコア部、
11b 正極活物質粒子の表面層、
12 導電助剤粒子、
100 混合装置、
110 容器(収容部)、
120 翼部(回転体)。
10 Composite particles for positive electrode,
11 positive electrode active material particles,
11a Core part of positive electrode active material particles,
11b The surface layer of the positive electrode active material particles,
12 conductive aid particles,
100 mixing device,
110 container (container),
120 Wings (rotating body).

Claims (6)

収容部内に回転体が備えられた混合装置の当該収容部内に、コア部の表面に前記コア部と異なる材料からなる表面層を被覆した正極活物質粒子の粉体、および導電助剤粒子の粉体を投入して、前記回転体を回転させて乾式で混合する混合処理を行って、前記正極活物質粒子と前記導電助剤粒子とを結合させた正極用複合粒子を製造するための製造条件の決定方法であって、
前記回転体の周速および前記混合処理の処理時間を設定して、前記正極用複合粒子を製造する製造工程と、
前記正極用複合粒子の導電率を測定する導電率測定工程と、
前記正極用複合粒子を水に分散させた溶液のpHを測定するpH測定工程と、
前記導電率測定工程および前記pH測定工程によって得られた結果に基づいて、前記製造工程において設定した前記回転体の周速および前記混合処理の処理時間が有効な設定値か否かを判断する判断工程と、を有する、正極用複合粒子の製造条件の決定方法。
The powder of the positive electrode active material particles in which the surface of the core part is coated with a surface layer made of a material different from the core part, and the powder of the conductive auxiliary agent particles in the container part of the mixing device provided with the rotating body in the container part. A manufacturing condition for manufacturing a composite particle for a positive electrode in which a positive electrode active material particle and a conductive auxiliary agent particle are combined by performing a mixing process in which a rotating body is rotated and the rotary body is rotated and mixed in a dry manner. A method for determining
A manufacturing process for manufacturing the positive electrode composite particles by setting a peripheral speed of the rotating body and a processing time of the mixing process;
A conductivity measuring step for measuring the conductivity of the composite particles for positive electrode;
A pH measurement step for measuring the pH of a solution in which the composite particles for positive electrode are dispersed in water;
Judgment whether or not the peripheral speed set in the manufacturing process and the processing time of the mixing process are effective set values based on the results obtained by the conductivity measuring process and the pH measuring process And a method for determining manufacturing conditions for the composite particles for positive electrode.
前記判断工程は、
前記導電率測定工程によって得られた導電率が予め決められた導電率基準値以上の場合に、前記製造工程において設定した前記回転体の周速および前記混合処理の処理時間が有効な設定値であると判断する第1判断工程を有する、請求項1に記載の正極用複合粒子の製造条件の決定方法。
The determination step includes
When the electrical conductivity obtained by the electrical conductivity measurement step is greater than or equal to a predetermined electrical conductivity reference value, the peripheral speed of the rotating body and the processing time of the mixing process set in the manufacturing process are effective set values. The method for determining production conditions for composite particles for a positive electrode according to claim 1, further comprising a first determination step for determining that there is one.
前記判断工程は、
前記混合処理前の前記正極活物質粒子の粉体および前記導電助剤粒子の粉体を水に分散させた溶液のpH値をpH基準値として、前記pH測定工程によって得られたpH値と当該pH基準値との差分が予め決められた乖離量以下の場合に、前記製造工程において設定した前記回転体の周速が有効な設定値であると判断する第2判断工程を有する、請求項1または請求項2に記載の正極用複合粒子の製造条件の決定方法。
The determination step includes
The pH value obtained by the pH measurement step and the pH value of a solution in which the powder of the positive electrode active material particles and the powder of the conductive auxiliary agent particles before the mixing treatment are dispersed in water are set as the pH reference value, and 2. A second determination step of determining that the peripheral speed of the rotating body set in the manufacturing step is an effective set value when a difference from a pH reference value is equal to or less than a predetermined deviation amount. Or the determination method of the manufacturing conditions of the composite particle for positive electrodes of Claim 2.
前記正極用複合粒子を正極に含むセルの内部抵抗値を測定する内部抵抗測定工程をさらに有し、
前記判断工程において、さらに前記内部抵抗測定工程によって得られた結果に基づいて、前記混合処理の処理時間が有効な設定値か否かを判断する、請求項1〜3のいずれか1項に記載の正極用複合粒子の製造条件の決定方法。
An internal resistance measurement step of measuring an internal resistance value of a cell containing the composite particles for positive electrode in the positive electrode;
The said determination process WHEREIN: Based on the result obtained by the said internal resistance measurement process, it is further determined whether the processing time of the said mixing process is an effective setting value. Of determining manufacturing conditions for composite particles for positive electrode.
前記判断工程は、
前記内部抵抗測定工程によって得られた内部抵抗値が予め決められた抵抗基準値以下の場合に、前記製造工程において設定した前記混合処理の処理時間が有効な設定値であると判断する第3判断工程を有する、請求項4に記載の正極用複合粒子の製造条件の決定方法。
The determination step includes
Third determination for determining that the processing time of the mixing process set in the manufacturing process is an effective setting value when the internal resistance value obtained by the internal resistance measurement process is equal to or less than a predetermined resistance reference value. The method of determining the manufacturing conditions of the composite particle for positive electrodes of Claim 4 which has a process.
収容部内に回転体が備えられた混合装置の当該収容部内に、コア部の表面に前記コア部と異なる材料からなる表面層を被覆した正極活物質粒子の粉体、および導電助剤粒子の粉体を投入して、前記回転体を回転させて乾式で混合する混合処理を行って、前記正極活物質粒子と前記導電助剤粒子とを結合させた正極用複合粒子を製造する正極用複合粒子の製造方法であって、
請求項1〜5のいずれか1項に記載の正極用複合粒子の製造条件の決定方法により有効とされた設定値を、前記回転体の周速および前記混合処理の処理時間として用いる、正極用複合粒子の製造方法。

The powder of the positive electrode active material particles in which the surface of the core part is coated with a surface layer made of a material different from the core part, and the powder of the conductive auxiliary agent particles in the container part of the mixing device provided with the rotating body in the container part. The positive electrode composite particles for producing positive electrode composite particles in which the positive electrode active material particles and the conductive auxiliary particles are combined by performing a mixing process of rotating the rotating body and mixing in a dry manner. A manufacturing method of
The setting value validated by the method for determining the production condition of the composite particle for positive electrode according to any one of claims 1 to 5 is used as a peripheral speed of the rotating body and a processing time of the mixing treatment. A method for producing composite particles.

JP2017151790A 2017-08-04 2017-08-04 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode Ceased JP2019032941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151790A JP2019032941A (en) 2017-08-04 2017-08-04 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151790A JP2019032941A (en) 2017-08-04 2017-08-04 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode

Publications (1)

Publication Number Publication Date
JP2019032941A true JP2019032941A (en) 2019-02-28

Family

ID=65524406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151790A Ceased JP2019032941A (en) 2017-08-04 2017-08-04 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode

Country Status (1)

Country Link
JP (1) JP2019032941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284488A (en) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 Positive electrode material, and determination method and application of stability thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992265A (en) * 1995-09-22 1997-04-04 Denso Corp Positive active material of secondary battery, its manufacture, and positive electrode
JP2003086174A (en) * 2001-06-25 2003-03-20 Hosokawa Micron Corp Composite particle material for electrode, electrode plate, and method of manufacturing
JP2008041437A (en) * 2006-08-07 2008-02-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011526732A (en) * 2009-08-28 2011-10-13 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery, and lithium secondary battery
JP2012238554A (en) * 2011-05-13 2012-12-06 Toyota Industries Corp Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014044899A (en) * 2012-08-28 2014-03-13 Toyota Industries Corp Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014179198A (en) * 2013-03-14 2014-09-25 Mitsui Eng & Shipbuild Co Ltd Electrode material, and method for manufacturing electrode material
WO2015002297A1 (en) * 2013-07-05 2015-01-08 古河電気工業株式会社 Positive electrode active substance, positive electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing positive electrode active substance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992265A (en) * 1995-09-22 1997-04-04 Denso Corp Positive active material of secondary battery, its manufacture, and positive electrode
JP2003086174A (en) * 2001-06-25 2003-03-20 Hosokawa Micron Corp Composite particle material for electrode, electrode plate, and method of manufacturing
JP2008041437A (en) * 2006-08-07 2008-02-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011526732A (en) * 2009-08-28 2011-10-13 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery, and lithium secondary battery
JP2012238554A (en) * 2011-05-13 2012-12-06 Toyota Industries Corp Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014044899A (en) * 2012-08-28 2014-03-13 Toyota Industries Corp Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014179198A (en) * 2013-03-14 2014-09-25 Mitsui Eng & Shipbuild Co Ltd Electrode material, and method for manufacturing electrode material
WO2015002297A1 (en) * 2013-07-05 2015-01-08 古河電気工業株式会社 Positive electrode active substance, positive electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing positive electrode active substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284488A (en) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 Positive electrode material, and determination method and application of stability thereof
CN114284488B (en) * 2021-12-23 2023-10-27 上海瑞浦青创新能源有限公司 Positive electrode material and determination method and application of stability of positive electrode material

Similar Documents

Publication Publication Date Title
US6878487B2 (en) Active material for battery and method of preparing same
EP1267431B1 (en) Active material for battery and method of preparing the same
US11056681B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
EP3758113A1 (en) Pre-doping method for negative electrode active material, production method for negative electrode, and production method for power storage device
KR102165779B1 (en) Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
EP1056143A2 (en) Rechargeable spinel lithium batteries with improved elevated temperature cycle life
KR20180023993A (en) Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
JP6825978B2 (en) Positive electrode for lithium ion secondary battery and its manufacturing method
JP5168829B2 (en) Positive electrode active material and non-aqueous electrolyte battery
JP5738563B2 (en) Positive electrode active material and lithium secondary battery using the active material
JP2013519968A (en) Rechargeable electrochemical battery cell
WO2007007542A1 (en) Lithium ion secondary battery
JP2014515171A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP6649489B2 (en) Precursor of lithium transition metal oxide cathode material for rechargeable batteries
JP6951363B2 (en) Positive electrode for lithium-ion battery
CN111799439A (en) Lithium ion battery
US11677065B2 (en) Cathode active material of lithium secondary battery
WO2009120008A1 (en) Method for preparing cathode active material for lithium secondary battery
CN109417167A (en) Cladding lithium titanate for lithium ion battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2013246900A (en) Secondary battery
JP7067858B2 (en) Lithium-ion secondary battery and positive electrode active material for the lithium-ion secondary battery
JP2019032941A (en) Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode
WO2023052836A1 (en) Cathode active material for lithium-ion battery and method for preparing said active material, and cathode comprising said active material and method for preparing said cathode
CN108878770A (en) Battery cell and secondary battery comprising same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20210928