JP2019032918A - Glass substrate for magnetic recording medium - Google Patents
Glass substrate for magnetic recording medium Download PDFInfo
- Publication number
- JP2019032918A JP2019032918A JP2018110150A JP2018110150A JP2019032918A JP 2019032918 A JP2019032918 A JP 2019032918A JP 2018110150 A JP2018110150 A JP 2018110150A JP 2018110150 A JP2018110150 A JP 2018110150A JP 2019032918 A JP2019032918 A JP 2019032918A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- recording medium
- magnetic recording
- thermal expansion
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 72
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 238000002834 transmittance Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 230000003746 surface roughness Effects 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 10
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 9
- 238000004031 devitrification Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910018068 Li 2 O Inorganic materials 0.000 description 4
- 229910018921 CoO 3 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000006066 glass batch Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000007500 overflow downdraw method Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000006103 coloring component Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009774 resonance method Methods 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
本発明は、磁気記録媒体用ガラス基板に関する。 The present invention relates to a glass substrate for a magnetic recording medium.
磁気記録装置は、磁気記録媒体用基板上に磁性層を成膜した磁気記録媒体を備えており、該磁性層を用いて情報を記録することができる。従来まで、磁気記録装置に用いられる磁気記録媒体用基板としてアルミニウム合金基板が使用されてきたが、現在では、高記録密度化の要求に伴い、アルミニウム合金基板に比べて、硬度、平坦性や平滑性に優れるガラス基板が主に使用されている。 The magnetic recording apparatus includes a magnetic recording medium in which a magnetic layer is formed on a magnetic recording medium substrate, and information can be recorded using the magnetic layer. Conventionally, an aluminum alloy substrate has been used as a substrate for a magnetic recording medium used in a magnetic recording apparatus, but now, with the demand for higher recording density, the hardness, flatness and smoothness are higher than those of an aluminum alloy substrate. A glass substrate having excellent properties is mainly used.
近年では、更なる高記録密度化のニーズに応えるため、エネルギーアシスト磁気記録方式を用いた磁気記録媒体、すなわちエネルギーアシスト磁気記録媒体が検討されている。エネルギーアシスト磁気記録媒体についても、ガラス基板が使用されると共に、ガラス基板の表面上に磁性層等が成膜される。エネルギーアシスト磁気記録媒体では、磁性層の磁性材料として大きな磁気異方性係数Ku(以下、「高Ku」と称する)を有する規則合金が用いられる。 In recent years, in order to meet the need for further higher recording density, a magnetic recording medium using an energy-assisted magnetic recording method, that is, an energy-assisted magnetic recording medium has been studied. As for the energy-assisted magnetic recording medium, a glass substrate is used, and a magnetic layer or the like is formed on the surface of the glass substrate. In the energy-assisted magnetic recording medium, an ordered alloy having a large magnetic anisotropy coefficient Ku (hereinafter referred to as “high Ku”) is used as the magnetic material of the magnetic layer.
磁性層の規則化の程度(規則度)を高めて高Ku化を図るため、磁性層の成膜時、或いは成膜前後に、ガラス基板を含む基材を600℃〜700℃程度の高温で熱処理することがあり、また磁性層の成膜後に、ガラス基板を含む基材に対して、レーザー照射を施すこともある。このような熱処理やレーザー照射は、FePt系合金等を含む磁性層のアニール温度や保磁力を高めるという目的もある。 In order to increase the degree of ordering (ordering degree) of the magnetic layer and increase the Ku, the base material including the glass substrate is heated at a high temperature of about 600 ° C. to 700 ° C. during or before the formation of the magnetic layer. Heat treatment may be performed, and after the magnetic layer is formed, the substrate including the glass substrate may be irradiated with laser. Such heat treatment and laser irradiation also have the purpose of increasing the annealing temperature and coercive force of the magnetic layer containing the FePt-based alloy or the like.
ところで、磁気記録媒体用ガラス基板には、高速回転時に大きな変形を起こさないために、高い剛性(ヤング率)を有することが求められる。 By the way, a glass substrate for a magnetic recording medium is required to have a high rigidity (Young's modulus) so as not to be greatly deformed during high-speed rotation.
詳述すると、ディスク状の磁気記録媒体では、媒体を中心軸の周りに高速回転させつつ、磁気ヘッドを半径方向に移動させながら、回転方向に沿って情報の書き込み、読み出しを行う。近年、この書き込み速度や読み出し速度を上げるための回転数は5400rpmから7200rpm、更には10000rpmと高速化の方向に進んでいるが、ディスク状の磁気記録媒体では、予め中心軸からの距離に応じて情報を記録するポジションが割り当てられるため、ガラス基板が回転中に変形を起こすと磁気ヘッドの位置ズレが起こり、正確な読み取りが困難になる。 More specifically, in a disk-shaped magnetic recording medium, information is written and read along the rotation direction while rotating the magnetic head around the central axis and moving the magnetic head in the radial direction. In recent years, the rotational speed for increasing the writing speed and the reading speed has been increasing from 5400 rpm to 7200 rpm, and further to 10000 rpm. However, in a disk-shaped magnetic recording medium, depending on the distance from the central axis in advance. Since a position for recording information is assigned, if the glass substrate is deformed during rotation, the magnetic head is displaced and accurate reading becomes difficult.
また、近年、磁気ヘッドにDFH(Dynamic Flying Height)機構を搭載させることで、磁気ヘッドの記録再生素子部と磁気記録媒体表面との間隙の大幅な狭小化(低浮上量化)を達成し、更なる高記録密度化を図ることが行われている。DFH機構とは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、素子部周辺のみを媒体表面方向に向けて熱膨張させる機構である。このような機構を備えることにより、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい磁性粒子の信号も拾うことができるようになり、高記録密度化を達成することが可能となる、その一方で、磁気ヘッドの記録再生素子部と磁気記録媒体の表面との間隙が、例えば2nm以下と極めて小さくなるため、僅かな衝撃によっても磁気ヘッドが磁気記録媒体の表面に衝突する虞がある。この傾向は、高速回転になる程、顕著となる。よって、高速回転時には、この衝突の原因になるガラス基板の撓みやバタツキ(フラッタリング)の発生を防ぐことが重要になる。 Further, in recent years, by mounting a DFH (Dynamic Flying Height) mechanism on the magnetic head, the gap between the recording / reproducing element portion of the magnetic head and the surface of the magnetic recording medium has been significantly narrowed (low flying height) has been achieved. A higher recording density is being achieved. The DFH mechanism is a mechanism in which a heating unit such as a very small heater is provided in the vicinity of the recording / reproducing element unit of the magnetic head, and only the periphery of the element unit is thermally expanded toward the medium surface. By providing such a mechanism, the distance between the magnetic head and the magnetic layer of the medium is reduced, so that signals of smaller magnetic particles can be picked up, and high recording density can be achieved. On the other hand, since the gap between the recording / reproducing element portion of the magnetic head and the surface of the magnetic recording medium is extremely small, for example, 2 nm or less, the magnetic head may collide with the surface of the magnetic recording medium even with a slight impact. is there. This tendency becomes more prominent as the rotation speed becomes higher. Therefore, during high-speed rotation, it is important to prevent the glass substrate from being bent or fluttering, which causes this collision.
更に、磁気記録媒体用ガラス基板には、磁気記録媒体の記録再生の信頼性を高めるために、適正な熱膨張係数を有することも求められる。詳述すると、磁気記録媒体を組み込んだHDD(ハードディスクドライブ)は、中央部分をスピンドルモーターのスピンドルで押圧して、磁気記録媒体自身を回転させる構造を備えている。このため、ガラス基板とスピンドル材料の熱膨張係数差が大き過ぎると、周囲の温度変化に対して、両者の熱膨張・熱収縮が相違するため、磁気記録媒体が変形するという現象が生じる。このような現象が生じると、書き込んだ情報を磁気ヘッドで読み出せなくなってしまい、記録再生の信頼性を損なう虞がある。よって、磁気記録媒体用ガラス基板には、スピンドル材料(例えばステンレス等)の熱膨張係数に整合する熱膨張係数を有していることが望ましい。 Further, the glass substrate for a magnetic recording medium is also required to have an appropriate thermal expansion coefficient in order to increase the reliability of recording and reproduction of the magnetic recording medium. More specifically, an HDD (hard disk drive) incorporating a magnetic recording medium has a structure in which the magnetic recording medium itself is rotated by pressing a central portion with a spindle of a spindle motor. For this reason, if the difference between the thermal expansion coefficients of the glass substrate and the spindle material is too large, the magnetic recording medium is deformed because the thermal expansion and contraction of the two differ with respect to the surrounding temperature change. When such a phenomenon occurs, the written information cannot be read out by the magnetic head, and the reliability of recording and reproduction may be impaired. Therefore, it is desirable that the glass substrate for a magnetic recording medium has a thermal expansion coefficient that matches the thermal expansion coefficient of the spindle material (for example, stainless steel).
そこで、本発明は上記事情に鑑み成されたものであり、その目的は、高速回転時に撓みやバタツキ(フラッタリング)が発生し難く、スピンドル材料(例えばステンレス等)の熱膨張係数に整合する磁気記録媒体用ガラス基板を創案することである。 Therefore, the present invention has been made in view of the above circumstances, and its object is to prevent the occurrence of bending and fluttering (fluttering) during high-speed rotation, and to match the thermal expansion coefficient of the spindle material (for example, stainless steel). The idea is to create a glass substrate for recording media.
本発明者は、種々の実験を繰り返した結果、ガラス基板の熱膨張係数とヤング率を所定値以上に高めることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の磁気記録媒体用ガラス基板は、30〜380℃の温度範囲における平均線熱膨張係数が30×10−7/℃以上、且つヤング率が80GPa以上であることを特徴とする。ここで、「30〜380℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定可能である。「ヤング率」は、周知の共振法で測定可能である。 As a result of repeating various experiments, the inventor has found that the above technical problem can be solved by increasing the thermal expansion coefficient and Young's modulus of the glass substrate to a predetermined value or more, and proposes the present invention. It is. That is, the glass substrate for a magnetic recording medium of the present invention is characterized in that an average linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. is 30 × 10 −7 / ° C. or more and a Young's modulus is 80 GPa or more. Here, the “average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C.” can be measured with a dilatometer. The “Young's modulus” can be measured by a well-known resonance method.
本発明の磁気記録媒体用ガラス基板は、30〜380℃の温度範囲における平均線熱膨張係数を30×10−7/℃以上に規制している。このようにすれば、ガラス基板とスピンドル材料の熱膨張係数差が小さくなるため、周囲の温度変化に対して、両者の熱膨張・熱収縮が整合し易くなる。結果として、磁気記録媒体が変形し難くなり、磁気記録媒体の記録再生の信頼性を高めることができる。更に熱処理やレーザー照射して、高Ku化を図る際に、ガラス基板とスピンドル材料の熱収縮差を低減することができる。 The glass substrate for magnetic recording media of the present invention regulates the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. to 30 × 10 −7 / ° C. or higher. In this way, since the difference in thermal expansion coefficient between the glass substrate and the spindle material is reduced, the thermal expansion and contraction of both of the glass substrate and the spindle material are easily matched to the surrounding temperature change. As a result, the magnetic recording medium is hardly deformed, and the reliability of recording / reproducing of the magnetic recording medium can be improved. Further, when heat treatment or laser irradiation is performed to achieve high Ku, the difference in thermal shrinkage between the glass substrate and the spindle material can be reduced.
更に、本発明の磁気記録媒体用ガラス基板は、ヤング率を80GPa以上に規制している。このようにすれば、高速回転時に、ガラス基板の撓みやバタツキ(フラッタリング)が発生し難くなるため、情報記録媒体と磁気ヘッドの衝突を防止することができる。 Furthermore, the glass substrate for magnetic recording media of the present invention regulates the Young's modulus to 80 GPa or more. This makes it difficult for the glass substrate to be bent or fluttered during high-speed rotation, thus preventing collision between the information recording medium and the magnetic head.
また、本発明の磁気記録媒体用ガラス基板は、軟化点が700℃以上であることが好ましい。このようにすれば、高温で熱処理やレーザー照射を行っても、ガラス基板に歪みが生じ難く、磁性層の高Ku化を図り易くなる。なお、熱処理やレーザー照射時にガラス基板に歪みが生じると、この歪みがガラス基板と磁気ヘッドの衝突を引き起こす原因になる虞がある。ここで、「軟化点」は、ASTM C336の方法に基づいて測定した値を指す。 The glass substrate for a magnetic recording medium of the present invention preferably has a softening point of 700 ° C. or higher. In this way, even if heat treatment or laser irradiation is performed at a high temperature, the glass substrate is hardly distorted, and the Ku of the magnetic layer can be easily increased. If distortion occurs in the glass substrate during heat treatment or laser irradiation, this distortion may cause a collision between the glass substrate and the magnetic head. Here, the “softening point” refers to a value measured based on the method of ASTM C336.
また、本発明の磁気記録媒体用ガラス基板は、ガラス組成として、質量%で、SiO2 53〜66%、Al2O3 7〜34%、B2O3 0〜8%、MgO 0〜22%、CaO 1〜15%、Y2O3+La2O3+ZrO2 0〜20%を含有することが好ましい。ここで、「Y2O3+La2O3+ZrO2」は、Y2O3、La2O3及びZrO2の合量を指す。 Further, the glass substrate for a magnetic recording medium of the present invention has a glass composition, in mass%, SiO 2 53~66%, Al 2 O 3 7~34%, B 2 O 3 0~8%, MgO 0~22 %, CaO 1 to 15%, Y 2 O 3 + La 2 O 3 + ZrO 2 0 to 20% are preferably contained. Here, “Y 2 O 3 + La 2 O 3 + ZrO 2 ” refers to the total amount of Y 2 O 3 , La 2 O 3 and ZrO 2 .
また、本発明の磁気記録媒体用ガラス基板は、表面の表面粗さRaが1.0nm以下であることが好ましい。このようにすれば、高記録密度化のためにビットサイズが微細化されても、磁気特性の改善が可能になる。ここで、「表面の表面粗さRa」は、端面を除く主表面(両表面)の表面粗さRaを指し、例えば、原子間力顕微鏡(AFM)で測定することができる。 The glass substrate for a magnetic recording medium of the present invention preferably has a surface roughness Ra of 1.0 nm or less. This makes it possible to improve the magnetic characteristics even if the bit size is reduced for higher recording density. Here, the “surface roughness Ra of the surface” refers to the surface roughness Ra of the main surface (both surfaces) excluding the end face, and can be measured by, for example, an atomic force microscope (AFM).
また、本発明の磁気記録媒体用ガラス基板は、光路長1mm、波長範囲350〜1500nmにおける平均直線透過率が70%以上であることが好ましい。このようにすれば、レーザー照射して高Ku化を図る際に、レーザー光が十分に磁性層に照射されるため、磁気記録媒体を効率良く高記録密度化することができる。ここで、「光路長1mm、波長範囲350〜1500nmにおける平均直線透過率」は、市販の分光光度計で測定可能であり、例えば、島津製作所製分光光度計UV−3100が使用可能である。 The glass substrate for a magnetic recording medium of the present invention preferably has an average linear transmittance of 70% or more in an optical path length of 1 mm and a wavelength range of 350 to 1500 nm. In this way, when the laser irradiation is performed to increase the Ku, the laser beam is sufficiently irradiated to the magnetic layer, so that the magnetic recording medium can be efficiently increased in recording density. Here, the “average linear transmittance in an optical path length of 1 mm and a wavelength range of 350 to 1500 nm” can be measured with a commercially available spectrophotometer. For example, a spectrophotometer UV-3100 manufactured by Shimadzu Corporation can be used.
また、本発明の磁気記録媒体用ガラス基板は、ディスク形状、つまり円盤形状であり、且つ中心部に円形の開口部が形成されている形状(図1参照)であることが好ましい。 The glass substrate for a magnetic recording medium of the present invention preferably has a disk shape, that is, a disk shape, and a shape in which a circular opening is formed at the center (see FIG. 1).
本発明の磁気記録媒体用ガラス基板において、30〜380℃の温度範囲における平均線熱膨張係数は30×10−7/℃以上であり、好ましくは31×10−7〜70×10−7/℃、32×10−7〜65×10−7/℃、36×10−7〜62×10−7/℃、37×10−7〜60×10−7/℃、38×10−7〜55×10−7/℃、40×10−7〜53×10−7/℃、42×10−7〜51×10−7/℃、特に好ましくは42×10−7〜50×10−7/℃である。30〜380℃の温度範囲における平均線熱膨張係数が低過ぎると、ガラス基板とスピンドル材料の熱膨張係数差が大きくなるため、周囲の温度変化に対して、両者の熱膨張・熱収縮が整合し難くなる。結果として、磁気記録媒体が変形し易くなり、磁気記録媒体の記録再生の信頼性が低下し易くなる。 In the glass substrate for magnetic recording medium of the present invention, the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is 30 × 10 −7 / ° C. or more, preferably 31 × 10 −7 to 70 × 10 −7 /. C, 32 × 10 −7 to 65 × 10 −7 / ° C., 36 × 10 −7 to 62 × 10 −7 / ° C., 37 × 10 −7 to 60 × 10 −7 / ° C., 38 × 10 −7 to 55 × 10 −7 / ° C., 40 × 10 −7 to 53 × 10 −7 / ° C., 42 × 10 −7 to 51 × 10 −7 / ° C., particularly preferably 42 × 10 −7 to 50 × 10 −7 / ° C. If the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is too low, the difference in thermal expansion coefficient between the glass substrate and the spindle material will increase, so that the thermal expansion and contraction of both will match the ambient temperature change. It becomes difficult to do. As a result, the magnetic recording medium is easily deformed, and the recording / reproducing reliability of the magnetic recording medium is likely to be lowered.
本発明の磁気記録媒体用ガラス基板において、ヤング率は80GPa以上であり、好ましくは84GPa以上、特に好ましくは87〜120GPaである。ヤング率が低過ぎると、高速回転時に、ガラス基板の撓みやバタツキ(フラッタリング)が発生し易くなるため、情報記録媒体と磁気ヘッドが衝突し易くなる。 In the glass substrate for magnetic recording media of the present invention, the Young's modulus is 80 GPa or more, preferably 84 GPa or more, particularly preferably 87 to 120 GPa. If the Young's modulus is too low, the glass substrate is likely to be bent or fluttered during high-speed rotation, and the information recording medium and the magnetic head are likely to collide.
本発明の磁気記録媒体用ガラス基板は、ガラス組成として、質量%で、SiO2 53〜66%、Al2O3 7〜34%、B2O3 0〜8%、MgO 0〜22%、CaO 1〜15%、Y2O3+La2O3+ZrO2 0〜20%を含有することが更に好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。 The glass substrate for magnetic recording media of the present invention has, as a glass composition, mass%, SiO 2 53 to 66%, Al 2 O 3 7 to 34%, B 2 O 3 0 to 8%, MgO 0 to 22%, CaO 1~15%, Y 2 O 3 + La 2 O 3 + is more preferably contains ZrO 2 0 to 20%. The reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents the mass% unless there is particular notice.
SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量は、好ましくは53〜66%、55〜64%、56〜62%、特に57〜60%である。SiO2の含有量が少な過ぎると、ガラス化し難くなり、また耐熱性が低下し易くなる。一方、SiO2の含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎる。 SiO 2 is a component that forms a network of glass. The content of SiO 2 is preferably 53 to 66%, 55 to 64%, 56 to 62%, particularly 57 to 60%. When the content of SiO 2 is too small, it becomes difficult to vitrify and heat resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, it tends to decrease. Meltability and moldability, and the thermal expansion coefficient becomes too low.
Al2O3は、ヤング率や耐候性を高める成分である。Al2O3の含有量は、好ましくは7〜34%、8〜26%、9〜24%、11〜23%、12〜22%、14〜21%、特に16〜21%である。Al2O3の含有量が少な過ぎると、ヤング率や耐熱性が低下し易くなる。一方、Al2O3の含有量が多過ぎると、溶融性、成形性及び耐失透性が低下し易くなる。 Al 2 O 3 is a component that increases Young's modulus and weather resistance. The content of Al 2 O 3 is preferably 7 to 34%, 8 to 26%, 9 to 24%, 11 to 23%, 12 to 22%, 14 to 21%, particularly 16 to 21%. When the content of Al 2 O 3 is too small, the Young's modulus and the heat resistance is liable to decrease. On the other hand, when the content of Al 2 O 3 is too large, the melting properties, formability, and resistance to devitrification tends to drop.
B2O3は、ガラスのネットワークを形成する成分であるが、ヤング率や耐熱性を低下させる成分である。よって、B2O3の含有量は、好ましくは0〜8%、0.1〜7%、1〜6%、特に3〜5%である。 B 2 O 3 is a component that forms a glass network, but is a component that lowers the Young's modulus and heat resistance. Therefore, the content of B 2 O 3 is preferably 0 to 8%, 0.1 to 7%, 1 to 6%, particularly 3 to 5%.
MgOは、ヤング率を大幅に高める成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。MgOの含有量は、好ましくは0〜22%、0.5〜21%、1〜20%、2〜19%、3〜18%、4〜16%、5〜16%、7〜16%、8〜14%、特に9〜12%である。MgOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなる。 MgO is a component that greatly increases the Young's modulus, and is a component that decreases the high-temperature viscosity and improves the meltability and moldability. The content of MgO is preferably 0 to 22%, 0.5 to 21%, 1 to 20%, 2 to 19%, 3 to 18%, 4 to 16%, 5 to 16%, 7 to 16%, 8 to 14%, especially 9 to 12%. When there is too little content of MgO, it will become difficult to receive the said effect. On the other hand, when there is too much content of MgO, devitrification resistance will fall easily.
CaOは、高温粘度を低下させて、溶融性及び成形性を高める成分である。CaOの含有量は、好ましくは1〜15%、2〜12%、3〜10%、特に5〜8%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、耐失透性が低下し易くなる。 CaO is a component that increases the meltability and moldability by lowering the high-temperature viscosity. The content of CaO is preferably 1 to 15%, 2 to 12%, 3 to 10%, particularly 5 to 8%. When there is too little content of CaO, it will become difficult to receive the said effect. On the other hand, when there is too much content of CaO, devitrification resistance will fall easily.
Y2O3、La2O3及びZrO2は、ヤング率を高める成分である。Y2O3、La2O3及びZrO2の合量は、好ましくは0〜20%、0.1〜18%、0.5〜16%、1〜15%、1〜14%、1〜12%、1.2〜10%、1.3〜8%、特に1.5〜5%である。Y2O3、La2O3及びZrO2の合量が多過ぎると、耐失透性が低下し易くなる。Y2O3の含有量は、好ましくは0〜15%、0.1〜14%、0.5〜13%、0.5〜12%、0.5〜10%、0.5〜8%、0.5〜6%、特に1〜4%である。La2O3の含有量は、好ましくは0〜6%、0〜4%、特に0〜2%である。ZrO2の含有量は、好ましくは0〜10%、0.1〜6%、0.5〜4%、特に1〜3%である。Y2O3の含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰し易くなる。La2O3の含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰し易くなる。ZrO2の含有量が多過ぎると、耐失透性が低下し易くなる。 Y 2 O 3 , La 2 O 3 and ZrO 2 are components that increase the Young's modulus. The total amount of Y 2 O 3 , La 2 O 3 and ZrO 2 is preferably 0-20%, 0.1-18%, 0.5-16%, 1-15%, 1-14%, 1- 12%, 1.2 to 10%, 1.3 to 8%, especially 1.5 to 5%. When Y 2 O 3, the total amount of La 2 O 3 and ZrO 2 is too high, devitrification resistance is liable to decrease. The content of Y 2 O 3 is preferably 0-15%, 0.1-14%, 0.5-13%, 0.5-12%, 0.5-10%, 0.5-8% 0.5-6%, especially 1-4%. The content of La 2 O 3 is preferably 0 to 6%, 0 to 4%, particularly 0 to 2%. The content of ZrO 2 is preferably 0 to 10%, 0.1 to 6%, 0.5 to 4%, particularly 1 to 3%. When the content of Y 2 O 3 is too large, it tends to decrease. Devitrification resistance, also raw material cost is likely to rise. When the content of La 2 O 3 is too large, it tends to decrease. Devitrification resistance, also raw material cost is likely to rise. When the content of ZrO 2 is too large, the devitrification resistance is liable to decrease.
上記成分以外にも、例えば以下の成分を添加してもよい。 In addition to the above components, for example, the following components may be added.
Li2O、Na2O及びK2Oは、高温粘度を低下させて、溶融性及び成形性を高める成分であるが、耐水性や耐候性を低下させる成分である。溶融性及び成形性の観点から、Li2O、Na2O及びK2Oの合量は、好ましくは0.01〜10%、0.05〜8%、0.1〜5%、0.3〜3%、特に0.5〜1%未満である。またLi2O、Na2O及びK2Oのそれぞれの含有量は、好ましくは0.01〜10%、0.05〜8%、0.1〜5%、0.3〜3%、特に0.5〜1%未満である。耐水性や耐候性の観点から、〜15%、0〜10%、0〜5%、0〜1%、特に0.1〜1%未満である。またLi2O、Na2O及びK2Oのそれぞれの含有量は、好ましくは0〜10%、0〜5%、特に0.1〜1%未満である。 Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity and improve the meltability and moldability, but are components that reduce water resistance and weather resistance. From the viewpoint of meltability and moldability, the total amount of Li 2 O, Na 2 O, and K 2 O is preferably 0.01 to 10%, 0.05 to 8%, 0.1 to 5%, and 0.005. 3 to 3%, especially 0.5 to less than 1%. The respective contents of Li 2 O, Na 2 O and K 2 O is preferably 0.01 to 10% from 0.05 to 8%, 0.1% to 5%, from 0.3 to 3%, in particular 0.5 to less than 1%. From the viewpoint of water resistance and weather resistance, it is ˜15%, 0 to 10%, 0 to 5%, 0 to 1%, particularly less than 0.1 to 1%. The content of each of The Li 2 O, Na 2 O and K 2 O is preferably less than 0-10%, 0-5%, in particular 0.1% to 1%.
SrO及びBaOは、高温粘度を低下させて、溶融性及び成形性を高める成分である。SrO及びBaOは、それぞれ0〜15%、0.1〜12%、特に0.5〜10%である。 SrO and BaO are components that lower the high-temperature viscosity and improve the meltability and moldability. SrO and BaO are 0 to 15%, 0.1 to 12%, particularly 0.5 to 10%, respectively.
ZnOは、高温粘性を下げて、溶融性を顕著に高める成分である。ZnOの含有量は、好ましくは0〜7%、0.1〜5%、特に0.5〜3%である。ZnOの含有量が少な過ぎると、上記効果を享受し難くなる。なお、ZnOの含有量が多過ぎると、ガラスが失透し易くなる。 ZnO is a component that lowers the high-temperature viscosity and significantly increases the meltability. The content of ZnO is preferably 0 to 7%, 0.1 to 5%, particularly 0.5 to 3%. When there is too little content of ZnO, it will become difficult to receive the said effect. In addition, when there is too much content of ZnO, it will become easy to devitrify glass.
TiO2は、耐水性や耐候性を高める成分であるが、ガラスを着色させる成分である。よって、TiO2の含有量は、好ましくは0〜0.5%、特に0〜0.1%未満である。TiO2の含有量が多過ぎると、波長範囲350〜1500nmにおける平均直線透過率が低下し易くなる。 TiO 2 is a component that enhances water resistance and weather resistance, but is a component that colors glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%. When the content of TiO 2 is too large, the average linear transmittance in the wavelength range 350~1500nm tends to decrease.
清澄剤として、SnO2、Cl、SO3、CeO2の群(好ましくはSnO2、SO3の群)から選択された一種又は二種以上を0.05〜0.5%添加してもよい。 As a fining agent, 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 and CeO 2 (preferably a group of SnO 2 and SO 3 ) may be added. .
Fe2O3は、ガラス原料に不純物として不可避的に混入する成分であり、着色成分である。よって、Fe2O3の含有量は、好ましくは0.5%以下、0.001〜0.1%、0.005〜0.07%、0.008〜0.03%、特に0.01〜0.025%である。Fe2O3の含有量が多過ぎると、波長範囲350〜1500nmにおける平均直線透過率が低下し易くなる。 Fe 2 O 3 is a component that is inevitably mixed as an impurity in the glass raw material, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, 0.001 to 0.1%, 0.005 to 0.07%, 0.008 to 0.03%, particularly 0.01 -0.025%. When the content of Fe 2 O 3 is too large, the average linear transmittance in the wavelength range 350~1500nm tends to decrease.
V2O5、Cr2O3、CoO3及びNiOは、着色成分である。よって、V2O5、Cr2O3、CoO3及びNiOのそれぞれの含有量は、好ましくは0.1%以下、特に0.01%未満である。V2O5、Cr2O3、CoO3及びNiOのそれぞれの含有量が多過ぎると、波長範囲350〜1500nmにおける平均直線透過率が低下し易くなる。 V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the respective contents of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are preferably 0.1% or less, particularly less than 0.01%. When the content of each of V 2 O 5, Cr 2 O 3, CoO 3 and NiO is too large, the average linear transmittance in the wavelength range 350~1500nm tends to decrease.
環境的配慮から、ガラス組成として、実質的にAs2O3、Sb2O3、PbO、Bi2O3及びFを含有しないことが好ましい。ここで、「実質的に〜を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満であることを指す。 From the environmental consideration, it is preferable that the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F. Here, “substantially does not contain” means that the glass component does not actively add an explicit component, but allows it to be mixed as an impurity. It indicates that the content is less than 0.05%.
本発明の磁気記録媒体用ガラス基板は、以下の特性を有することが好ましい。 The glass substrate for a magnetic recording medium of the present invention preferably has the following characteristics.
軟化点は、好ましくは700℃以上、800℃以上、900℃以上、930℃以上、特に950〜1150℃である。軟化点が低過ぎると、高温で熱処理やレーザー照射を行う場合に、ガラス基板に歪みが生じ易くなり、磁性層の高Ku化を図り難くなる。更にこの歪みがガラス基板と磁気ヘッドの衝突を引き起こす原因になる虞がある。 The softening point is preferably 700 ° C. or higher, 800 ° C. or higher, 900 ° C. or higher, 930 ° C. or higher, particularly 950 to 1150 ° C. If the softening point is too low, the glass substrate is likely to be distorted when heat treatment or laser irradiation is performed at a high temperature, making it difficult to increase the Ku of the magnetic layer. Further, this distortion may cause a collision between the glass substrate and the magnetic head.
光路長1mm、波長範囲350〜1500nmにおける平均直線透過率は、好ましくは70%以上、80%以上、特に90%以上である。光路長1mm、波長範囲350〜1500nmにおける平均直線透過率が低過ぎると、レーザー照射する際に、レーザー光が十分に磁性層に照射されず、磁性層の高Ku化を図り難くなる。 The average linear transmittance in an optical path length of 1 mm and a wavelength range of 350 to 1500 nm is preferably 70% or more, 80% or more, particularly 90% or more. If the average linear transmittance in the optical path length of 1 mm and the wavelength range of 350 to 1500 nm is too low, the laser light is not sufficiently irradiated to the magnetic layer when laser irradiation is performed, and it is difficult to increase the Ku of the magnetic layer.
液相温度は、好ましくは1250℃以下、1200℃以下、1180℃以下、1160℃以下、特に1130℃以下である。液相粘度は、好ましくは103.8dPa・s以上、104.4dPa・s以上、104.6dPa・s以上、104.8dPa・s以上、特に105.0dPa・s以上である。このようにすれば、成形時に失透結晶が析出し難くなり、板状に成形し易くなるため、表面を研磨しなくても、或いは少量の研磨によって、表面粗さの算術平均Raを1.0nm以下、特に0.2nm以下にすることができる。結果として、ビットサイズの微細化によって磁気特性を高めることが可能になる。また失透結晶や研磨量の低減により、ガラス基板の製造コストを低廉化することができる。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。「液相粘度」は、液相温度におけるガラスの粘度を指し、白金球引き上げ法で測定可能である。 The liquidus temperature is preferably 1250 ° C. or lower, 1200 ° C. or lower, 1180 ° C. or lower, 1160 ° C. or lower, particularly 1130 ° C. or lower. The liquid phase viscosity is preferably 10 3.8 dPa · s or more, 10 4.4 dPa · s or more, 10 4.6 dPa · s or more, 10 4.8 dPa · s or more, particularly 10 5.0 dPa · s or more. s or more. In this way, devitrified crystals are less likely to precipitate during molding, and it becomes easier to mold into a plate shape. Therefore, the arithmetic average Ra of the surface roughness is set to 1. without polishing the surface or by a small amount of polishing. It can be 0 nm or less, particularly 0.2 nm or less. As a result, it is possible to improve the magnetic characteristics by reducing the bit size. Moreover, the manufacturing cost of the glass substrate can be reduced by reducing the devitrification crystal and the amount of polishing. Here, the “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining on the 50 mesh (300 μm) in a platinum boat, and holding it in a temperature gradient furnace for 24 hours. It can be calculated by measuring the temperature at which precipitation occurs. “Liquid phase viscosity” refers to the viscosity of glass at the liquidus temperature and can be measured by the platinum ball pulling method.
高温粘度102.5dPa・sにおける温度は、好ましくは1550℃以下、1500℃以下、1480℃以下、1200〜1450℃、特に1300〜1440℃以下である。高温粘度102.5dPa・sにおける温度が高過ぎると、溶融性や成形性が低下して、ガラス基板の製造コストが高騰する。ここで、「高温粘度102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 The temperature at a high temperature viscosity of 10 2.5 dPa · s is preferably 1550 ° C. or lower, 1500 ° C. or lower, 1480 ° C. or lower, 1200 to 1450 ° C., particularly 1300 to 1440 ° C. or lower. When the temperature at a high temperature viscosity of 10 2.5 dPa · s is too high, the meltability and formability are lowered, and the production cost of the glass substrate is increased. Here, the “temperature at a high temperature viscosity of 10 2.5 dPa · s” can be measured by a platinum ball pulling method.
表面の表面粗さRaは、好ましくは1.0nm以下、0.7nm以下、0.4nm、特に0.2nm以下である。表面の表面粗さRaが大き過ぎると、高記録密度化のためにビットサイズを微細化しても、磁気特性の改善が見込めなくなる。 The surface roughness Ra of the surface is preferably 1.0 nm or less, 0.7 nm or less, 0.4 nm, particularly 0.2 nm or less. If the surface roughness Ra is too large, improvement in magnetic characteristics cannot be expected even if the bit size is reduced for higher recording density.
板厚は、好ましくは1.5mm以下、1.2mm以下、0.2〜1.0mm、特に0.3〜0.9mmである。板厚が上記範囲外になると、磁気記録媒体の基材に使用し難くなる。 The plate thickness is preferably 1.5 mm or less, 1.2 mm or less, 0.2 to 1.0 mm, particularly 0.3 to 0.9 mm. When the plate thickness is out of the above range, it becomes difficult to use it as the base material of the magnetic recording medium.
本発明の磁気記録媒体用ガラス基板を製造する方法は、例えば、以下の通りである。まず所望のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500〜1700℃で加熱溶融し、清澄した後、溶融ガラスを成形装置に供給した上で板状に成形し、冷却することが好ましい。板状に成形した後に、所定寸法に切断加工する方法は、周知の方法を採用することができる。ガラス基板の成形方法として、種々の方法を採択することができる。例えば、オーバーフローダウンドロー法、スロットダウン法、ロールアウト法、リドロー法、フロート法、インゴット成型法等を採択することができる。特に、表面の平坦性や平滑性を高める観点から、オーバーフローダウンドロー法が好ましい。 The method for producing the glass substrate for a magnetic recording medium of the present invention is, for example, as follows. First, a glass raw material prepared to have a desired glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified, and then supplied to a molding apparatus and molded into a plate shape. It is preferable to cool. A well-known method can be adopted as a method of cutting into a predetermined dimension after forming into a plate shape. Various methods can be adopted as a method for forming the glass substrate. For example, an overflow down draw method, a slot down method, a roll out method, a redraw method, a float method, an ingot molding method, or the like can be adopted. In particular, the overflow downdraw method is preferable from the viewpoint of improving the flatness and smoothness of the surface.
以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
表1〜9は、本発明の実施例(試料No.1〜86)及び比較例(試料No.87)を示している。 Tables 1 to 9 show examples (sample Nos. 1 to 86) and comparative examples (sample No. 87) of the present invention.
まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れた後、1500〜1700℃で24時間溶融、清澄、均質化を行った。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各ガラス基板について、密度Density、30〜380℃の温度範囲における平均線熱膨張係数CTE30〜380℃、ヤング率Young’s Modulus、剛性率Shear modulus、ポアソン比Poisson’s ratio、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、液相温度TL、液相粘度logηを評価した。なお、表中の「N.A.」は、未測定を表している。 First, after putting the glass batch which prepared the glass raw material into a platinum crucible so that it might become the glass composition in a table | surface, it melted, clarified, and homogenized at 1500-1700 degreeC for 24 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured onto a carbon plate and formed into a plate shape, and then slowly cooled at a temperature near the annealing point for 30 minutes. About each obtained glass substrate, density Density, average linear thermal expansion coefficient CTE 30-380 degreeC in the temperature range of 30-380 degreeC, Young's modulus Young's Modulus, rigidity modulus Shear modulus, Poisson's ratio Poisson's ratio, strain point Ps, gradual Cold point Ta, softening point Ts, temperature at high temperature viscosity 10 4.0 dPa · s, temperature at high temperature viscosity 10 3.0 dPa · s, temperature at high temperature viscosity 10 2.5 dPa · s, liquidus temperature TL, liquid The phase viscosity log η was evaluated. In the table, “NA” represents unmeasured.
密度は、アルキメデス法によって測定した値である。 The density is a value measured by Archimedes method.
30〜380℃の温度範囲における平均線熱膨張係数CTE30〜380℃は、ディラトメーターで測定した値である。 Average linear thermal expansion coefficient CTE in the temperature range of 30 to 380 ° C. 30 to 380 ° C. is a value measured with a dilatometer.
ヤング率、剛性率及びポアソン比は、共振法により測定した値を指す。 The Young's modulus, rigidity, and Poisson's ratio refer to values measured by the resonance method.
歪点、徐冷点、軟化点は、ASTM C336及びC338の方法に基づいて測定した値である。 The strain point, annealing point, and softening point are values measured based on the methods of ASTM C336 and C338.
高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by a platinum ball pulling method.
表から明らかなように、試料No.1〜86は、30〜380℃の温度範囲における平均線熱膨張係数CTE30〜380℃が33.2×10−7/℃以上、ヤング率が80.0GPa以上であるため、磁気記録媒体用ガラス基板として好適である。一方、試料No.87は、30〜380℃の温度範囲における平均線熱膨張係数CTE30〜380℃が35.0×10−7/℃、ヤング率が76GPaであった。 As is apparent from the table, sample No. Nos. 1 to 86 have an average linear thermal expansion coefficient CTE in the temperature range of 30 to 380 ° C. 30 to 380 ° C. is 33.2 × 10 −7 / ° C. or more, and Young's modulus is 80.0 GPa or more. It is suitable as a glass substrate. On the other hand, sample No. 87 had an average linear thermal expansion coefficient CTE in the temperature range of 30 to 380 ° C. of 30 to 380 ° C. of 35.0 × 10 −7 / ° C. and a Young's modulus of 76 GPa.
表中の試料No.1〜87のガラス組成になるように、ガラス原料を調合したガラスバッチを溶融窯に投入した後、1500〜1700℃で24時間溶融、清澄、均質化を行い、板厚0.675mmになるように、オーバーフローダウンドロー法で板状に成形した。得られたガラス基板の表面の表面粗さRaを原子間力顕微鏡(AFM)で測定したところ、0.10〜0.20nmであった。更に、得られたガラス基板について、光路長1mm、波長範囲350〜1500nmにおける平均直線透過率を島津製作所製分光光度計UV−3100で測定したところ、何れも90%以上であった。 Sample No. in the table. After putting a glass batch prepared with glass raw materials into a melting furnace so as to have a glass composition of 1 to 87, melting, clarifying and homogenizing at 1500 to 1700 ° C. for 24 hours so that the plate thickness becomes 0.675 mm Then, it was formed into a plate shape by the overflow down draw method. It was 0.10-0.20 nm when surface roughness Ra of the surface of the obtained glass substrate was measured with the atomic force microscope (AFM). Furthermore, when the average linear transmittance | permeability in optical path length 1mm and wavelength range 350-1500nm was measured with the spectrophotometer UV-3100 made from Shimadzu about the obtained glass substrate, all were 90% or more.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017153148 | 2017-08-08 | ||
JP2017153148 | 2017-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019032918A true JP2019032918A (en) | 2019-02-28 |
JP7276645B2 JP7276645B2 (en) | 2023-05-18 |
Family
ID=65523557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018110150A Active JP7276645B2 (en) | 2017-08-08 | 2018-06-08 | Glass substrate for magnetic recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7276645B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021086643A (en) * | 2019-11-25 | 2021-06-03 | 日本電気硝子株式会社 | Glass substrate for magnetic recording medium and magnetic recording device using the same |
CN114144384A (en) * | 2019-07-22 | 2022-03-04 | Hoya株式会社 | Glass for magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050026A (en) * | 2000-07-31 | 2002-02-15 | Sharp Corp | Magnetic recording medium, magnetic recording and reproducing equipment and magnetic recording and reproducing method |
JP2002211946A (en) * | 2000-11-15 | 2002-07-31 | Nippon Electric Glass Co Ltd | Glass for press molding and substrate glass for information recording medium |
JP2007161552A (en) * | 2005-12-16 | 2007-06-28 | Nippon Electric Glass Co Ltd | Glass substrate for information recording medium |
US20080130171A1 (en) * | 2006-11-30 | 2008-06-05 | Francis Martin Behan | Calcium aluminosilicate glasses for use as information recording medium substrates |
JP2013254555A (en) * | 2008-01-28 | 2013-12-19 | Asahi Glass Co Ltd | Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk |
CN104211300A (en) * | 2013-08-27 | 2014-12-17 | 东旭集团有限公司 | Formula of glass substrate with high modular ratio |
JP2015062150A (en) * | 2009-08-10 | 2015-04-02 | Hoya株式会社 | Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method of the same, and magnetic recording medium |
JP2017007940A (en) * | 2016-08-22 | 2017-01-12 | 日本電気硝子株式会社 | Glass and glass substrate |
-
2018
- 2018-06-08 JP JP2018110150A patent/JP7276645B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050026A (en) * | 2000-07-31 | 2002-02-15 | Sharp Corp | Magnetic recording medium, magnetic recording and reproducing equipment and magnetic recording and reproducing method |
JP2002211946A (en) * | 2000-11-15 | 2002-07-31 | Nippon Electric Glass Co Ltd | Glass for press molding and substrate glass for information recording medium |
JP2007161552A (en) * | 2005-12-16 | 2007-06-28 | Nippon Electric Glass Co Ltd | Glass substrate for information recording medium |
US20080130171A1 (en) * | 2006-11-30 | 2008-06-05 | Francis Martin Behan | Calcium aluminosilicate glasses for use as information recording medium substrates |
JP2013254555A (en) * | 2008-01-28 | 2013-12-19 | Asahi Glass Co Ltd | Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk |
JP2015062150A (en) * | 2009-08-10 | 2015-04-02 | Hoya株式会社 | Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method of the same, and magnetic recording medium |
CN104211300A (en) * | 2013-08-27 | 2014-12-17 | 东旭集团有限公司 | Formula of glass substrate with high modular ratio |
JP2017007940A (en) * | 2016-08-22 | 2017-01-12 | 日本電気硝子株式会社 | Glass and glass substrate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114144384A (en) * | 2019-07-22 | 2022-03-04 | Hoya株式会社 | Glass for magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device |
JP2021086643A (en) * | 2019-11-25 | 2021-06-03 | 日本電気硝子株式会社 | Glass substrate for magnetic recording medium and magnetic recording device using the same |
JP7392909B2 (en) | 2019-11-25 | 2023-12-06 | 日本電気硝子株式会社 | Glass substrate for magnetic recording media and magnetic recording device using the same |
Also Published As
Publication number | Publication date |
---|---|
JP7276645B2 (en) | 2023-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7454021B2 (en) | Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media, and glass spacers for magnetic recording and reproducing devices | |
US9236075B2 (en) | Crystallized glass and crystallized glass substrate for information recording medium | |
JP5708732B2 (en) | Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk | |
JP2008273779A (en) | Crystallized glass | |
JP7562784B2 (en) | Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device | |
JP7559105B2 (en) | Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device | |
JPH11322362A (en) | Substrate for information recording medium comprising crystallized glass and information recording medium | |
JP4923556B2 (en) | Glass substrate for information recording media | |
JP2024014964A (en) | Glass substrate for magnetic recording medium and magnetic recording device using the same | |
JP2023166439A (en) | Glass for magnetic recording medium substrate or for glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device | |
JP2024102290A (en) | Glass for glass spacer for magnetic recording medium substrate or magnetic recording regeneration device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording regeneration device, and magnetic recording regeneration device | |
JP7276645B2 (en) | Glass substrate for magnetic recording media | |
JP7165655B2 (en) | Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device | |
JP4323597B2 (en) | Crystallized glass for information recording disk and method for producing the same | |
WO2021246151A1 (en) | Glass disk for magnetic recording media and magnetic recording device using same | |
WO2023100893A1 (en) | Glass substrate for magnetic recording medium, glass disk for magnetic recording medium, method for manufacturing magnetic recording medium, and method for manufacturing glass disk | |
WO2024034492A1 (en) | Non-alkali glass plate | |
WO2024057890A1 (en) | Alkali-free glass plate | |
WO2023276608A1 (en) | Alkali-free glass panel | |
WO2022239741A1 (en) | Alkali-free glass plate | |
WO2022239742A1 (en) | Alkali-free glass panel | |
WO2024142984A1 (en) | Alkali-free glass plate | |
WO2023084979A1 (en) | Non-alkali glass plate | |
JP2023007383A (en) | Alkali-free glass panel | |
JP2022173994A (en) | Alkali-free glass sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220427 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221109 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7276645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |