JP2019032228A - Evaluation method of aromatic preparation using qcm - Google Patents

Evaluation method of aromatic preparation using qcm Download PDF

Info

Publication number
JP2019032228A
JP2019032228A JP2017153123A JP2017153123A JP2019032228A JP 2019032228 A JP2019032228 A JP 2019032228A JP 2017153123 A JP2017153123 A JP 2017153123A JP 2017153123 A JP2017153123 A JP 2017153123A JP 2019032228 A JP2019032228 A JP 2019032228A
Authority
JP
Japan
Prior art keywords
qcm
flavor
cell membrane
phospholipid
fragrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017153123A
Other languages
Japanese (ja)
Other versions
JP6886657B2 (en
Inventor
貴博 酒井
Takahiro Sakai
貴博 酒井
祥吾 吉田
Shogo Yoshida
祥吾 吉田
知奈 松本
Tomona Matsumoto
知奈 松本
出 川村
Izuru Kawamura
出 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Yokohama National University NUC
Original Assignee
T Hasegawa Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd, Yokohama National University NUC filed Critical T Hasegawa Co Ltd
Priority to JP2017153123A priority Critical patent/JP6886657B2/en
Publication of JP2019032228A publication Critical patent/JP2019032228A/en
Application granted granted Critical
Publication of JP6886657B2 publication Critical patent/JP6886657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)

Abstract

To provide means for objectively and easily predicting a difference of developments of flavors in an oral cavity and a nasal cavity caused by a difference of compositions of aromatic preparations.SOLUTION: In a method for predicting an inclination of flavor developments in an oral cavity and a nasal cavity of flavor preparations, the method makes a degree of coupling associated with the flavor developments by measuring a degree of the coupling of the flavor developments to a value and a model by using a phosphatide-containing layer which is derived from a cell membrane of an eukaryotic organism fixed on an electrode of a crystal oscillator microbalance (QCM) having an electrode.SELECTED DRAWING: Figure 1

Description

本発明は、QCM(水晶振動子マイクロバランス)を用いる香料調製物の特性の評価方法に関し、より具体的には、香料調製物の口腔内及び鼻腔内における香味発現の傾向を予測するための方法に関する。   The present invention relates to a method for evaluating the characteristics of a fragrance preparation using QCM (quartz crystal microbalance), and more specifically, a method for predicting the tendency of flavor expression of the fragrance preparation in the oral cavity and nasal cavity. About.

香料物質の多くは油溶性成分であり、飲料などに使用するためには、油溶性の香料を水溶性に製剤化(可溶化)する必要がある。水溶性製剤化した香料の代表的なものに、水溶性香料(エッセンス:エチルアルコールを含む水溶性香料)と乳化香料があるが、水溶性香料と乳化香料では香味の発現性が異なり、水溶性香料の香味は前半に強く発現し、乳化香料の香味は中盤乃至後半に強く発現することが知られている。また、乳化香料は使用する乳化剤の種類によっても、香味の発現性に差が生じることも知られているが、これらの原因については解明できていない。   Many of the perfume substances are oil-soluble components, and it is necessary to formulate (solubilize) the oil-soluble perfume so as to be water-soluble for use in beverages and the like. Typical water-soluble fragrances include water-soluble fragrances (essence: water-soluble fragrances containing ethyl alcohol) and emulsified fragrances, but the water-soluble fragrances and emulsified fragrances have different flavors and are soluble in water. It is known that the flavor of the fragrance is strongly expressed in the first half, and the flavor of the emulsified fragrance is strongly expressed in the middle to second half. In addition, emulsified fragrances are known to have differences in flavor development depending on the type of emulsifier used, but the cause of these has not been elucidated.

一方、水晶振動子(又は発信子)マイクロバランス(QCM)法を用いるバイオセンサが知られており(非特許文献1)、香料物質に関連性を有し得るものとして、匂い化合物を識別するためのQCMセンサー用の感応膜やかような感応膜を備えた揮発性化合物の識別装置、ガスセンサが提供されている(特許文献1、特許文献2、特許文献3参照)。また、緩衝液中において水晶振動子を固定させ測定試料と接触させることにより、振動周波数の変化を測定することが見出されている。例えば、被検麦芽から分離し濃縮された高分子多糖分と、コンカナバリンAを固定化した水晶発振子とを緩衝液中において接触させ、高分子多糖分とコンカナバリンAとの結合により生じる水晶発振子の振動周波数の変化を測定する方法が提案されている(特許文献4)。またさらに、水晶振動子センサーを用いてビールや麦芽発泡酒等の酒類の味の評価をする試みがされている(特許文献5)。   On the other hand, a biosensor using a quartz resonator (or oscillator) microbalance (QCM) method is known (Non-Patent Document 1), and is used to identify an odor compound as having relevance to a fragrance material. There are provided a sensitive film for a QCM sensor, a volatile compound identification device having such a sensitive film, and a gas sensor (see Patent Document 1, Patent Document 2, and Patent Document 3). It has also been found that a change in vibration frequency is measured by fixing a quartz crystal resonator in a buffer solution and bringing it into contact with a measurement sample. For example, a quartz crystal formed by bringing a macromolecular polysaccharide separated and concentrated from a test malt into contact with a crystal oscillator having immobilized concanavalin A in a buffer solution and binding the macromolecular polysaccharide and concanavalin A. There has been proposed a method for measuring the change in vibration frequency (Patent Document 4). Furthermore, an attempt has been made to evaluate the taste of alcoholic beverages such as beer and malt happoshu using a crystal resonator sensor (Patent Document 5).

しかしながら、香料組成物の状態やその特性を水晶振動子マイクロバランス法により検討しようとする試みはされていなかった。   However, no attempt has been made to study the state and characteristics of the fragrance composition by the quartz crystal microbalance method.

特開2000−074808号公報Japanese Patent Laid-Open No. 2000-074808 特開2004−061391号公報Japanese Patent Laid-Open No. 2004-063391 特開2011−080983号公報JP 2011-080983 A 特開2009−180584号公報JP 2009-180584 A 特開2001−215183号公報JP 2001-215183 A

電気論E,123巻11号、2003年459−464頁Electrical Theory E, 123: 11, 2003, 459-464

本発明の目的は、仮に、同一の香料分子を有するにもかかわらず、香料調製物の組成の相違によっては、口腔内及び鼻腔内における香味の発現性の差異を客観的に予測するための手段を提供することにある。   The object of the present invention is to provide a means for objectively predicting the difference in the expression of flavor in the oral cavity and the nasal cavity depending on the difference in the composition of the fragrance preparation, despite having the same fragrance molecule. Is to provide.

本発明者等は、上記の目的を達成するために、口腔内及び鼻腔内における香味の発現性
の差異を予測するためにQCM法の適用の可否について検討してきた。その結果、QCMであって、水晶振動子の金電極上に細胞膜を模したリン脂質含有層を備えたQCMを用い、当該リン脂質含有層と試験すべき香料調製物を水性媒体中で接触させたとき、当該水晶振動子に交流電場を印加することにより振動する振動数(共鳴振動数)の変化が、香料調製物の香料物質又は香料分子以外の組成や形態によって有意に識別でき、しかも、かような変化は香料調製物についての時間強度曲線法(TI法)での官能評価の結果と相関性があることが、ここに見出された。
In order to achieve the above object, the present inventors have examined the applicability of the QCM method in order to predict the difference in flavor expression in the oral cavity and nasal cavity. As a result, a QCM comprising a phospholipid-containing layer imitating a cell membrane on a gold electrode of a crystal resonator is used, and the phospholipid-containing layer and the fragrance preparation to be tested are brought into contact in an aqueous medium. Then, the change of the vibration frequency (resonance frequency) oscillating by applying an alternating electric field to the crystal resonator can be significantly identified by the composition and form other than the fragrance substance or fragrance molecule of the fragrance preparation, It has now been found that such changes correlate with the results of sensory evaluation with the time intensity curve method (TI method) for perfume preparations.

したがって、本発明によれば、次の、主たる態様又は特徴を有する手段が提供される。・態様1:香料調製物の口腔内及び鼻腔内における香味発現の傾向を予測するための方法であって、
電極を備えた水晶振動子マイクロバランス(QCM)の電極上に固定された真核性生物の細胞膜に由来するリン脂質含有層を口腔内の細胞膜モデルとして用意する工程、
前記モデルと香料組成物を水性媒体中で接触させて、前記モデルへの香料組成物の結合の程度を測定する工程、
前記結合の程度の強乃至中乃至弱を前記香味発現が後半乃至中盤乃至前半であるものとして評価する工程
を含んでなる、方法。
・態様2:態様1に記載の方法であって、リン脂質含有する層が炭素原子数12〜18の飽和脂肪酸及び/又は不飽和脂肪酸に由来する部分を含むジアシルグリセロリン脂質であるホスファチジルグリセロール、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトールから選ばれる1種以上のリン脂質を含有する、方法。
・態様3:態様2に記載の方法であって、リン脂質がジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファジルグリセロール、ジミリストイルホスファチジルセリン、ジパルミトイルホスファチジルセリン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミンから選ばれる1種以上である、方法。
・態様4:態様1〜3のいずれかに記載の方法であって、細胞膜モデルと香料組成物の接触が水性媒体を含有するセル中において水晶振動子の一方の電極上にリン脂質が固定されたQCM上で実施される、方法。
・態様5:態様1〜3のいずれかに記載の方法であって、細胞膜モデルへの香料組成物の結合の程度がQCMにおける共振周波数振動数の変化により決定される、方法。
Therefore, according to the present invention, means having the following main aspects or features is provided. Aspect 1: A method for predicting the tendency of flavor development in the oral cavity and nasal cavity of a fragrance preparation,
Preparing a phospholipid-containing layer derived from a cell membrane of a eukaryotic organism immobilized on an electrode of a quartz crystal microbalance (QCM) provided with an electrode as a cell membrane model in the oral cavity;
Contacting the model with a perfume composition in an aqueous medium to measure the degree of binding of the perfume composition to the model;
A method comprising the step of evaluating the degree of binding as strong to medium to weak as the flavor expression is from the latter half to the middle to the first half.
Aspect 2: The method according to Aspect 1, wherein the phospholipid-containing layer is a diacylglycerophospholipid containing a portion derived from a saturated fatty acid having 12 to 18 carbon atoms and / or an unsaturated fatty acid, and phosphatidylcholine A method comprising one or more phospholipids selected from phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol.
Aspect 3: The method according to aspect 2, wherein the phospholipid is dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol, dipalmitoyl phosphatidylglycerol, dimyristoyl phosphatidylserine, dipalmitoylphosphatidylserine, dimyristoylphosphatidylethanol The method which is 1 or more types chosen from an amine and dipalmitoyl phosphatidylethanolamine.
Aspect 4: The method according to any one of Aspects 1 to 3, wherein the phospholipid is immobilized on one electrode of the crystal resonator in a cell in which the contact between the cell membrane model and the fragrance composition contains an aqueous medium. Implemented on a QCM.
Aspect 5: The method according to any one of Aspects 1 to 3, wherein the degree of binding of the fragrance composition to the cell membrane model is determined by a change in the resonance frequency frequency in the QCM.

本発明によれば、香料調製物の口腔内及び鼻腔内における香味発現の傾向を予測することができるので、例えば、香料含有飲食品を製造する際に、必要により、各種香味発現時期の異なる香料調製物を単独で、又は、組み合わせて使用することにより、香味の発現時期を制御した飲食品の提供が可能になる。   According to the present invention, since the tendency of flavor expression in the oral cavity and nasal cavity of a fragrance preparation can be predicted, for example, when producing a fragrance-containing food or drink, if necessary, fragrances having different flavor expression times. By using the preparation alone or in combination, it is possible to provide a food or drink with controlled flavor expression time.

本発明に関するQCMの一使用態様を示す概念図である。It is a conceptual diagram which shows the usage condition of QCM regarding this invention. レモンエッセンス、およびレモン乳化組成物をセンサーセル内に添加した時の振動周波数の経時変化を示す。The time-dependent change of the vibration frequency when adding a lemon essence and a lemon emulsified composition in a sensor cell is shown. レモン乳化組成物の粒径を変えた場合のそれぞれをセンサーセル内に添加した時の振動周波数の経時変化を示す。The time-dependent change of the vibration frequency when adding each in the case of changing the particle size of a lemon emulsified composition in a sensor cell is shown. 水晶発振子センサーに固定したリン脂質膜を変えた場合においてレモン乳化組成物を添加した時の振動周波数の経時変化を示す。The time-dependent change of the vibration frequency when adding a lemon emulsification composition in the case of changing the phospholipid film fixed to the quartz oscillator sensor is shown. レモンエッセンス、およびレモン乳化組成物の香味発現について、TI法により評価した評価結果を示す。The evaluation result evaluated by TI method about the flavor expression of a lemon essence and a lemon emulsion composition is shown.

発明の詳細な記述Detailed description of the invention

本発明に関して使用される用語は、特記しない限り、当該技術分野で通常使用される意味内容を有するものであるが、特に、主要な用語等については以下説明する。   Unless otherwise stated, terms used in the present invention have meanings usually used in the technical field. Particularly, main terms and the like will be described below.

香料調製物(又は香料製剤)は、香料物質又は香料分子と他の希釈剤若しくは担体等を含有し、さらには乳化剤又は界面活性剤又は懸濁剤や他の可溶化剤を含んでいてもよい組成物である。希釈剤若しくは担体としては、限定されるものでないが、水、エタノール又はこれらの混合物が挙げられ、乳化剤又は界面活性剤又は懸濁剤や他の可溶化剤としては、飲食品で添加剤又は助剤として常用されているものであって、本発明の目的に沿うものであればそれらの起源や種類を問うことなく用いることができる。典型的な乳化剤又は界面活性剤としては、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル等を挙げることができる。ポリグリセリン脂肪酸エステル類としては、例えば、平均重合度3以上のポリグリセリンと炭素数8以上の脂肪酸とのエステル、例えば、デカグリセリンモノオレエート、デカグリセリンモノステアレート、デカグリセリンモノパルミテート、デカグリセリンモノミリステートなどを挙げることができる。典型的な懸濁剤及び/又は他の可溶化剤としてはプロピレングリコール、エチレングリコール、レシチン、サポニン、アラビアガム、ゼラチン、化工デンプン、モノグリセリド有機酸エステルを挙げることができる。このような調製物は、仮に、トップノートとされる揮発性を有する香料類であっても、組み合わされる助剤等の成分や調製物の形態(例えば、エッセンス、乳化物の乳化粒子の粒径の大小)により香味発現性を異にする。   The perfume preparation (or perfume formulation) contains a perfume substance or perfume molecule and other diluents or carriers, and may further contain an emulsifier, surfactant, suspending agent or other solubilizer. It is a composition. Diluents or carriers include, but are not limited to, water, ethanol, or mixtures thereof, and emulsifiers, surfactants, suspending agents and other solubilizers include additives or assistants in food and drink. Any agent that is commonly used as an agent and that meets the object of the present invention can be used without regard to their origin or type. Typical emulsifiers or surfactants include polyglycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters, glycerin fatty acid esters and the like. Examples of polyglycerin fatty acid esters include esters of polyglycerin having an average degree of polymerization of 3 or more and fatty acids having 8 or more carbon atoms, such as decaglycerin monooleate, decaglycerin monostearate, decaglycerin monopalmitate, deca Examples include glycerin monomyristate. Typical suspending agents and / or other solubilizers may include propylene glycol, ethylene glycol, lecithin, saponin, gum arabic, gelatin, modified starch, monoglyceride organic acid esters. Even if such a preparation is a volatile fragrance that is regarded as a top note, ingredients such as auxiliary agents to be combined and the form of the preparation (for example, essence, particle size of emulsion particles of emulsion) The size of the flavor varies depending on the size.

口腔内及び鼻腔内における香味(又は風味)とは、香料又はにおい成分を含有する飲食品を口に入れたときに口内や鼻腔内にひろがる味と香りの両方を総合的に表した用語である。   The flavor (or flavor) in the oral cavity and nasal cavity is a term that comprehensively represents both the taste and fragrance that spread in the mouth and nasal cavity when a food or drink containing a fragrance or an odor component is placed in the mouth. .

電極を備えた水晶振動子マイクロバランスにいう水晶振動子は、上記の非特許文献1や特許文献において公知である、水晶の結晶を極薄い板状に切り出した切片の両側に金属薄膜を取り付けた電気素子であり、両金属薄膜(電極)を通じて水晶切片に交流電場を印加すると一定の振動数(共鳴振動数)で振動する性質を有する電気素子である。かような素子はその金属薄膜表面上にナノ・グラム程度の微量物質が吸着するとその質量に応じて共鳴振動数が減少することからマイクロバランスとして機能することが知られている。したがって、上記の電気素子やQCMの用語は、本明細書では、交換可能なものとして用いることもある。また、かようなQCMは市販されているものであって、本発明の目的に沿うQCMであれば特に限定されず、AT−カットという角度で切り出した水晶板薄膜の両面に電極を設けた水晶振動子を使用することができる。市販されているものとしては、後述する[実施例]で用いている物性変化・分子間相互作用定量QCM装置(イニシアム社製
AFFINIX QN μ)に等価の動作、機能等を具備するものを選択使用することができる。
The crystal resonator referred to as the crystal resonator microbalance provided with electrodes has a metal thin film attached to both sides of a slice obtained by cutting a crystal of crystal into an extremely thin plate, which is known in the above-mentioned Non-Patent Document 1 and Patent Document. It is an electrical element that has the property of vibrating at a constant frequency (resonance frequency) when an AC electric field is applied to a crystal slice through both metal thin films (electrodes). Such an element is known to function as a microbalance because a resonance frequency decreases according to its mass when a minute amount of a substance of nanogram is adsorbed on the surface of the metal thin film. Accordingly, the terms electrical element and QCM described above may be used interchangeably in this specification. Further, such a QCM is commercially available, and is not particularly limited as long as it is a QCM that meets the object of the present invention. A crystal in which electrodes are provided on both sides of a quartz plate thin film cut at an angle of AT-cut. An oscillator can be used. As a commercially available product, a material having an equivalent operation, function, etc. to the physical property change / intermolecular interaction quantification QCM apparatus (AFFINIX QN μ manufactured by Initiam Co., Ltd.) used in [Example] described later is selected and used. can do.

本発明にいうQCMの電極は、水晶振動子の電極上に細胞膜を模した真核性生物、特に哺乳動物の細胞膜に由来するリン脂質含有層が固定されている点に特徴があり、しかも、かようなリン脂質含有層の表面は、水性媒体が注入されたQCMセル中に存在するように構成される。かようなQCMの一使用態様の概念図を図1に示す。本明細書にいう、電極は、例えば、水晶の極薄い板状物の表面に金、銀、白金、チタン等の蒸着された金属薄膜から構成することができ、さらに金属の極薄い板状物であってもよい。かような電極への細胞膜を模したリン脂質含有層の固定は、限定されるものでないが、リン脂質含有水溶液をQCMの金電極部分に滴下後、溶液を乾燥させてリン脂質含有層を形成・固定させる滴下法、またはリン脂質等の溶液を高回転させたQCM基板上に滴下し、均一なリン脂質含
有層を作製するスピンコート法などによって実施できる。
The QCM electrode referred to in the present invention is characterized in that a phospholipid-containing layer derived from a eukaryotic organism, particularly a mammalian cell membrane imitating a cell membrane, is fixed on the electrode of a crystal resonator, The surface of such a phospholipid-containing layer is configured to be present in a QCM cell infused with an aqueous medium. A conceptual diagram of one usage mode of such QCM is shown in FIG. The electrode referred to in this specification can be composed of, for example, a metal thin film in which gold, silver, platinum, titanium, or the like is deposited on the surface of an extremely thin plate of quartz. It may be. The immobilization of the phospholipid-containing layer imitating the cell membrane to such an electrode is not limited, but after the phospholipid-containing aqueous solution is dropped on the gold electrode portion of the QCM, the solution is dried to form the phospholipid-containing layer. -It can be carried out by a dropping method for fixing, or a spin coating method in which a solution such as phospholipid is dropped on a QCM substrate rotated at a high rotation to produce a uniform phospholipid-containing layer.

リン脂質は、本発明の目的に沿うものである限り限定されるものでないが、一般的に、真核性生物、特に哺乳動物の細胞膜に由来するリン脂質又はその類縁体である。このようなリン脂質としては、炭素原子数12〜18の飽和脂肪酸及び/又は不飽和脂肪酸に由来する部分を含むジアシルグリセロリン脂質であることができ、限定されるものでないが、ホスファチジルグリセロール、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトールを挙げることができる。これらのより具体的な脂質としては、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファジルグリセロール、ジミリストイルホスファチジルセリン、ジパルミトイルホスファチジルセリン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン、等を例示できる。これらのリン脂質を含有する層は、記載したリン脂質の1種以上を混合物として含有することができ、さらに、本発明の目的に沿う限り、各種タンパク質や糖脂質を含むこともできる。混合物としては、例えば、ジミリストイルホスファチジルコリンのように塩基性部分(コリン部)を有するものとかような塩基性部分とは異なるセリン部分又は当該部分を有さないグリセロール型の脂質の混合物であることができる。このように異なるリン脂質は、相互に、1〜10対10〜1、又は2〜10対10〜2であることができる。   Phospholipids are not limited as long as they meet the objectives of the present invention, but are generally phospholipids derived from eukaryotic organisms, particularly mammalian cell membranes, or analogs thereof. Such a phospholipid can be a diacylglycerophospholipid containing a portion derived from a saturated fatty acid having 12 to 18 carbon atoms and / or an unsaturated fatty acid, and includes, but is not limited to, phosphatidylglycerol, phosphatidylcholine, Examples thereof include phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. These more specific lipids include dimyristoyl phosphatidyl choline, dipalmitoyl phosphatidyl choline, dimyristoyl phosphatidyl glycerol, dipalmitoyl phosphatyl glycerol, dimyristoyl phosphatidyl serine, dipalmitoyl phosphatidyl serine, dimyristoyl phosphatidyl ethanolamine, dipalmitoyl phosphatidyl ethanolamine Etc. can be illustrated. The layer containing these phospholipids can contain one or more of the described phospholipids as a mixture, and can also contain various proteins and glycolipids as long as the object of the present invention is met. The mixture may be, for example, a mixture of glycerol-type lipids having a basic part (choline part) such as dimyristoyl phosphatidylcholine and a serine part different from the basic part or not having such part. it can. Such different phospholipids can be 1 to 10 to 10 to 1 or 2 to 10 to 10 to each other.

本発明の一態様では、上記のリン脂質含有層は水性媒体が注入されたQCMセル中に存在するように構成される水晶板薄膜上の2種の電極の一方の電極上に固定される。かようなQCMセル中の水性媒体は、口腔内及び鼻腔内における香味発現の傾向を予測しようとする被験物たる香料調製物のセル中での移動を媒介するものであって、純水若しくはイオン交換水又はこれらに1%未満の各種分解酵素等を含有せしめ、pHがほぼ中性付近に緩衝化されていてもよい唾液類似液であることができる。前記QCMセル中でリン脂質含有層は水性媒体中の被験物たる香料調製物と37℃又は周囲温度(室温若しくは約30℃)下で、通常、1秒〜5分間、必要により穏和な振盪を加え、相互作用せしめることにより結合し、又は前記リン脂質含有層上に香料調製物が吸着されることにより、両電極を通じて水晶切片に交流電場を印加することによる一定の振動数が結合又は吸着質量の多寡に依存して変動する。このような変動性は、香料調製物の香味発現について、従来から官能的に評価されてきたTI法(Time−Intensity法:新触感辞典、サイエンスフォーラム、p.420−421(1999))の結果を考慮すると、口腔内及び鼻腔内における膜又は粘膜上での香料調製物の滞留性や滞留した香料調製物からの香料成分の放出挙動を模擬するものと評価できる。こうして、本発明に従えば、電極を備えた水晶振動子マイクロバランス(QCM)の電極上に固定された真核性生物の細胞膜に由来するリン脂質含有層は、口腔内の細胞膜モデルとして用いることができる。また、前記結合又は結合の程度の強弱(多少)、より具体的には、強乃至中乃至弱は、TI法により評価される香料調整物の香味発現の遅(又は後半)乃至中程度(又は中盤)乃至早(又は前半)に対応(匹敵)するものと、関連付けることもできる。したがって、上記の評価に際し、香味発現性についてTI法により一定の評価がなされているか、或いは予め評価されている香料組成物又は香料調製物(例えば、本出願人から市販されている、香料調製物、エッセンス、ハセクリア(登録商標)、クラウディ)に対する前記振動数の変動値を比較対照として用いることにより、評価の客観性を高めることもできる。   In one aspect of the present invention, the phospholipid-containing layer is immobilized on one of two electrodes on a quartz plate thin film configured to be present in a QCM cell infused with an aqueous medium. Such an aqueous medium in the QCM cell mediates the movement of the fragrance preparation as a test object in the cell to predict the tendency of flavor development in the oral cavity and nasal cavity, and is pure water or ion. It can be a saliva-like liquid that may contain exchanged water or less than 1% of various degrading enzymes and the like, and the pH of which may be buffered in the vicinity of neutrality. In the QCM cell, the phospholipid-containing layer is gently shaken as necessary with a fragrance preparation as a test substance in an aqueous medium at 37 ° C. or ambient temperature (room temperature or about 30 ° C.), usually for 1 second to 5 minutes. In addition, by binding or by adsorbing the fragrance preparation on the phospholipid-containing layer, a constant frequency is applied by applying an alternating electric field to the crystal slice through both electrodes. Depends on the amount of variation. Such variability is the result of the TI method (Time-Intensity method: New Tactile Dictionary, Science Forum, p. 420-421 (1999)) that has been conventionally sensorially evaluated for the flavor expression of the fragrance preparation. Can be evaluated as imitating the retention of the fragrance preparation on the membrane or mucous membrane in the oral cavity and nasal cavity and the release behavior of the fragrance component from the retained fragrance preparation. Thus, according to the present invention, the phospholipid-containing layer derived from the cell membrane of a eukaryotic organism fixed on the electrode of a quartz crystal microbalance (QCM) equipped with an electrode is used as a cell membrane model in the oral cavity. Can do. In addition, the strength of the binding or the degree of binding (somewhat), more specifically, strong to moderate to weak, is a slow (or latter half) to moderate (or late) flavor expression of the fragrance preparation evaluated by the TI method. It can also be associated with those corresponding (comparable) from the middle stage to the early (or first half). Therefore, in the above evaluation, a certain evaluation is made by the TI method for flavor development, or a fragrance composition or fragrance preparation that has been evaluated in advance (for example, a fragrance preparation that is commercially available from the present applicant) , Essence, Haseclear (registered trademark), and Cloudy), the objectivity of the evaluation can be improved by using the fluctuation value of the frequency as a comparative control.

以下、本発明を特定の態様によりさらに具体的に説明するが、本発明をかような態様に限定することを意味するものでない。   Hereinafter, the present invention will be described in more detail by specific embodiments, but it is not meant to limit the present invention to such embodiments.

参考例1:レモンエッセンスの製造
レモン精油10gに60質量%のエタノール水溶液90gと混合し、静置して浮上する油層を分離した後、アルコール層を濾紙濾過して、レモンエッセンス(参考品1)を調製した。
Reference Example 1: Manufacture of lemon essence 10 g of lemon essential oil was mixed with 90 g of a 60% by weight ethanol aqueous solution, and after standing to separate the floating oil layer, the alcohol layer was filtered through filter paper, and lemon essence (reference product 1) Was prepared.

参考例2:レモン乳化組成物の製造(平均粒径80nm)
グリセリン75g、イオン交換水10gの混合液にデカグリセリンモノステアレート(日光ケミカルズ社製DECAGLYN 1−50SV)の精製品5gを溶解し水相とする。そこに参考例1で使用したレモン精油10gをTK−ホモミキサー(プライミクス社製)により8000rpmで攪拌しながら混合し、10分間の乳化を行って、レモン乳化組成物を調製した。得られた乳化組成物は平均粒径80nm(参考品2)であった。
Reference Example 2: Production of lemon emulsified composition (average particle size 80 nm)
5 g of a purified product of decaglycerin monostearate (DECAGLYN 1-50SV manufactured by Nikko Chemicals) is dissolved in a mixed solution of 75 g of glycerin and 10 g of ion-exchanged water to obtain an aqueous phase. The lemon essential oil 10g used by the reference example 1 was mixed there with stirring at 8000 rpm with TK-homomixer (made by Primics), and it emulsified for 10 minutes, and prepared the lemon emulsion composition. The obtained emulsion composition had an average particle diameter of 80 nm (Reference product 2).

参考例3:レモン乳化組成物の製造(平均粒径120nm)
グリセリン75g、イオン交換水10gの混合液に参考例2で使用したのと同じデカグリセリンモノステアレート(日光ケミカルズ社製DECAGLYN 1−50SV)5gを溶解し水相とする。そこに参考例1で使用したレモン精油10gをTK−ホモミキサー(プライミクス社製)により6000rpmで攪拌しながら混合し、10分間の乳化を行って、レモン乳化組成物を調製した。得られた乳化組成物は平均粒径120nm(参考品3)であった。
Reference Example 3: Production of lemon emulsified composition (average particle size 120 nm)
5 g of the same decaglycerin monostearate (DECAGLYN 1-50SV manufactured by Nikko Chemicals) used in Reference Example 2 is dissolved in a mixed solution of 75 g of glycerin and 10 g of ion-exchanged water to obtain an aqueous phase. The lemon essential oil 10g used by the reference example 1 was mixed there with stirring at 6000 rpm with TK-homomixer (made by Primics), and it emulsified for 10 minutes, and prepared the lemon emulsified composition. The obtained emulsion composition had an average particle size of 120 nm (Reference product 3).

参考例4:レモン乳化組成物の製造(平均粒径250nm)
グリセリン61g、イオン交換水32gの混合液に参考例2で使用したのと同じデカグリセリンモノステアレート(日光ケミカルズ社製DECAGLYN 1−50SV)1gを溶解し水相とする。そこに参考例1で使用したレモン精油5gをTK−ホモミキサー(プライミクス社製)により5000rpmで攪拌しながら混合し、10分間の乳化を行って、レモン乳化組成物を調製した。得られた乳化組成物は平均粒径250nm(参考品4)であった。
Reference Example 4: Production of lemon emulsified composition (average particle size 250 nm)
1 g of the same decaglycerin monostearate (DECAGLYN 1-50SV manufactured by Nikko Chemicals) used in Reference Example 2 is dissolved in a mixed solution of 61 g of glycerin and 32 g of ion-exchanged water to obtain an aqueous phase. There, 5 g of lemon essential oil used in Reference Example 1 was mixed with stirring at 5000 rpm by a TK-homomixer (manufactured by Primex), and emulsified for 10 minutes to prepare a lemon emulsified composition. The obtained emulsion composition had an average particle size of 250 nm (Reference product 4).

参考例5:水晶振動子センサーの洗浄および調製
市販の水晶発振子センサー(イニシアム社製・アクリル素材セル 27MHzの金電極部分に、ピランハ溶液(過酸化水素:濃硫酸=1:3混合液)を2μl滴下し、5分間静置し、その後純水にて表面を洗浄した。表面に残った水分を紙に吸い取って除去し、センサーの洗浄を行った。
Reference Example 5: Cleaning and Preparation of Crystal Oscillator Sensor Commercially available crystal oscillator sensor (Initium Co., Ltd., acrylic material cell 27 MHz gold electrode part, Piranha solution (hydrogen peroxide: concentrated sulfuric acid = 1: 3 mixed solution) 2 μl was dropped, allowed to stand for 5 minutes, and then the surface was washed with pure water, and water remaining on the surface was blotted and removed to clean the sensor.

クロロホルム溶液10ml中に10mgのジミリストイルホスファチジルコリン(以下DMPCと記す)を溶解し、DMPCクロロホルム溶液を調製した。この溶液を前記の操作にて洗浄した水晶振動子センサーの金電極部分に滴下し、窒素にて乾燥させたものをDMPC固定化水晶振動子センサーとした(センサー1とする)。   10 mg of dimyristoyl phosphatidylcholine (hereinafter referred to as DMPC) was dissolved in 10 ml of a chloroform solution to prepare a DMPC chloroform solution. This solution was dropped onto the gold electrode portion of the quartz resonator sensor washed by the above operation and dried with nitrogen to obtain a DMPC-fixed quartz resonator sensor (referred to as sensor 1).

また同様に水晶振動子センサーの金電極部分に、DMPCおよびジミリトイルホスファチジルグリセロール(以下DMPGと記す)を1:1で混合した計10mgを、クロロホルム10ml中に溶解させ調製し、この溶液を水晶振動子センサーの金電極部分に滴下し窒素にて乾燥させたものをDMPC:DMPG(1:1)固定化水晶振動子センサーとした(センサー2とする)。   Similarly, a total of 10 mg of DMPC and dimyritoylphosphatidylglycerol (hereinafter referred to as DMPG) mixed at a ratio of 1: 1 is dissolved in 10 ml of chloroform in the gold electrode portion of the quartz crystal sensor, and this solution is prepared as quartz. A liquid crystal sensor that was dropped on the gold electrode portion of the vibrator sensor and dried with nitrogen was used as a DMPC: DMPG (1: 1) -fixed crystal vibrator sensor (referred to as sensor 2).

さらに、水晶振動子センサーの金電極部分に、DMPCおよびDMPGを1:2で混合した計10mgを、クロロホルム10ml中に溶解させ調製し、この溶液を水晶振動子センサーの金電極部分に滴下し窒素にて乾燥させたものをDMPC:DMPG(1:2)固定化水晶振動子センサーとした(センサー3とする)。   Furthermore, a total of 10 mg of DMPC and DMPG mixed 1: 2 was dissolved in 10 ml of chloroform in the gold electrode portion of the crystal resonator sensor, and this solution was added dropwise to the gold electrode portion of the crystal resonator sensor. The product dried in the above was used as a DMPC: DMPG (1: 2) fixed quartz crystal sensor (referred to as sensor 3).

実施例1:エッセンスと乳化組成物との比較
物性変化・分子間相互作用定量QCM装置(イニシアム社製 AFFINIX QN μ)に参考例5のセンサー1を装着した。センサー装着後、センサーセルに500μlの純水を加え、センサー部分に浸漬させ、振動数が安定するまで放置しておいた。
Example 1 Comparison between Essence and Emulsified Composition Sensor 1 of Reference Example 5 was attached to a physical property change / intermolecular interaction quantification QCM apparatus (AFFINIX QN μ manufactured by Inicium). After mounting the sensor, 500 μl of pure water was added to the sensor cell, immersed in the sensor part, and allowed to stand until the frequency became stable.

次に、レモンエッセンス(参考品1)を純水にて100倍に希釈した。同様に、レモン乳化組成物(参考品2)を純水にて500倍に希釈し、レモン乳化組成物(参考品4)を純水にて250倍に希釈した。これらの純水の希釈液をQCM装置に供し、水晶振動子の振動周波数変化を測定した。   Next, lemon essence (reference product 1) was diluted 100 times with pure water. Similarly, the lemon emulsified composition (reference product 2) was diluted 500 times with pure water, and the lemon emulsified composition (reference product 4) was diluted 250 times with pure water. These dilutions of pure water were supplied to a QCM apparatus, and the change in the vibration frequency of the crystal resonator was measured.

QCM装置の振動数が安定した後、前記参考品1、2および4の希釈液1μlをそれぞれセンサーセルの純水中に添加した。また、適宜振動周波数の測定中に前記の添加操作を行い、添加後の振動周波数の経時変化について測定した。測定結果について図2に示す。   After the frequency of the QCM apparatus was stabilized, 1 μl of the diluted solutions of the reference products 1, 2, and 4 were added to the pure water of the sensor cell, respectively. In addition, the above addition operation was appropriately performed during measurement of the vibration frequency, and the change with time in the vibration frequency after the addition was measured. The measurement results are shown in FIG.

図2より、参考品1のレモンエッセンスを添加した場合では周波数変化はほとんど見られなかった。一方で、参考品2のレモン乳化組成物では振動周波数の減少が見られ、参考品4のレモン乳化組成物ではさらに振動周波数の減少が顕著であったことが示された。すなわち、エッセンスでは口腔内のモデル細胞膜であるDMPCとほとんど結合しないが、乳化組成物ではDMPCと容易に結合し、香味発現が遅れている可能性が示唆された。   From FIG. 2, when the lemon essence of the reference product 1 was added, almost no frequency change was observed. On the other hand, in the lemon emulsified composition of Reference Product 2, a decrease in the vibration frequency was observed, and in the lemon emulsified composition of Reference Product 4, it was shown that the decrease in the vibration frequency was further remarkable. That is, the essence hardly binds to DMPC, which is a model cell membrane in the oral cavity, but the emulsified composition easily binds to DMPC, suggesting that flavor expression may be delayed.

実施例2:粒径の異なる乳化組成物の比較
実施例1と同様に、QCM装置にセンサー1を装着し、センサー装着後、センサーセルに500μlの純水を加え、センサー部分に浸漬させ、振動数が安定するまで放置しておいた。
Example 2: Comparison of emulsified compositions having different particle diameters As in Example 1, the sensor 1 was attached to the QCM device, and after the sensor was attached, 500 μl of pure water was added to the sensor cell, and the sensor part was immersed in vibration. Leave until the number stabilizes.

次にレモン乳化組成物(参考品3)を純水にて500倍に希釈し、実施例1で調製したレモン乳化組成物(参考品2)の純水の希釈液の2品をQCM装置に供し、水晶振動子の振動周波数変化を測定した。   Next, the lemon emulsified composition (reference product 3) was diluted 500 times with pure water, and two products of the pure water dilution of the lemon emulsified composition (reference product 2) prepared in Example 1 were added to the QCM apparatus. The change in the vibration frequency of the quartz crystal was measured.

QCM装置の振動数が安定した後、前記参考品2および3の希釈液1μlをそれぞれセンサーセルの純水中に添加した。また、適宜振動周波数の測定中に前記の添加操作を行い、添加後の振動周波数の経時変化について測定した。測定結果について図3に示す。   After the frequency of the QCM apparatus was stabilized, 1 μl of the diluted solutions of the reference products 2 and 3 were added to the pure water of the sensor cell, respectively. In addition, the above addition operation was appropriately performed during measurement of the vibration frequency, and the change with time in the vibration frequency after the addition was measured. The measurement results are shown in FIG.

図3より、参考品2および参考品3のレモン乳化組成物では振動周波数の減少が見られ、参考品3のレモン乳化組成物では振動周波数の減少値が参考品2より大きいことが示された。実施例1の結果とあわせて、乳化組成物の粒径が大きいほど振動周波数の減少値が大きいことが示され、粒径の大きい乳化組成物ではDMPCと結合しやすく、香味発現が遅れている可能性が示唆された。   From FIG. 3, the lemon emulsified composition of Reference Product 2 and Reference Product 3 showed a decrease in vibration frequency, and the lemon emulsified composition of Reference Product 3 showed that the decrease value of vibration frequency was larger than that of Reference Product 2. . Along with the results of Example 1, it is shown that the larger the particle size of the emulsified composition is, the larger the decrease value of the vibration frequency is. The emulsified composition having a large particle size easily binds to DMPC, and the flavor expression is delayed. The possibility was suggested.

実施例3:センサーの感応膜の違いによる比較
QCM装置に参考例1で調製したセンサー1(DMPC)、センサー2(DMPC:DMPG(1:1))またはセンサー3(DMPC:DMPG(1:2))を装着し、センサー装着後、センサーセルに500μlの純水を加え、センサー部分に浸漬させ、振動数が安定するまで放置しておいた。
Example 3: Comparison by difference in sensitivity film of sensor The sensor 1 (DMPC), sensor 2 (DMPC: DMPG (1: 1)) or sensor 3 (DMPC: DMPG (1: 2) prepared in Reference Example 1 was used in the QCM apparatus. )), And after mounting the sensor, 500 μl of pure water was added to the sensor cell, immersed in the sensor portion, and allowed to stand until the frequency was stabilized.

次いで、実施例1で調製したレモン乳化組成物(参考品2)の純水の希釈液をQCM装置に供し、水晶振動子の振動周波数変化を測定した。   Next, the pure water dilution of the lemon emulsified composition (reference product 2) prepared in Example 1 was applied to a QCM apparatus, and the change in the vibration frequency of the quartz resonator was measured.

QCM装置の振動数が安定した後、前記参考品2の希釈液1μlをセンサーセルの純水中に添加した。この操作をセンサー1〜3について行い、添加後の振動周波数の経時変化
について測定した。測定結果について図4に示す。
After the frequency of the QCM apparatus was stabilized, 1 μl of the diluted solution of the reference product 2 was added to the pure water of the sensor cell. This operation was performed for the sensors 1 to 3, and the change with time in the vibration frequency after the addition was measured. The measurement results are shown in FIG.

図4より、センサー1に参考品2のレモン乳化組成物を添加したときは振動周波数の減少が見られることが示されたが、センサー2およびセンサー3についても振動周波数の減少が見られ、センサー1よりも減少値が大きいことが示された。すなわち、周波数の変化はDMPCに特化しているのではなく、他の口腔内のモデル細胞膜であるDMPGをセンサーの感応膜に使用した場合においても周波数の変化が見られ、乳化組成物では口腔内の細胞膜の作用により香味発現が遅れている可能性が示唆された。   From FIG. 4, it was shown that when the lemon emulsified composition of Reference product 2 was added to sensor 1, a decrease in vibration frequency was observed, but a decrease in vibration frequency was also observed for sensor 2 and sensor 3. It was shown that the decrease value was larger than 1. That is, the change in frequency is not specific to DMPC, but when DMPG, which is another model cell membrane in the oral cavity, is used as the sensitive membrane of the sensor, the frequency change is observed. It was suggested that the flavor expression was delayed by the action of the cell membrane.

実施例4:TI法による香味発現の評価
実施例1で使用したレモンエッセンス(参考品1)、レモン乳化組成物(参考品2)およびレモン乳化組成物(参考品4)を蒸留水にて希釈し、参考品1、参考品2および参考品4の水溶液を、TI法にて香味を評価した。TI法は官能評価の一手法であり、経時的な味の強さを評価し、味の強度を時間軸上にプロットして曲線を得て、この曲線を基に、評価するサンプルの味の経時的な変化の特性や味質改良効果を評価する手法である。
Example 4: Evaluation of flavor expression by TI method Lemon essence (reference product 1), lemon emulsified composition (reference product 2) and lemon emulsified composition (reference product 4) used in Example 1 were diluted with distilled water. The flavors of the aqueous solutions of Reference Product 1, Reference Product 2 and Reference Product 4 were evaluated by the TI method. The TI method is a technique for sensory evaluation. The intensity of taste over time is evaluated, and the intensity of the taste is plotted on the time axis to obtain a curve. Based on this curve, the taste of the sample to be evaluated is evaluated. This is a technique for evaluating the characteristics of changes over time and the effect of improving taste quality.

TI法は、以下の手順で行った。(1)試料(10g)を口に入れてすぐ飲み込み、同時に時間計測を始める、(2)香味強度を経時的に記録し、グラフにする。香味強度の数値が大きいほど、香味が強いことを表す。   The TI method was performed according to the following procedure. (1) Put a sample (10 g) in the mouth and swallow it immediately, and start time measurement at the same time. (2) Record the flavor intensity over time and make a graph. The larger the value of flavor intensity, the stronger the flavor.

TI法による評価は、7名のパネルにより行った。その平均的な評価結果を図5に示す。   Evaluation by the TI method was performed by a panel of seven people. The average evaluation result is shown in FIG.

図5に示すとおり、参考品1と比較して、参考品2および参考品4は香味が遅れて発現され、香味の発現が持続することが示された。よって、エッセンスと比較して乳化香料は香味が遅れて発現され、香味の発現が持続することがTI法より確認された。また、乳化香料の粒径が大きいほど香味発現が遅れて発現され、香味の発現が持続することが示された。   As shown in FIG. 5, compared to the reference product 1, the reference product 2 and the reference product 4 were expressed with a delayed flavor, and the expression of the flavor was sustained. Therefore, it was confirmed by the TI method that the emulsified fragrance was expressed with a delayed flavor as compared with the essence, and the expression of the flavor was sustained. Moreover, it was shown that flavor expression was delayed and expressed as the particle size of the emulsified flavor increased, and the expression of flavor persisted.

実施例1と実施例4の結果により、TI法の結果とリン脂質を用いた水晶発振子センサーの周波数変化には相関関係があることが示された。これにより水晶振動子の振動周波数変化を測定することにより、官能評価を実施しなくても香味発現の時間をある程度予測できることが示された。   The results of Example 1 and Example 4 showed that there was a correlation between the results of the TI method and the frequency change of the crystal oscillator sensor using phospholipid. Thus, it was shown that the flavor development time can be predicted to some extent without performing sensory evaluation by measuring the vibration frequency change of the crystal resonator.

本発明によれば、電極を備えた水晶振動子マイクロバランス(QCM)の電極上に固定された真核性生物の細胞膜に由来するリン脂質含有層を口腔内の細胞膜モデルとして用いる、香料調製物の口腔内及び鼻腔内における香味発現の傾向を予測するための方法が提供できる。したがって、本発明は香料調製物の製造、利用する技術分野で利用できる。   According to the present invention, a fragrance preparation using a phospholipid-containing layer derived from a cell membrane of a eukaryotic organism fixed on an electrode of a quartz crystal microbalance (QCM) equipped with an electrode as a cell membrane model in the oral cavity It is possible to provide a method for predicting the tendency of flavor development in the oral cavity and nasal cavity. Therefore, this invention can be utilized in the technical field which manufactures and utilizes a fragrance | flavor preparation.

Claims (5)

香料調製物の口腔内及び鼻腔内における香味発現の傾向を予測するための方法であって、電極を備えた水晶振動子マイクロバランス(QCM)の電極上に固定された真核性生物の細胞膜に由来するリン脂質含有層を口腔内の細胞膜モデルとして用意する工程、
前記モデルと香料組成物を水性媒体中で接触させて、前記モデルへの香料組成物の結合の程度を測定する工程、
前記結合の程度の強乃至中乃至弱を前記香味発現が後半乃至中盤乃至前半であるものとして評価する工程
を含んでなる、方法。
A method for predicting the flavor development tendency of a fragrance preparation in the oral cavity and nasal cavity, which is applied to a cell membrane of a eukaryotic organism fixed on an electrode of a quartz crystal microbalance (QCM) equipped with an electrode. Preparing a derived phospholipid-containing layer as a cell membrane model in the oral cavity,
Contacting the model with a perfume composition in an aqueous medium to measure the degree of binding of the perfume composition to the model;
A method comprising the step of evaluating the degree of binding as strong to medium to weak as the flavor expression is from the latter half to the middle to the first half.
請求項1に記載の方法であって、リン脂質含有する層が炭素原子数12〜18の飽和脂肪酸及び/又は不飽和脂肪酸に由来する部分を含むグリセロリン脂質であるホスファチジルグリセロール、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトールから選ばれる1種以上のリン脂質を含有する、方法。 The phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine according to claim 1, wherein the phospholipid-containing layer is a glycerophospholipid containing a portion derived from a saturated fatty acid having 12 to 18 carbon atoms and / or an unsaturated fatty acid. A method comprising one or more phospholipids selected from phosphatidylserine and phosphatidylinositol. 請求項2に記載の方法であって、グリセロリン脂質が、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファジルグリセロール、ジミリストイルホスファチジルセリン、ジパルミトイルホスファチジルセリン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミンから選ばれる1種以上である、方法。 The method of claim 2, wherein the glycerophospholipid is dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol, dipalmitoylphosphatylglycerol, dimyristoylphosphatidylserine, dipalmitoylphosphatidylserine, dimyristoylphosphatidylethanolamine, The method which is 1 or more types chosen from dipalmitoyl phosphatidylethanolamine. 請求項1〜3のいずれかに記載の方法であって、細胞膜モデルと香料組成物の接触が水性媒体を含有するセル中において水晶振動子の一方の電極上にリン脂質が固定されたQCM上で実施される、方法。 The method according to any one of claims 1 to 3, wherein the contact between the cell membrane model and the fragrance composition is on a QCM in which a phospholipid is immobilized on one electrode of a crystal resonator in a cell containing an aqueous medium. The method carried out in 請求項1〜3のいずれかに記載の方法であって、細胞膜モデルへの香料組成物の結合の程度がQCMにおける共振周波数振動数の変化により決定される、方法。 The method according to claim 1, wherein the degree of binding of the fragrance composition to the cell membrane model is determined by a change in the resonance frequency frequency in the QCM.
JP2017153123A 2017-08-08 2017-08-08 Evaluation method of perfume preparation using QCM Active JP6886657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153123A JP6886657B2 (en) 2017-08-08 2017-08-08 Evaluation method of perfume preparation using QCM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153123A JP6886657B2 (en) 2017-08-08 2017-08-08 Evaluation method of perfume preparation using QCM

Publications (2)

Publication Number Publication Date
JP2019032228A true JP2019032228A (en) 2019-02-28
JP6886657B2 JP6886657B2 (en) 2021-06-16

Family

ID=65523356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153123A Active JP6886657B2 (en) 2017-08-08 2017-08-08 Evaluation method of perfume preparation using QCM

Country Status (1)

Country Link
JP (1) JP6886657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004828A1 (en) * 2020-06-30 2022-01-06 味の素株式会社 Quality prediction method, quality prediction device, and quality prediction program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222248A (en) * 1987-03-11 1988-09-16 Shigeo Okahata Detection of bitter or scent substance
JP2000180333A (en) * 1998-12-17 2000-06-30 Sapporo Breweries Ltd Method for evaluating taste of alcoholic drink
JP2001215183A (en) * 2000-02-03 2001-08-10 Sapporo Breweries Ltd Method and apparatus for evaluating taste of alcoholic liquors
JP2002286710A (en) * 2001-03-27 2002-10-03 Sapporo Breweries Ltd Method and device for evaluating food astringency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222248A (en) * 1987-03-11 1988-09-16 Shigeo Okahata Detection of bitter or scent substance
JP2000180333A (en) * 1998-12-17 2000-06-30 Sapporo Breweries Ltd Method for evaluating taste of alcoholic drink
JP2001215183A (en) * 2000-02-03 2001-08-10 Sapporo Breweries Ltd Method and apparatus for evaluating taste of alcoholic liquors
JP2002286710A (en) * 2001-03-27 2002-10-03 Sapporo Breweries Ltd Method and device for evaluating food astringency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004828A1 (en) * 2020-06-30 2022-01-06 味の素株式会社 Quality prediction method, quality prediction device, and quality prediction program

Also Published As

Publication number Publication date
JP6886657B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Maldonado-Valderrama et al. Interfacial rheology of protein–surfactant mixtures
Bakht et al. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms
Bokvist et al. Two types of Alzheimer's β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation
Varade et al. On the origin of the stability of foams made from catanionic surfactant mixtures
Hermans et al. Interfacial shear rheology of DPPC under physiologically relevant conditions
Hernández et al. Ubiquinone-10 alters mechanical properties and increases stability of phospholipid membranes
Kim et al. Preparation of a dipalmitoylphosphatidylcholine/cholesterol langmuir− blodgett monolayer that suppresses protein adsorption
Ainalem et al. DNA binding to zwitterionic model membranes
US20030040466A1 (en) Ligand sensor devices and uses thereof
Yin et al. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors
Ira et al. Ceramide promotes restructuring of model raft membranes
Grigoriev et al. Effect of monovalent ions on the monolayers phase behavior of the charged lipid DPPG
Bandeiras et al. Anesthetics interacting with lipid rafts
Harbottle et al. Molecular organization revealed by time-of-flight secondary ion mass spectrometry of a clinically used extracted pulmonary surfactant
Losada-Pérez et al. Melittin disruption of raft and non-raft-forming biomimetic membranes: A study by quartz crystal microbalance with dissipation monitoring
JP2019032228A (en) Evaluation method of aromatic preparation using qcm
Zhang et al. Electrostatic and hydrophobic interactions governing the interaction and binding of β-lactoglobulin to membranes
Yang et al. Self-assembly and immobilization of liposomes in fused-silica capillary by avidin–biotin binding
Phan et al. Strikingly different effects of cholesterol and 7-ketocholesterol on lipid bilayer-mediated aggregation of amyloid beta (1-42)
Talham et al. Role of lipids in urinary stones: studies of calcium oxalate precipitation at phospholipid langmuir monolayers
Ariga et al. Hydration behavior of phospholipid Langmuir-Blodgett (LB) films deposited on a quartz-crystal microbalance depending on temperatures in water
Berkovich et al. Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu
Ibarguren et al. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa
Hernández et al. The lipid composition determines the kinetics of adhesion and spreading of liposomes on mercury electrodes
Grudzielanek et al. The effects of various membrane physical–chemical properties on the aggregation kinetics of insulin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6886657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250