JP2019030275A - Foul breath determination apparatus and program - Google Patents

Foul breath determination apparatus and program Download PDF

Info

Publication number
JP2019030275A
JP2019030275A JP2017154491A JP2017154491A JP2019030275A JP 2019030275 A JP2019030275 A JP 2019030275A JP 2017154491 A JP2017154491 A JP 2017154491A JP 2017154491 A JP2017154491 A JP 2017154491A JP 2019030275 A JP2019030275 A JP 2019030275A
Authority
JP
Japan
Prior art keywords
information
ratio
type
base sequence
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017154491A
Other languages
Japanese (ja)
Other versions
JP6928948B2 (en
Inventor
中野 善夫
Yoshio Nakano
善夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2017154491A priority Critical patent/JP6928948B2/en
Publication of JP2019030275A publication Critical patent/JP2019030275A/en
Application granted granted Critical
Publication of JP6928948B2 publication Critical patent/JP6928948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To determine presence/absence of foul breath of a subject based on a saliva of the subject.SOLUTION: A foul breath determination device comprises: a storage part for storing a learned model learned by machine learning, for, based on teacher strain information indicating kinds of bacteria which exist in a bacterial flora in an oral cavity, and teacher ratio information for indicating for every kind, a ratio of each bacterium indicated by the teacher strain information in the bacterial flora, outputting foul breath information indicating whether or not, there is foul breath in the oral cavity; an acquisition part for acquiring strain information indicating kinds of bacteria which exist in the bacterial flora in the oral cavity of the subject, and ratio information indicating the ratio of each bacteria indicated by the strain information for every kind of each bacteria; and an output part for, inputting the strain information acquired by the acquisition part and ratio information acquired by the acquisition part in the learned model, and outputting foul breath information being calculated and indicating whether or not, there is foul breath in the oral cavity of the subject.SELECTED DRAWING: Figure 1

Description

本発明は、口臭判定装置及びプログラムに関する。   The present invention relates to a bad breath determination apparatus and a program.

従来、被験者の呼気に含まれる特定ガスの濃度を検出し、当該被験者の口腔に口臭が発生しているか否かを判定する技術が知られている(例えば、特許文献1)。
また、被験者の唾液を元に口腔内の菌を培養し、培養した菌を分析することにより、当該被験者の口腔に口臭が発生しているか否かを判定する技術が知られている(例えば、特許文献2)。
2. Description of the Related Art Conventionally, a technique for detecting the concentration of a specific gas contained in a subject's breath and determining whether or not a bad breath has occurred in the subject's mouth (for example, Patent Document 1) is known.
Further, a technique for cultivating bacteria in the oral cavity based on the saliva of the subject and analyzing the cultured bacteria to determine whether or not bad breath has occurred in the oral cavity of the subject is known (for example, Patent Document 2).

特開2003−329630号公報JP 2003-329630 A 特開2002−236124号公報JP 2002-236124 A

しかしながら、特許文献1に記載の技術では、口臭が発生しているか否かを判定するに際して、呼気を検出可能な装置が設置されている場所に被験者が移動すること、又は呼気を検出可能な装置を被験者が検査を受ける場所に移動させることが求められる場合があった。また、特許文献2に記載の技術では、口臭が発生しているか否かを判定するに際して、被験者の口腔内の菌を培養することが求められ、判定に係る時間を短縮することが困難である場合があった。
本発明は、上記問題に鑑みて為されたものであり、被験者の唾液に基づいて、当該被験者の口臭の有無を判定することができる口臭判定装置及びプログラムを提供することを目的とする。
However, in the technique described in Patent Literature 1, when determining whether or not bad breath has occurred, the subject moves to a place where a device capable of detecting exhalation is installed, or a device capable of detecting exhalation. May be required to be moved to the place where the subject undergoes the examination. In the technique described in Patent Document 2, it is required to culture bacteria in the oral cavity of a subject when determining whether or not bad breath has occurred, and it is difficult to shorten the time required for determination. There was a case.
The present invention has been made in view of the above problems, and an object thereof is to provide a bad breath determination apparatus and a program capable of determining the presence or absence of bad breath of a subject based on the saliva of the subject.

本発明の一態様は、口腔内の細菌叢に存在する菌の種類を示す教師菌種情報と、前記教師菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す教師割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部と、被験者の口腔内の細菌叢に存在する菌の種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する取得部と、前記取得部が取得した前記菌種情報と、前記取得部が取得した前記割合情報とを前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力部と、を備える口臭判定装置である。   One aspect of the present invention is a teacher bacterial species information indicating the type of bacteria present in the bacterial flora in the oral cavity, and teacher ratio information indicating the proportion of the bacteria indicated by the teacher bacterial species information in the bacterial flora for each type. And a storage unit for storing a learned model learned by machine learning so as to output bad breath information indicating whether or not there is bad breath in the oral cavity, and the bacteria present in the bacterial flora in the oral cavity of the subject The acquisition part which acquires the bacterial species information which shows a type, the ratio information which shows the ratio in the said microflora of the microbe which the said bacterial species information shows for every said type, The said bacterial species information which the said acquisition part acquired, An output unit that inputs the ratio information acquired by the acquisition unit to the learned model and outputs bad breath information indicating whether or not the calculated subject has bad breath.

また、本発明の一態様の口臭判定装置において、前記機械学習とは、ディープラーニングである。   In the bad breath odor determination apparatus of one embodiment of the present invention, the machine learning is deep learning.

また、本発明の一態様の口臭判定装置において、前記教師菌種情報及び前記教師割合情報は、複数の被験者の唾液を解析した結果に基づく情報である。   In the bad breath odor determination apparatus according to one aspect of the present invention, the teacher bacterial species information and the teacher ratio information are information based on a result of analyzing saliva of a plurality of subjects.

また、本発明の一態様の口臭判定装置は、前記唾液の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を検出する検出部と、前記検出部が検出した前記短塩基配列の種類毎に、当該種類の塩基配列が前記細菌叢に存在する割合を取得する割合取得部と、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合との対応を前記種類及び前記割合の組み合わせ毎に示す基準情報と、前記検出部が検出した前記短塩基配列の種類と、前記割合取得部が取得した前記短塩基配列の種類毎の割合とに基づいて、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合とを判定する判定部と、を備え、前記取得部は、前記判定部が判定した前記種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する。   In addition, the bad breath odor determination apparatus according to an aspect of the present invention includes a detection unit that detects the type of a short base sequence having 5 bases, which is a DNA base sequence present in the saliva bacterial flora, and the detection unit For each type of the short base sequence detected by the method, a rate acquisition unit that acquires a rate at which the base sequence of the type is present in the bacterial flora, a type of bacteria present in the bacterial flora in the oral cavity of the subject, Criteria information indicating the correspondence with the ratio of the bacteria in the bacterial flora for each combination of the type and the ratio, the type of the short base sequence detected by the detection unit, and the short base sequence acquired by the ratio acquisition unit Based on the ratio for each type of, the determination of the type of bacteria present in the bacterial flora in the oral cavity of the subject and the ratio of the bacteria in the bacterial flora, the acquisition unit, Bacterial species indicating the type determined by the determination unit Obtaining a distribution, and a ratio information indicating a ratio in the flora of bacteria indicating the species information for each of the types.

また、本発明の一態様の口臭判定装置は、前記唾液の細菌叢に存在するDNAの塩基配列であって、既知の16SrRNA遺伝子の塩基配列と合致する既知塩基配列を検出する検出部と、前記検出部が検出した前記既知塩基配列の種類毎に、当該種類の塩基配列が前記細菌叢に存在する割合を取得する割合取得部と、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合との対応を前記種類及び前記割合の組み合わせ毎に示す基準情報と、前記検出部が検出した前記既知塩基配列の種類と、前記割合取得部が取得した前記既知塩基配列の種類毎の割合とに基づいて、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合とを判定する判定部と、を備え、前記取得部は、前記判定部が判定した前記種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する。   In addition, the bad breath odor determination apparatus according to an aspect of the present invention includes a detection unit that detects a known base sequence that matches a base sequence of a known 16S rRNA gene, which is a base sequence of DNA present in the bacterial flora of saliva, For each type of the known base sequence detected by the detection unit, a rate acquisition unit that acquires a rate at which the type of base sequence is present in the bacterial flora, and a type of bacteria present in the bacterial flora in the oral cavity of the subject , Reference information indicating the correspondence of the proportion of the bacterium in the bacterial flora for each combination of the type and the proportion, the type of the known base sequence detected by the detection unit, and the known acquired by the proportion acquisition unit A determination unit that determines the type of bacteria present in the bacterial flora in the oral cavity of the subject based on the ratio of each type of base sequence, and the ratio of the bacteria in the bacterial flora, and the acquisition unit Said It acquires the species information indicating the type of part is determined, and the ratio information indicating a ratio in the flora of bacteria the species information indicates for each of the types.

また、本発明の一態様は、口腔内の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を示す教師短塩基情報と、前記教師短塩基情報が示す短塩基の割合を前記種類毎に示す教師短塩基割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部と、被験者の口腔内の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を示す短塩基配列情報と、前記短塩基配列情報が示す短塩基配列の前記細菌叢における割合を前記種類毎に示す短塩基割合情報とを取得する取得部と、前記取得部が取得した前記短塩基配列情報と、前記取得部が取得した前記短塩基割合情報とを前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力部と、を備える口臭判定装置である。   Further, according to one aspect of the present invention, there is provided a base sequence of DNA existing in a bacterial flora in the oral cavity, the teacher short base information indicating the type of the short base sequence having five bases, and the teacher short base information. A learned model learned by machine learning is stored so as to output bad breath information indicating whether or not there is bad breath in the oral cavity based on the short base ratio information indicating the short base ratio for each type. A short base sequence information indicating the type of short base sequence having five bases, and a short base sequence information indicating the short base sequence information. An acquisition unit that acquires, for each type, a ratio of the base sequence in the bacterial flora, the short base sequence information acquired by the acquisition unit, and the short base ratio information acquired by the acquisition unit. Into the trained model An output unit for outputting bad breath information indicating whether there is bad breath computed the subject, a bad breath determination device comprising a.

また、本発明の一態様は、口腔内の細菌叢に存在する菌の種類を示す教師菌種情報と、前記教師菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す教師割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部を備えるコンピュータに、被験者の口腔内の細菌叢に存在する菌の種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する取得ステップと、前記取得ステップにおいて取得した前記菌種情報と、前記取得ステップにおいて取得した前記割合情報を前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力ステップと、を実行させるプログラムプログラムである。   Further, according to one aspect of the present invention, teacher bacterial information indicating the type of bacteria present in the bacterial flora in the oral cavity, and the teacher ratio indicating the ratio of the bacteria indicated by the teacher bacterial species information in the bacterial flora for each type Based on the information, the computer includes a storage unit that stores a learned model learned by machine learning so as to output bad breath information indicating whether or not there is bad breath in the oral cavity. The acquisition step which acquires the bacterial species information which shows the kind of microbe which exists in the said microbe, and the ratio information which shows the ratio in the said microflora of the microbe which the said bacterial species information shows for every said type, The said microbe acquired in the said acquisition step Execute seed information and the ratio information acquired in the acquisition step to the learned model, and output the oral odor information indicating whether or not the calculated subject has bad breath It is a program program to.

本発明によれば、被験者の唾液に基づいて、当該被験者の口臭の有無を判定することができる。   According to the present invention, the presence or absence of bad breath of the subject can be determined based on the saliva of the subject.

本実施形態の口臭判定システムの概要を示す図である。It is a figure which shows the outline | summary of the bad breath determination system of this embodiment. 本実施形態の短塩基配列の存在割合に基づいて、菌種情報及び割合情報を検出する菌種割合検出装置の構成の一例を示す機能構成図である。It is a functional lineblock diagram showing an example of composition of a microbial species ratio detection device which detects microbial species information and ratio information based on the existence rate of a short base sequence of this embodiment. 本実施形態の対応情報の一例を示す第1の図である。It is a 1st figure which shows an example of the corresponding information of this embodiment. 本実施形態の16SrRNA遺伝子の存在割合に基づいて、菌種情報及び割合情報を検出する菌種割合検出装置の構成の一例を示す機能構成図である。It is a functional block diagram which shows an example of a structure of the bacterial species ratio detection apparatus which detects bacterial species information and ratio information based on the presence ratio of 16S rRNA gene of this embodiment. 本実施形態の対応情報の一例を示す第2の図である。It is a 2nd figure which shows an example of the correspondence information of this embodiment. 本実施形態の口臭判定装置の構成の一例を示す機能構成図である。It is a functional block diagram which shows an example of a structure of the halitosis determination apparatus of this embodiment. 本実施形態の口臭判定システムの動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of the halitosis determination system of this embodiment.

[実施形態]
以下、図面を参照し、本発明の実施形態について説明する。
図1は、本実施形態の口臭判定システム1の概要を示す図である。
図1に示す通り、口臭判定システム1は、口臭判定装置10と、菌種割合検出装置20とを備える。
口臭判定装置10は、判定対象者(以下、被験者ET)の口臭の有無を判定する装置である。菌種割合検出装置20は、被験者ETの口腔内の菌の集合(細菌叢)を取得し、被験者ETの口腔内に存在する菌の種類、及び当該菌が口腔内に存在する割合を菌の種類毎に検出する装置である。細菌叢とは、例えば、被験者ETの舌苔や、被験者ETの唾液(以下、唾液SV)から取得可能である。本実施形態の一例では、菌種割合検出装置20が被験者ETの唾液SVに基づいて、菌の種類及び当該菌が口腔内に存在する割合を検出する。以降の説明において、菌種割合検出装置20が検出した情報であって、被験者ETの口腔内に存在する菌の種類を示す情報を菌種情報KBと記載する。また、菌種割合検出装置20が検出した情報であって、菌種情報KBが示す菌が被験者ETの口腔内に存在する割合を菌の種類毎に示す情報を割合情報RBと記載する。口臭判定装置10は、菌種割合検出装置20が検出した菌種情報KBと、割合情報RBとに基づいて、被験者ETの口臭の有無を判定する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an overview of a bad breath determination system 1 of the present embodiment.
As shown in FIG. 1, the bad breath determination system 1 includes a bad breath determination device 10 and a fungus species ratio detection device 20.
The bad breath determination device 10 is a device that determines the presence or absence of bad breath of a person to be determined (hereinafter, subject ET). The fungus species ratio detection device 20 acquires a collection of bacteria (bacteria flora) in the oral cavity of the subject ET, and determines the type of bacteria present in the oral cavity of the subject ET and the ratio of the bacteria present in the oral cavity. It is a device that detects each type. The bacterial flora can be obtained from, for example, the tongue coating of the subject ET or the saliva of the subject ET (hereinafter referred to as saliva SV). In an example of the present embodiment, the bacterial species ratio detection device 20 detects the type of bacteria and the ratio of the bacteria present in the oral cavity based on the saliva SV of the subject ET. In the following description, information indicating the type of bacteria present in the oral cavity of the subject ET, which is information detected by the bacterial species ratio detection device 20, will be referred to as bacterial species information KB. Moreover, it is the information which the microbe ratio detection apparatus 20 detected, Comprising: The information which shows the ratio for which the microbe which microbe species information KB exists in the test subject's ET oral cavity for every kind of microbe is described as ratio information RB. The bad breath determination apparatus 10 determines the presence or absence of bad breath of the subject ET based on the bacterial species information KB detected by the bacterial species ratio detection device 20 and the ratio information RB.

ここで、菌種割合検出装置20が菌種情報KB及び割合情報RBを検出する方法は、短い塩基配列(以下、短塩基配列)の存在割合に基づく方法と、16SrRNA遺伝子の存在割合に基づく方法とがある。まず、短塩基配列の存在割合に基づいて菌種情報KB及び割合情報RBを検出する菌種割合検出装置20(以下、菌種割合検出装置20a)について説明し、次に、16SrRNA遺伝子の存在割合に基づいて菌種情報KB及び割合情報RBを検出する菌種割合検出装置20(以下、菌種割合検出装置20b)について説明する。以降の説明において、菌種割合検出装置20のうち、菌種割合検出装置20aが備える構成には、符号の末尾に「a」を付す。また、菌種割合検出装置20bが備える構成には、符号の末尾に「b」を付す。また、いずれの菌種割合検出装置20に係る構成であるかを区別しない場合には、「a」又は「b」を省略して示す。   Here, the method of detecting the bacterial species information KB and the proportion information RB by the bacterial species ratio detection device 20 includes a method based on the presence ratio of a short base sequence (hereinafter referred to as a short base sequence) and a method based on the presence ratio of a 16S rRNA gene. There is. First, the bacterial species ratio detection device 20 (hereinafter referred to as the bacterial species ratio detection device 20a) that detects the bacterial species information KB and the percentage information RB based on the presence ratio of the short base sequence will be described, and then the existing ratio of the 16S rRNA gene. The bacterial species ratio detection device 20 (hereinafter referred to as the bacterial species ratio detection device 20b) that detects the bacterial species information KB and the percentage information RB will be described. In the following description, in the bacterial species ratio detection device 20, the configuration of the bacterial species ratio detection device 20a is provided with “a” at the end of the reference numeral. In addition, the configuration of the bacterial species ratio detection device 20b is provided with “b” at the end of the reference numeral. In addition, in the case where it is not distinguished which of the bacterial species ratio detection device 20 is configured, “a” or “b” is omitted.

<菌種割合検出装置20aについて>
以下、図を参照して、短塩基配列の存在割合に基づいて、菌種情報KB及び割合情報RBを検出する菌種割合検出装置20aの詳細について説明する。
図2は、本実施形態の短塩基配列の存在割合に基づいて、菌種情報KB及び割合情報RBを検出する菌種割合検出装置20aの構成の一例を示す機能構成図である。
菌種割合検出装置20aは、シーケンサー21aと、制御部22aと、記憶部23aとを備える。記憶部23aは、例えば、ROM(Read Only Memory)、フラッシュメモリ、SDカード、RAM(Random Access Memory)、レジスタ等によって実現される。記憶部23aには、例えば、短塩基情報231aと、対応情報232aとが予め記憶される。
<About the bacterial species ratio detection apparatus 20a>
Hereinafter, the details of the bacterial species ratio detection apparatus 20a that detects the bacterial species information KB and the percentage information RB based on the presence ratio of the short base sequence will be described with reference to the drawings.
FIG. 2 is a functional configuration diagram illustrating an example of the configuration of the bacterial species ratio detection apparatus 20a that detects the bacterial species information KB and the ratio information RB based on the presence ratio of the short base sequences of the present embodiment.
The bacterial species ratio detection device 20a includes a sequencer 21a, a control unit 22a, and a storage unit 23a. The storage unit 23a is realized by, for example, a ROM (Read Only Memory), a flash memory, an SD card, a RAM (Random Access Memory), a register, and the like. For example, short base information 231a and correspondence information 232a are stored in the storage unit 23a in advance.

短塩基情報231aとは、シーケンサー21aの解析対象デオキシリボ核酸(Deoxy Ribonucleic Acid:以下、DNA)塩基配列を示す情報であって、5つのヌクレオチドの組み合わせによって示される短塩基配列を示す情報である。本実施形態の一例において、シーケンサー21aの解析対象とは、唾液SV(被験者ETの口腔内)に存在する菌である。
シーケンサー21aは、唾液SV(被験者ETの口腔内)に存在する菌のDNA塩基配列のうち、短塩基情報231aが示す解析対象の塩基配列を解析する。このような配列比較はアラインメントと呼ばれる。シーケンサー21aは、アライメントし、得られた短塩基配列の種類を示す情報(以下、短塩基配列情報SB)を制御部22aに供給する。また、シーケンサー21aは、アライメントし、得られた短塩基配列が唾液SV中における量(割合)を、当該短塩基配列の種類毎に示す情報(以下、短塩基割合情報RSB)を制御部22aに供給する。
The short base information 231a is information indicating a deoxyribonucleic acid (hereinafter referred to as DNA) base sequence to be analyzed by the sequencer 21a, and is information indicating a short base sequence indicated by a combination of five nucleotides. In an example of the present embodiment, the analysis target of the sequencer 21a is a bacterium that exists in the saliva SV (in the oral cavity of the subject ET).
The sequencer 21a analyzes the base sequence to be analyzed indicated by the short base information 231a among the DNA base sequences of the bacteria present in the saliva SV (in the oral cavity of the subject ET). Such a sequence comparison is called an alignment. The sequencer 21a aligns and supplies information indicating the type of the obtained short base sequence (hereinafter, short base sequence information SB) to the control unit 22a. In addition, the sequencer 21a performs alignment, and information (hereinafter, short base ratio information RSB) indicating the amount (ratio) of the obtained short base sequence in the saliva SV for each type of the short base sequence (hereinafter, short base ratio information RSB) is sent to the control unit 22a. Supply.

制御部22aは、CPU(Central Processing Unit)等のプロセッサが、記憶部23aに記憶されたプログラムを実行することにより、各機能部を実現する。制御部22aは、例えば、判定部221aと、出力部222aとをその機能部として実現する。制御部22aは、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。   The control unit 22a implements each functional unit when a processor such as a CPU (Central Processing Unit) executes a program stored in the storage unit 23a. The control unit 22a implements, for example, the determination unit 221a and the output unit 222a as functional units. The control unit 22a may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array), or may be realized by cooperation of software and hardware. May be.

判定部221aは、シーケンサー21aから短塩基配列情報SBと、短塩基割合情報RSBとを取得する。判定部221aは、短塩基配列情報SBと、短塩基割合情報RSBと、対応情報232aとに基づいて、被験者ETの口腔内に存在する菌(菌種情報KB)と、当該菌が口腔内に存在する割合(割合情報RB)とを判定する。対応情報232aとは、短塩基配列情報SB及び短塩基割合情報RSBと、菌種情報KB及び割合情報RBの対応を示す情報である。   The determination unit 221a acquires the short base sequence information SB and the short base ratio information RSB from the sequencer 21a. Based on the short base sequence information SB, the short base ratio information RSB, and the correspondence information 232a, the determination unit 221a includes the bacteria (bacteria species information KB) present in the oral cavity of the subject ET, and the bacteria are present in the oral cavity. An existing ratio (ratio information RB) is determined. The correspondence information 232a is information indicating correspondence between the short base sequence information SB and the short base ratio information RSB, the bacterial species information KB, and the ratio information RB.

以下、図を参照して対応情報232aの詳細について説明する。図3は、本実施形態の対応情報232aの一例を示す第1の図である。
図3に示す通り、対応情報232aには、短塩基配列情報SBと、短塩基割合情報RSBと、菌種情報KBと、割合情報RBとが対応付けられる。
ここで、ある被験者ETの短塩基配列情報SBと、短塩基割合情報RSBとが分かる場合、被験者ETの口腔内に存在する菌の種類(菌種情報KB)と、当該菌が口腔内に存在する割合(割合情報RB)とが一意に定まる。短塩基配列情報SB及び短塩基割合情報RSBと、菌種情報KB及び割合情報RBとの対応付けは、短塩基情報231aが示す短塩基配列と、当該塩基配列が存在する唾液SV中の菌との解析結果に基づいて行われる。
Hereinafter, details of the correspondence information 232a will be described with reference to the drawings. FIG. 3 is a first diagram illustrating an example of the correspondence information 232a according to the present embodiment.
As shown in FIG. 3, the correspondence information 232a is associated with the short base sequence information SB, the short base ratio information RSB, the fungus species information KB, and the ratio information RB.
Here, when the short base sequence information SB and the short base ratio information RSB of a subject ET are known, the type of bacteria (bacterial species information KB) present in the oral cavity of the subject ET and the bacteria are present in the oral cavity The ratio to be performed (ratio information RB) is uniquely determined. The association between the short base sequence information SB and the short base ratio information RSB, the bacterial species information KB and the ratio information RB is based on the short base sequence indicated by the short base information 231a and the bacteria in the saliva SV in which the base sequence exists. This is performed based on the analysis result.

図3に示す一例では、n個の種類の短塩基配列情報SBと、当該短塩基配列情報SBに対応する数(n個)の短塩基割合情報RSBとが、短塩基情報231aとして対応付けられる。nとは、自然数である。具体的には、図3は、唾液SVには、「GGACC(短塩基配列情報SB1)」が0.25%(短塩基割合情報RSB1)の割合で存在し、「CCCCC(短塩基配列情報SB2)」が0.5%(短塩基割合情報RSB2)の割合で存在し、…、「CCTAG(短塩基配列情報SBn)」が0.25%(短塩基割合情報RSBn)の割合で存在することを示す。
また、図3に示す一例では、上述した短塩基配列情報SB1〜短塩基配列情報SBn及び短塩基割合情報RSB1〜短塩基割合情報RSBnには、菌種情報KB1〜菌種情報KB4、及び割合情報RB1〜割合情報RB4が短塩基情報231aとして対応付けられる。具体的には、図3に示す短塩基情報231aは、唾液SVに短塩基配列情報SB1〜短塩基配列情報SBnの短塩基配列が短塩基割合情報RSB1〜短塩基割合情報RSBnの割合で存在する場合、被験者ETの口腔内には、アクチノミセテムコミタンス(菌種情報KB1)が19%(割合情報RB1)の割合で存在し、ヌクレアータム(菌種情報KB2)が29%(割合情報RB2)の割合で存在し、ジンジバリス(菌種情報KB3)が21%(割合情報RB3)の割合で存在し、ミュータンス(菌種情報KB4)が31%(割合情報RB4)の割合で存在することを示す。なお、対応情報232aは、短塩基配列情報SB及び短塩基割合情報RSBの組み合わせ毎に菌種情報KB及び割合情報RBが対応付けられる。対応情報232aとは、基準情報の一例である。
In the example shown in FIG. 3, n types of short base sequence information SB and the number (n) of short base sequence information RSB corresponding to the short base sequence information SB are associated as the short base information 231a. . n is a natural number. Specifically, FIG. 3 shows that “GGACC (short base sequence information SB1)” is present in the saliva SV at a rate of 0.25% (short base ratio information RSB1), and “CCCCC (short base sequence information SB2) is present. ) "Is present at a rate of 0.5% (short base ratio information RSB2), ..." CCTAG (short base sequence information SBn) "is present at a ratio of 0.25% (short base ratio information RSBn) Indicates.
In the example shown in FIG. 3, the short base sequence information SB1 to the short base sequence information SBn and the short base ratio information RSB1 to the short base ratio information RSBn described above include the bacterial species information KB1 to the bacterial species information KB4 and the ratio information. RB1 to ratio information RB4 are associated as the short base information 231a. Specifically, in the short base information 231a shown in FIG. 3, the short base sequences of the short base sequence information SB1 to the short base sequence information SBn are present in the saliva SV at a ratio of the short base ratio information RSB1 to the short base ratio information RSBn. In this case, in the oral cavity of the subject ET, Actinomycetemcomitans (bacteria species information KB1) is present at a rate of 19% (ratio information RB1), and Nucleatum (bacteria species information KB2) is 29% (ratio information RB2). Gingivalis (bacterial species information KB3) is present at a rate of 21% (ratio information RB3) and mutans (bacterial species information KB4) is present at a rate of 31% (ratio information RB4). Show. In the correspondence information 232a, the bacterial species information KB and the ratio information RB are associated with each combination of the short base sequence information SB and the short base ratio information RSB. The correspondence information 232a is an example of reference information.

図2に戻り、判定部221aは、取得した短塩基配列情報SB及び短塩基割合情報RSBを検索キーとして、対応情報232aを検索する。判定部221aは、対応情報232aのうち、検索キーと合致する短塩基配列情報SB及び短塩基割合情報RSBに対応付けられた菌種情報KB及び割合情報RBを判定(抽出)する。判定部221aは、判定した菌種情報KB及び割合情報RBを出力部222aに供給する。
出力部222aは、判定部221aから取得した菌種情報KB及び割合情報RBを口臭判定装置10に供給する。
Returning to FIG. 2, the determination unit 221a searches the correspondence information 232a using the acquired short base sequence information SB and the short base ratio information RSB as search keys. The determination unit 221a determines (extracts) the bacterial species information KB and the ratio information RB associated with the short base sequence information SB and the short base ratio information RSB that match the search key in the correspondence information 232a. The determination unit 221a supplies the determined bacterial species information KB and the ratio information RB to the output unit 222a.
The output unit 222a supplies the bacterial species information KB and the ratio information RB acquired from the determination unit 221a to the bad breath determination apparatus 10.

なお、上述では、短塩基情報231aが5つのヌクレオチドの組み合わせを示す情報である場合について説明したが、これに限られない。短塩基情報231aは、少なくとも5つ以上のヌクレオチドの組み合わせを示す情報であれば、いずれの長さの塩基配列を示す情報であってもよい。
また、シーケンサー21aは、唾液SVに存在する菌のDNA塩基配列を示す塩基配列情報を制御部22aに供給する構成であってもよい。この場合、制御部22aは、シーケンサー21aから取得した塩基配列情報と、短塩基情報231aとに基づいて、短塩基配列の種類を検出する機能部(例えば、検出部)を備えていていもよい。また、制御部22aは、検出した短塩基配列の種類毎に短塩基配列が唾液SV中における量(割合)を取得する機能部(例えば、割合取得部)を備えていていもよい。
In addition, although the case where the short base information 231a is information indicating a combination of five nucleotides has been described above, the present invention is not limited to this. The short base information 231a may be information indicating a base sequence of any length as long as it is information indicating a combination of at least five or more nucleotides.
Further, the sequencer 21a may be configured to supply base sequence information indicating the DNA base sequence of the bacteria present in the saliva SV to the control unit 22a. In this case, the control unit 22a may include a function unit (for example, a detection unit) that detects the type of the short base sequence based on the base sequence information acquired from the sequencer 21a and the short base information 231a. Moreover, the control part 22a may be provided with the function part (for example, ratio acquisition part) which acquires the quantity (ratio) in a short base sequence in saliva SV for every kind of detected short base sequence.

<菌種割合検出装置20bについて>
以下、図を参照して、16SrRNA遺伝子の存在割合に基づいて、菌種情報KB及び割合情報RBを検出する菌種割合検出装置20bの詳細について説明する。
図4は、本実施形態の16SrRNA遺伝子の存在割合に基づいて、菌種情報KB及び割合情報RBを検出する菌種割合検出装置20bの構成の一例を示す機能構成図である。
菌種割合検出装置20bは、シーケンサー21bと、制御部22bと、記憶部23bとを備える。記憶部23bには、例えば、既知塩基情報231bと、対応情報232bとが予め記憶される。
<About the bacterial species ratio detection apparatus 20b>
Hereinafter, the details of the bacterial species ratio detection apparatus 20b that detects the bacterial species information KB and the percentage information RB based on the presence ratio of the 16S rRNA gene will be described with reference to the drawings.
FIG. 4 is a functional configuration diagram illustrating an example of the configuration of the bacterial species ratio detection apparatus 20b that detects the bacterial species information KB and the ratio information RB based on the presence ratio of the 16S rRNA gene of the present embodiment.
The bacterial species ratio detection device 20b includes a sequencer 21b, a control unit 22b, and a storage unit 23b. For example, known base information 231b and correspondence information 232b are stored in the storage unit 23b in advance.

既知塩基情報231bとは、シーケンサー21bの解析対象のDNA塩基配列を示す情報であって、既知の16SrRNA遺伝子の塩基配列を示す情報である。以降の説明において、既知の16SrRNA遺伝子の塩基配列を既知塩基配列と記載する。
シーケンサー21bは、唾液SV(被験者ETの口腔内)に存在する菌のDNA塩基配列のうち、既知塩基情報231bが示す解析対象の塩基配列を解析する。シーケンサー21bは、アライメントし、得られた既知塩基配列の種類を示す情報(以下、既知塩基配列情報EB)を制御部22bに供給する。また、シーケンサー21bは、アライメントし、得られた既知塩基配列が唾液SV中における量(割合)を、当該既知塩基配列の種類毎に示す情報(以下、既知塩基割合情報REB)を制御部22bに供給する。
The known base information 231b is information indicating a DNA base sequence to be analyzed by the sequencer 21b, and is information indicating a known 16S rRNA gene base sequence. In the following description, a known 16S rRNA gene base sequence is referred to as a known base sequence.
The sequencer 21b analyzes the base sequence of the analysis target indicated by the known base information 231b among the DNA base sequences of the bacteria present in the saliva SV (in the oral cavity of the subject ET). The sequencer 21b aligns and supplies information indicating the type of the obtained known base sequence (hereinafter, known base sequence information EB) to the control unit 22b. In addition, the sequencer 21b aligns the information (hereinafter, known base ratio information REB) indicating the amount (ratio) of the obtained known base sequence in the saliva SV for each type of the known base sequence to the control unit 22b. Supply.

制御部22bは、CPU等のプロセッサが、記憶部23bに記憶されたプログラムを実行することにより、各機能部を実現する。制御部22bは、例えば、判定部221bと、出力部222bとをその機能部として実現する。   The control unit 22b implements each functional unit when a processor such as a CPU executes a program stored in the storage unit 23b. The control unit 22b implements, for example, the determination unit 221b and the output unit 222b as functional units.

判定部221bは、シーケンサー21bから既知塩基配列情報EBと、既知塩基割合情報REBとを取得する。判定部221bは、既知塩基配列情報EBと、既知塩基割合情報REBと、対応情報232bとに基づいて、被験者ETの口腔内に存在する菌(菌種情報KB)と、当該菌が口腔内に存在する割合(割合情報RB)とを判定する。対応情報232bとは、既知塩基配列情報EB及び既知塩基割合情報REBと、菌種情報KB及び割合情報RBの対応を示す情報である。   The determination unit 221b acquires the known base sequence information EB and the known base ratio information REB from the sequencer 21b. Based on the known base sequence information EB, the known base ratio information REB, and the correspondence information 232b, the determination unit 221b determines the bacteria (bacteria species information KB) present in the oral cavity of the subject ET and the bacteria in the oral cavity. An existing ratio (ratio information RB) is determined. The correspondence information 232b is information indicating correspondence between the known base sequence information EB and the known base ratio information REB, the bacterial species information KB, and the ratio information RB.

以下、図を参照して対応情報232bの詳細について説明する。
図5は、本実施形態の対応情報232bの一例を示す第2の図である。
図5に示す通り、対応情報232bには、既知塩基配列情報EBと、既知塩基割合情報REBと、菌種情報KBと、割合情報RBとが対応付けられる。
ここで、ある被験者ETの既知塩基配列情報EBと、既知塩基割合情報REBとが分かる場合、被験者ETの口腔内に存在する菌の種類(菌種情報KB)と、当該菌が口腔内に存在する割合(割合情報RB)とが一意に定まる。既知塩基配列情報EB及び既知塩基割合情報REBと、菌種情報KB及び割合情報RBとの対応付けは、既知塩基情報231bが示す既知塩基配列と、当該既知塩基配列が存在する唾液SV中の菌との解析結果に基づいて行われる。
Hereinafter, details of the correspondence information 232b will be described with reference to the drawings.
FIG. 5 is a second diagram illustrating an example of the correspondence information 232b according to the present embodiment.
As shown in FIG. 5, the correspondence information 232b is associated with the known base sequence information EB, the known base ratio information REB, the bacterial species information KB, and the ratio information RB.
Here, when the known base sequence information EB and the known base ratio information REB of a subject ET are known, the type of bacteria (bacteria species information KB) present in the oral cavity of the subject ET and the bacteria are present in the oral cavity The ratio to be performed (ratio information RB) is uniquely determined. The association of the known base sequence information EB and the known base ratio information REB with the bacterial species information KB and the ratio information RB is based on the known base sequence indicated by the known base information 231b and the bacteria in the saliva SV in which the known base sequence exists. It is performed based on the analysis result.

図5に示す一例では、m個の既知塩基配列情報EBと、当該既知塩基配列情報EBに対応する数の(m個)の既知塩基割合情報REBとが、既知塩基情報231bとして対応付けられる。mとは、自然数である。具体的には、図5は、唾液SVには、「GGACC(既知塩基配列情報EB1)」が0.25%(既知塩基割合情報REB1)の割合で存在し、「CCCCC(既知塩基配列情報EB2)」が0.5%(既知塩基割合情報REB2)の割合で存在し、…、「CCTAG(既知塩基配列情報EBm)」が0.25%(既知塩基割合情報REBm)の割合で存在することを示す。
また、図5に示す一例では、上述した既知塩基配列情報EB1〜既知塩基配列情報EBm及び既知塩基配列情報EB1〜既知塩基配列情報EBmには、菌種情報KB1〜菌種情報KB4、及び既知塩基割合情報REB1〜既知塩基割合情報REB4が既知塩基情報231bとして対応付けられる。具体的には、図5に示す既知塩基情報231bは、唾液SVに既知塩基配列情報EB1〜既知塩基配列情報EBmの既知塩基配列が既知塩基割合情報REB1〜既知塩基割合情報REBmの割合で存在する場合、被験者ETの口腔内には、アクチノミセテムコミタンス(菌種情報KB1)が19%(割合情報RB1)の割合で存在し、ヌクレアータム(菌種情報KB2)が29%(割合情報RB2)の割合で存在し、ジンジバリス(菌種情報KB3)が21%(割合情報RB3)の割合で存在し、ミュータンス(菌種情報KB4)が31%(割合情報RB4)の割合で存在することを示す。なお、対応情報232bは、既知塩基配列情報EB及び既知塩基割合情報REBの組み合わせ毎に菌種情報KB及び割合情報RBが対応付けられる。対応情報232bとは、基準情報の一例である。
In the example shown in FIG. 5, m pieces of known base sequence information EB and (m pieces) of known base ratio information REB corresponding to the known base sequence information EB are associated as known base information 231b. m is a natural number. Specifically, FIG. 5 shows that “GGACC (known base sequence information EB1)” is present in saliva SV at a rate of 0.25% (known base sequence information REB1), and “CCCCC (known base sequence information EB2). ) "Is present at a rate of 0.5% (known base ratio information REB2), ...," CCTAG (known base sequence information EBm) "is present at a rate of 0.25% (known base ratio information REBm) Indicates.
Further, in the example shown in FIG. 5, the above-described known base sequence information EB1 to known base sequence information EBm and known base sequence information EB1 to known base sequence information EBm include bacterial species information KB1 to bacterial species information KB4 and known bases. The ratio information REB1 to the known base ratio information REB4 are associated as the known base information 231b. Specifically, the known base information 231b shown in FIG. 5 includes the known base sequence information EB1 to the known base sequence information EBm in the saliva SV at the ratio of the known base ratio information REB1 to the known base ratio information REBm. In this case, in the oral cavity of the subject ET, Actinomycetemcomitans (bacteria species information KB1) is present at a rate of 19% (ratio information RB1), and Nucleatum (bacteria species information KB2) is 29% (ratio information RB2). Gingivalis (bacterial species information KB3) is present at a rate of 21% (ratio information RB3) and mutans (bacterial species information KB4) is present at a rate of 31% (ratio information RB4). Show. In the correspondence information 232b, the bacterial species information KB and the ratio information RB are associated with each combination of the known base sequence information EB and the known base ratio information REB. The correspondence information 232b is an example of reference information.

図4に戻り、判定部221bは、取得した既知塩基配列情報EB及び既知塩基割合情報REBを検索キーとして、対応情報232bを検索する。判定部221bは、対応情報232bのうち、検索キーと合致する既知塩基配列情報EB及び既知塩基割合情報REBに対応付けられた菌種情報KB及び割合情報RBを判定(抽出)する。判定部221bは、判定した菌種情報KB及び割合情報RBを出力部222bに供給する。
出力部222bは、判定部221bから取得した菌種情報KB及び割合情報RBを口臭判定装置10に供給する。
Returning to FIG. 4, the determination unit 221b searches the correspondence information 232b using the acquired known base sequence information EB and the known base ratio information REB as search keys. The determination unit 221b determines (extracts) the bacterial species information KB and the ratio information RB associated with the known base sequence information EB and the known base ratio information REB that match the search key in the correspondence information 232b. The determination unit 221b supplies the determined bacterial species information KB and ratio information RB to the output unit 222b.
The output unit 222 b supplies the bacterial species information KB and the ratio information RB acquired from the determination unit 221 b to the bad breath determination apparatus 10.

なお、シーケンサー21bは、唾液SVに存在する菌のDNA塩基配列を示す塩基配列情報を制御部22bに供給する構成であってもよい。この場合、制御部22bは、シーケンサー21bから取得した塩基配列情報と、既知塩基情報231bとに基づいて、既知塩基配列の種類を検出する機能部(例えば、検出部)を備えていていもよい。また、制御部22bは、検出した既知塩基配列の種類毎に既知塩基配列が唾液SV中における量(割合)を取得する機能部(例えば、割合取得部)を備えていていもよい。
また、菌種割合検出装置20は、菌種割合検出装置20a及び菌種割合検出装置20bの機能をいずれも備える構成であってもよい。
The sequencer 21b may be configured to supply base sequence information indicating the DNA base sequence of the bacteria present in the saliva SV to the control unit 22b. In this case, the control unit 22b may include a function unit (for example, a detection unit) that detects the type of the known base sequence based on the base sequence information acquired from the sequencer 21b and the known base information 231b. Moreover, the control part 22b may be provided with the function part (for example, ratio acquisition part) which acquires the quantity (ratio) in a known base sequence in saliva SV for every kind of the detected known base sequence.
In addition, the fungus species ratio detection device 20 may have a configuration including both the functions of the fungus species ratio detection device 20a and the fungus species ratio detection device 20b.

以下、図を参照し、口臭判定装置10の詳細について説明する。
図6は、本実施形態の口臭判定装置10の構成の一例を示す機能構成図である。
図6に示す通り、口臭判定装置10は、制御部11と記憶部12とを備える。
記憶部12には、学習済みモデル121が予め記憶される。学習済みモデル121とは、口腔内の細菌叢に存在する菌の種類を示す教師菌種情報(以下、教師菌種情報TKB)と、細菌叢に存在する菌のうち、教師菌種情報TKBが示す菌の割合を菌の種類毎に示す教師割合情報TRBとに基づいて、結果情報RTを出力するように隠れ層の活性化関数のパラメータが機械学習されたモデルである。結果情報RTとは、口腔に口臭があるか否かを示す情報である。結果情報RTは、例えば、口腔に口臭がある場合「1」を示し、口腔に口臭がない場合「0」を示す。口腔に口臭がある場合とは、例えば、呼気のうち、口臭の原因となるガス(例えば、メチルメルカプタン)の濃度が所定の閾値以上である場合である。したがって、結果情報RTは、菌種情報KB及び割合情報RBに基づいて、呼気に含まれる口臭の原因となるガス(以下、特定ガス)の濃度が所定の閾値以上であると推定される場合、「1」を示し、所定の閾値より低いと推定される場合、「0」を示す。機械学習とは、例えば、SVM(Support Vector Machine)やディープラーニングである。本実施形態の一例では、学習済みモデル121がディープラーニングによって学習された場合について説明する。
Hereinafter, the bad breath determination apparatus 10 will be described in detail with reference to the drawings.
FIG. 6 is a functional configuration diagram illustrating an example of the configuration of the bad breath determination apparatus 10 of the present embodiment.
As shown in FIG. 6, the bad breath determination apparatus 10 includes a control unit 11 and a storage unit 12.
The storage unit 12 stores a learned model 121 in advance. The learned model 121 includes teacher bacterial species information (hereinafter referred to as teacher bacterial species information TKB) indicating the types of bacteria present in the oral bacterial flora, and the teacher bacterial species information TKB among the bacteria present in the bacterial flora. This is a model in which the parameters of the activation function of the hidden layer are machine-learned so as to output the result information RT based on the teacher ratio information TRB indicating the ratio of bacteria to be displayed for each type of bacteria. The result information RT is information indicating whether or not there is a bad breath in the oral cavity. The result information RT indicates, for example, “1” when there is bad breath in the oral cavity and “0” when there is no bad breath in the oral cavity. The case where the oral cavity has bad breath is, for example, a case where the concentration of gas (for example, methyl mercaptan) that causes bad breath in the exhaled breath is equal to or higher than a predetermined threshold. Accordingly, the result information RT is based on the bacterial species information KB and the ratio information RB, when it is estimated that the concentration of the gas (hereinafter referred to as a specific gas) that causes bad breath contained in the exhalation is equal to or higher than a predetermined threshold value. When “1” is indicated and it is estimated that the value is lower than the predetermined threshold, “0” is indicated. The machine learning is, for example, SVM (Support Vector Machine) or deep learning. In an example of the present embodiment, a case where the learned model 121 is learned by deep learning will be described.

学習済みモデル121は、例えば、呼気に含まれる特定ガスの濃度を検出することにより予め結果情報RTが取得されている複数の被験者ETの唾液SVに基づいて学習される。具体的には、学習済みモデル121は、当該唾液SVに基づいて、上述した構成の菌種割合検出装置20によって取得した菌種情報KB及び割合情報RBをそれぞれ教師菌種情報TKB及び教師割合情報TRBとし、学習される。
学習済みモデル121は、例えば、教師菌種情報TKB及び教師割合情報TRBと、隠れ層の活性化関数のパラメータとに基づいて、結果情報RTを算出する。また、学習済みモデル121は、教師菌種情報TKB及び教師割合情報TRBに基づいて算出した結果情報RTが誤りの場合、誤差逆伝搬法によって隠れ層の活性化関数のパラメータが調整される。
The learned model 121 is learned based on saliva SV of a plurality of subjects ET whose result information RT has been acquired in advance by detecting the concentration of a specific gas contained in exhaled breath, for example. Specifically, the learned model 121 uses the bacterial species information KB and the proportion information RB acquired by the bacterial species proportion detection apparatus 20 having the above-described configuration based on the saliva SV, respectively, as the teacher bacterial species information TKB and the teacher proportion information. Learned as TRB.
The learned model 121 calculates the result information RT based on, for example, the teacher bacterial species information TKB and the teacher ratio information TRB and the parameters of the hidden layer activation function. In the learned model 121, when the result information RT calculated based on the teacher fungus species information TKB and the teacher ratio information TRB is incorrect, the parameter of the hidden layer activation function is adjusted by the error back propagation method.

なお、結果情報RTが、呼気に含まれる特定ガスの濃度の値を示す情報であってもよい。この場合、学習済みモデル121は、呼気に含まれる特定ガスの濃度を示す結果情報RTが予め取得されている複数の被験者ETの唾液SVに基づいて学習される。   Note that the result information RT may be information indicating the value of the concentration of a specific gas included in exhaled breath. In this case, the learned model 121 is learned based on saliva SV of a plurality of subjects ET from which result information RT indicating the concentration of a specific gas contained in exhalation has been acquired in advance.

制御部11は、CPU等のプロセッサが、記憶部12に記憶されたプログラムを実行することにより、各機能部を実現する。制御部11は、例えば、取得部111と、演算部112と、出力部113とをその機能部として実現する。   The control unit 11 realizes each functional unit when a processor such as a CPU executes a program stored in the storage unit 12. The control part 11 implement | achieves the acquisition part 111, the calculating part 112, and the output part 113 as the function part, for example.

取得部111は、菌種割合検出装置20から菌種情報KB及び割合情報RBを取得する。取得部111は、取得した菌種情報KB及び割合情報RBを演算部112に供給する。
演算部112は、取得した菌種情報KB及び割合情報RBと、学習済みモデル121とに基づいて、結果情報RTを算出する。演算部112は、算出した結果情報RTを出力部113に供給する。
出力部113は、演算部112から結果情報RTを取得する。出力部113は、取得した結果情報RTを出力する。出力部113は、例えば、結果情報RTを示す画像をディスプレイパネル等の表示装置に出力し、当該画像を表示させる。また、出力部113は、例えば、被験者ETの検査結果を記憶するサーバ装置に結果情報RTを送信する。
The acquisition unit 111 acquires the bacterial species information KB and the proportion information RB from the bacterial species ratio detection device 20. The acquisition unit 111 supplies the acquired bacterial species information KB and ratio information RB to the calculation unit 112.
The calculation unit 112 calculates the result information RT based on the acquired bacterial species information KB and ratio information RB and the learned model 121. The calculation unit 112 supplies the calculated result information RT to the output unit 113.
The output unit 113 acquires the result information RT from the calculation unit 112. The output unit 113 outputs the acquired result information RT. For example, the output unit 113 outputs an image indicating the result information RT to a display device such as a display panel, and displays the image. Moreover, the output part 113 transmits result information RT to the server apparatus which memorize | stores the test result of the test subject ET, for example.

以下、図を参照して口臭判定システム1の動作について説明する。
図7は、本実施形態の口臭判定システム1の動作の一例を示す流れ図である。
菌種割合検出装置20が備えるシーケンサー21は、被験者ETの唾液SVに基づいて、唾液SV内に存在するDNA塩基配列の種類及び当該種類の塩基配列が唾液SV内に存在する割合を種類毎に解析する(ステップS110)。具体的には、シーケンサー21aは、被験者ETの唾液SVと、短塩基情報231aとに基づいて、短塩基配列情報SBと、短塩基割合情報RSBとを解析する。また、シーケンサー21bは、被験者ETの唾液SVと、既知塩基情報231bとに基づいて、既知塩基配列情報EBと、既知塩基割合情報REBとを解析する。判定部221は、シーケンサー21が解析した情報と、対応情報232とに基づいて、菌種情報KBと、割合情報RBとを判定する(ステップS120)。具体的には、判定部221aは、対応情報232aのうち、取得した短塩基配列情報SB及び短塩基割合情報RSBが対応付けられた菌種情報KB及び割合情報RBを判定する。また、判定部221は、対応情報232bのうち、取得した既知塩基配列情報EB及び既知塩基割合情報REBが対応付けられた菌種情報KB及び割合情報RBを判定する。出力部222は、判定部221が判定した菌種情報KB及び割合情報RBを口臭判定装置10に出力する(ステップS130)。
Hereinafter, the operation of the bad breath determination system 1 will be described with reference to the drawings.
FIG. 7 is a flowchart showing an example of the operation of the bad breath determination system 1 of the present embodiment.
The sequencer 21 provided in the fungus species ratio detection device 20 determines, based on the saliva SV of the subject ET, the types of DNA base sequences present in the saliva SV and the ratios of the base sequences of that type in the saliva SV for each type. Analysis is performed (step S110). Specifically, the sequencer 21a analyzes the short base sequence information SB and the short base ratio information RSB based on the saliva SV of the subject ET and the short base information 231a. The sequencer 21b analyzes the known base sequence information EB and the known base ratio information REB based on the saliva SV of the subject ET and the known base information 231b. The determination unit 221 determines the bacterial species information KB and the ratio information RB based on the information analyzed by the sequencer 21 and the correspondence information 232 (step S120). Specifically, the determination unit 221a determines, among the correspondence information 232a, the bacterial species information KB and the ratio information RB associated with the acquired short base sequence information SB and the short base ratio information RSB. Further, the determination unit 221 determines the bacterial species information KB and the ratio information RB in which the acquired known base sequence information EB and the known base ratio information REB are associated with each other in the correspondence information 232b. The output unit 222 outputs the bacterial species information KB and the ratio information RB determined by the determination unit 221 to the halitosis determination device 10 (step S130).

口臭判定装置10が備える取得部111は、菌種割合検出装置20から菌種情報KB及び割合情報RBを取得する(ステップS140)。演算部112は、取得部111が取得した菌種情報KB及び割合情報RBと、学習済みモデル121とに基づいて、結果情報RTを演算する(ステップS150)。出力部113は、演算部112が演算した結果情報RTを出力する(ステップS160)。   The acquisition unit 111 included in the bad breath determination device 10 acquires the bacterial species information KB and the proportion information RB from the bacterial species ratio detection device 20 (step S140). The calculation unit 112 calculates the result information RT based on the bacterial species information KB and the ratio information RB acquired by the acquisition unit 111 and the learned model 121 (step S150). The output unit 113 outputs the result information RT calculated by the calculation unit 112 (step S160).

以上説明したように、本実施形態の口臭判定システム1は、口臭判定装置10と、菌種割合検出装置20とを備える。口臭判定装置10は、制御部11を備え、取得部111と、演算部112と、出力部113とをその機能部として実現する。取得部111は、菌種割合検出装置20が検出した情報であって、被験者ETの口腔内の細菌叢(この一例では、唾液SV)に存在する菌の種類を示す菌種情報KBと、菌種情報KBが示す菌の唾液SV内における割合を種類毎に示す割合情報RBとを取得する。演算部112は、取得部111が取得した菌種情報KBと、取得部111が取得した割合情報RBと、学習済みモデル121とに基づく演算する。出力部113は、演算部112の演算結果を示す情報であって、被験者ETに口臭があるか否かを示す口臭情報(この一例では、結果情報RT)を出力する。ここで、学習済みモデル121は、唾液SVに存在する菌の種類を示す教師菌種情報TKBと、教師菌種情報TKBが示す菌の唾液SV内における割合を種類毎に示す教師割合情報TRBとに基づいて、結果情報RTを出力するように、機械学習によって学習された学習済みモデルである。   As described above, the bad breath determination system 1 of the present embodiment includes the bad breath determination device 10 and the fungus species ratio detection device 20. The bad breath determination apparatus 10 includes a control unit 11 and realizes an acquisition unit 111, a calculation unit 112, and an output unit 113 as functional units. The acquisition unit 111 is information detected by the bacterial species ratio detection device 20, and includes bacterial species information KB indicating the type of bacteria present in the oral flora (in this example, saliva SV) of the subject ET, The ratio information RB indicating the ratio of the bacteria in the saliva SV indicated by the species information KB for each type is acquired. The calculation unit 112 calculates based on the bacterial species information KB acquired by the acquisition unit 111, the ratio information RB acquired by the acquisition unit 111, and the learned model 121. The output unit 113 is information indicating the calculation result of the calculation unit 112 and outputs bad breath information (in this example, result information RT) indicating whether or not the subject ET has bad breath. Here, the learned model 121 includes teacher bacterial species information TKB indicating the type of bacteria present in the saliva SV, and teacher ratio information TRB indicating, for each type, the proportion of the bacteria indicated by the teacher bacterial species information TKB in the saliva SV. Is a learned model learned by machine learning so as to output the result information RT.

これにより、本実施形態の口臭判定装置10は、唾液SVに基づいて、被験者ETに口臭があるか否かを判定する。したがって、本実施形態の口臭判定装置10は、呼気に含まれるガスを検出する装置を用いることなく、被験者ETに口臭があるか否かを判定することができる。また、本実施形態の口臭判定装置10は、唾液SV内に存在する菌及び当該菌の割合に基づいて口臭があるか否か判定するため、口腔内に存在する菌を培養し、口臭があるか否かを判定する方法と比較して、短い時間で被験者ETに口臭があるか否かを判定することができる。   Thereby, the bad breath determination apparatus 10 of this embodiment determines whether there exists a bad breath in the test subject ET based on saliva SV. Therefore, the breath odor determination apparatus 10 of the present embodiment can determine whether or not the subject ET has a bad breath without using a device that detects a gas contained in exhaled breath. In addition, the bad breath determination apparatus 10 of the present embodiment cultivates the bacteria present in the oral cavity and has bad breath in order to determine whether there is bad breath based on the bacteria present in the saliva SV and the proportion of the bacteria. It is possible to determine whether or not the subject ET has bad breath in a short time compared to the method of determining whether or not.

また、本実施形態の学習済みモデル121は、ディープラーニングによって学習されたモデルである。ここで、口臭の原因となるガスを発生させる菌が口腔内に存在する場合であっても、必ずしも口臭がある(呼気に含まれる口臭の原因となるガスの濃度が高まる)とは限らない。具体的には、口臭が発生する条件は、口腔内に存在する菌の種類と、口腔内に存在する菌の種類毎の割合とに関係する。だだし、菌の種類と、当該種類毎の割合の組み合わせをすべて基準情報(短塩基情報231aや既知塩基情報231b)として解析することは困難である。
本実施形態の口臭判定装置10は、学習済みモデル121によって結果情報RTを演算し、簡便な処理によって被験者ETに口臭があるか否を判定することができる。
In addition, the learned model 121 of the present embodiment is a model learned by deep learning. Here, even when bacteria that generate gas causing halitosis are present in the oral cavity, there is not always halitosis (the concentration of gas causing halitosis contained in exhaled breath increases). Specifically, the condition for generating bad breath is related to the type of bacteria present in the oral cavity and the ratio of each type of bacteria present in the oral cavity. However, it is difficult to analyze all combinations of the types of bacteria and the ratios for each type as reference information (short base information 231a and known base information 231b).
The bad breath determination apparatus 10 of this embodiment can calculate the result information RT by the learned model 121, and can determine whether the subject ET has bad breath by a simple process.

また、本実施形態の教師菌種情報TKB及び教師割合情報TRBは、複数の被験者ETの唾液SVを解析した結果に基づく情報である。具体的には、教師菌種情報TKBは、菌種割合検出装置20が複数の唾液SVに基づいて検出した複数の菌種情報KBである。また、教師割合情報TRBは、菌種割合検出装置20が複数の唾液SVに基づいて検出した複数の割合情報RBである。教師菌種情報TKB及び教師割合情報TRBを取得する際に用いられる細菌叢が唾液SVである場合、細菌叢が呼気である場合と比較して、短期間で口臭の有無を判定することができる。   In addition, the teacher bacterial species information TKB and the teacher ratio information TRB of the present embodiment are information based on the result of analyzing saliva SV of a plurality of subjects ET. Specifically, the teacher species information TKB is a plurality of species information KB detected by the species ratio detector 20 based on a plurality of saliva SVs. The teacher ratio information TRB is a plurality of ratio information RB detected by the fungus species ratio detection apparatus 20 based on a plurality of saliva SVs. When the bacterial flora used when acquiring the teacher bacterial species information TKB and the teacher ratio information TRB is saliva SV, the presence or absence of bad breath can be determined in a shorter period of time compared to the case where the bacterial flora is exhaled. .

また、本実施形態の菌種割合検出装置20aは、シーケンサー21aと、制御部22aと、記憶部23aとを備える。制御部22aは、その機能部として、判定部221aと、出力部222aとを実現する。シーケンサー21aは、唾液SVに存在する短塩基配列の種類を検出する。また、シーケンサー21aは、検出した短塩基配列の種類毎に、当該種類の短塩基配列が唾液SV中に存在する割合を取得する。判定部221aは、短塩基情報231aと、短塩基配列情報SBと、短塩基配列情報SBが示す短塩基配列毎の短塩基割合情報RSBとに基づいて、菌種情報KBと、割合情報RBとを判定する。   Moreover, the bacterial species ratio detection apparatus 20a of the present embodiment includes a sequencer 21a, a control unit 22a, and a storage unit 23a. The control unit 22a implements a determination unit 221a and an output unit 222a as functional units. The sequencer 21a detects the type of short base sequence present in the saliva SV. Moreover, the sequencer 21a acquires the ratio that the kind of short base sequence exists in saliva SV for every kind of detected short base sequence. Based on the short base information 231a, the short base sequence information SB, and the short base ratio information RSB for each short base sequence indicated by the short base sequence information SB, the determination unit 221a includes the bacterial species information KB and the ratio information RB. Determine.

ここで、唾液SV中に含まれるDNA塩基配列は、コピー数の変動、キメラ形成、ポリメラーゼ連鎖反応法によるエラー及びバクテリア間の水平遺伝子伝達等が影響し、菌種情報KB及び割合情報RBを判定する際に用いられる塩基配列として特定することが困難である可能性がある。本実施形態の菌種割合検出装置20aは、唾液SVに含まれる短塩基配列に基づいて、菌種情報KBと、割合情報RBを判定する。短塩基配列は、判定の対象となるヌクレオチドの数が少ない(この一例では、5塩基)ため、コピー数の変動、キメラ形成、ポリメラーゼ連鎖反応法によるエラー及びバクテリア間の水平遺伝子伝達等によって受ける影響を低減することができる。したがって、本実施形態の菌種割合検出装置20は、精度高く菌種情報KB及び割合情報RBを判定し、判定した菌種情報KBと、割合情報RBによって口臭判定装置10に被験者ETの口臭の有無を判定させることができる。   Here, the DNA base sequence contained in the saliva SV is influenced by copy number fluctuation, chimera formation, error by polymerase chain reaction, horizontal gene transfer between bacteria, etc., and the bacterial species information KB and the ratio information RB are determined. It may be difficult to specify the base sequence used when The bacterial species ratio detection apparatus 20a of the present embodiment determines the bacterial species information KB and the percentage information RB based on the short base sequence included in the saliva SV. The short base sequence has a small number of nucleotides to be judged (in this example, 5 bases), so it is affected by copy number fluctuation, chimera formation, errors due to polymerase chain reaction, horizontal gene transfer between bacteria, etc. Can be reduced. Therefore, the bacterial species ratio detection apparatus 20 of the present embodiment accurately determines the bacterial species information KB and the ratio information RB, and the halitosis determination apparatus 10 determines the bad breath of the subject ET based on the determined bacterial species information KB and the ratio information RB. The presence or absence can be determined.

また、本実施形態の菌種割合検出装置20bは、シーケンサー21bと、制御部22bと、記憶部23bとを備える。制御部22bは、その機能部として、判定部221bと、出力部222bとを実現する。シーケンサー21bは、唾液SVに存在する既知塩基配列の種類を検出する。また、シーケンサー21bは、検出した既知塩基配列の種類毎に、当該種類の既知塩基配列が唾液SV中に存在する割合を取得する。判定部221bは、既知塩基情報231bと、既知塩基配列情報EBと、既知塩基配列情報EBが示す既知塩基配列毎の既知塩基割合情報REBとに基づいて、菌種情報KBと、割合情報RBとを判定する。   Moreover, the bacterial species ratio detection apparatus 20b of the present embodiment includes a sequencer 21b, a control unit 22b, and a storage unit 23b. The control unit 22b implements a determination unit 221b and an output unit 222b as functional units. The sequencer 21b detects the types of known base sequences present in the saliva SV. Moreover, the sequencer 21b acquires the ratio that the kind of known base sequence exists in the saliva SV for each kind of the detected known base sequence. Based on the known base information 231b, the known base sequence information EB, and the known base ratio information REB for each known base sequence indicated by the known base sequence information EB, the determination unit 221b includes the bacterial species information KB and the ratio information RB. Determine.

ここで、菌種情報KB及び割合情報RBを判定する際に用いられる塩基配列の種類が膨大である場合、菌種情報KB及び割合情報RBを判定する処理に係る時間を低減することが困難である可能性がある。本実施形態の菌種割合検出装置20bは、唾液SVに含まれるDNA塩基配列のうち、口腔内に存在し、特定ガスを発生させる可能性がある菌の既知塩基配列(例えば、16SrRNA遺伝子)に基づいて、菌種情報KBと、割合情報RBを判定する。したがって、本実施形態の菌種割合検出装置20は、簡便な処理によって菌種情報KB及び割合情報RBを判定し、判定した菌種情報KBと、割合情報RBによって口臭判定装置10に被験者ETの口臭の有無を判定させることができる。   Here, when the types of base sequences used when determining the bacterial species information KB and the ratio information RB are enormous, it is difficult to reduce the time required for the process of determining the bacterial species information KB and the ratio information RB. There is a possibility. The bacterial species ratio detection apparatus 20b of the present embodiment uses a known base sequence (for example, 16SrRNA gene) of bacteria that exist in the oral cavity and may generate a specific gas among the DNA base sequences contained in saliva SV. Based on this, the bacterial species information KB and the ratio information RB are determined. Therefore, the bacterial species ratio detection apparatus 20 of the present embodiment determines the bacterial species information KB and the ratio information RB by a simple process, and uses the determined bacterial species information KB and the ratio information RB to inform the breath odor determination apparatus 10 of the subject ET. The presence or absence of bad breath can be determined.

なお、口臭判定装置10は、学習済みモデル121を再学習する構成を有していてもよい。この場合、口臭判定装置10の制御部11は、入力部と、判定部と、更新部とをその機能部として備える。入力部は、被験者ETに口臭が生じているか否かを示す検査情報を取得する。
入力部とは、例えば、キーボード等の文字情報を入力するデバイス、マウス、タッチパネル等のポインティングデバイス等である。判定部は、結果情報RTと、検査情報とが合致するか否かを判定する。
更新部は、判定部が結果情報RTと、検査情報とが合致しないと判定する場合、学習済みモデル121を再学習(更新)させる。学習済みモデル121の再学習とは、教師データ(教師菌種情報TKB及び教師割合情報TRB)を直近のものに更新し、新たにモデルの学習をし直すことである。具体的には、更新部は、結果情報RTと検査情報とが一致しなかった検査の被験者ETの菌種情報KB及び割合情報RBを、教師菌種情報TKB及び教師割合情報TRBとする。また、更新部は、教師菌種情報TKB及び教師割合情報TRBに基づく結果情報RTが検査情報と合致するように、学習済みモデル121の隠れ層の活性化関数のパラメータを誤差逆伝搬法によって調整する。ここで、更新部の更新は、判定部が結果情報RTと、検査情報とが合致しないと判定する度に行われてもよく、結果情報RTと、検査情報とが合致しないと判定された菌種情報KB及び割合情報RBが隠れ層の活性化関数のパラメータを更新可能な数だけ取得された際に行われてもよい。また、更新部の更新には、結果情報RTと検査情報とが一致した検査の被験者ETの菌種情報KB及び割合情報RBが、教師菌種情報TKB及び教師割合情報TRBとして用いられてもよい。
また、口臭判定装置10は菌種情報KB及び既知塩基割合情報REBに重み付けを行う機能部(重要度付加部)を備える構成であってもよい。この場合、重要度付加部は、菌種情報KB及び既知塩基割合情報REBのうち、口臭の有無を判定する際に重要となる菌種情報KBや既知塩基割合情報REBには高い重み付けを行い、重要ではない菌種情報KBや既知塩基割合情報REBには低い重み付けを行う。
The bad breath determination apparatus 10 may have a configuration for re-learning the learned model 121. In this case, the control unit 11 of the bad breath determination apparatus 10 includes an input unit, a determination unit, and an update unit as functional units. The input unit acquires examination information indicating whether or not bad breath has occurred in the subject ET.
The input unit is, for example, a device for inputting character information such as a keyboard, a pointing device such as a mouse or a touch panel, and the like. The determination unit determines whether the result information RT matches the inspection information.
When the determination unit determines that the result information RT and the inspection information do not match, the update unit re-learns (updates) the learned model 121. The re-learning of the learned model 121 is to update the teacher data (teacher fungus species information TKB and teacher ratio information TRB) to the latest one and newly learn the model again. Specifically, the updating unit sets the bacterial species information KB and the rate information RB of the subject ET of the test for which the result information RT and the test information do not match as the teacher bacterial type information TKB and the teacher rate information TRB. Further, the update unit adjusts the parameter of the activation function of the hidden layer of the learned model 121 by the error back propagation method so that the result information RT based on the teacher fungus species information TKB and the teacher ratio information TRB matches the inspection information. To do. Here, the update of the update unit may be performed each time the determination unit determines that the result information RT does not match the test information, and the bacteria determined that the result information RT and the test information do not match This may be performed when the seed information KB and the ratio information RB are acquired by the number that can update the parameters of the activation function of the hidden layer. In addition, for updating by the update unit, the bacterial species information KB and the rate information RB of the test subject ET whose result information RT and the test information match may be used as the teacher bacterial species information TKB and the teacher rate information TRB. .
The bad breath determination apparatus 10 may be configured to include a functional unit (importance adding unit) that weights the bacterial species information KB and the known base ratio information REB. In this case, the importance level adding unit performs high weighting on the bacterial species information KB and the known base proportion information REB that are important in determining the presence or absence of bad breath among the bacterial species information KB and the known base proportion information REB, Low weighting is performed on the unimportant bacteria species information KB and the known base ratio information REB.

<変形例>
なお、上述では、口臭判定装置10が菌種情報KB及び割合情報RBに基づいて、結果情報RTを出力する場合について説明したが、これに限られない。口臭判定装置10は、既知塩基配列情報EB及び既知塩基割合情報REBに基づいて、結果情報RTを出力する構成であってもよい。
この場合、学習済みモデル121は、予め結果情報RTが取得されている複数の被験者ETの唾液SVに基づいて、学習される。具体的には、学習済みモデル121は、当該唾液SVに基づいて、上述した構成の菌種割合検出装置20bが取得した既知塩基配列情報EB及び既知塩基割合情報REBをそれぞれ教師データ(以下、教師既知塩基配列情報TEB、教師既知塩基割合情報TREB)とし、学習される。学習済みモデル121は、教師既知塩基配列情報TEB及び教師既知塩基割合情報TREBと、隠れ層の活性化関数のパラメータとに基づいて、結果情報RTを算出する。また、学習済みモデル121は、教師既知塩基配列情報TEB及び教師既知塩基割合情報TREBに基づいて算出した結果情報RTが誤りの場合、誤差逆伝搬法によって隠れ層の活性化関数のパラメータが調整される。
この場合、菌種割合検出装置20bは、菌種情報KB及び割合情報RBに代えて、既知塩基配列情報EB及び既知塩基割合情報REBを口臭判定装置10に供給する。口臭判定装置10は、取得した既知塩基配列情報EB及び既知塩基割合情報REBと、学習済みモデル121とに基づいて、結果情報RTを出力する。
これにより、変形例の口臭判定システム1は、菌種割合検出装置20bが菌種情報KB及び割合情報RBを検出する処理を省略することができるため、結果情報RTの出力に係る処理をより高速に行うことができる。
<Modification>
In addition, although the case where the bad breath determination apparatus 10 outputs the result information RT based on the bacterial species information KB and the ratio information RB has been described above, the present invention is not limited thereto. The bad breath determination apparatus 10 may be configured to output the result information RT based on the known base sequence information EB and the known base ratio information REB.
In this case, the learned model 121 is learned based on the saliva SV of a plurality of subjects ET for which the result information RT has been acquired in advance. More specifically, the learned model 121 uses each of the known base sequence information EB and the known base ratio information REB acquired by the bacterial species ratio detection device 20b having the above-described configuration based on the saliva SV as teacher data (hereinafter referred to as teacher data). It is learned as known base sequence information TEB and teacher known base ratio information TREB). The learned model 121 calculates result information RT based on the teacher known base sequence information TEB, the teacher known base ratio information TREB, and the parameters of the hidden layer activation function. In the learned model 121, when the result information RT calculated based on the teacher known base sequence information TEB and the teacher known base ratio information TREB is incorrect, the parameters of the hidden layer activation function are adjusted by the error back propagation method. The
In this case, the bacterial species ratio detection apparatus 20b supplies the known base sequence information EB and the known base ratio information REB to the halitosis determination apparatus 10 instead of the bacterial species information KB and the ratio information RB. The bad breath determination apparatus 10 outputs the result information RT based on the acquired known base sequence information EB and known base ratio information REB, and the learned model 121.
Thereby, the bad breath smell determination system 1 can omit the process of detecting the bacterial species information KB and the ratio information RB by the bacterial species ratio detection device 20b, so that the process related to the output of the result information RT can be performed at a higher speed. Can be done.

なお、上記の各実施形態における口臭判定装置10及び菌種割合検出装置20が備える各部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。   In addition, each part with which the bad breath determination apparatus 10 and the bacteria species ratio detection apparatus 20 in each said embodiment are provided may be implement | achieved by dedicated hardware, and is implement | achieved by memory and a microprocessor. There may be.

なお、口臭判定装置10及び菌種割合検出装置20が備える各部は、メモリおよびCPU(中央演算装置)により構成され、口臭判定装置10及び菌種割合検出装置20が備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。   Each unit included in the bad breath determination apparatus 10 and the fungus species ratio detection device 20 is configured by a memory and a CPU (central processing unit), in order to realize the function of each part included in the bad breath determination device 10 and the fungus species ratio detection device 20. This function may be realized by loading the program into a memory and executing it.

また、口臭判定装置10及び菌種割合検出装置20が備える各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。   Further, a program for realizing the function of each unit included in the bad breath determination apparatus 10 and the fungus species ratio detection apparatus 20 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system. The processing may be performed by executing. Here, the “computer system” includes an OS and hardware such as peripheral devices.

また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

以上、本発明の実施形態を、図を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can. You may combine the structure as described in each embodiment mentioned above.

1…口臭判定システム、10…口臭判定装置、20、20a、20b…菌種割合検出装置、21、21a、21b…シーケンサー、11、22a、22b…制御部、12、23a、23b…記憶部、111…取得部、112…演算部、113、222、222a、222b…出力部、221、221a、221b…判定部、121…学習済みモデル、231a…短塩基情報、231b…既知塩基情報、232、232a、232b…対応情報、KB、KB1、KB2、KB3、KB4…菌種情報、RB、RB1、RB2、RB3、RB4…割合情報、EB、EB1、EB2、EB3…既知塩基配列情報、REB、REB1、REB2、REB3…既知塩基割合情報、SB、SB1、SB2、SB3…短塩基配列情報、RSB、RSB1、RSB2、RSB3…短塩基割合情報、RT…結果情報、TKB…教師菌種情報、TRB…教師割合情報、ET…被験者、SV…唾液 DESCRIPTION OF SYMBOLS 1 ... Bad breath determination system, 10 ... Bad breath determination apparatus, 20, 20a, 20b ... Bacterial species ratio detection apparatus, 21, 21a, 21b ... Sequencer, 11, 22a, 22b ... Control part, 12, 23a, 23b ... Storage part, DESCRIPTION OF SYMBOLS 111 ... Acquisition part, 112 ... Operation part, 113, 222, 222a, 222b ... Output part, 221, 221a, 221b ... Determination part, 121 ... Learned model, 231a ... Short base information, 231b ... Known base information, 232, 232a, 232b ... correspondence information, KB, KB1, KB2, KB3, KB4 ... fungus species information, RB, RB1, RB2, RB3, RB4 ... ratio information, EB, EB1, EB2, EB3 ... known base sequence information, REB, REB1 , REB2, REB3 ... known base ratio information, SB, SB1, SB2, SB3 ... short base sequence information, RSB, RSB1, RS 2, RSB3 ... short base ratio information, RT ... result information, TKB ... teacher species information, TRB ... teacher ratio information, ET ... subject, SV ... saliva

Claims (7)

口腔内の細菌叢に存在する菌の種類を示す教師菌種情報と、前記教師菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す教師割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部と、
被験者の口腔内の細菌叢に存在する菌の種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する取得部と、
前記取得部が取得した前記菌種情報と、前記取得部が取得した前記割合情報とを前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力部と、
を備える口臭判定装置。
Based on teacher bacterial species information indicating the type of bacteria present in the bacterial flora in the oral cavity, and teacher ratio information indicating the proportion of bacteria in the bacterial flora indicated by the teacher bacterial species information for each type, bad breath in the oral cavity A storage unit that stores a learned model learned by machine learning so as to output bad breath information indicating whether or not there is,
An acquisition unit for acquiring the bacterial species information indicating the type of bacteria present in the bacterial flora in the oral cavity of the subject, and the ratio information indicating the ratio in the bacterial flora of the bacteria indicated by the bacterial species information, for each type,
The bacterial species information acquired by the acquisition unit and the ratio information acquired by the acquisition unit are input to the learned model, and the calculated bad breath information indicating whether the subject has bad breath is output. An output section;
A bad breath determination apparatus.
前記機械学習とは、
ディープラーニングである、
請求項1に記載の口臭判定装置。
The machine learning is
Deep learning,
The bad breath determination apparatus according to claim 1.
前記教師菌種情報及び前記教師割合情報は、
複数の被験者の唾液を解析した結果に基づく情報である、
請求項1又は請求項2に記載の口臭判定装置。
The teacher bacterial species information and the teacher ratio information are
Information based on the results of analyzing the saliva of multiple subjects.
The bad breath determination apparatus according to claim 1 or 2.
前記唾液の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を検出する検出部と、
前記検出部が検出した前記短塩基配列の種類毎に、当該種類の塩基配列が前記細菌叢に存在する割合を取得する割合取得部と、
前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合との対応を前記種類及び前記割合の組み合わせ毎に示す基準情報と、前記検出部が検出した前記短塩基配列の種類と、前記割合取得部が取得した前記短塩基配列の種類毎の割合とに基づいて、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合とを判定する判定部と、
を備え、
前記取得部は、
前記判定部が判定した前記種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する、
請求項3に記載の口臭判定装置。
A detection unit for detecting the type of a short base sequence having 5 bases, the base sequence of DNA existing in the saliva bacterial flora;
For each type of the short base sequence detected by the detection unit, a ratio acquisition unit that acquires a ratio of the type of base sequence present in the bacterial flora,
Reference information indicating the correspondence between the type of bacteria present in the bacterial flora in the oral cavity of the subject and the ratio of the bacteria in the bacterial flora for each combination of the type and the ratio, and the short detected by the detection unit Based on the type of base sequence and the ratio of each type of short base sequence acquired by the ratio acquisition unit, the type of bacteria present in the oral flora of the subject and the bacterial flora of the bacteria A determination unit for determining a ratio;
With
The acquisition unit
Obtaining the species information indicating the type determined by the determination unit, and the rate information indicating the proportion of the bacteria indicated by the species information in the bacterial flora for each type.
The bad breath determination apparatus according to claim 3.
前記唾液の細菌叢に存在するDNAの塩基配列であって、既知の16SrRNA遺伝子の塩基配列と合致する既知塩基配列を検出する検出部と、
前記検出部が検出した前記既知塩基配列の種類毎に、当該種類の塩基配列が前記細菌叢に存在する割合を取得する割合取得部と、
前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合との対応を前記種類及び前記割合の組み合わせ毎に示す基準情報と、前記検出部が検出した前記既知塩基配列の種類と、前記割合取得部が取得した前記既知塩基配列の種類毎の割合とに基づいて、前記被験者の口腔内の細菌叢に存在する菌の種類と、当該菌の前記細菌叢における割合とを判定する判定部と、
を備え、
前記取得部は、
前記判定部が判定した前記種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する、
請求項3又は請求項4に記載の口臭判定装置。
A detection unit for detecting a known base sequence that matches the base sequence of a known 16S rRNA gene, which is a base sequence of DNA present in the bacterial flora of saliva;
For each type of the known base sequence detected by the detection unit, a ratio acquisition unit that acquires a ratio of the type of base sequence present in the bacterial flora,
Reference information indicating the correspondence between the type of bacteria present in the bacterial flora in the oral cavity of the subject and the ratio of the bacteria in the bacterial flora for each combination of the type and the ratio, and the known detected by the detection unit Based on the type of base sequence and the ratio of each type of the known base sequence acquired by the ratio acquisition unit, the type of bacteria present in the oral flora of the subject, and the bacterial flora of the bacteria A determination unit for determining a ratio;
With
The acquisition unit
Obtaining the species information indicating the type determined by the determination unit, and the rate information indicating the proportion of the bacteria indicated by the species information in the bacterial flora for each type.
The bad breath determination apparatus according to claim 3 or 4.
口腔内の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を示す教師短塩基情報と、前記教師短塩基情報が示す短塩基の割合を前記種類毎に示す教師短塩基割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部と、
被験者の口腔内の細菌叢に存在するDNAの塩基配列であって、塩基の数が5つの短塩基配列の種類を示す短塩基配列情報と、前記短塩基配列情報が示す短塩基配列の前記細菌叢における割合を前記種類毎に示す短塩基割合情報とを取得する取得部と、
前記取得部が取得した前記短塩基配列情報と、前記取得部が取得した前記短塩基割合情報とを前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力部と、
を備える口臭判定装置。
The base sequence of DNA existing in the bacterial flora in the oral cavity, and the ratio of the short base information indicating the type of the short base sequence having five bases and the short base indicated by the teacher short base information for each type A storage unit that stores a learned model learned by machine learning so as to output bad breath information indicating whether there is bad breath in the oral cavity based on the teacher short base ratio information shown in FIG.
The base sequence of DNA present in the bacterial flora in the oral cavity of the subject, the short base sequence information indicating the type of the short base sequence having five bases, and the short base sequence indicated by the short base sequence information An acquisition unit for acquiring short base ratio information indicating the ratio in the plexus for each type;
Bad breath information indicating whether or not the subject has a bad breath by inputting the short base sequence information acquired by the acquisition unit and the short base ratio information acquired by the acquisition unit into the learned model. An output unit for outputting
A bad breath determination apparatus.
口腔内の細菌叢に存在する菌の種類を示す教師菌種情報と、前記教師菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す教師割合情報とに基づいて、口腔に口臭があるか否かを示す口臭情報を出力するように、機械学習によって学習された学習済みモデルを記憶する記憶部を備えるコンピュータに、
被験者の口腔内の細菌叢に存在する菌の種類を示す菌種情報と、前記菌種情報が示す菌の前記細菌叢における割合を前記種類毎に示す割合情報とを取得する取得ステップと、
前記取得ステップにおいて取得した前記菌種情報と、前記取得ステップにおいて取得した前記割合情報を前記学習済みモデルに入力し、演算された前記被験者に口臭があるか否かを示す口臭情報を出力する出力ステップと、
を実行させるプログラム。
Based on teacher bacterial species information indicating the type of bacteria present in the bacterial flora in the oral cavity, and teacher ratio information indicating the proportion of bacteria in the bacterial flora indicated by the teacher bacterial species information for each type, bad breath in the oral cavity A computer having a storage unit for storing a learned model learned by machine learning so as to output bad breath information indicating whether or not there is,
An acquisition step of acquiring bacterial species information indicating the type of bacteria present in the bacterial flora in the oral cavity of the subject, and ratio information indicating the ratio in the bacterial flora of the bacteria indicated by the bacterial species information for each type,
The fungus species information acquired in the acquisition step and the ratio information acquired in the acquisition step are input to the learned model, and output of the mouth odor information indicating whether or not the calculated subject has bad breath Steps,
A program that executes
JP2017154491A 2017-08-09 2017-08-09 Halitosis judgment device and program Active JP6928948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017154491A JP6928948B2 (en) 2017-08-09 2017-08-09 Halitosis judgment device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017154491A JP6928948B2 (en) 2017-08-09 2017-08-09 Halitosis judgment device and program

Publications (2)

Publication Number Publication Date
JP2019030275A true JP2019030275A (en) 2019-02-28
JP6928948B2 JP6928948B2 (en) 2021-09-01

Family

ID=65522554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154491A Active JP6928948B2 (en) 2017-08-09 2017-08-09 Halitosis judgment device and program

Country Status (1)

Country Link
JP (1) JP6928948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010343A (en) * 2019-07-08 2021-02-04 三菱ケミカル株式会社 Health condition prediction method by oral cavity bacteria

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833613A (en) * 2010-06-04 2010-09-15 中国科学院青岛生物能源与过程研究所 Oral microbial community database and application thereof
WO2017001438A1 (en) * 2015-06-30 2017-01-05 Imec Vzw Holographic device and object sorting system
JP2017058361A (en) * 2015-09-18 2017-03-23 ソニー株式会社 Information processor, information processing method and information processing system
WO2017106638A1 (en) * 2015-12-16 2017-06-22 Gritstone Oncology, Inc. Neoantigen identification, manufacture, and use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833613A (en) * 2010-06-04 2010-09-15 中国科学院青岛生物能源与过程研究所 Oral microbial community database and application thereof
WO2017001438A1 (en) * 2015-06-30 2017-01-05 Imec Vzw Holographic device and object sorting system
JP2017058361A (en) * 2015-09-18 2017-03-23 ソニー株式会社 Information processor, information processing method and information processing system
WO2017106638A1 (en) * 2015-12-16 2017-06-22 Gritstone Oncology, Inc. Neoantigen identification, manufacture, and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中野善夫: "サポートベクターマシンを用いた唾液細菌叢分析に基づく口臭推定法", 日本細菌学雑誌, vol. 63, no. 1, JPN6021012027, 2008, pages 164 - 3, ISSN: 0004479207 *
中野善夫: "口腔内細菌叢の5連続塩基出現頻度に基づく解析方法", 日本細菌学雑誌, vol. 72, no. 1, JPN6021012030, 24 February 2017 (2017-02-24), pages 78 - 029, ISSN: 0004479208 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010343A (en) * 2019-07-08 2021-02-04 三菱ケミカル株式会社 Health condition prediction method by oral cavity bacteria

Also Published As

Publication number Publication date
JP6928948B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
Lang et al. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices
Drummond et al. Measurably evolving populations
Rojas et al. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity
Chen et al. Differential expression analysis of complex RNA-seq experiments using edgeR
Carstens et al. Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers
Eme et al. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks
Uyeda et al. Comparative analysis of principal components can be misleading
Oaks et al. Evidence for climate-driven diversification? A caution for interpreting ABC inferences of simultaneous historical events
Wirth et al. Origin, spread and demography of the Mycobacterium tuberculosis complex
Miller et al. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments
Blackburne et al. Class of multiple sequence alignment algorithm affects genomic analysis
Premo Cultural transmission and diversity in time-averaged assemblages
Koenker et al. Parametric links for binary choice models: A Fisherian–Bayesian colloquy
Hejazi et al. Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials
Raikow et al. Phylogeny and evolution of the passerine birds: independent methods of phylo-genetic analysis have produced a well-supported hypothesis of passerine phylogeny, one that has proved particularly useful in ecological and evolutionary studies
Toro et al. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties
Bentley et al. High degree of clonal reproduction and lack of large‐scale geographic patterning mark the introduced range of the invasive vine, kudzu (Pueraria montana var. lobata), in North America
Criscuolo On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference
Lin et al. Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator
CN107533587B (en) Method and apparatus for estimating the amount of microorganisms within a taxon in a sample
Volz Fitness, growth and transmissibility of SARS-CoV-2 genetic variants
Bons et al. Estimating the mutational fitness effects distribution during early HIV infection
Tonkin-Hill et al. Robust analysis of prokaryotic pangenome gene gain and loss rates with Panstripe
JP2019030275A (en) Foul breath determination apparatus and program
Templeton Coalescent-based, maximum likelihood inference in phylogeography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6928948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150