JP2019025433A - Agitation device - Google Patents
Agitation device Download PDFInfo
- Publication number
- JP2019025433A JP2019025433A JP2017148122A JP2017148122A JP2019025433A JP 2019025433 A JP2019025433 A JP 2019025433A JP 2017148122 A JP2017148122 A JP 2017148122A JP 2017148122 A JP2017148122 A JP 2017148122A JP 2019025433 A JP2019025433 A JP 2019025433A
- Authority
- JP
- Japan
- Prior art keywords
- stirring
- fluid
- flow
- blade
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
Description
本発明は、流体撹拌(スラリー撹拌を含む)に好適な撹拌装置に係り、特に、軸流撹拌操作の下で、流体の混合、溶解、晶析、反応、スラリー懸濁などの撹拌処理を効率良く行うための軸流タイプ撹拌装置に関する。 The present invention relates to a stirrer suitable for fluid agitation (including slurry agitation), and in particular, agitation processing such as mixing, dissolution, crystallization, reaction, and slurry suspension of fluid under an axial flow agitation operation is efficient. The present invention relates to an axial flow type stirring device for performing well.
撹拌装置には、周知のように、その目的に応じ種々の形態の撹拌翼が用いられており、流体の粘度等に応じて様々な種類の翼形状が採用される。例えば、撹拌槽壁面の液を強制的に移動させるアンカー翼、らせん状にブレードを設けたリボン翼などが採用されている。しかし、流体の粘度が比較的低いものについては、例えば特許文献1に示すように、回転軸の下端部及び中間部に平板状のパドル翼を上下に配置し、回転軸を円筒状の撹拌槽内に垂設し、当該撹拌槽の内部側壁に沿って複数個のバッフルを、上下縦長に設置して、上下への軸流を発生させる方式が多く採用されている。これは、簡易な構成でありながら、容易に均一な撹拌が達成できるからである。 As is well known, various types of stirring blades are used in the stirring device depending on the purpose, and various types of blade shapes are employed depending on the viscosity of the fluid. For example, an anchor blade for forcibly moving the liquid on the wall of the stirring tank, a ribbon blade with a spiral blade, and the like are employed. However, for a fluid having a relatively low viscosity, for example, as shown in Patent Document 1, flat paddle blades are arranged vertically at the lower end and the middle of the rotating shaft, and the rotating shaft is a cylindrical stirring tank. A system is often employed in which a plurality of baffles are vertically installed vertically along the inner side wall of the agitation tank to generate an axial flow in the vertical direction. This is because uniform stirring can be easily achieved with a simple configuration.
上記撹拌装置では、撹拌槽内の流体が上下の各パドル翼により当該撹拌槽内の中心部より周辺部へそれぞれ流動され、その結果部分的な循環流動のみが生じ、撹拌槽内に流体として粘度の高いスラリーを撹拌する際には、スラリーの濃度のバラツキを生じて、均一混合が得られないという懸念もある。
これに対し、特許文献1に開示された撹拌装置は、回転軸には軸流翼及びパドル翼が上下順次固定設置されており、バッフルが、当該撹拌槽の内部側壁に沿って複数個、上下縦長に設置されている(特許文献1の図1参照)。上記パドル翼の下辺は撹拌槽の内部底面との間にわずかな隙間を存して回動可能に形成されている。上記軸流翼はプロペラ翼式の軸流翼が用いられており、回転軸の回転と共に当該回転軸に沿って下方向きの流れを生ずるように形成されている。上記配置とすることにより、撹拌槽の中心部を上方から下方に向かって流れる下降流と、撹拌槽の壁面に沿って下方から上方に向かって流れる上昇流とからなり、全体が1つの循環流を形成できるとしている。
しかしながら、特許文献1のように、撹拌槽の内部側壁にバッフルを設置するためには、撹拌槽に生じた撹拌流体の流れによるバッフルにかかる荷重に耐えるだけの強度が撹拌槽の内部側壁に要求されるため、撹拌槽の内部側壁を強化するための補強工事等が必要であった。
In the agitator, the fluid in the agitation tank is caused to flow from the central part to the peripheral part of the agitation tank by the upper and lower paddle blades, resulting in only a partial circulation flow. When stirring a high slurry, there is a concern that the concentration of the slurry varies and uniform mixing cannot be obtained.
On the other hand, in the stirring device disclosed in Patent Document 1, axial rotation blades and paddle blades are fixedly installed on the rotating shaft in order, and a plurality of baffles are vertically moved along the inner side wall of the stirring tank. It is installed vertically (see FIG. 1 of Patent Document 1). The lower side of the paddle blade is formed so as to be rotatable with a slight gap between it and the inner bottom surface of the stirring tank. The axial flow blade is a propeller blade type axial flow blade, and is formed so as to generate a downward flow along the rotation shaft as the rotation shaft rotates. By adopting the above arrangement, the center portion of the agitation tank is composed of a downward flow that flows downward from above and an upward flow that flows upward from below along the wall surface of the agitation tank. Can be formed.
However, as in Patent Document 1, in order to install a baffle on the inner side wall of the stirring tank, the inner side wall of the stirring tank is required to have sufficient strength to withstand the load on the baffle caused by the flow of the stirring fluid generated in the stirring tank. Therefore, reinforcement work and the like for strengthening the inner side wall of the agitation tank are required.
本発明が解決しようとする技術的課題は、撹拌槽の内部側壁に撹拌流体の流れ方向が規制される規制部材を設置することなく、撹拌槽内で上下方向の軸流が含まれる循環流を形成するように撹拌流体を撹拌可能とすることにある。 The technical problem to be solved by the present invention is to provide a circulating flow including an axial flow in the vertical direction in the stirring tank without installing a regulating member that restricts the flow direction of the stirring fluid on the inner side wall of the stirring tank. It is to be able to stir the stirring fluid to form.
本発明者等は、上記課題を解決するために、軸流タイプの撹拌翼を備える軸流タイプ撹拌装置において、撹拌槽の内部側壁にバッフルが設置されていない構造で、変形やバッフルの設置が可能な当該撹拌槽の底面部の形状、各種バッフルの設置に着目して、鋭意検討を行い、多数の底面部形状、バッフル設置した場合について、当該撹拌槽内の流れをシミュレーションして解析することにより、撹拌槽の底部構造を工夫することで、撹拌槽の内部側壁にバッフルを設置した軸流タイプ撹拌装置と同様に、撹拌槽の中心部を上方から下方に向かって流れる下降流と、撹拌槽の壁面に沿って下方から上方に向かって流れる上昇流とからなり、全体が1つの循環流を形成できることを見出し、本発明に至った。 In order to solve the above-mentioned problems, the present inventors have a structure in which a baffle is not installed on the inner side wall of a stirring tank in an axial flow type stirring apparatus including an axial flow type stirring blade. Pay close attention to the shape of the bottom surface of the stirring tank and the installation of various baffles, and study and analyze the flow in the stirring tank when many bottom surface shapes and baffles are installed. As a result of devising the bottom structure of the stirring tank, the downflow that flows from the top to the bottom of the stirring tank in the same manner as the axial flow type stirring apparatus in which the baffle is installed on the inner side wall of the stirring tank, and the stirring It has been found that the whole can form one circulating flow consisting of an upward flow flowing from the lower side to the upper side along the wall surface of the tank, leading to the present invention.
本発明の第1の技術的特徴は、有底の断面略円形状の空洞部を有し、当該空洞部に撹拌流体が収容可能な撹拌槽と、前記撹拌槽の上部略中央から下方に向かって垂下し、前記撹拌槽の底部と非接触になるように設置される回転軸と、前記回転軸の下端部に設けられ、前記回転軸と共に回転して前記撹拌槽内の撹拌流体を撹拌し、当該撹拌流体に下方に向かう流れを与える撹拌翼と、前記回転軸及び前記撹拌翼と非接触に配置されるように前記撹拌槽の底部に設けられ、前記撹拌翼から下方に向かう撹拌流体を前記回転軸の径方向外方に向けて案内する案内部と、を備え、前記案内部は、前記撹拌槽の底部のうち前記撹拌翼に対向する部位に設けられ、前記撹拌翼から下方に向かう撹拌流体の流れ方向を前記回転軸の径方向外方に向けて変更する方向変更部と、前記方向変更部の周囲に放射状に複数設けられ、前記方向変更部の周囲の領域を複数の領域に仕切る仕切り部と、を有することを特徴とする撹拌装置である。 A first technical feature of the present invention is that a hollow portion having a substantially circular shape with a bottomed cross section is provided, a stirring tank capable of storing a stirring fluid in the hollow portion, and a downward direction from a substantially upper center of the stirring tank. A rotating shaft that is suspended so as to be in non-contact with the bottom of the stirring tank, and is provided at the lower end of the rotating shaft, and rotates together with the rotating shaft to stir the stirring fluid in the stirring tank. A stirring blade that applies a downward flow to the stirring fluid; and a stirring fluid that is provided at the bottom of the stirring tank so as to be disposed in non-contact with the rotating shaft and the stirring blade. A guide portion that guides the rotation shaft radially outward, and the guide portion is provided at a portion of the bottom of the stirring tank that faces the stirring blade, and is directed downward from the stirring blade. Change the flow direction of the agitating fluid toward the outside in the radial direction of the rotating shaft. A direction changing section, radially provided with a plurality around the direction changing unit, a stirring device and having an a partition portion for partitioning the area around the direction changing portion into a plurality of regions.
本発明の第2の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記方向変更部は、前記撹拌槽の底部の略中央部分が他の部分に比べて山型状に隆起した隆起部として構成されていることを特徴とする撹拌装置である。
本発明の第3の技術的特徴は、第2の技術的特徴を備えた撹拌装置において、前記方向変更部は、前記撹拌翼の翼径よりも大きい外径の山型状隆起部であることを特徴とする撹拌装置である。
本発明の第4の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記仕切り部は、前記方向変更部の周囲に等角度間隔に3以上設置されることを特徴とする撹拌装置である。
本発明の第5の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記仕切り部は、前記方向変更部内の領域から当該方向変更部外の領域に跨がって設けられていることを特徴とする撹拌装置である。
本発明の第6の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記仕切り部は、その上縁位置が前記回転軸の径方向外方に向かって連続的に斜め下方に変化することを特徴とする撹拌装置である。
本発明の第7の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記仕切り部は、前記方向変更部の最も上方に位置する部分よりも下方に位置することを特徴とする撹拌装置である。
本発明の第8の技術的特徴は、第1の技術的特徴を備えた撹拌装置において、前記仕切り部は、前記方向変更部に面した領域で当該方向変更部の最も上方に位置する部分よりも上方に位置する部分を有することを特徴とする撹拌装置である。
According to a second technical feature of the present invention, in the stirrer provided with the first technical feature, the direction changing portion has a substantially central portion of the bottom portion of the stirring tank in a mountain shape compared to other portions. The stirring device is configured as a raised bulge.
According to a third technical feature of the present invention, in the stirrer having the second technical feature, the direction changing portion is a mountain-shaped ridge having an outer diameter larger than the blade diameter of the stirring blade. The stirring device characterized by the above.
According to a fourth technical feature of the present invention, in the agitation device having the first technical feature, three or more of the partition portions are installed at equal angular intervals around the direction changing portion. It is a stirring device.
According to a fifth technical feature of the present invention, in the agitation device having the first technical feature, the partition portion is provided so as to straddle a region outside the direction change portion from a region inside the direction change portion. It is the stirring apparatus characterized by the above-mentioned.
According to a sixth technical feature of the present invention, in the stirring device provided with the first technical feature, the partition portion has an upper edge position continuously obliquely downward toward the outer side in the radial direction of the rotating shaft. It is a stirring apparatus characterized by changing to.
According to a seventh technical feature of the present invention, in the agitation device having the first technical feature, the partition portion is located below a portion located at an uppermost position of the direction changing portion. A stirring device.
According to an eighth technical feature of the present invention, in the agitation device having the first technical feature, the partition portion is a region facing the direction changing portion and is located above a portion located at an uppermost position of the direction changing portion. Is also a stirring device characterized by having a portion located above.
本発明の第1の技術的特徴によれば、撹拌槽の内部側壁に撹拌流体の流れ方向が規制される規制部材を設置することなく、撹拌槽内で上下方向の軸流が含まれる循環流を形成するように撹拌流体を撹拌することができる。
本発明の第2の技術的特徴によれば、撹拌槽の底部に方向変更部を容易に構築することができる。
本発明の第3の技術的特徴によれば、山型状隆起部の外径が撹拌翼の翼径以下である態様に比べて、方向変更部による撹拌流体の流れ方向の変更動作を安定させることができる。
本発明の第4の技術的特徴によれば、方向変更部にて方向変更された撹拌流体を放射方向に対して略均等に配分することができる。
本発明の第5の技術的特徴によれば、方向変更部内の領域に仕切り部を設けない態様に比べて、方向変更部にて方向変更された撹拌流体の流れ方向を正確に規制することができる。
本発明の第6の技術的特徴によれば、方向変更部にて方向変更した撹拌流体を撹拌槽の内部側壁に案内し、当該内部側壁に沿って撹拌流体を上昇させ易くすることができる。
本発明の第7の技術的特徴によれば、撹拌翼から下方に向かう撹拌流体を回転軸の径方向外方に向けて案内するときに、放射方向周辺に向けて方向変更後の撹拌流体を仕切って案内することができる。
本発明の第8の技術的特徴によれば、撹拌翼から下方に向かう撹拌流体を回転軸の径方向外方に向けて案内するときに、放射方向周辺に向けて撹拌流体を方向変更すると同時に仕切って案内することができる。
According to the first technical feature of the present invention, the circulation flow that includes the axial flow in the vertical direction in the stirring tank is provided without installing a regulating member that restricts the flow direction of the stirring fluid on the inner side wall of the stirring tank. The agitating fluid can be agitated to form
According to the second technical feature of the present invention, the direction changing portion can be easily constructed at the bottom of the stirring tank.
According to the third technical feature of the present invention, the change operation of the flow direction of the stirring fluid by the direction changing portion is stabilized as compared with the aspect in which the outer diameter of the mountain-shaped ridge is equal to or less than the blade diameter of the stirring blade. be able to.
According to the fourth technical feature of the present invention, the agitating fluid whose direction has been changed by the direction changing unit can be distributed substantially evenly with respect to the radial direction.
According to the fifth technical feature of the present invention, it is possible to accurately regulate the flow direction of the stirring fluid whose direction has been changed by the direction changing unit, as compared with an aspect in which no partition is provided in the region in the direction changing unit. it can.
According to the sixth technical feature of the present invention, the stirring fluid whose direction has been changed by the direction changing section can be guided to the inner side wall of the stirring tank, and the stirring fluid can be easily raised along the inner side wall.
According to the seventh technical feature of the present invention, when the agitating fluid directed downward from the agitating blade is guided outward in the radial direction of the rotating shaft, the agitating fluid after the direction change is directed toward the radial direction periphery. You can partition and guide.
According to the eighth technical feature of the present invention, when the agitating fluid directed downward from the agitating blade is guided outward in the radial direction of the rotating shaft, the direction of the agitating fluid is changed toward the radial direction at the same time. You can partition and guide.
◎実施の形態の概要
図1(a)は本発明が適用された撹拌装置の実施の形態の概要を示し、同図(b)はその要部を示す斜視図である。
同図において、撹拌装置は、有底の断面略円形状の空洞部1aを有し、当該空洞部1aに撹拌流体Fが収容可能な撹拌槽1と、撹拌槽1の上部略中央から下方に向かって垂下し、撹拌槽1の底部1bと非接触になるように設置される回転軸2と、回転軸2の下端部に設けられ、回転軸2と共に回転して撹拌槽1内の撹拌流体Fを撹拌し、当該撹拌流体Fに下方に向かう流れを与える撹拌翼3と、回転軸2及び回転翼3と非接触に配置されるように撹拌槽1の底部1bに設けられ、撹拌翼3から下方に向かう撹拌流体Fを回転軸2の径方向外方に向けて案内する案内部4と、を備え、案内部4は、撹拌槽1の底部1bのうち撹拌翼3に対向する部位に設けられ、撹拌翼3から下方に向かう撹拌流体Fの流れ方向m1を回転軸2の径方向外方m2に向けて変更する方向変更部5と、方向変更部5の周囲に放射状に複数設けられ、方向変更部5の周囲の領域を複数の領域に仕切る仕切り部6と、を有するものである。
Outline of Embodiment FIG. 1A shows an outline of an embodiment of a stirring device to which the present invention is applied, and FIG. 1B is a perspective view showing the main part thereof.
In the figure, the stirring device has a hollow portion 1a having a bottomed cross-sectional shape that is substantially circular, and a stirring tank 1 that can contain a stirring fluid F in the hollow portion 1a, and a lower part from the substantially upper center of the stirring tank 1. A rotating shaft 2 that is suspended so as to be in non-contact with the bottom 1b of the stirring tank 1, and is provided at the lower end of the rotating shaft 2, and rotates together with the rotating shaft 2 to stir fluid in the stirring tank 1 The stirring blade 3 that stirs F and applies a downward flow to the stirring fluid F, and is provided at the bottom 1b of the stirring tank 1 so as to be disposed in non-contact with the rotating shaft 2 and the rotating blade 3, and the stirring blade 3 And a guide part 4 for guiding the agitating fluid F directed downward from the rotary shaft 2 radially outward. The guide part 4 is provided at a portion of the bottom 1b of the agitation tank 1 facing the agitation blade 3. The flow direction m1 of the stirring fluid F that is provided and is directed downward from the stirring blade 3 is defined as the radially outward direction m2 of the rotating shaft 2. A direction changing unit 5 for changing toward those having provided more radially around the direction changing unit 5, a partition portion 6 for partitioning the area around the direction changing portion 5 into a plurality of regions, the.
このような技術的手段において、撹拌槽1は通常は有底の略円筒状のもので形成されるが、これに限られず、有底の断面略円形状の空洞部1aを有していれば外形は問わない。ここで、断面略円形状の空洞部1aとしては円柱状に限らず、逆円錐台状、円錐台状等をも広く含む。
また、回転軸2は撹拌槽1の略中央に配置されていればよく、撹拌槽1の上部略中央から垂下した状態で撹拌槽1の底部1bとは非接触に配置される方式が多く採用される。
更に、撹拌翼3は回転軸2の下端部に設けられていればよく、回転軸2の最下端位置が撹拌翼3よりも下方に突出する態様をも含む。また、撹拌翼3の種類としては、撹拌流体Fを撹拌して下方(鉛直方向は勿論、斜め下方も含む)に向かう流れを与えるものであれば、プロペラ翼、パドル翼など適宜選定して差し支えなく、また、回転軸2の軸方向に対して一若しくは複数設けられる。
In such technical means, the agitation tank 1 is usually formed in a substantially cylindrical shape with a bottom, but is not limited thereto, and has a hollow portion 1a having a substantially circular cross section with a bottom. The outer shape does not matter. Here, the hollow portion 1a having a substantially circular cross section is not limited to a columnar shape, but also includes an inverted truncated cone shape, a truncated cone shape, and the like.
Moreover, the rotating shaft 2 should just be arrange | positioned in the approximate center of the stirring tank 1, and employ | adopts the system arrange | positioned in non-contact with the bottom part 1b of the stirring tank 1 in the state suspended from the upper approximate center of the stirring tank 1. Is done.
Furthermore, the stirring blade 3 should just be provided in the lower end part of the rotating shaft 2, and the mode which the lowest end position of the rotating shaft 2 protrudes below the stirring blade 3 is also included. Further, as the type of the stirring blade 3, any propeller blade, paddle blade, etc. may be appropriately selected as long as the stirring fluid F is stirred to give a downward flow (including not only the vertical direction but also obliquely downward). Further, one or more are provided in the axial direction of the rotating shaft 2.
更にまた、案内部4は、撹拌槽1の底部1bに設けられ、撹拌翼3から下方に向かう撹拌流体Fを回転軸2の放射方向に向けて案内するものであればよく、本件では、方向変更部5と仕切り部6とを、いずれか一方では所望の案内作用が得られないので、いずれも有することを要する。
また、方向変更部5は下方に向かう撹拌流体Fの流れ方向m1を回転軸2の径方向外方m2に変更する面を有するものであればよく、撹拌翼3に対向する部位全域が曲面状、多面平面状でもよいし、あるいは、撹拌翼3に対向する部位の一部に放射状に延びる凸条や凹溝を設け、これらに所望の面を形成するようにしてもよい。更に、方向変更部5は撹拌槽1の底部1bと一体的に形成してもよいし、別体のものを溶接等で固着してもよい。
また、仕切り部6はリブ状の均一の板材を用いてもよいし、あるいは、板厚が変化する板材を用いてもよいし、上下方向の高さ寸法も一律に決めてもよいし、回転軸2の径方向外方に向かって変化してもよい。更に、仕切り部6は方向変更部5と別体に設けてもよいし、一体的に形成してもよい。
Furthermore, the guide unit 4 may be provided on the bottom 1b of the stirring tank 1 and guides the stirring fluid F directed downward from the stirring blade 3 toward the radial direction of the rotating shaft 2, and in this case, the direction Since either one of the changing unit 5 and the partition unit 6 cannot obtain a desired guiding action, it is necessary to have both.
Moreover, the direction change part 5 should just have a surface which changes the flow direction m1 of the stirring fluid F which goes below to the radial direction outer side m2 of the rotating shaft 2, and the whole site | part facing the stirring blade 3 is curved. Alternatively, it may be multi-planar or may be provided with a ridge or groove extending radially in a part of the portion facing the stirring blade 3 to form a desired surface. Furthermore, the direction change part 5 may be formed integrally with the bottom 1b of the stirring tank 1, or a separate one may be fixed by welding or the like.
Moreover, the partition part 6 may use a rib-shaped uniform board | plate material, or may use the board | plate material from which board thickness changes, and the height dimension of an up-down direction may be decided uniformly, and rotation You may change toward the radial direction outward of the axis | shaft 2. FIG. Furthermore, the partition part 6 may be provided separately from the direction changing part 5 or may be formed integrally.
このように、本例の案内部4は、前述したように、方向変更部5によって撹拌翼3から下方に向かう撹拌流体Fの流れ方向m1を回転軸2の径方向外方m2に向けて変更し、仕切り部6によって仕切られた領域毎に略均等に分配された撹拌流体Fを、撹拌槽1の内部側壁1cの下部に向けて導き、更に内部側壁1c下部から撹拌槽1の内部側壁1cに沿って矢印m3に向けて上昇方向に移動させ、撹拌翼3の撹拌動作に伴って上昇方向に移動した撹拌流体Fを撹拌流体Fの表面付近から回転軸2方向に移動させ、撹拌翼3の上側から再び吸い込む。このため、撹拌翼3によって下方に移動した撹拌流体Fを、撹拌槽1の案内部4を通じて撹拌槽1の内部側壁1cに向かって移動させ、更に、内部側壁1c下部から撹拌槽1の内部側壁1cに沿って上昇移動させた後に撹拌流体Fの表面付近で回転軸2方向に移動させ、再び撹拌翼3に戻るという上下方向(回転軸2の軸方向に相当)の軸流が主体となり循環移動する循環流を生成することになる。 Thus, as described above, in the guide unit 4 of this example, the direction changing unit 5 changes the flow direction m1 of the stirring fluid F directed downward from the stirring blade 3 toward the radially outer side m2 of the rotating shaft 2. Then, the stirring fluid F distributed substantially evenly for each region partitioned by the partition 6 is guided toward the lower part of the inner side wall 1c of the stirring tank 1, and further, the inner side wall 1c of the stirring tank 1 is guided from the lower part of the inner side wall 1c. Is moved in the upward direction toward the arrow m3, and the stirring fluid F moved in the upward direction in accordance with the stirring operation of the stirring blade 3 is moved in the direction of the rotating shaft 2 from the vicinity of the surface of the stirring fluid F. Inhale again from above. For this reason, the stirring fluid F moved downward by the stirring blade 3 is moved toward the inner side wall 1c of the stirring tank 1 through the guide portion 4 of the stirring tank 1, and further, the inner side wall of the stirring tank 1 from the lower side of the inner side wall 1c. Circulating mainly by an axial flow in the vertical direction (corresponding to the axial direction of the rotating shaft 2) in which it is moved upward along 1c, moved in the direction of the rotating shaft 2 near the surface of the stirring fluid F, and returned to the stirring blade 3 again. A moving circulating flow will be generated.
次に、本実施の形態に係る撹拌装置の代表的態様又は好ましい態様について説明する。
先ず、案内部4のうち方向変更部5の代表的態様としては、撹拌槽1の底部1bの略中央部分が他の部分に比べて山型状に隆起した隆起部として構成されている態様が挙げられる。本例は、撹拌槽1の底部1bの略中央部に山型状隆起部を形成できればよく、方向変更部5の形状については金型成形や溶接等で容易に形成することが可能である。尚、山型状隆起部については撹拌槽1の底部1bの肉厚を部分的に厚肉にした中実構造でもよいし、底部1bの厚さは変えずに隆起させるようにしてもよい。特に、前者の中実構造の態様では、山型状隆起部が撹拌槽1の底部1bの強度を高めるための補強部としても機能する。
この種の方向変更部5の好ましい態様としては、撹拌翼3の翼径よりも大きい外径の山型状隆起部である態様が挙げられる。本例は、山型状隆起部の外径が撹拌翼3の翼径よりも大きい態様であるので、撹拌翼3から下方に向かう撹拌流体Fの大部分は山型状隆起部の表面に当たり、その流れ方向m1が回転軸2の径方向外方m2に向かって変更される。尚、山型状隆起部の外径が撹拌翼3の翼径よりも小さい態様では、撹拌翼3と撹拌槽1の底部1b平面部との間に、部分的な循環流動(渦流)が形成される虞れがあり、それを避けるように適宜条件設定することが好ましい。
Next, a typical aspect or a preferable aspect of the stirring apparatus according to the present embodiment will be described.
First, as a typical aspect of the direction changing part 5 in the guide part 4, there is an aspect in which the substantially central part of the bottom part 1b of the stirring tank 1 is configured as a raised part that is raised in a mountain shape as compared with other parts. Can be mentioned. In this example, it suffices if a chevron-like raised portion can be formed at the substantially central portion of the bottom 1b of the stirring tank 1, and the shape of the direction changing portion 5 can be easily formed by molding or welding. In addition, about the mountain-shaped protruding part, the solid structure which made the thickness of the bottom part 1b of the stirring tank 1 partially thick may be sufficient, and you may make it raise without changing the thickness of the bottom part 1b. In particular, in the case of the former solid structure, the mountain-shaped raised portion also functions as a reinforcing portion for increasing the strength of the bottom portion 1 b of the stirring tank 1.
As a preferable aspect of this kind of direction change part 5, the aspect which is a mountain-shaped protruding part of the outer diameter larger than the blade diameter of the stirring blade 3 is mentioned. In this example, since the outer diameter of the mountain-shaped ridge is larger than the blade diameter of the stirring blade 3, most of the stirring fluid F directed downward from the stirring blade 3 hits the surface of the mountain-shaped ridge, The flow direction m1 is changed toward the radially outer side m2 of the rotating shaft 2. In the aspect in which the outer diameter of the mountain-shaped ridge is smaller than the blade diameter of the stirring blade 3, a partial circulation flow (vortex) is formed between the stirring blade 3 and the flat portion of the bottom 1 b of the stirring tank 1. It is preferable to set conditions appropriately so as to avoid such a situation.
また、案内部4のうち仕切り部6の好ましい態様としては、山型状隆起部の方向変更部5の周囲に放射状に伸びる3以上設置される態様が挙げられる。当該仕切り部6の配置は撹拌槽1の内部側壁1cに向かって放射状に配置されていれば特に限定されないが、隣り合う仕切り部6が極端に離れていれば方向変更部5の面上で渦流が発生する虞れがあるし、極端に接近している場合では仕切り部6間の間隙に渦流が発生する虞れが高くなるので、複数の仕切り部6は等間隔に配置されていることが好ましい。
本例は、方向変更部5にて方向変更された撹拌流体Fを仕切り部6の数分(3以上)の領域毎に略均等に放射させる態様である。ここで、仕切り部6の数が2であると、仕切られた領域が広く、当該領域内を円周方向に流れる流動が現れる懸念がある。
更に、仕切り部6の別の好ましい態様としては、方向変更部5内の領域から当該方向変更部5外の領域に跨がって設けられている態様が挙げられる。本例は、方向変更部5にて方向変更された撹拌流体Fを直ちに仕切り部6にて仕切られた流路に沿って案内する態様である。ここで、仕切り部6が方向変更部5の内外の領域に跨がっていない態様としては、方向変更部5外の領域にのみ設置される態様になるが、本態様では、方向変更された撹拌流体Fが仕切り部6による仕切り箇所に差し掛かる前に部分的な循環流動(渦流)が形成される懸念があることから、このような循環流動の発生を避けるように適宜条件設定することが好ましい。
Moreover, as a preferable aspect of the partition part 6 among the guide parts 4, the aspect installed 3 or more extended radially around the direction change part 5 of a mountain-shaped protruding part is mentioned. The arrangement of the partition part 6 is not particularly limited as long as the partition part 6 is arranged radially toward the inner side wall 1c of the stirring tank 1. However, if the adjacent partition parts 6 are extremely separated from each other, the vortex flows on the surface of the direction changing part 5 In the case of extremely close proximity, there is a high risk of eddy currents occurring in the gaps between the partition parts 6, so that the plurality of partition parts 6 may be arranged at equal intervals. preferable.
This example is a mode in which the stirring fluid F whose direction has been changed by the direction changing unit 5 is radiated substantially uniformly for every several minutes (three or more) of the partitioning unit 6. Here, when the number of the partition portions 6 is 2, the partitioned region is wide, and there is a concern that a flow flowing in the circumferential direction in the region appears.
Furthermore, as another preferable aspect of the partition part 6, the aspect provided ranging over the area | region outside the said direction change part 5 from the area | region in the direction change part 5 is mentioned. In this example, the stirring fluid F whose direction has been changed by the direction changing unit 5 is immediately guided along the flow path partitioned by the partition unit 6. Here, as an aspect in which the partition part 6 does not straddle the area inside and outside the direction changing part 5, it is an aspect that is installed only in the area outside the direction changing part 5, but in this aspect, the direction has been changed. Since there is a concern that a partial circulation flow (vortex) is formed before the stirring fluid F reaches the partition portion by the partition portion 6, it is possible to appropriately set conditions so as to avoid the occurrence of such a circulation flow. preferable.
更にまた、仕切り部6の別の好ましい態様としては、その上縁位置が回転軸2の径方向外方に向かって連続的に斜め下方に変化する態様が挙げられる。本例は、方向変更部5にて方向変更された撹拌流体Fの流れ方向を仕切り部6にて規制するが、撹拌槽1の内部側壁1cに近づくにつれて仕切り部6による仕切り効果を低減し、その分、撹拌流体Fが上方に向かって流れ易くなる態様である。
また、仕切り部6の別の好ましい態様としては、方向変更部5の最も上方に位置する部分よりも下方に位置する態様が挙げられる。本例は、方向変更部5による作用を重視した態様である。
更にまた、仕切り部6の別の好ましい態様としては、方向変更部5に面した領域で当該方向変更部5の最も上方に位置する部分よりも上方に位置する部分を有する態様が挙げられる。本例は、仕切り部6による作用を重視した態様である。
Furthermore, as another preferable aspect of the partition part 6, the aspect from which the upper edge position changes diagonally downward continuously toward the radial direction outer side of the rotating shaft 2 is mentioned. In this example, the flow direction of the stirring fluid F whose direction has been changed by the direction changing unit 5 is regulated by the partition unit 6, but the partitioning effect by the partition unit 6 is reduced as it approaches the inner side wall 1c of the stirring tank 1, This is a mode in which the stirring fluid F easily flows upward.
Moreover, as another preferable aspect of the partition part 6, the aspect located below rather than the part located in the uppermost part of the direction change part 5 is mentioned. This example is a mode in which the action by the direction changing unit 5 is emphasized.
Furthermore, as another preferable aspect of the partition part 6, the aspect which has a part located in the area | region which faced the direction change part 5 rather than the part located in the uppermost part of the said direction change part 5 is mentioned. This example is a mode in which the action by the partition 6 is emphasized.
以下、添付図面に示す実施の形態に基づいて本発明を更に詳細に説明する。
◎実施の形態1
図2(a)は実施の形態1に係る撹拌装置の全体構成を示す説明図である。
−撹拌装置の全体構成−
同図において、撹拌装置10は、所謂軸流タイプの撹拌装置であって、有底略円筒状の撹拌槽11内の中心軸に沿った位置に、撹拌翼30が具備された回転軸20を垂設すると共に、撹拌槽11の底部11bには、撹拌翼30から下方に向かう撹拌流体Fが回転軸20の径方向外方に向けて案内可能な案内部40を備えたものである。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.
Embodiment 1
FIG. 2A is an explanatory diagram showing the overall configuration of the stirring device according to the first embodiment.
-Overall configuration of the stirring device-
In the figure, a stirring device 10 is a so-called axial flow type stirring device, and a rotating shaft 20 provided with a stirring blade 30 is provided at a position along the central axis in a bottomed substantially cylindrical stirring tank 11. The bottom portion 11b of the stirring tank 11 is provided with a guide portion 40 that can guide the stirring fluid F downward from the stirring blade 30 toward the outside in the radial direction of the rotating shaft 20.
−撹拌槽−
撹拌槽11は上部に開口を有する中空な有底略円筒状の槽であり、流体の混合、溶解、晶析、反応、スラリー懸濁などの撹拌処理を行うため、槽内の空洞部11aに対象となる流体を収容するものである。流体の種類は特に制限されるものではなく、混合、溶解、晶析、反応、スラリー懸濁などの撹拌処理を必要とする2種以上の液体、あるいは、固体と液体の混合物である。
そして、撹拌槽11の上部の中央には回転軸20が下方に向かって垂下されており、回転軸20の上部は図示しないモータに接続されると共に、回転軸20の下端部は撹拌槽11の底部11bに対して非接触に配置されている。尚、撹拌槽11の上部の開口は開放されたままでもよいが、必要に応じて蓋部材12で塞ぐようにして差し支えないが、当該蓋部材12には回転軸20通過用の開口(孔や切欠)や対象となる流体の投入口等を確保するようにしておけばよい。
-Stirring tank-
The stirring tank 11 is a hollow bottomed and substantially cylindrical tank having an opening in the upper part, and performs stirring processes such as fluid mixing, dissolution, crystallization, reaction, slurry suspension, and the like in the cavity 11a in the tank. It contains the target fluid. The type of fluid is not particularly limited, and may be two or more liquids that require stirring treatment such as mixing, dissolution, crystallization, reaction, slurry suspension, or a mixture of solid and liquid.
A rotating shaft 20 hangs downward in the center of the upper portion of the stirring tank 11, and the upper portion of the rotating shaft 20 is connected to a motor (not shown) and the lower end of the rotating shaft 20 is connected to the stirring tank 11. It arrange | positions non-contacting with respect to the bottom part 11b. The opening at the top of the stirring tank 11 may be left open, but may be closed by the lid member 12 if necessary. However, the lid member 12 has an opening (a hole or It is sufficient to secure a notch) and a fluid inlet for the target fluid.
−撹拌翼−
本例では、回転軸20の下端部には撹拌翼30が撹拌槽11の底部11bとは非接触な状態で設けられており、撹拌翼30を回転させることにより、撹拌槽11内部の流体を撹拌するようになっている。
ここで、撹拌翼30は、図2(a)に示すように、回転軸20の下端部に嵌め込んで固定されるリング状の翼支持体31を有し、この翼支持体31の周囲には複数(本例では3つの)の翼部材32を等角度間隔で放射状に設けるようにしたものである。
特に、本例では、撹拌翼30としては傾斜パドル翼やプロペラ翼式の軸流翼を用いることが好ましく、回転軸20の回転と共に当該回転軸20に沿って下方向きの流れm1を生ずるようになっている。また、撹拌槽11内の軸流を制御するために、回転軸20の下端部に具備されている撹拌翼30の上方の回転軸20中間部に傾斜パドル翼やプロペラ翼を配置することも好ましい。
-Agitator blade-
In this example, a stirring blade 30 is provided at the lower end portion of the rotating shaft 20 in a non-contact state with the bottom portion 11b of the stirring tank 11, and by rotating the stirring blade 30, the fluid inside the stirring tank 11 is supplied. It is designed to stir.
Here, as shown in FIG. 2A, the stirring blade 30 has a ring-shaped blade support 31 fitted and fixed to the lower end portion of the rotary shaft 20, and around the blade support 31. Shows a plurality of (three in this example) blade members 32 provided radially at equal angular intervals.
In particular, in this example, it is preferable to use an inclined paddle blade or a propeller blade type axial flow blade as the stirring blade 30 so that a downward flow m1 is generated along the rotation shaft 20 with the rotation of the rotation shaft 20. It has become. In order to control the axial flow in the stirring tank 11, it is also preferable to arrange an inclined paddle blade or a propeller blade at the intermediate portion of the rotating shaft 20 above the stirring blade 30 provided at the lower end portion of the rotating shaft 20. .
−案内部−
本実施の形態において、案内部40は、図2(a)(b)及び撹拌流体Fの流れ方向概略を示す図3(a)(b)に示すように、撹拌翼30から下方に向かう撹拌流体Fの流れ方向m1を回転軸20の径方向外方m2に向けて変更する方向変更部50と、方向変更部50の周囲に放射状に複数設けられ、方向変更部50の周囲の領域を複数の領域に仕切る仕切り部60と、を備えている。
-Guide section-
In the present embodiment, the guide portion 40 is stirred downward from the stirring blade 30 as shown in FIGS. 2A and 2B and FIGS. 3A and 3B schematically showing the flow direction of the stirring fluid F. A direction changing unit 50 that changes the flow direction m1 of the fluid F toward the radially outer side m2 of the rotating shaft 20, and a plurality of radial regions around the direction changing unit 50, and a plurality of regions around the direction changing unit 50 And a partition portion 60 for partitioning the region.
<方向変更部>
図2(a)に示すように、本例において、方向変更部50は、撹拌槽11の底部11bのうち撹拌翼30に対向する部位に設けられ、撹拌槽11の底部11bの略中央部分が他の部分に比べて山型状に隆起した山型状隆起部として構成されている。本例では、方向変更部50としての山型状隆起部は撹拌槽11の底部11bの中心部を頂点とした曲面状の頂部51を有し、当該頂部51から撹拌槽11の底部11bの周辺に向かって緩やかな曲面をもって裾野へ広がるような形状を有している。このような山型隆起部を備えていることから、撹拌翼30直下の吐出流の流れ方向m1を撹拌槽11の内部側壁11cに向かう流れ方向m2とすることができ、撹拌槽11内で効率良く軸流が形成される。
そして、本例では、山型状隆起部の撹拌槽11の底部11bに接続する外径をdm、撹拌翼30の翼径をdw、撹拌槽11の空洞部11aの内径をdnとすれば、
dm<dn ……(1)
dm>dw ……(2)
の関係を満たすように設定されている。
ここで、各条件について補足する。
(1)については、山型状隆起部の撹拌槽11の底部11bに接続する位置が、撹拌槽11の内部側壁11cからは離間した位置に設定されることを意味するが、撹拌槽11の内部側壁11cに近接するまで裾野が広がっていても構わない。
また、(2)については、撹拌翼30にて下方に向かって流れる撹拌流体Fの大部分が撹拌槽11の底部11bのうち山型状隆起部に当り、回転軸20の径方向外方m2に向かって撹拌流体Fの流れを変更する上で有効である。
<Direction changer>
As shown in FIG. 2 (a), in this example, the direction changing unit 50 is provided in a portion of the bottom 11b of the stirring vessel 11 that faces the stirring blade 30, and the substantially central portion of the bottom 11b of the stirring vessel 11 is It is configured as a mountain-shaped raised portion that is raised in a mountain shape compared to other portions. In this example, the mountain-shaped raised portion as the direction changing portion 50 has a curved top 51 with the center of the bottom 11b of the stirring tank 11 as a vertex, and the periphery of the bottom 11b of the stirring tank 11 from the top 51 It has a shape that spreads toward the bottom with a gentle curved surface. Since such a mountain-shaped ridge is provided, the flow direction m1 of the discharge flow immediately below the stirring blade 30 can be set to the flow direction m2 toward the inner side wall 11c of the stirring tank 11, and the efficiency in the stirring tank 11 is increased. Axial flow is well formed.
And in this example, if the outer diameter connected to the bottom part 11b of the stirring tank 11 of the mountain-shaped ridge is dm, the blade diameter of the stirring blade 30 is dw, and the inner diameter of the cavity 11a of the stirring tank 11 is dn,
dm <dn (1)
dm> dw (2)
It is set to satisfy the relationship.
Here, it supplements about each condition.
About (1), although the position connected to the bottom part 11b of the stirring tank 11 of the mountain-shaped protruding part means that it is set in the position away from the internal side wall 11c of the stirring tank 11, The skirt may be expanded until it comes close to the inner side wall 11c.
As for (2), most of the stirring fluid F flowing downward by the stirring blade 30 hits the mountain-shaped raised portion of the bottom portion 11b of the stirring tank 11, and the radial outer side m2 of the rotating shaft 20 is reached. This is effective in changing the flow of the agitating fluid F toward.
山型状隆起部の形状は、特に限定されるものではなく、撹拌槽11に投入される流体の混合、溶解、晶析、反応、スラリー懸濁などの撹拌処理が効率良く行われるように、回転軸20の回転と共に当該回転軸20に沿って撹拌槽11の中心部を上方から下方に向かって流れる下降流と、撹拌槽11の内部側壁11c面に沿って下方から上方に向かって流れる上昇流とからなり、全体が1つの循環流を形成できるように、撹拌翼30直下の撹拌流体Fの下方に向かう吐出流の流れ方向m1を回転軸20の径方向外方m2に変更して上昇流に移行すべく適宜選定される。そして、山型状隆起部の形状は、前述した循環流に、部分的な循環流動が発生しないように、回転軸20の径方向に凹凸などが無い曲面で構成されていることが好ましい。 The shape of the mountain-shaped ridge is not particularly limited, so that the stirring treatment such as mixing, dissolution, crystallization, reaction, slurry suspension, etc. of the fluid charged into the stirring tank 11 is performed efficiently. A downward flow that flows from above to below along the center of the stirring tank 11 along the rotation axis 20 along with the rotation of the rotating shaft 20, and an upward flow that flows from below to above along the inner side wall 11c surface of the stirring tank 11. The flow direction m1 of the discharge flow toward the lower side of the stirring fluid F immediately below the stirring blade 30 is changed to the radially outward m2 of the rotary shaft 20 so that the whole can form one circulating flow. It is selected as appropriate to shift to the current. And it is preferable that the shape of the mountain-shaped bulge part is comprised by the curved surface which does not have an unevenness | corrugation in the radial direction of the rotating shaft 20, so that a partial circulation flow may not generate | occur | produce in the circulation flow mentioned above.
<仕切り部>
本例では、仕切り部60は、図2(a)(b)に示すように、方向変更部50としての山型状隆起部の周囲に放射状に延びる底面バッフルからなり、この底面バッフルは山型状隆起部の裾野部及び撹拌槽11の底面に対して略鉛直方向に立設するリブ状の板材にて構成され、山型状隆起部の裾野部及び撹拌槽11の底面に例えば溶接等にて固着され、山型状隆起部の周囲に等角度間隔に3以上(本例では4つ)設置されている。当該仕切り部60としての底面バッフルの配置は撹拌槽11の内部側壁11cに向かって放射状に配置されていれば特に限定されないが、隣り合う底面バッフルが極端に離れていれば山型状隆起部の面上で渦流が発生する虞れがあるし、極端に接近している場合では底面バッフル間の間隙に渦流が発生する虞れが高くなるので、複数の底面バッフルは等間隔に配置されていることが好ましい。
また、上記底面バッフルの設置数が多すぎると、軸流が含まれる循環流を生成するに当たって却って抵抗になる懸念もあり、6以下程度が好ましい。
また、本例では、図2に示すように、仕切り部60としての底面バッフルは、方向変更部50としての山型状隆起部の裾野部の領域から当該山型状隆起部外の撹拌槽11の底面に跨がって設けられている。
ここで、上記底面バッフルのうち山型状隆起部領域に設けられている部分は、山型状隆起部の頂部51よりも寸法gだけ下方に位置するように配置されている。そして、底面バッフルの上縁部のうち最も上方に位置する部位は、回転軸20の下端部に設けられた撹拌翼30の直下に位置するが、撹拌翼30からはある程度の隙間をもって配置されている。
更に、底面バッフルの下縁部は、方向変更部50としての山型状隆起部の裾野部及び撹拌槽11の底面形状に則って、方向変更部50の山型状隆起部の裾野部表面及び撹拌槽11の底面形状に略接触するように作製配置されている。
更にまた、仕切り部60としての底面バッフルの上縁部は、その上縁位置が回転軸20の径方向外方に向かって連続的に斜め下方に変化するような形状になっている。つまり、上記底面バッフルは、撹拌槽11の底面を基準位置として、上縁部高さが撹拌槽11の底部11b中心から径方向外方に向けてh0からh1(h1<h0)に徐々に減ずるようになっている。
<Partition section>
In this example, as shown in FIGS. 2 (a) and 2 (b), the partition portion 60 includes a bottom baffle extending radially around a mountain-shaped ridge as the direction changing portion 50, and the bottom baffle is a mountain shape. For example, welding is performed on the bottom of the chevron-like raised portion and the bottom of the stirring tank 11. Three or more (four in this example) are installed at equiangular intervals around the chevron-shaped ridge. The arrangement of the bottom baffle as the partition part 60 is not particularly limited as long as the bottom baffle is arranged radially toward the inner side wall 11c of the stirring tank 11, but if the adjacent bottom baffles are extremely far apart, There is a possibility that vortex flow may occur on the surface, and when it is extremely close, there is a high possibility that vortex flow is generated in the gap between the bottom surface baffles, so the plurality of bottom surface baffles are arranged at equal intervals. It is preferable.
Further, if the number of the bottom baffles installed is too large, there is a concern that resistance may be caused in generating a circulating flow including an axial flow, and about 6 or less is preferable.
Further, in this example, as shown in FIG. 2, the bottom baffle as the partition portion 60 is provided in the stirring tank 11 outside the mountain-shaped ridge from the region of the skirt of the mountain-shaped ridge as the direction changing portion 50. It is provided across the bottom surface.
Here, the portion of the bottom baffle provided in the mountain-shaped ridge region is arranged to be positioned below the top 51 of the mountain-shaped ridge by a dimension g. The uppermost part of the upper edge of the bottom baffle is located immediately below the stirring blade 30 provided at the lower end of the rotating shaft 20, but is arranged with a certain gap from the stirring blade 30. Yes.
Further, the bottom edge of the bottom baffle is formed in accordance with the bottom portion of the mountain-shaped ridges as the direction changing unit 50 and the bottom shape of the stirring tank 11, and the bottom surface of the mountain-shaped ridges of the direction changing unit 50 and It is fabricated and arranged so as to be substantially in contact with the bottom shape of the stirring tank 11.
Furthermore, the upper edge portion of the bottom baffle as the partition portion 60 has a shape such that the position of the upper edge continuously changes obliquely downward toward the outer side in the radial direction of the rotating shaft 20. That is, the bottom baffle gradually decreases from h0 to h1 (h1 <h0) from the center of the bottom 11b of the stirring tank 11 toward the radially outer side with the bottom surface of the stirring tank 11 as a reference position. It is like that.
−撹拌装置による撹拌動作例−
次に、本実施の形態1に係る撹拌装置の撹拌動作例について、図3を用いて説明する。
今、撹拌槽11の空洞部11a内に撹拌すべき撹拌流体Fを収容した後、回転軸20を回転させることで撹拌翼30による撹拌動作を開始すると、撹拌流体Fに対して以下のような撹拌動作が行われる。
先ず、撹拌翼30は、図3(a)に流れ方向m1で示すように、撹拌流体Fに対して下方に向かう流れを与える。この状態において、撹拌翼30から下方に向かう撹拌流体Fは、方向変更部50としての山型状隆起部の表面に衝突し、図3(a)(b)の流れ方向m2で示すように、山型状隆起部の表面で回転軸20の径方向外方(放射方向)に流れ方向を変更する。この後、放射方向に方向変更された撹拌流体Fは、複数(4つ)の底面バッフルで仕切られた領域毎に分配され、撹拌槽11の内部側壁11cの下部に向かって流れていく。
特に、本例では、撹拌翼30からの撹拌流体Fの下降流は方向変更部50としての山型状隆起部に衝突する際には仕切り部60としての底面バッフルによる仕切り作用を受けずに、山型状隆起部に沿って回転軸20の径方向外方m2に向かって方向変更することから、山型状隆起部の周囲において底面バッフルによる仕切り領域に撹拌流体Fを分配するときに、底面バッフルによる仕切り作用が弱く、各仕切り領域内に分配された撹拌流体F間での速度特性の差異は少ない。
-Example of stirring operation using a stirring device-
Next, an example of the stirring operation of the stirring device according to the first embodiment will be described with reference to FIG.
Now, after the stirring fluid F to be stirred is stored in the hollow portion 11a of the stirring tank 11, when the stirring operation by the stirring blade 30 is started by rotating the rotating shaft 20, the following is performed with respect to the stirring fluid F: A stirring operation is performed.
First, the stirring blade 30 applies a downward flow to the stirring fluid F as shown by the flow direction m1 in FIG. In this state, the stirring fluid F traveling downward from the stirring blade 30 collides with the surface of the mountain-shaped ridge as the direction changing unit 50, and as shown by the flow direction m2 in FIGS. 3 (a) and 3 (b), The flow direction is changed radially outward (radial direction) of the rotating shaft 20 on the surface of the mountain-shaped ridge. Thereafter, the stirring fluid F whose direction has been changed in the radial direction is distributed to each region partitioned by a plurality of (four) bottom baffles, and flows toward the lower portion of the inner side wall 11 c of the stirring tank 11.
In particular, in this example, when the descending flow of the stirring fluid F from the stirring blade 30 collides with the mountain-shaped raised portion as the direction changing portion 50, it is not subjected to the partitioning action by the bottom baffle as the partitioning portion 60, When the stirring fluid F is distributed to the partition region by the bottom baffle around the mountain-shaped protuberance, the direction is changed along the mountain-shaped protuberance toward the radially outward m2 of the rotary shaft 20. The partition action by the baffle is weak, and the difference in speed characteristics between the stirring fluids F distributed in each partition region is small.
更に、本例では、仕切り部60としての底面バッフルは回転軸20の径方向外方に向かって高さ寸法が次第に減ずる形状となっているため、底面バッフルによる仕切り領域に分配された各撹拌流体Fは、図3(a)(b)にm2で示すように、撹拌槽11の内部側壁11cに向かって流れ、当該内部側壁11cに衝突した後に、図3(a)に流れ方向m3に示すように、内部側壁11cに沿って上方に向かう上昇流に変化するが、各仕切り領域内に分配された撹拌流体Fは、底面バッフルの高さが低くなることから境界部分を早めに相互に補填しながら、撹拌槽11の内部側壁11cの周囲全体として略均一な上昇流として生成される。
そして、図3(a)に流れ方向m3で示すように、内部側壁11cに沿って上方に向かう上昇流となり、ある程度の位置に上昇した撹拌流体Fは、図3(a)に流れ方向m4で示すように、撹拌翼30による下降流への撹拌流体Fの流れに伴って撹拌翼30よりも上方に位置する回転軸20に沿った部位に生成される下降流に吸い込まれ、再び撹拌翼30付近に戻るという循環動作を繰り返す。
Furthermore, in this example, since the bottom baffle as the partition portion 60 has a shape in which the height dimension gradually decreases outward in the radial direction of the rotating shaft 20, each stirring fluid distributed to the partition region by the bottom baffle. As indicated by m2 in FIGS. 3 (a) and 3 (b), F flows toward the inner side wall 11c of the stirring vessel 11, and after colliding with the inner side wall 11c, F is shown in the flow direction m3 in FIG. 3 (a). As described above, the upward flow is changed upward along the inner side wall 11c, but the stirring fluid F distributed in each partition region compensates for the boundary portion earlier because the bottom baffle height is lowered. However, it is generated as a substantially uniform upward flow as a whole around the inner side wall 11 c of the stirring tank 11.
Then, as shown by the flow direction m3 in FIG. 3A, the agitating fluid F that has risen upward along the inner side wall 11c and has risen to a certain position is shown in FIG. 3A in the flow direction m4. As shown in the drawing, the agitating blade 30 is sucked into the downward flow generated along the rotating shaft 20 located above the stirring blade 30 with the flow of the stirring fluid F to the downward flow by the stirring blade 30 and is again stirred. It repeats the cyclic action of returning to the vicinity.
このように、本実施の形態によれば、撹拌槽11の底部11bに前述したような案内部40(方向変更部50、仕切り部60)を備えることにより、撹拌翼30の直下で撹拌流体Fの流れが減速せず、かつ、流れが撹拌槽11の外周方向に向き、その結果、撹拌槽11の底部11bから強力な上昇流を得ることができ、全体が1つの循環流を形成することができると理解される。
よって、特許文献1に示すように、撹拌槽の側壁にバッフルを設置した態様のように、撹拌槽の側壁にバッフルにかかる荷重に対応するための補強工事を行うことなく、撹拌槽の側壁にバッフルを設置した態様と同等の撹拌能力を得ることができる。
As described above, according to the present embodiment, the bottom portion 11b of the agitation tank 11 is provided with the guide part 40 (direction changing part 50, partition part 60) as described above, so that the agitation fluid F immediately below the agitation blade 30 is provided. The flow is not decelerated, and the flow is directed toward the outer periphery of the agitation tank 11, so that a strong upward flow can be obtained from the bottom 11b of the agitation tank 11, and the whole forms one circulation flow. It is understood that you can.
Therefore, as shown in Patent Document 1, as in the embodiment in which a baffle is installed on the side wall of the agitation tank, the side wall of the agitation tank is not subjected to reinforcement work to cope with the load applied to the baffle. The stirring ability equivalent to the aspect which installed the baffle can be obtained.
◎実施の形態2
図4(a)は実施の形態2に係る撹拌装置の全体構成を示す説明図、同図(b)はその撹拌装置で用いられる案内部の斜視図である。
同図において、撹拌装置10の基本的構成は、実施の形態1と同様に、撹拌槽11、回転軸20、撹拌翼30及び案内部40を備えているが、案内部40の構成が実施の形態1と異なっている。尚、実施の形態1と同様な構成要素については実施の形態1と同様な符号を付してここではその詳細な説明を省略する。
本実施の形態において、案内部40は、実施の形態1と略同様な構成の方向変更部50を備えているが、仕切り部60の構成が実施の形態1とは異なる構成になっている。
<方向変更部>
本例において、方向変更部50は、実施の形態1と略同様に、撹拌翼30に対向する部位に設けられ、撹拌槽11の底部11bの略中央部分が他の部分に比べて山型状に隆起した山型状隆起部として構成されている。本例では、山型状隆起部は撹拌槽11の底部11bの中心部を頂点とした曲面状頂部51を有し、当該頂部51から撹拌槽11の底部11bの周辺に向かって緩やかな曲面をもって裾野を形成し広がるような形状を有している。
尚、本例の山型状隆起部の寸法関係については実施の形態1と同様である。
Embodiment 2
FIG. 4A is an explanatory diagram showing the overall configuration of the stirring device according to the second embodiment, and FIG. 4B is a perspective view of a guide portion used in the stirring device.
In the figure, the basic configuration of the stirring device 10 includes the stirring tank 11, the rotating shaft 20, the stirring blade 30, and the guide unit 40, as in the first embodiment, but the configuration of the guide unit 40 is implemented. Different from Form 1. Components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted here.
In the present embodiment, the guide unit 40 includes a direction changing unit 50 having a configuration substantially similar to that of the first embodiment, but the configuration of the partition unit 60 is different from that of the first embodiment.
<Direction changer>
In this example, the direction changing portion 50 is provided in a portion facing the stirring blade 30 in substantially the same manner as in the first embodiment, and the substantially central portion of the bottom portion 11b of the stirring tank 11 has a mountain shape compared to the other portions. It is configured as a mountain-shaped ridge that is raised. In this example, the mountain-shaped ridge has a curved top 51 with the center of the bottom 11 b of the stirring tank 11 as the apex, and has a gently curved surface from the top 51 toward the periphery of the bottom 11 b of the stirring tank 11. It has a shape that forms a base and spreads out.
The dimensional relationship of the mountain-shaped ridges in this example is the same as in the first embodiment.
<仕切り部>
仕切り部60は、図4(a)(b)に示すように、実施の形態1と略同様な形状を備えており、方向変更部50としての山型状隆起部の周囲に放射状に延びる底面バッフルからなり、この底面バッフルは山型状隆起部の裾野部及び撹拌槽11の底面に対して略鉛直方向に立設するリブ状の板材にて構成され、撹拌槽11の底面に例えば溶接等にて固着され、山型状隆起部の周囲に等角度間隔に3以上(本例では4つ)設置されている。
実施の形態1と異なる点は、図4(a)(b)に示すように、山型状隆起部の周囲に放射状に延びる底面バッフルが、撹拌翼30直下であって、方向変更部50としての山型状隆起部の頂部51の中心部で全て連結固定されていることである。
また、仕切り部60としての全ての底面バッフルの上縁部は、山型状隆起部の頂部51の中心部から回転軸20の径方向外方に向かって斜め下方に傾斜する形状を有している。このため、本例では、底面バッフルは、山型状隆起部の頂部51表面よりも寸法kだけ高い高さを有して相互に連結固定されているが、回転軸20の下端部に設けられた撹拌翼30の下端部とは隙間をもって非接触に配置されている。
更に、上記底面バッフルの下縁部は、方向変更部50としての山型状隆起部の裾野部及び撹拌槽11の底面形状に則って、山型状隆起部の裾野部表面及び撹拌槽11の底面形状に略接触するように作成配置される。
<Partition section>
As shown in FIGS. 4A and 4B, the partition portion 60 has a shape substantially similar to that of the first embodiment, and extends radially around the mountain-shaped ridge as the direction changing portion 50. The bottom baffle is composed of a rib-like plate material that is erected in a substantially vertical direction with respect to the bottom of the mountain-shaped raised portion and the bottom surface of the agitation tank 11. And three or more (four in this example) are installed at equiangular intervals around the mountain-shaped ridge.
The difference from the first embodiment is that, as shown in FIGS. 4A and 4B, the bottom baffle extending radially around the mountain-shaped ridge is directly below the stirring blade 30, and is used as the direction changing unit 50. It is that all are connected and fixed by the center part of the top part 51 of this mountain-shaped protruding part.
Moreover, the upper edge part of all the bottom baffles as the partition part 60 has the shape which inclines below diagonally toward the radial direction outward of the rotating shaft 20 from the center part of the top part 51 of a mountain-shaped protruding part. Yes. For this reason, in this example, the bottom baffle has a height higher than the surface of the top 51 of the mountain-shaped ridge by a dimension k, and is connected and fixed to each other, but is provided at the lower end of the rotating shaft 20. The stirring blade 30 is disposed in a non-contact manner with a lower end portion of the stirring blade 30.
Further, the bottom edge of the bottom baffle is formed on the bottom surface of the chevron-like ridge and the bottom surface of the stirring tank 11 in accordance with the bottom part of the chevron-like ridge as the direction changing part 50 and the bottom shape of the stirring tank 11. It is created and arranged so as to substantially contact the bottom shape.
−撹拌装置による撹拌動作例−
次に、本実施の形態に係る撹拌装置による撹拌動作例について、図5を用いて説明する。
撹拌槽11の空洞部11a内に撹拌すべき撹拌流体Fを収容した後に、回転軸20を回転させることで撹拌翼30による撹拌動作を開始すると、撹拌流体Fに対して以下のような撹拌動作が行われる。
撹拌翼30は、図5(a)に流れ方向m1で示すように、撹拌流体Fに対して下方に向かう流れを与える。この状態において、撹拌翼30から下方に向かう撹拌流体Fは、方向変更部50としての山型状隆起部の表面に衝突し、流れ方向m2で示すように、山型状隆起部の表面で回転軸20の径方向外方(放射方向)に流れ方向を変更する。この後、放射方向に方向変更された撹拌流体Fは、複数(4つ)の底面バッフルで仕切られた領域毎に分配され、撹拌槽11の内部側壁11cの下部に向かって流れていく。
特に、本例では、撹拌翼30からの撹拌流体Fの下降流は山型状隆起部に衝突する際には、山型状隆起部の頂部51の中心部ですべて連結固定されている底面バッフルによる仕切り作用を受けて、山型状隆起部の表面にて放射方向に方向変更された撹拌流体Fは、各底面バッフルで仕切られた領域毎に分配されたまま、撹拌槽11の内部側壁11cの下部に向かって流れ、撹拌槽11の内部側壁11cに向かって略均等に到達する。
尚、仕切り部60としての底面バッフルの上縁部は、その上縁位置が回転軸20の径方向外方に向かって連続的に斜め下方に変化するような形状になっている。つまり、上記底面バッフルは、撹拌槽11の底面を基準位置として、上縁部高さが撹拌槽11の底部11b中心から径方向外方に向けてh0からh1(h1<h0)に徐々に減ずるようになっているが、その作用については実施の形態1と略同様である。
そして、撹拌槽11の内部側壁11cの下部に到達した撹拌流体Fは、図5(a)に流れ方向m3で示すように、内部側壁11cに沿って略均等に上方に向かう上昇流となり、ある程度の位置に上昇した撹拌流体Fは、図5(a)に流れ方向m4で示すように、撹拌翼30による下降流への撹拌流体Fの流れに伴って撹拌翼30よりも上方に位置する回転軸20に沿った部位に生成される下降流に吸い込まれ、再び撹拌翼30付近に戻るという循環動作を繰り返す。
-Example of stirring operation using a stirring device-
Next, an example of a stirring operation by the stirring device according to the present embodiment will be described with reference to FIG.
After the stirring fluid F to be stirred is stored in the hollow portion 11a of the stirring tank 11, when the stirring operation by the stirring blade 30 is started by rotating the rotating shaft 20, the following stirring operation is performed on the stirring fluid F. Is done.
The stirring blade 30 applies a downward flow to the stirring fluid F as indicated by the flow direction m1 in FIG. In this state, the stirring fluid F traveling downward from the stirring blade 30 collides with the surface of the mountain-shaped ridge as the direction changing unit 50 and rotates on the surface of the mountain-shaped ridge as indicated by the flow direction m2. The flow direction is changed radially outward (radial direction) of the shaft 20. Thereafter, the stirring fluid F whose direction has been changed in the radial direction is distributed to each region partitioned by a plurality of (four) bottom baffles, and flows toward the lower portion of the inner side wall 11 c of the stirring tank 11.
In particular, in this example, when the downward flow of the stirring fluid F from the stirring blade 30 collides with the mountain-shaped ridge, the bottom baffle that is all connected and fixed at the center of the top 51 of the mountain-shaped ridge. The stirring fluid F that has undergone the partitioning action and is changed in the radial direction on the surface of the chevron-like raised portion is distributed to each region partitioned by each bottom baffle, and the inner side wall 11c of the stirring tank 11 Toward the lower side of the tank and reaches substantially uniformly toward the inner side wall 11 c of the stirring tank 11.
Note that the upper edge portion of the bottom baffle as the partition portion 60 has a shape such that the upper edge position continuously changes obliquely downward toward the outer side in the radial direction of the rotating shaft 20. That is, the bottom baffle gradually decreases from h0 to h1 (h1 <h0) from the center of the bottom 11b of the stirring tank 11 toward the radially outer side with the bottom surface of the stirring tank 11 as a reference position. The operation is substantially the same as that of the first embodiment.
And the stirring fluid F which reached the lower part of the internal side wall 11c of the stirring tank 11 becomes an upward flow substantially uniformly upward along the internal side wall 11c as shown by the flow direction m3 in FIG. The stirring fluid F that has risen to the position of FIG. 5 is rotated above the stirring blades 30 as the stirring fluid F flows downwardly by the stirring blades 30 as indicated by the flow direction m4 in FIG. The circulation operation of being sucked into the downward flow generated at the site along the shaft 20 and returning to the vicinity of the stirring blade 30 again is repeated.
◎変形の形態1,2
案内部40としては、実施の形態1,2に示す態様に限られるものではなく、例えば図6(a)(b)に示す変形の形態1,2を用いてもよいことは勿論である。
図6(a)に示す案内部40は、例えば方向変更部50としての山型状隆起部に多面平面状面部55を形成したものである。
また、図6(b)に示す案内部40は、方向変更部50としての山型状隆起部の表面に回転軸20の径方向外方(放射方向)に延びる凹溝で分けられた複数の凸条部56を設けたものである。
◎ Deformation forms 1, 2
The guide unit 40 is not limited to the modes shown in the first and second embodiments, and for example, the first and second modified modes shown in FIGS. 6A and 6B may be used.
The guide part 40 shown to Fig.6 (a) forms the polyhedral planar surface part 55 in the mountain-shaped protruding part as the direction change part 50, for example.
Moreover, the guide part 40 shown in FIG.6 (b) is divided in the surface of the mountain-shaped protruding part as the direction change part 50 by the concave groove extended in the radial direction outward (radial direction) of the rotating shaft 20. As shown in FIG. A protruding portion 56 is provided.
次に、実施例1,2及び比較例1,2に係る撹拌装置について、その撹拌動作状態を評価するためのシミュレーションを行った。
◎実施例1
実施例1は、図7(a)に示すように、実施の形態1に係る撹拌装置10を具現化したもので、案内部40として、仕切り部60としての4つの底面バッフルが山型状隆起部の頂部で連結されておらず、方向変更部50としての山型状隆起部を高くした態様である。
シミュレーション条件は以下の通りである。
(a)撹拌槽11は、直径1.0m、高さ1.5mの円筒型であり、回転軸20は撹拌槽11中心軸上鉛直方向に設置されている。
(b)撹拌翼30は、直径0.3mの傾斜パドル(3枚羽根)を用いた。撹拌翼30の回転数は毎分300回転とした。
(c)初期状態では、撹拌すべき流体は高さ1.2mまで充填されているとした。用いた流体の特性値は、二次電池用正極活物質の前駆体であるニッケル複合水酸化物を製造する晶析槽のスラリーを念頭に置き、比重1100kg/m3、粘度0.0013Pa・sとした。
(d)撹拌槽11の底面部中心を頂点とした山型状隆起部の高さは0.2mとした。また、撹拌槽11の底部11bのうち山型状隆起部内外に跨がるように放射状に延びる4枚のリブ状の底面バッフルを配設した。
◎実施例2
実施例2は、図7(b)に示すように、実施の形態2に係る撹拌装置10を具現化したもので、案内部40として、方向変更部50としての山型状隆起部よりも仕切り部60としての4つの底面バッフルを高くし、かつ、山型状隆起部の頂部の中心部にて各底面バッフルを連結固定した態様である。
シミュレーション条件については実施例1の(a)〜(d)と同様である。
Next, for the stirring devices according to Examples 1 and 2 and Comparative Examples 1 and 2, a simulation for evaluating the stirring operation state was performed.
Example 1
As shown in FIG. 7A, Example 1 is an embodiment of the agitation device 10 according to Embodiment 1, in which four bottom baffles as a partition 60 are raised in a mountain shape as a guide 40. It is the state which was not connected with the top part of a part, and raised the mountain-shaped protruding part as the direction change part 50. FIG.
The simulation conditions are as follows.
(A) The stirring tank 11 has a cylindrical shape with a diameter of 1.0 m and a height of 1.5 m, and the rotating shaft 20 is installed in the vertical direction on the central axis of the stirring tank 11.
(B) As the stirring blade 30, an inclined paddle (three blades) having a diameter of 0.3 m was used. The rotation speed of the stirring blade 30 was 300 rotations per minute.
(C) In the initial state, the fluid to be stirred is filled to a height of 1.2 m. The characteristic values of the fluid used were as follows: a specific gravity of 1100 kg / m 3 and a viscosity of 0.0013 Pa · s, keeping in mind a slurry of a crystallization tank for producing a nickel composite hydroxide which is a precursor of a positive electrode active material for a secondary battery. It was.
(D) The height of the mountain-shaped ridge with the center of the bottom surface of the stirring tank 11 as the apex was 0.2 m. In addition, four rib-shaped bottom baffles extending radially so as to straddle the inside and outside of the mountain-shaped raised portion of the bottom portion 11b of the stirring tank 11 were disposed.
Example 2
As illustrated in FIG. 7B, Example 2 embodies the stirring device 10 according to the second embodiment. The guide unit 40 is more partitioned than the mountain-shaped ridges as the direction changing unit 50. In this embodiment, the four bottom baffles as the portion 60 are raised and the bottom baffles are connected and fixed at the center of the top of the mountain-shaped ridge.
The simulation conditions are the same as (a) to (d) of the first embodiment.
◎比較例1
比較例1の撹拌装置10’は、図7(c)に示すように、撹拌槽11内の上部中心から下方に向けて撹拌翼30が具備された回転軸20を垂下し、撹拌槽11内部には特別な加工を施していない態様である。
シミュレーション条件については実施例1の(a)〜(c)と同様である。
◎比較例2
比較例2は、図7(d)に示すように、比較例1と同様な撹拌装置10’に加えて、撹拌槽11の内部側壁11cにバッフル100を設置した態様である。
シミュレーション条件については実施例1の(a)〜(c)に加えて、以下の(e)を用いた。
(e)撹拌槽11の内部側壁11cに備えられたバッフル100については、バッフル高さは流体の高さ1.2mよりも高く、バッフル上部は液面よりも上に露出している状態とした。撹拌槽11内に突出するバッフル幅は0.15mとした。
◎比較例3
比較例3は、実施例1に係る撹拌装置10の案内部40のうち方向変更部50としての山型状隆起部を残し、仕切り部60としての底面バッフルを取り除いた態様である。
シミュレーション条件については実施例1の(a)〜(c)及び(d)の山型状隆起部の条件を用いた。
◎比較例4
比較例4は、実施例1に係る撹拌装置10の案内部40のうち方向変更部50としての山型状隆起部を用いないで仕切り部60としての底面バッフルのみを用いた態様である。
シミュレーション条件については実施例1の(a)〜(c)及び(d)の底面バッフル60の条件を用いた。
◎ Comparative Example 1
As shown in FIG. 7 (c), the stirring device 10 ′ of Comparative Example 1 hangs down the rotating shaft 20 provided with the stirring blades 30 from the upper center in the stirring tank 11 downward, Is a mode in which no special processing is applied.
The simulation conditions are the same as (a) to (c) of the first embodiment.
◎ Comparative Example 2
In Comparative Example 2, as shown in FIG. 7 (d), a baffle 100 is installed on the inner side wall 11 c of the stirring tank 11 in addition to the same stirring device 10 ′ as in Comparative Example 1.
Regarding the simulation conditions, the following (e) was used in addition to (a) to (c) of Example 1.
(E) About the baffle 100 with which the internal side wall 11c of the stirring tank 11 was equipped, the baffle height was higher than the height of 1.2 m of fluid, and the baffle upper part was made into the state exposed above the liquid level. . The baffle width protruding into the stirring tank 11 was 0.15 m.
◎ Comparative Example 3
Comparative Example 3 is a mode in which the mountain-shaped raised portion as the direction changing portion 50 is left in the guide portion 40 of the stirring device 10 according to the first embodiment, and the bottom baffle as the partition portion 60 is removed.
As the simulation conditions, the conditions of the mountain-shaped ridges of (a) to (c) and (d) of Example 1 were used.
◎ Comparative Example 4
The comparative example 4 is an aspect using only the bottom surface baffle as the partition part 60 without using the mountain-shaped protruding part as the direction changing part 50 in the guide part 40 of the stirring apparatus 10 according to the first embodiment.
As the simulation conditions, the conditions of the bottom baffle 60 of (a) to (c) and (d) of Example 1 were used.
−シミュレーション結果−
実施例1,2及び比較例1〜4について、それぞれの撹拌槽11に流体を投入し、回転軸20を回転して撹拌翼30にて撹拌槽11の流体を撹拌したときの流体の撹拌状態をシミュレーションによって比較・確認した。
シミュレーションには、解析ソフトとして、流体解析ソフト[CFX:ANSYS Inc.]を用いた。
-Simulation results-
Regarding Examples 1 and 2 and Comparative Examples 1 to 4, fluids are put into the respective stirring tanks 11, and the stirring state of the fluids when the rotating shaft 20 is rotated and the fluid in the stirring tank 11 is stirred by the stirring blade 30. Were compared and confirmed by simulation.
For the simulation, fluid analysis software [CFX: ANSYS Inc. ] Was used.
◎実施例1
シミュレーション結果を図8(a)に示す。
同図においては、流線により流体の流れる方向を示し、流体の流速については異なる色相で表記したものをグレースケールで表記したものである。ここで、図8(a)の流速表示については、濃青色では流速はゼロに近く、緑色付近であると1.5m/sの流速を有し、黄色付近では2.0m/sの流速であることを示している。尚、グレースケールでは、濃青色>緑色>黄色の順に濃い表示として表記されている。
図8(a)に示すように、撹拌槽11の底部11bの案内部40(方向変更部50としての山型状隆起部、仕切り部60としての底面バッフル)の設置効果により、撹拌槽11の底部11bに設置された山型状隆起部の形状にて撹拌翼30下部に生じる逆流領域を縮小させて撹拌流体の流速を高めていることに加えて、撹拌槽11の底部11bに設置された底面バッフルにて、撹拌翼30からの吐出流の旋回成分を撹拌槽11の内部側壁11cに向かう放射成分に変換することで軸流が主体となった循環流を生じていることがわかる。
また、撹拌槽11の底部11bから0.6mの高さ(流体の液面までの高さの半分の高さとなる)における流体の面を設定し、面上の各点における流体の流れる方向と鉛直上向き方向とのなす角度を求め、その角度が15°以内である領域を赤色で、15°を超える領域を青色で表記したものを、グレースケールで表記するようにした。
そして、赤色の領域が占める面積を計算した。このとき、赤色の領域が占める面積が大きいほど、撹拌槽11の内部側壁11cに沿って上方に向かう上昇流が多いことを示す。
結果を図10(a)に示す。尚、グレースケールでは、青色の領域が黒に近い灰色、赤色の領域が薄い灰色として表記される。以降の例も同様である。
本例では、赤色の領域が占める面積は0.128m2となった。撹拌槽11の底部11bに設置された底面バッフル間の案内部40から、内部側壁11cに沿って上方に向かう上昇流が発生していることがわかる。
以上の結果より、実施例1の構成の撹拌装置10であれば、撹拌槽11の内部側壁11cにバッフル100を設置した撹拌装置(比較例2参照)と同等の撹拌能力が得られることがわかる。
Example 1
The simulation result is shown in FIG.
In the figure, the flow direction of the fluid is indicated by streamlines, and the flow velocity of the fluid expressed in different hues is expressed in gray scale. Here, regarding the flow velocity display of FIG. 8A, the flow velocity is close to zero in dark blue, has a flow velocity of 1.5 m / s near green, and is 2.0 m / s near yellow. It shows that there is. In the gray scale, the display is dark in the order of dark blue>green> yellow.
As shown to Fig.8 (a), by the installation effect of the guide part 40 (the mountain-shaped protruding part as the direction change part 50, the bottom face baffle as the partition part 60) of the bottom part 11b of the stirring tank 11, of the stirring tank 11 In addition to increasing the flow rate of the agitating fluid by reducing the backflow region generated in the lower part of the agitating blade 30 in the shape of the chevron-like raised portion installed on the bottom 11b, it is installed on the bottom 11b of the agitating tank 11. It can be seen that a circulating flow mainly composed of an axial flow is generated by converting the swirl component of the discharge flow from the stirring blade 30 into a radiant component directed to the inner side wall 11c of the stirring tank 11 in the bottom baffle.
In addition, a fluid surface at a height of 0.6 m from the bottom 11b of the agitation tank 11 (half the height of the fluid up to the fluid surface) is set, and the direction of fluid flow at each point on the surface The angle formed with the vertically upward direction was determined, and the region where the angle was within 15 ° was expressed in red, and the region exceeding 15 ° was expressed in blue, and was expressed in gray scale.
The area occupied by the red region was calculated. At this time, the larger the area occupied by the red region, the more upward flow is directed upward along the inner side wall 11c of the stirring tank 11.
The results are shown in FIG. In the gray scale, the blue region is represented as gray near black and the red region is represented as light gray. The same applies to the following examples.
In this example, the area occupied by the red region is 0.128 m 2 . From the guide part 40 between the bottom baffles installed in the bottom part 11b of the stirring tank 11, it turns out that the upward flow which goes upwards along the internal side wall 11c has generate | occur | produced.
From the above results, it can be seen that, with the stirring device 10 having the configuration of Example 1, stirring ability equivalent to that of the stirring device (see Comparative Example 2) in which the baffle 100 is installed on the inner side wall 11c of the stirring tank 11 can be obtained. .
◎実施例2
シミュレーション結果を図8(b)に示す。
同図においては、流線により流体の流れる方向を示し、流体の流速については異なる色相で表記したものをグレースケールで表記したものである。尚、図8(b)の流速表示については図8(a)と同様である。
図8(b)に示すように、撹拌槽11の底部11bの案内部40(方向変更部50としての山型状隆起部、仕切り部60としての底面バッフル)の設置効果により、実施例1の結果(図8(a)参照)と略同様に、撹拌槽11の底部11bに設置された山型状隆起部の形状にて撹拌翼30下部に生じる逆流領域を縮小させて撹拌流体の流速を高めていることに加えて、撹拌槽11の底部11bに設置された底面バッフルにて、撹拌翼30からの吐出流の旋回成分を撹拌槽11の内部側壁11cに向かう放射成分に変換することで軸流が主体となった循環流を生じていることがわかる。
また、実施例1と同様に、撹拌槽11の底部11bから0.6mの高さ(流体の液面までの高さの半分の高さとなる)における流体の面を設定し、面上の各点における流体の流れる方向と鉛直上向き方向とのなす角度を求め、その角度が15°以内である領域を赤色で、15°を超える領域を青色で表記したものを、グレースケールで表記し、赤色の領域が占める面積を計算した。
結果を図10(b)に示す。本例では、赤色の領域が占める面積は0.131m2となった。撹拌槽11の底部11bの案内部40から、内部側壁11cの全周に亘って、当該内部側壁11cに沿って上方に向かう上昇流が発生していることがわかる。上昇流は、内部側壁11cの全周に亘って、実施例1よりもより広範囲で均一に発生していることがわかる。
以上の結果より、実施例2の構成の撹拌装置10であれば、撹拌槽11の内部側壁11cにバッフル100を設置した撹拌装置(比較例2参照)と同等の撹拌能力が得られることがわかる。
Example 2
The simulation result is shown in FIG.
In the figure, the flow direction of the fluid is indicated by streamlines, and the flow velocity of the fluid expressed in different hues is expressed in gray scale. The flow rate display in FIG. 8B is the same as that in FIG.
As shown in FIG. 8 (b), due to the installation effect of the guide part 40 (the mountain-shaped ridge part as the direction changing part 50 and the bottom baffle as the partition part 60) of the bottom part 11b of the stirring tank 11, In substantially the same manner as the result (see FIG. 8A), the flow rate of the stirring fluid is reduced by reducing the backflow region generated in the lower part of the stirring blade 30 in the shape of the mountain-shaped ridges installed at the bottom 11b of the stirring tank 11. In addition to being increased, the swirl component of the discharge flow from the stirring blade 30 is converted into a radiation component toward the inner side wall 11c of the stirring tank 11 by the bottom baffle installed at the bottom 11b of the stirring tank 11. It can be seen that a circulating flow mainly composed of an axial flow is generated.
Moreover, the surface of the fluid in the height of 0.6m from the bottom part 11b of the stirring tank 11 (it becomes half the height to the liquid level of the fluid) is set similarly to Example 1, and each surface on the surface is set. The angle between the fluid flow direction and the vertical upward direction at the point is obtained, and the region where the angle is within 15 ° is expressed in red, and the region exceeding 15 ° is expressed in blue. The area occupied by the region was calculated.
The results are shown in FIG. In this example, the area occupied by the red region is 0.131 m 2 . From the guide part 40 of the bottom part 11b of the stirring tank 11, it turns out that the upward flow which goes up along the said internal side wall 11c has generate | occur | produced over the perimeter of the internal side wall 11c. It can be seen that the upward flow is uniformly generated over a wider range than in the first embodiment over the entire circumference of the inner side wall 11c.
From the above results, it can be seen that the stirring device 10 having the configuration of Example 2 can obtain stirring ability equivalent to that of the stirring device (see Comparative Example 2) in which the baffle 100 is installed on the inner side wall 11c of the stirring tank 11. .
◎比較例1
シミュレーション結果を図9(a)に示す。
同図においては、流線により流体の流れる方向を示し、流体の流速については異なる色相で表記したものをグレースケールで表記したものである。尚、図9(a)の流速表示については図8(a)と同様である。
図9(a)に示すように、回転軸20の回転と共に撹拌翼30(傾斜パドル翼)から吐出される流れが持っている撹拌槽11の内部側壁11cに沿った旋回速度成分が増強され、旋回流を生じており、液面に近い領域で旋回流の流速が比較的高まっていることがわかる。
また、実施例1と同様に、撹拌槽11の底部11bから0.6mの高さ(流体の液面までの高さの半分の高さとなる)における流体の面を設定し、面上の各点における流体の流れる方向と鉛直上向き方向とのなす角度を求め、その角度が15°以内である領域を赤色で、15°を超える領域を青色で表記したものを、グレースケールで表記し、赤色の領域が占める面積を計算した。
結果を図11(a)に示す。本例では、赤色の領域が占める面積は0m2となった。旋回流が主であることが確認された。
◎ Comparative Example 1
The simulation result is shown in FIG.
In the figure, the flow direction of the fluid is indicated by streamlines, and the flow velocity of the fluid expressed in different hues is expressed in gray scale. The flow rate display in FIG. 9A is the same as that in FIG.
As shown in FIG. 9 (a), the swirl velocity component along the inner side wall 11c of the agitation tank 11 which the flow discharged from the agitation blade 30 (inclined paddle blade) has with the rotation of the rotating shaft 20 is enhanced, It turns out that the swirl flow is produced and the flow velocity of the swirl flow is relatively increased in the region close to the liquid surface.
Moreover, the surface of the fluid in the height of 0.6m from the bottom part 11b of the stirring tank 11 (it becomes half the height to the liquid level of the fluid) is set similarly to Example 1, and each surface on the surface is set. The angle between the fluid flow direction and the vertical upward direction at the point is obtained, and the region where the angle is within 15 ° is expressed in red, and the region exceeding 15 ° is expressed in blue. The area occupied by the region was calculated.
The results are shown in FIG. In this example, the area occupied by the red region is 0 m 2 . It was confirmed that the swirl flow was the main.
◎比較例2
シミュレーション結果を図9(b)に示す。
同図においては、流線により流体の流れる方向を示し、流体の流速については異なる色相で表記したものをグレースケールで表記したものである。尚、図9(b)の流速表示については図8(a)と同様である。
図9(b)に示すように、撹拌槽11の内部側壁11cに備えられたバッフル100の作用により、撹拌槽11の内部側壁11cに当たり底部から上昇流が形成され、軸流が主体となった循環流が生じていることがわかる。撹拌槽11の内部側壁11cに当たり底部からの上昇流の流速が比較的速いことがわかる。
また、実施例1と同様に、撹拌槽11の底部11bから0.6mの高さ(流体の液面までの高さの半分の高さとなる)における流体の面を設定し、面上の各点における流体の流れる方向と鉛直上向き方向とのなす角度を求め、その角度が15°以内である領域を赤色で、15°を超える領域を青色で表記したものを、グレースケールで表記し、赤色の領域が占める面積を計算した。
結果を図11(a)に示す。本例では、赤色の領域が占める面積は0.150m2となった。バッフル100の作用により、撹拌槽11の内部側壁11cの全周に亘って、当該内部側壁11cに沿って上方に向かう上昇流が発生していることがわかる。
◎ Comparative Example 2
The simulation result is shown in FIG.
In the figure, the flow direction of the fluid is indicated by streamlines, and the flow velocity of the fluid expressed in different hues is expressed in gray scale. The flow rate display in FIG. 9B is the same as that in FIG.
As shown in FIG. 9 (b), the baffle 100 provided on the inner side wall 11c of the stirring tank 11 hits the inner side wall 11c of the stirring tank 11, and an upward flow is formed from the bottom, and the axial flow is mainly used. It turns out that the circulation flow has arisen. It can be seen that the flow velocity of the upward flow from the bottom hits the inner side wall 11c of the stirring tank 11 and is relatively fast.
Moreover, the surface of the fluid in the height of 0.6m from the bottom part 11b of the stirring tank 11 (it becomes half the height to the liquid level of the fluid) is set similarly to Example 1, and each surface on the surface is set. The angle between the fluid flow direction and the vertical upward direction at the point is obtained, and the region where the angle is within 15 ° is expressed in red, and the region exceeding 15 ° is expressed in blue. The area occupied by the region was calculated.
The results are shown in FIG. In this example, the area occupied by the red region is 0.150 m 2 . It can be seen that due to the action of the baffle 100, an upward flow is generated along the inner side wall 11 c over the entire circumference of the inner side wall 11 c of the stirring tank 11.
◎比較例3,4
比較例3の撹拌装置では、実施例1のシミュレーション結果(図8(a)(b)参照)に示すような軸流が主体となった循環流を生成することは見られなかった。
実施例1と同様に、撹拌槽11の底部11bから0.6mの高さ(流体の液面までの高さの半分の高さとなる)における流体の面を設定し、面上の各点における流体の流れる方向と鉛直上向き方向とのなす角度を求め、その角度が15°以内である領域を赤色で、15°を超える領域を青色で表記したものを、グレースケールで表記し、赤色の領域が占める面積を計算した。
比較例3についての結果を図12(a)に示す。本例では、赤色の領域が占める面積は0m2となった。方向変更部50としての山型状隆起部を設置しただけでは、旋回流が主体となることがわかる。
また、比較例4についての結果を図12(b)に示す。本例では、赤色の領域が占める面積は0.119m2となった。仕切り部60としての底面バッフルのみを設置した態様では、底面バッフルの作用により、撹拌槽11の内部側壁11cの多くの領域で、当該内部側壁11cに沿って上方に向かう上昇流が発生していることがわかった。
但し、図12(b)の流線図に示されるように、撹拌翼30直下に位置する底面バッフルが交わる部分の周辺で流線が大きく折れ曲がったり捩れたりしていることがわかる。この流線の乱れにより、淀みや、流体中の固形物の堆積が発生する懸念があることがわかる。尚、図12(b)の流速表示については図8(a)と同様である。
◎ Comparative Examples 3 and 4
In the stirring apparatus of Comparative Example 3, it was not observed that a circulating flow mainly composed of an axial flow as shown in the simulation results of Example 1 (see FIGS. 8A and 8B) was generated.
Similarly to Example 1, the surface of the fluid at a height of 0.6 m from the bottom 11b of the agitation tank 11 (which is half the height to the liquid level of the fluid) is set, and at each point on the surface The angle between the fluid flow direction and the vertically upward direction is obtained, and the region where the angle is within 15 ° is expressed in red, the region exceeding 15 ° is expressed in blue, and the red region The area occupied by was calculated.
The results for Comparative Example 3 are shown in FIG. In this example, the area occupied by the red region is 0 m 2 . It can be seen that the swirling flow is the main component simply by installing the mountain-shaped raised portion as the direction changing portion 50.
Moreover, the result about the comparative example 4 is shown in FIG.12 (b). In this example, the area occupied by the red region is 0.119 m 2 . In the aspect in which only the bottom baffle as the partitioning portion 60 is installed, an upward flow is generated upward along the inner side wall 11c in many regions of the inner side wall 11c of the stirring tank 11 by the action of the bottom baffle. I understood it.
However, as shown in the streamline diagram of FIG. 12B, it can be seen that the streamline is greatly bent or twisted around the portion where the bottom baffle located immediately below the stirring blade 30 intersects. It can be seen that there is a concern that stagnation and accumulation of solid matter in the fluid may occur due to this streamline disturbance. Note that the flow velocity display in FIG. 12B is the same as in FIG.
本発明に係る撹拌装置においては、軸流撹拌操作の下で、流体の混合、溶解、晶析、反応、スラリー懸濁などの撹拌処理を効率良く行うことが可能である。
例えば、二次電池用正極活物質の前駆体であるニッケル複合水酸化物を、ニッケル塩を含有する水溶液と、中和剤および錯化剤とを、撹拌しながら供給して、晶析反応によって製造する方法で得るための反応容器として好適に用いることができる。
また、他の用途としては、原料であるニッケル混合硫化物に対して塩素ガスにより塩素浸出処理を施し、得られる塩素浸出液から電解採取法により電気ニッケルを製造する電気ニッケル製造プロセスにおける塩素浸出工程において、ニッケル酸化鉱の湿式製錬処理により得られたニッケル混合硫化物を原料とし、塩素ガスによってニッケルや銅等の金属成分を酸化浸出し、塩素浸出液(含銅塩化ニッケル溶液)を生成する反応槽にも好適に適用することができる。
In the stirring apparatus according to the present invention, stirring processes such as fluid mixing, dissolution, crystallization, reaction, and slurry suspension can be efficiently performed under an axial flow stirring operation.
For example, a nickel composite hydroxide, which is a precursor of a positive electrode active material for a secondary battery, is supplied with an aqueous solution containing a nickel salt, a neutralizing agent, and a complexing agent while stirring, and a crystallization reaction is performed. It can use suitably as a reaction container for obtaining with the manufacturing method.
As another application, in the chlorine leaching process in the electrical nickel production process, the nickel mixed sulfide as a raw material is subjected to chlorine leaching treatment with chlorine gas, and the resulting nickel leaching solution produces electrolytic nickel by electrowinning. , A reaction vessel that uses nickel mixed sulfide obtained by wet smelting treatment of nickel oxide ore as raw material, and oxidizes and leaches metal components such as nickel and copper with chlorine gas to produce chlorine leachate (copper-containing nickel chloride solution) It can be suitably applied to.
1 撹拌槽
1a 空洞部
1b 底部
1c 側壁
2 回転軸
3 撹拌翼
4 案内部
5 方向変更部
6 仕切り部
F 撹拌流体
10 撹拌装置
10’ 撹拌装置
11 撹拌槽
11a 空洞部
11b 底部
11c 側壁
12 蓋部材
20 回転軸
30 撹拌翼
31 翼支持体
32 翼部材
40 案内部
50 方向変更部
51 頂部
55 多面平面状面部
56 凸条部
60 仕切り部
100 バッフル
DESCRIPTION OF SYMBOLS 1 Stirring tank 1a Cavity part 1b Bottom part 1c Side wall 2 Rotating shaft 3 Stirring blade 4 Guide part 5 Direction change part 6 Partition part F Stir fluid 10 Stirrer 10 'Stirrer 11 Stirrer tank 11a Cavity part 11b Bottom part 11c Side wall 12 Lid member 20 Rotating shaft 30 Stirring blade 31 Blade support body 32 Blade member 40 Guide portion 50 Direction changing portion 51 Top portion 55 Multi-faceted planar surface portion 56 Projection portion 60 Partition portion 100 Baffle
Claims (8)
前記撹拌槽の上部略中央から下方に向かって垂下し、前記撹拌槽の底部と非接触になるように設置される回転軸と、
前記回転軸の下端部に設けられ、前記回転軸と共に回転して前記撹拌槽内の撹拌流体を撹拌し、当該撹拌流体に下方に向かう流れを与える撹拌翼と、
前記回転軸及び前記撹拌翼と非接触に配置されるように前記撹拌槽の底部に設けられ、前記撹拌翼から下方に向かう撹拌流体を前記回転軸の径方向外方に向けて案内する案内部と、を備え、
前記案内部は、前記撹拌槽の底部のうち前記撹拌翼に対向する部位に設けられ、前記撹拌翼から下方に向かう撹拌流体の流れ方向を前記回転軸の径方向外方に向けて変更する方向変更部と、前記方向変更部の周囲に放射状に複数設けられ、前記方向変更部の周囲の領域を複数の領域に仕切る仕切り部と、を有することを特徴とする撹拌装置。 A stirring tank that has a bottomed substantially circular cavity with a cross-section and can contain a stirring fluid in the cavity;
A rotating shaft that hangs downward from approximately the center of the upper part of the stirring tank and is set to be in non-contact with the bottom of the stirring tank;
A stirring blade that is provided at a lower end of the rotating shaft, rotates together with the rotating shaft, stirs the stirring fluid in the stirring tank, and applies a downward flow to the stirring fluid;
A guide portion that is provided at the bottom of the agitation tank so as to be disposed in non-contact with the rotating shaft and the agitating blade, and guides the agitating fluid directed downward from the agitating blade toward the radially outer side of the rotating shaft. And comprising
The guide portion is provided in a portion of the bottom portion of the stirring tank that faces the stirring blade, and changes a flow direction of the stirring fluid directed downward from the stirring blade toward a radially outward direction of the rotating shaft. An agitation device comprising: a change unit; and a plurality of partition portions radially provided around the direction change unit and partitioning a region around the direction change unit into a plurality of regions.
前記方向変更部は、前記撹拌槽の底部の略中央部分が他の部分に比べて山型状に隆起した隆起部として構成されていることを特徴とする撹拌装置。 The stirrer according to claim 1,
The said direction change part is comprised as a protruding part which the substantially center part of the bottom part of the said stirring tank protruded in the shape of a mountain compared with the other part, The stirring apparatus characterized by the above-mentioned.
前記方向変更部は、前記撹拌翼の翼径よりも大きい外径の山型状隆起部であることを特徴とする撹拌装置。 The stirrer according to claim 2,
The stirring device according to claim 1, wherein the direction changing portion is a mountain-shaped ridge having an outer diameter larger than a blade diameter of the stirring blade.
前記仕切り部は、前記方向変更部の周囲に等角度間隔に3以上設置されることを特徴とする撹拌装置。 The stirrer according to claim 1,
The agitation apparatus is characterized in that three or more of the partition parts are installed at equiangular intervals around the direction changing part.
前記仕切り部は、前記方向変更部内の領域から当該方向変更部外の領域に跨がって設けられていることを特徴とする撹拌装置。 The stirrer according to claim 1,
The agitation device according to claim 1, wherein the partition portion is provided so as to extend from a region inside the direction change unit to a region outside the direction change unit.
前記仕切り部は、その上縁位置が前記回転軸の径方向外方に向かって連続的に斜め下方に変化することを特徴とする撹拌装置。 The stirrer according to claim 1,
The partition device has a stirrer in which an upper edge position of the partition portion continuously changes obliquely downward toward a radially outward direction of the rotation shaft.
前記仕切り部は、前記方向変更部の最も上方に位置する部分よりも下方に位置することを特徴とする撹拌装置。 The stirrer according to claim 1,
The agitation device according to claim 1, wherein the partition portion is located below a portion located at an uppermost position of the direction changing portion.
前記仕切り部は、前記方向変更部に面した領域で当該方向変更部の最も上方に位置する部分よりも上方に位置する部分を有することを特徴とする撹拌装置。 The stirrer according to claim 1,
The said partition part has a part located above the part located in the uppermost part of the said direction change part in the area | region which faced the said direction change part, The stirring apparatus characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017148122A JP2019025433A (en) | 2017-07-31 | 2017-07-31 | Agitation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017148122A JP2019025433A (en) | 2017-07-31 | 2017-07-31 | Agitation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019025433A true JP2019025433A (en) | 2019-02-21 |
Family
ID=65477196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017148122A Pending JP2019025433A (en) | 2017-07-31 | 2017-07-31 | Agitation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019025433A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113713663A (en) * | 2021-05-31 | 2021-11-30 | 黑龙江省林业科学院伊春分院 | Preparation device and method of medicinal liquid for manufacturing acanthopanax soft capsules |
CN115946257A (en) * | 2022-12-29 | 2023-04-11 | 中山市华洋塑胶颜料有限公司 | Preparation method of ultra-dispersed ceramic white master batch |
EP3561925B1 (en) * | 2016-12-26 | 2024-07-10 | Sumitomo Metal Mining Co., Ltd. | Nonaqueous electrolyte positive electrode active material precursor |
JP7570495B2 (en) | 2020-09-11 | 2024-10-21 | エルジー・ケム・リミテッド | Reactor |
-
2017
- 2017-07-31 JP JP2017148122A patent/JP2019025433A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561925B1 (en) * | 2016-12-26 | 2024-07-10 | Sumitomo Metal Mining Co., Ltd. | Nonaqueous electrolyte positive electrode active material precursor |
JP7570495B2 (en) | 2020-09-11 | 2024-10-21 | エルジー・ケム・リミテッド | Reactor |
CN113713663A (en) * | 2021-05-31 | 2021-11-30 | 黑龙江省林业科学院伊春分院 | Preparation device and method of medicinal liquid for manufacturing acanthopanax soft capsules |
CN113713663B (en) * | 2021-05-31 | 2024-03-29 | 黑龙江省林业科学院伊春分院 | Device and method for preparing liquid medicine for manufacturing acanthopanax soft capsules |
CN115946257A (en) * | 2022-12-29 | 2023-04-11 | 中山市华洋塑胶颜料有限公司 | Preparation method of ultra-dispersed ceramic white master batch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019025433A (en) | Agitation device | |
KR101378068B1 (en) | Processing device | |
WO2017185431A1 (en) | Gas-liquid dispersion mixing device equipped with annular sector-shaped concave surface impeller blade | |
CN102068955A (en) | Flocculation reactor with special-shaped spoiler | |
EP0947240A2 (en) | Vertical agitating apparatus | |
US10865459B2 (en) | Reactor for gas-liquid mass transfer | |
EP2070588A1 (en) | Stirrer and stirring method | |
JP5013428B2 (en) | Stirrer | |
CN113557079B (en) | Stirring vane assembly and stirring tank | |
JP2018171562A (en) | Reaction tank and agitation reaction device | |
CN104870082B (en) | Agitator with the groove being internally formed in container | |
JP2018171561A (en) | Agitating and dissolving device | |
WO2006033276A2 (en) | Stirring apparatus | |
JP2013166984A (en) | Leaching vessel | |
JP4440407B2 (en) | Stirrer | |
CN204816310U (en) | Stirring tank | |
JP4935416B2 (en) | Stirring tank | |
JP3586685B2 (en) | Vertical stirrer | |
JP2015054272A (en) | Agitation device | |
JP2017039075A (en) | Solid-liquid agitation device | |
CN109289579A (en) | Double-layer convection formula agitating paddle | |
CN202315896U (en) | Reactor for producing chemical cleaning agent | |
JP2019209240A (en) | Stirring method and stirring device | |
JP2021084077A (en) | Stirring device and gas-liquid mixing method | |
JP4909201B2 (en) | Stirrer |