JP2019025430A - Method for treating digested sludge desorption liquid, treatment apparatus thereof, waste water treatment method and wastewater treatment apparatus - Google Patents

Method for treating digested sludge desorption liquid, treatment apparatus thereof, waste water treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2019025430A
JP2019025430A JP2017147864A JP2017147864A JP2019025430A JP 2019025430 A JP2019025430 A JP 2019025430A JP 2017147864 A JP2017147864 A JP 2017147864A JP 2017147864 A JP2017147864 A JP 2017147864A JP 2019025430 A JP2019025430 A JP 2019025430A
Authority
JP
Japan
Prior art keywords
liquid
digested sludge
sludge
concentration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017147864A
Other languages
Japanese (ja)
Other versions
JP6839047B2 (en
Inventor
三浦 雅彦
Masahiko Miura
雅彦 三浦
航介 渡邉
Kosuke Watanabe
航介 渡邉
智弘 大福地
Toshihiro Daifukuchi
智弘 大福地
友希子 中嶋
Yukiko Nakajima
友希子 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2017147864A priority Critical patent/JP6839047B2/en
Publication of JP2019025430A publication Critical patent/JP2019025430A/en
Application granted granted Critical
Publication of JP6839047B2 publication Critical patent/JP6839047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a method for treating digested sludge desorption liquid capable of stably treating digested sludge desorption liquid over a long term (nitrification and denitrification) using an aerobic granule, a treatment apparatus thereof, a wastewater treatment method and a waste water treatment apparatus.SOLUTION: A treatment apparatus for digested sludge desorption liquid comprises: an aerobic granule treatment tank 8; supply paths 26 and 17 for supplying digested sludge desorption liquid and concentrated dehydrated separation liquid of initial precipitation sludge to the aerobic granule treatment tank 8, respectively; an ammonia meter 27 and a TOC meter 18 as concentration measuring means for measuring the nitrogen concentration of the digested sludge desorption liquid and the carbon concentration of the concentrated dehydrated separation liquid of the initial precipitation sludge, respectively; and control means 30 for controlling the supply amount of the concentrated dehydrated separation liquid of the initial precipitation sludge so that the values of the carbon concentration/nitrogen concentration are in a predetermined range.SELECTED DRAWING: Figure 1

Description

本発明は、消化汚泥脱離液の処理方法、その処理装置並びに排水処理方法及び排水処理装置に関する。   The present invention relates to a digested sludge detachment liquid treatment method, a treatment apparatus thereof, a wastewater treatment method, and a wastewater treatment apparatus.

下水や工場廃水などの原水に含まれる有機成分を処理することを目的として、微生物の同化および異化反応を利用する活性汚泥法が広く用いられている。   For the purpose of treating organic components contained in raw water such as sewage and factory wastewater, an activated sludge method using assimilation and catabolism of microorganisms is widely used.

また、有機物を処理し、かつ、連続通水式で好気性条件下において安定的にグラニュール(粒状の微生物汚泥)を形成することが可能な好気性グラニュールの形成方法も開示されている(例えば、特許文献1参照)。さらに、特許文献1においては、連続通水する原水のC/N比(全有機炭素(TOC)/全窒素(TN))を7以下となるように調整することが好ましいことが記載されている。   Also disclosed is a method for forming an aerobic granule that can treat organic matter and can stably form granules (granular microbial sludge) under aerobic conditions with continuous water flow ( For example, see Patent Document 1). Furthermore, in Patent Document 1, it is described that it is preferable to adjust the C / N ratio (total organic carbon (TOC) / total nitrogen (TN)) of raw water continuously flowing to be 7 or less. .

また、半回分式生物処理装置にて安定してグラニュールを形成し、連続式生物処理装置へ供給することを可能とする排水処理装置及び排水処理方法も開示されている(例えば、特許文献2参照)。さらに、特許文献2においては、余剰汚泥の濃縮、消化及び脱水のうち少なくともいずれか1つの処理から得られる脱離水を間欠的に導入して生物処理を行い、グラニュールを形成する半回分式生物処理装置が記載されている。   In addition, a wastewater treatment device and a wastewater treatment method that can stably form granules in a semi-batch biological treatment device and supply the granules to a continuous biological treatment device are also disclosed (for example, Patent Document 2). reference). Furthermore, in Patent Document 2, semi-batch organisms that form granules by performing biological treatment by intermittently introducing desorbed water obtained from at least one of concentration, digestion, and dehydration of surplus sludge. A processing device is described.

特開2009−66505号公報JP 2009-66505 A 特開2016−87595号公報Japanese Patent Laid-Open No. 2006-87595

しかし、上記特許文献1に開示された技術のように、原水のC/N比(全有機炭素(TOC)/全窒素(TN))を7に向かって大きくしていくと、硝化菌の活性が低下するばかりでなく、好気性グラニュール以外の雑菌が発生しやすく、好気性グラニュールが安定しなくなり、長期運転が出来なくなるという問題点があった。   However, when the C / N ratio (total organic carbon (TOC) / total nitrogen (TN)) of the raw water is increased toward 7, as in the technique disclosed in Patent Document 1, the activity of nitrifying bacteria is increased. As a result, not only aerobic granules but also various bacteria other than aerobic granules are likely to be generated, and the aerobic granules become unstable and long-term operation becomes impossible.

また、上記特許文献2に開示された技術では、余剰汚泥の消化処理から得られる脱離水を半回分式生物処理装置に導入することも記載されているが、これはあくまで前記半回分式生物処理装置から排出されるグラニュールを前記連続式生物処理装置に供給することを前提にしているものである。   In addition, in the technique disclosed in Patent Document 2, it is also described that desorbed water obtained from the digestion process of excess sludge is introduced into a semi-batch biological treatment apparatus, but this is only the semi-batch biological treatment. It is premised on supplying granules discharged from the apparatus to the continuous biological treatment apparatus.

したがって、余剰汚泥の消化処理から得られる脱離水(これを「消化汚泥脱離液」と称す)を如何に安定して処理(硝化および脱窒)するかに関しては、何らの言及がない。当然、前記処理後の処理水を排水処理装置として、単に排水処理する以外に、どのように取り扱うかの言及もない。   Therefore, there is no reference as to how to stably treat (nitrify and denitrify) the desorbed water obtained from the digestion of excess sludge (referred to as “digested sludge desorbed liquid”). Naturally, there is no mention of how to treat the treated water other than simply treating the treated water as a wastewater treatment apparatus.

本発明の目的は、好気性グラニュールを用いて、消化汚泥脱離液を長期的に安定して処理(硝化および脱窒)可能な消化汚泥脱離液の処理方法、その処理装置並びに排水処理方法及び排水処理装置を提供することにある。   An object of the present invention is to provide a digested sludge desorbed liquid treatment method capable of stably treating (denitrifying and denitrifying) long-term digested sludge desorbed liquid using an aerobic granule, its treatment apparatus, and wastewater treatment. The object is to provide a method and a wastewater treatment apparatus.

この目的を達成するために、第1発明に係る消化汚泥脱離液の処理方法は、
好気性グラニュールを含有する処理槽に、消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを供給する供給工程と、
前記消化汚泥脱離液の窒素濃度と前記初沈生汚泥の濃縮脱水分離液の炭素濃度とをそれぞれ測定する濃度測定工程と、
前記炭素濃度/前記窒素濃度が所定範囲の値になるように、前記初沈生汚泥の濃縮脱水分離液の供給量を制御する制御工程と、
を有したことを特徴とする。
In order to achieve this object, a method for treating a digested sludge desorption liquid according to the first invention comprises:
A supply step of supplying a digested sludge desorption liquid and a concentrated dewatered separation liquid of primary settled sludge to a treatment tank containing aerobic granules;
A concentration measuring step for measuring the nitrogen concentration of the digested sludge desorbed liquid and the carbon concentration of the concentrated dehydrated separated liquid of the primary settled sludge,
A control step of controlling the supply amount of the concentrated dewatered separation liquid of the first settled sludge so that the carbon concentration / the nitrogen concentration is a value within a predetermined range;
It is characterized by having.

また、第2発明に係る消化汚泥脱離液の処理方法は、第1発明に係る消化汚泥脱離液の処理方法において、前記炭素濃度がBOD換算値であることが好ましい。   The digested sludge desorbing liquid treatment method according to the second invention is preferably the digested sludge desorbing liquid treatment method according to the first invention, wherein the carbon concentration is a BOD equivalent value.

また、第3発明に係る消化汚泥脱離液の処理方法は、第2発明に係る消化汚泥脱離液の処理方法において、前記窒素濃度がT−N換算値であり、前記炭素濃度/前記窒素濃度が0.3を超え3未満であることが好ましい。   The digested sludge desorbing liquid treatment method according to the third invention is the digested sludge desorbing solution treating method according to the second invention, wherein the nitrogen concentration is a TN converted value, and the carbon concentration / nitrogen. The concentration is preferably more than 0.3 and less than 3.

また、第4発明に係る消化汚泥脱離液の処理方法は、第1〜第3発明のいずれか1つの発明に係る消化汚泥脱離液の処理方法において、前記処理槽は回分式であることが好ましい。   Moreover, the processing method of the digested sludge detachment liquid according to the fourth invention is the digested sludge detachment liquid processing method according to any one of the first to third inventions, wherein the treatment tank is a batch type. Is preferred.

また、第5発明に係る排水処理方法は、連続的に流入する排水を生物処理する連続式生物処理装置の生物反応槽に、第1〜第4発明のいずれか1つの発明に係る消化汚泥脱離液の処理方法により得られる前記処理槽内の処理水を返送する処理水返送工程を有したことを特徴とする。   Moreover, the wastewater treatment method according to the fifth aspect of the present invention is a digestion sludge desorption according to any one of the first to fourth aspects of the invention in a biological reaction tank of a continuous biological treatment apparatus that biologically treats wastewater that flows continuously. It has the process water return process which returns the process water in the said processing tank obtained by the processing method of a liquid separation.

また、第6発明に係る消化汚泥脱離液の処理装置は、
好気性グラニュールを含有する処理槽と、
前記処理槽に消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを供給する供給路と、
前記消化汚泥脱離液の窒素濃度と前記初沈生汚泥の濃縮脱水分離液の炭素濃度とをそれぞれ測定する濃度測定手段と、
前記炭素濃度/前記窒素濃度が所定範囲の値になるように、前記初沈生汚泥の濃縮脱水分離液の供給量を制御する制御手段と、
を有したことを特徴とする。
The digested sludge desorbing liquid treatment apparatus according to the sixth invention is
A treatment tank containing aerobic granules;
A supply path for supplying the treatment tank with digested sludge desorbed liquid and concentrated dehydrated separated liquid of primary settled sludge;
Concentration measuring means for measuring the nitrogen concentration of the digested sludge desorption liquid and the carbon concentration of the concentrated dehydrated separation liquid of the primary settled sludge, respectively.
Control means for controlling the supply amount of the concentrated dewatered separation liquid of the first settled sludge so that the carbon concentration / the nitrogen concentration falls within a predetermined range;
It is characterized by having.

また、第7発明に係る排水処理装置は、
連続的に流入する排水を生物処理する生物反応槽を備えた連続式生物処理装置と、
第6発明に係る消化汚泥脱離液の処理装置と、
前記処理装置の処理槽内の処理水を前記生物反応槽に返送する返送路と、
を有したことを特徴とする。
The waste water treatment apparatus according to the seventh invention is
A continuous biological treatment apparatus equipped with a biological reaction tank for biological treatment of wastewater that flows continuously;
A digested sludge detachment liquid treatment apparatus according to the sixth invention;
A return path for returning treated water in the treatment tank of the treatment apparatus to the biological reaction tank;
It is characterized by having.

上記構成により、好気性グラニュールを用いて、消化汚泥脱離液を長期的に安定して処理(硝化および脱窒)可能な消化汚泥脱離液の処理方法、その処理装置並びに排水処理方法及び排水処理装置を提供できる。   With the above configuration, using aerobic granules, digested sludge desorbed liquid can be treated stably (nitrification and denitrification) for a long period of time. A wastewater treatment apparatus can be provided.

本発明の排水処理方法を実施するための排水処理装置の構成の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the structure of the waste water treatment apparatus for enforcing the waste water treatment method of this invention. 本発明の消化汚泥脱離液の処理方法を実施するための消化汚泥脱離液の処理装置の運転方法を説明するための説明図である。It is explanatory drawing for demonstrating the operating method of the processing apparatus of the digested sludge desorption liquid for enforcing the processing method of the digested sludge desorption liquid of this invention.

本発明者は、如何にすれば、好気性グラニュール(粒状の好気性微生物汚泥)を用いて、消化汚泥脱離液を長期的に安定して処理(硝化および脱窒)可能な消化汚泥脱離液の処理方法、その処理装置並びに排水処理方法及び排水処理装置を提供できるのか鋭意研究を行った。その結果、以下に説明するような構成を採用することで初めて目的を達成できることを見出した。   In any way, the present inventor can use aerobic granules (granular aerobic microbial sludge) to remove digested sludge from the digested sludge desorbed liquid for a long period of time (nitrification and denitrification). We conducted intensive research on whether we could provide a liquid separation treatment method, a treatment apparatus therefor, a wastewater treatment method, and a wastewater treatment apparatus. As a result, it has been found that the object can be achieved only by adopting the configuration described below.

以下、本発明を実施するための形態について図面を参照しつつ説明する。なお、本発明が処理対象とする有機性排水は、例えば、下水排水、食品工場などからの排水である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The organic wastewater to be treated by the present invention is, for example, sewage wastewater, wastewater from a food factory, and the like.

(排水処理装置および消化汚泥脱離液の処理装置の構成)   (Configuration of waste water treatment equipment and digested sludge desorption liquid treatment equipment)

図1および図2において、1は最初沈殿槽、2は生物反応槽、3は最終沈殿槽、4は機械濃縮手段としての例えばベルト型濃縮機、5は濃縮機としての例えば加圧浮上槽、6は消化槽、7は脱水装置、8は好気性グラニュールを含有する処理槽(「好気グラニュール処理槽」と称す)、11は各種有機物質を含む下水等の排水の流入路、12、13、15、16、17、19、20、21、24、26、33は供給路、14は流出路、23は供給管、25は流出管、18、22はTOC(Total Organic Carbon、全有機炭素)計、27はアンモニア計、30は制御手段、31は信号路、32は弁である。40は好気グラニュール処理槽8、供給路17、TOC計18、供給路21、 TOC計22、供給路26、アンモニア計27、制御手段30、信号路31と弁32を有した消化汚泥脱離液の処理装置である。   1 and 2, 1 is an initial settling tank, 2 is a biological reaction tank, 3 is a final settling tank, 4 is, for example, a belt-type concentrator as a mechanical concentrating means, 5 is, for example, a pressurized flotation tank as a concentrator, 6 is a digestion tank, 7 is a dehydrator, 8 is a treatment tank containing aerobic granules (referred to as “aerobic granule treatment tank”), 11 is an inflow channel for drainage such as sewage containing various organic substances, 12 13, 15, 16, 17, 19, 20, 21, 24, 26, 33 are supply paths, 14 is an outflow path, 23 is a supply pipe, 25 is an outflow pipe, 18 and 22 are TOC (Total Organic Carbon, all (Organic carbon) meter, 27 is an ammonia meter, 30 is a control means, 31 is a signal path, and 32 is a valve. Reference numeral 40 denotes an aerobic granule treatment tank 8, a supply path 17, a TOC meter 18, a supply path 21, a TOC meter 22, a supply path 26, an ammonia meter 27, a control means 30, a signal path 31 and a valve 32. This is a processing apparatus for liquid separation.

次に、本発明に係る排水処理装置および消化汚泥脱離液の処理装置の運転動作について、図1および図2を参照しながら説明する。   Next, the operation | movement operation | movement of the waste water treatment apparatus which concerns on this invention, and the processing apparatus of digested sludge desorption liquid is demonstrated, referring FIG. 1 and FIG.

図1において、流入路11から排水が最初沈殿槽1に供給される。この供給された排水が最初沈殿槽1で固液分離され、それぞれ初沈生汚泥と分離液となる。   In FIG. 1, waste water is first supplied to the settling tank 1 from an inflow channel 11. The supplied waste water is firstly subjected to solid-liquid separation in the settling tank 1 to become primary settled sludge and separated liquid, respectively.

上記分離液は供給路12から生物反応槽2へ送られ、この分離液に空気を吹き込み、分離液中の有機物を二酸化炭素等に変換する活性汚泥を用いた好気性生物処理が施され、その処理水が供給路13から最終沈殿槽3に供給される。この供給された処理水が最終沈殿槽3で固液分離され、それぞれ余剰汚泥と処理水となる。この浄化された処理水が流出路14から放出される。尚、最終沈殿槽3で沈降した汚泥の一部は、生物反応槽2へ返送される(図示せず)。   The separation liquid is sent from the supply path 12 to the biological reaction tank 2, and air is blown into the separation liquid, and an aerobic biological treatment using activated sludge that converts organic substances in the separation liquid into carbon dioxide is performed. Treated water is supplied from the supply path 13 to the final settling tank 3. The supplied treated water is subjected to solid-liquid separation in the final sedimentation tank 3 to become excess sludge and treated water, respectively. This purified treated water is discharged from the outflow passage 14. A part of the sludge settled in the final sedimentation tank 3 is returned to the biological reaction tank 2 (not shown).

一方、供給路15からベルト型濃縮機4に供給した上記初沈生汚泥は濃縮脱水され、濃縮生汚泥と濃縮脱水分離液が得られ、この濃縮脱水分離液は供給路17から好気グラニュール処理槽8に供給される(供給工程)。尚、供給路17から好気グラニュール処理槽8に供給される濃縮脱水分離液は、TOC計18により炭素濃度が計測される(濃度測定工程)。   On the other hand, the first settled sludge supplied to the belt-type concentrator 4 from the supply path 15 is concentrated and dehydrated to obtain concentrated raw sludge and concentrated dehydrated separation liquid. The concentrated dehydrated separation liquid is supplied from the supply path 17 to the aerobic granule. It supplies to the processing tank 8 (supply process). In addition, the carbon concentration of the concentrated dehydrated separation liquid supplied from the supply path 17 to the aerobic granule treatment tank 8 is measured by the TOC meter 18 (concentration measurement step).

また、供給路19から加圧浮上槽5に供給した上記余剰汚泥は濃縮され、濃縮余剰汚泥と分離液が得られ、この分離液は供給路21から好気グラニュール処理槽8に供給される(供給工程)。尚、供給路21から好気グラニュール処理槽8に供給される分離液は、 TOC計22により炭素濃度が計測される(濃度測定工程)。   Further, the surplus sludge supplied from the supply path 19 to the pressurized flotation tank 5 is concentrated to obtain concentrated surplus sludge and a separated liquid, and this separated liquid is supplied from the supply path 21 to the aerobic granule treatment tank 8. (Supply process). Note that the carbon concentration of the separation liquid supplied from the supply path 21 to the aerobic granule treatment tank 8 is measured by the TOC meter 22 (concentration measurement step).

また、供給路15からベルト型濃縮機4側へ引抜かれる初沈生汚泥の量が増加する分、供給路19から加圧浮上槽5に供給される余剰汚泥は相対的に減少する。したがって、供給路20から消化槽6に供給した上記濃縮余剰汚泥中の固形物と有機物の量も、上記濃縮生汚泥中の固形物と有機物の量が増加した分、相対的に減少する。よって、供給路17から好気グラニュール処理槽8に供給される濃縮脱水分離液中の炭素源に比べて、供給路21から好気グラニュール処理槽8に供給される分離液中の炭素源も相対的に減少する。   Further, as the amount of the initial settled sludge drawn out from the supply path 15 to the belt-type concentrator 4 increases, the excess sludge supplied from the supply path 19 to the pressurized flotation tank 5 relatively decreases. Therefore, the amount of solid matter and organic matter in the concentrated surplus sludge supplied from the supply channel 20 to the digestion tank 6 is also relatively decreased by the amount of solid matter and organic matter in the concentrated raw sludge. Therefore, compared with the carbon source in the concentrated dehydrated separation liquid supplied from the supply path 17 to the aerobic granule treatment tank 8, the carbon source in the separation liquid supplied from the supply path 21 to the aerobic granule treatment tank 8. Will also decrease relatively.

特に、ベルト型濃縮機4を経由し、消化槽6側へ移行する有機物の量が増加する(すなわち、供給路16から消化槽6に供給した濃縮生汚泥中の有機物の量が増加する)ことは、最初沈殿槽1で分離された分離液中の有機物量が少なくなり、生物反応槽2側へ移行する有機物の量が減少することを意味する。したがって、生物反応槽2で活性汚泥法を用いて処理する際に必要な空気の送風量を低減可能な排水処理方法および排水廃水処理設備が実現できるようになる。また、生物反応槽2で処理しなければならない有機物量が減少するため、必要な空気の送風量も少なくなり、この工程での消費電力も低減される(例えば、送風機の電力費を低減できる)。さらに、生物反応槽2で処理しなければならない有機物量が減少するため、最終沈殿槽3から供給路19を経由して供給される余剰汚泥の発生量も低減される。   In particular, the amount of organic matter that moves to the digester 6 side via the belt-type concentrator 4 increases (that is, the amount of organic matter in the concentrated raw sludge supplied from the supply path 16 to the digester 6 increases). Means that the amount of organic substances in the separated liquid first separated in the precipitation tank 1 is reduced, and the amount of organic substances transferred to the biological reaction tank 2 side is reduced. Therefore, it becomes possible to realize a wastewater treatment method and wastewater wastewater treatment equipment that can reduce the amount of air blown when the biological reaction tank 2 is treated using the activated sludge method. In addition, since the amount of organic matter that must be processed in the biological reaction tank 2 is reduced, the amount of necessary air blown is reduced, and the power consumption in this step is also reduced (for example, the power cost of the blower can be reduced). . Furthermore, since the amount of organic matter that must be processed in the biological reaction tank 2 is reduced, the amount of surplus sludge supplied from the final sedimentation tank 3 via the supply path 19 is also reduced.

供給路16から供給される上記濃縮生汚泥と供給路20から供給される上記濃縮余剰汚泥は、それぞれ消化槽6において嫌気条件下で消化処理され、メタンガスを主成分とする消化ガスに転化されるとともに消化汚泥が得られる。消化ガスは供給管23を通って供給され、消化汚泥は供給路24から脱水装置7に供給される。上述したように、生物反応槽2で二酸化炭素等に変換処理される有機物量が減少し、ベルト型濃縮機4を経由し、消化槽6側へ移行する易分解の有機物の量が増加するため、消化槽6の加温や発電用ガスエンジン用の燃料として有用な消化ガス(例えば、メタンガスを主成分とする)が消化槽6で高効率に発生できることを示している。   The concentrated raw sludge supplied from the supply path 16 and the concentrated excess sludge supplied from the supply path 20 are each digested in the digestion tank 6 under anaerobic conditions, and converted into digestion gas mainly composed of methane gas. At the same time, digested sludge is obtained. Digestion gas is supplied through the supply pipe 23, and digested sludge is supplied from the supply path 24 to the dehydrator 7. As described above, the amount of organic matter converted into carbon dioxide or the like in the biological reaction tank 2 decreases, and the amount of easily decomposed organic matter that moves to the digester tank 6 side through the belt type concentrator 4 increases. It shows that digestion gas (for example, methane gas as a main component) that is useful as a fuel for heating of the digestion tank 6 or a gas engine for power generation can be generated with high efficiency in the digestion tank 6.

次に、供給路24から脱水装置7へ送られた消化汚泥は、脱水装置7で固液分離され、それぞれ脱水ケーキと消化汚泥脱離液となる。脱水ケーキは流出管25を通って流出し、消化汚泥脱離液は供給路26から好気グラニュール処理槽8に供給される(供給工程)。尚、供給路26から好気グラニュール処理槽8に供給される消化汚泥脱離液は、アンモニア計27により窒素濃度が計測される(濃度測定工程)。   Next, the digested sludge sent from the supply path 24 to the dewatering device 7 is solid-liquid separated by the dewatering device 7 to become a dehydrated cake and a digested sludge desorbed solution, respectively. The dehydrated cake flows out through the outflow pipe 25, and the digested sludge desorbed liquid is supplied from the supply path 26 to the aerobic granule treatment tank 8 (supply process). Note that the nitrogen concentration of the digested sludge desorbed liquid supplied from the supply path 26 to the aerobic granule treatment tank 8 is measured by the ammonia meter 27 (concentration measurement step).

また、上記TOC計18により計測された炭素濃度とTOC計22により計測された炭素濃度の合計量/上記アンモニア計27により計測された窒素濃度が所定範囲の値になるように、制御手段30から発せられ、信号路31を伝送し弁32に届く制御信号で弁32を調節することにより、供給路17から好気グラニュール処理槽8に供給される初沈生汚泥の濃縮脱水分離液の供給量を制御するように構成されている(制御工程)。   Further, from the control means 30 so that the total amount of the carbon concentration measured by the TOC meter 18 and the carbon concentration measured by the TOC meter 22 / the nitrogen concentration measured by the ammonia meter 27 falls within a predetermined range. Supplying the concentrated dewatered separation liquid of the first settled sludge supplied from the supply path 17 to the aerobic granule treatment tank 8 by adjusting the valve 32 with a control signal that is emitted and transmitted through the signal path 31 and reaches the valve 32 It is comprised so that quantity may be controlled (control process).

例えば、上記TOC計18および TOC計22により計測される炭素濃度は、BOD(biochemical oxygen demand)に換算され、上記アンモニア計27により計測される窒素濃度はT−N(Total Nitrogen、総窒素)に換算される。その換算値より算出した炭素濃度の合計量/窒素濃度が所定範囲の値(0.3を超え3未満)になるように制御すればよい。0.3以下である場合は、上記消化汚泥脱離液の脱窒が炭素源不足から十分に行えなくなり、3以上では硝化菌の活性が低下するばかりでなく、好気性グラニュール以外の雑菌が発生しやすく、グラニュールが安定しなくなり、長期運転が出来なくなる。これらの点を考慮すると、より好ましくは、炭素濃度/窒素濃度が1.6である。   For example, the carbon concentration measured by the TOC meter 18 and the TOC meter 22 is converted into BOD (biochemical oxygen demand), and the nitrogen concentration measured by the ammonia meter 27 is TN (Total Nitrogen, total nitrogen). Converted. What is necessary is just to control so that the total amount of nitrogen concentration / nitrogen concentration calculated from the converted value becomes a value within a predetermined range (greater than 0.3 and less than 3). If it is 0.3 or less, denitrification of the digested sludge effluent cannot be performed sufficiently due to a shortage of carbon source, and if it is 3 or more, not only the activity of nitrifying bacteria is reduced, but also bacteria other than aerobic granules are present. It tends to occur, the granule becomes unstable, and long-term operation becomes impossible. Considering these points, the carbon concentration / nitrogen concentration is more preferably 1.6.

次に、図2を用いながら、消化汚泥脱離液の処理装置40を構成する好気グラニュール処理槽8について、詳述する。好気グラニュール処理槽8は、回分式である。   Next, the aerobic granule treatment tank 8 constituting the digested sludge desorbing liquid treatment apparatus 40 will be described in detail with reference to FIG. The aerobic granule treatment tank 8 is a batch type.

図2(a)は、好気グラニュール処理槽8の底に散気装置8aが設置され、その上に好気グラニュール処理槽8の約半分の体積を占めるように、好気性グラニュール8bを充填する工程を示す。この状態では、好気グラニュール処理槽8に約半分の空間がある。   FIG. 2A shows an aerobic granule 8b in which an air diffuser 8a is installed at the bottom of the aerobic granule treatment tank 8 and occupies about half the volume of the aerobic granule treatment tank 8. The process of filling is shown. In this state, the aerobic granule treatment tank 8 has about half the space.

図2(b)は、図2(a)に示す約半分の空間に、炭素濃度の合計量/窒素濃度が所定範囲の値(0.3を超え3未満)になるように制御しながら、供給路17から濃縮脱水分離液、供給路21から分離液および供給路26から消化汚泥脱離液をそれぞれ好気グラニュール処理槽8の液面8cまで供給する工程を示す。   In FIG. 2B, in the approximately half space shown in FIG. 2A, the total amount of carbon concentration / nitrogen concentration is controlled so as to be a predetermined range value (greater than 0.3 and less than 3). A process of supplying the concentrated dehydrated separation liquid from the supply path 17, the separation liquid from the supply path 21, and the digested sludge desorption liquid from the supply path 26 to the liquid surface 8 c of the aerobic granule treatment tank 8 is shown.

図2(c)は、散気装置8aから空気(酸素)を約4〜5時間、供給することにより、撹拌混合する工程を示す。8dは液面である。この状況では、好気性グラニュール8bの表面近傍で硝化反応、同内部で脱窒反応が起こる。   FIG.2 (c) shows the process of stirring and mixing by supplying air (oxygen) from the diffuser 8a for about 4 to 5 hours. 8d is a liquid level. In this situation, a nitrification reaction occurs near the surface of the aerobic granule 8b and a denitrification reaction occurs inside.

図2(d)は、図2(c)に示す撹拌混合を停止し、5m/hの沈降分離で好気性グラニュール8b等の汚泥を沈殿させる工程を示す。以上により、好気性グラニュール8bを用いて、消化汚泥脱離液を長期的に安定して処理(硝化および脱窒)可能になる。また、この処理にあたって、炭素源として初沈生汚泥の濃縮脱水分離液が主として利用されるため、メタノールなどの系外からの炭素源の投入量を削減できる効果がある。   FIG.2 (d) shows the process of stopping the stirring and mixing shown in FIG.2 (c), and precipitating sludge, such as aerobic granule 8b, by 5 m / h sedimentation separation. As described above, the digested sludge desorption liquid can be stably treated (nitrification and denitrification) for a long period of time using the aerobic granule 8b. In this treatment, the concentrated dehydrated separation liquid of primary settled sludge is mainly used as the carbon source, so that the amount of carbon source input from outside the system such as methanol can be reduced.

また、図2(d)に示すように、好気性グラニュール8b等の汚泥は、好気グラニュール処理槽8の下半分に沈殿させたままにして、消化汚泥脱離液が処理(硝化および脱窒)された処理水8eの上半分程を供給路33から図1に示す生物反応槽2に返送する(処理水返送工程)。8fは液面である。   In addition, as shown in FIG. 2 (d), sludge such as aerobic granules 8b is allowed to settle in the lower half of the aerobic granule treatment tank 8, and the digested sludge desorbed solution is treated (nitrification and The upper half of the denitrified treated water 8e is returned from the supply path 33 to the biological reaction tank 2 shown in FIG. 1 (treated water returning step). 8f is a liquid level.

上述したように、消化汚泥脱離液の処理(硝化および脱窒)のために、初沈生汚泥の濃縮脱水分離液中の炭素源(有機物に由来する炭素源)が消費されることで、消化汚泥脱離液中の窒素源が除去されるとともに生物反応槽2に返送される処理水8e中の炭素源量も少なくなる。したがって、生物反応槽2で処理しなければならない有機物量が減少するため、生物反応槽2で活性汚泥法を用いて処理する際に必要な空気の送風量をさらに低減可能な排水処理方法および排水処理装置が実現できるようになる。そのため、この工程での消費電力もさらに低減される(例えば、送風機の電力費をさらに低減できる)。   As described above, for the treatment (nitrification and denitrification) of the digested sludge desorbed liquid, the carbon source (carbon source derived from organic matter) in the concentrated dehydrated separated liquid of the primary settled sludge is consumed. The nitrogen source in the digested sludge desorption liquid is removed and the amount of carbon source in the treated water 8e returned to the biological reaction tank 2 is also reduced. Accordingly, since the amount of organic matter that must be treated in the biological reaction tank 2 is reduced, the wastewater treatment method and wastewater that can further reduce the amount of air blown when the biological reaction tank 2 is treated using the activated sludge method. A processing apparatus can be realized. Therefore, the power consumption in this step is further reduced (for example, the power cost of the blower can be further reduced).

本実施形態においては、好気グラニュール処理槽8に消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを供給する以外に、余剰汚泥を濃縮して得られた分離液を供給路21から好気グラニュール処理槽8に供給する例について説明したが、必ずしもこれに限定されるものではない。少なくとも、消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを好気グラニュール処理槽8に供給する構成であれば構わない。   In this embodiment, in addition to supplying the digested sludge detachment liquid and the concentrated dewatered separation liquid of the first settled sludge to the aerobic granule treatment tank 8, the supply path for the separation liquid obtained by concentrating excess sludge Although the example which supplies to the aerobic granule processing tank 8 from 21 was demonstrated, it is not necessarily limited to this. At least the digested sludge detachment liquid and the concentrated dehydrated separation liquid of the first settled sludge may be supplied to the aerobic granule treatment tank 8.

また、本実施形態においては、供給路17から好気グラニュール処理槽8に供給される濃縮脱水分離液および供給路21から好気グラニュール処理槽8に供給される分離液は、それぞれ炭素濃度のみが計測される例について説明したが、必ずしもこれに限定されるものではない。例えば、炭素濃度に加えて窒素濃度も計測する構成が、より好ましい。   Further, in the present embodiment, the concentrated dehydrated separation liquid supplied from the supply path 17 to the aerobic granule treatment tank 8 and the separation liquid supplied from the supply path 21 to the aerobic granule treatment tank 8 each have a carbon concentration. Although an example in which only measurement is performed has been described, the present invention is not necessarily limited thereto. For example, a configuration that measures the nitrogen concentration in addition to the carbon concentration is more preferable.

また、本実施形態においては、供給路26から好気グラニュール処理槽8に供給される消化汚泥脱離液は、窒素濃度のみが計測される例について説明したが、必ずしもこれに限定されるものではない。例えば、窒素濃度に加えて炭素濃度も計測する構成が、より好ましい。   Moreover, in this embodiment, although the digested sludge desorption liquid supplied to the aerobic granule processing tank 8 from the supply path 26 demonstrated the example in which only nitrogen concentration was measured, it is not necessarily limited to this. is not. For example, a configuration that measures the carbon concentration in addition to the nitrogen concentration is more preferable.

何故ならば、上記濃縮脱水分離液および分離液および消化汚泥脱離液の各炭素濃度および窒素濃度を計測し、合計した炭素濃度/合計した窒素濃度が所定範囲の値(0.3を超え3未満)になるように制御すれば、好気性グラニュール8bを用いて、消化汚泥脱離液を長期的に安定して、かつ、より効率的な処理(硝化および脱窒)可能になる。   This is because the carbon concentration and nitrogen concentration of the concentrated dehydrated separation liquid, the separation liquid, and the digested sludge desorption liquid are measured, and the total carbon concentration / total nitrogen concentration is within a predetermined range (over 0.3 and above 3 If the aerobic granules 8b are used, the digested sludge desorbed liquid can be stably treated for a long time and more efficiently treated (nitrification and denitrification).

なお、本実施形態においては、供給路17のみに弁32を設けて制御手段30により、初沈生汚泥の濃縮脱水分離液の供給量を制御する例について説明したが、必ずしもこれに限定されるものではない。例えば、供給路21、26にもそれぞれ弁を設けて、炭素濃度の合計量/窒素濃度が所定範囲の値になるように制御手段30により、供給路21から供給される分離液や供給路26から供給される消化汚泥脱離液の各供給量を制御してもよい。   In this embodiment, the example in which the valve 32 is provided only in the supply path 17 and the supply amount of the concentrated dehydrated separation liquid of the initial settled sludge is controlled by the control means 30 has been described, but the present invention is not necessarily limited thereto. It is not a thing. For example, the supply passages 21 and 26 are also provided with valves, respectively, so that the separation liquid supplied from the supply passage 21 and the supply passage 26 are controlled by the control means 30 so that the total amount of carbon concentration / nitrogen concentration becomes a value within a predetermined range. You may control each supply amount of the digested sludge desorption liquid supplied from.

以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施形態に記載されたものに限定されるものではない。   The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. In addition, the actions and effects described in the embodiments of the present invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to things.

1 最初沈殿槽
2 生物反応槽
3 最終沈殿槽
4 ベルト型濃縮機
5 加圧浮上槽
6 消化槽
7 脱水装置
8 好気グラニュール処理槽
8a 散気装置
8b 好気性グラニュール
8c、8d、8f 液面
8e 処理水
11 流入路
12、13、15、16、17、19、20、21、24、26、33 供給路
14 流出路
23 供給管
25 流出管
18、22 TOC計
27 アンモニア計
30 制御手段
31 信号路
32 弁
40 消化汚泥脱離液の処理装置
DESCRIPTION OF SYMBOLS 1 First settling tank 2 Biological reaction tank 3 Final settling tank 4 Belt type concentrator 5 Pressurized floating tank 6 Digestion tank 7 Dehydration apparatus 8 Aerobic granule processing tank 8a Aeration apparatus 8b Aerobic granules 8c, 8d, 8f Surface 8e Treated water 11 Inflow path 12, 13, 15, 16, 17, 19, 20, 21, 24, 26, 33 Supply path 14 Outflow path 23 Supply pipe 25 Outflow pipe 18, 22 TOC meter 27 Ammonia meter 30 Control means 31 Signal path 32 Valve 40 Digested sludge desorption liquid processing equipment

Claims (7)

好気性グラニュールを含有する処理槽に、消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを供給する供給工程と、
前記消化汚泥脱離液の窒素濃度と前記初沈生汚泥の濃縮脱水分離液の炭素濃度とをそれぞれ測定する濃度測定工程と、
前記炭素濃度/前記窒素濃度が所定範囲の値になるように、前記初沈生汚泥の濃縮脱水分離液の供給量を制御する制御工程と、
を有したことを特徴とする消化汚泥脱離液の処理方法。
A supply step of supplying a digested sludge desorption liquid and a concentrated dewatered separation liquid of primary settled sludge to a treatment tank containing aerobic granules;
A concentration measuring step for measuring the nitrogen concentration of the digested sludge desorbed liquid and the carbon concentration of the concentrated dehydrated separated liquid of the primary settled sludge,
A control step of controlling the supply amount of the concentrated dewatered separation liquid of the first settled sludge so that the carbon concentration / the nitrogen concentration is a value within a predetermined range;
A method for treating digested sludge desorbed liquid, comprising:
前記炭素濃度がBOD換算値であることを特徴とする請求項1に記載の消化汚泥脱離液の処理方法。   The method for treating a digested sludge desorption liquid according to claim 1, wherein the carbon concentration is a BOD equivalent value. 前記窒素濃度がT−N換算値であり、前記炭素濃度/前記窒素濃度が0.3を超え3未満であることを特徴とする請求項2に記載の消化汚泥脱離液の処理方法。   The method for treating a digested sludge desorbing solution according to claim 2, wherein the nitrogen concentration is a TN converted value, and the carbon concentration / the nitrogen concentration is more than 0.3 and less than 3. 前記処理槽は回分式であることを特徴とする請求項1〜3のいずれか1項に記載の消化汚泥脱離液の処理方法。   The said processing tank is a batch type, The processing method of the digested sludge desorption liquid of any one of Claims 1-3 characterized by the above-mentioned. 連続的に流入する排水を生物処理する連続式生物処理装置の生物反応槽に、請求項1〜4のいずれか1項に記載の消化汚泥脱離液の処理方法により得られる前記処理槽内の処理水を返送する処理水返送工程を有したことを特徴とする排水処理方法。   In the biological reaction tank of the continuous type biological treatment apparatus which biologically processes the waste water which flows in continuously, in the said processing tank obtained by the processing method of the digested sludge desorption liquid of any one of Claims 1-4 A wastewater treatment method comprising a treated water return step for returning treated water. 好気性グラニュールを含有する処理槽と、
前記処理槽に消化汚泥脱離液と初沈生汚泥の濃縮脱水分離液とを供給する供給路と、
前記消化汚泥脱離液の窒素濃度と前記初沈生汚泥の濃縮脱水分離液の炭素濃度とをそれぞれ測定する濃度測定手段と、
前記炭素濃度/前記窒素濃度が所定範囲の値になるように、前記初沈生汚泥の濃縮脱水分離液の供給量を制御する制御手段と、
を有したことを特徴とする消化汚泥脱離液の処理装置。
A treatment tank containing aerobic granules;
A supply path for supplying the treatment tank with digested sludge desorbed liquid and concentrated dehydrated separated liquid of primary settled sludge;
Concentration measuring means for measuring the nitrogen concentration of the digested sludge desorption liquid and the carbon concentration of the concentrated dehydrated separation liquid of the primary settled sludge, respectively.
Control means for controlling the supply amount of the concentrated dewatered separation liquid of the first settled sludge so that the carbon concentration / the nitrogen concentration falls within a predetermined range;
An apparatus for treating digested sludge detachment liquid, comprising:
連続的に流入する排水を生物処理する生物反応槽を備えた連続式生物処理装置と、
請求項6に記載の消化汚泥脱離液の処理装置と、
前記処理装置の処理槽内の処理水を前記生物反応槽に返送する返送路と、
を有したことを特徴とする排水処理装置。
A continuous biological treatment apparatus equipped with a biological reaction tank for biological treatment of wastewater that flows continuously;
A processing apparatus for digested sludge desorption liquid according to claim 6,
A return path for returning treated water in the treatment tank of the treatment apparatus to the biological reaction tank;
A wastewater treatment apparatus characterized by comprising:
JP2017147864A 2017-07-31 2017-07-31 Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment Active JP6839047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147864A JP6839047B2 (en) 2017-07-31 2017-07-31 Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147864A JP6839047B2 (en) 2017-07-31 2017-07-31 Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2019025430A true JP2019025430A (en) 2019-02-21
JP6839047B2 JP6839047B2 (en) 2021-03-03

Family

ID=65477163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147864A Active JP6839047B2 (en) 2017-07-31 2017-07-31 Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP6839047B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2014097478A (en) * 2012-11-15 2014-05-29 Hitachi Ltd Effluent treatment method and effluent treatment apparatus
WO2014171819A1 (en) * 2013-04-16 2014-10-23 Paques I.P. B.V. Process for biological removal of nitrogen from wastewater
JP2016087595A (en) * 2014-11-11 2016-05-23 オルガノ株式会社 Waste water treatment device and waste water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2014097478A (en) * 2012-11-15 2014-05-29 Hitachi Ltd Effluent treatment method and effluent treatment apparatus
WO2014171819A1 (en) * 2013-04-16 2014-10-23 Paques I.P. B.V. Process for biological removal of nitrogen from wastewater
JP2016087595A (en) * 2014-11-11 2016-05-23 オルガノ株式会社 Waste water treatment device and waste water treatment method

Also Published As

Publication number Publication date
JP6839047B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
Malovanyy et al. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment
Guo et al. The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures
Cagnetta et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery
JP4780552B2 (en) Biological wastewater treatment method
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
Lei et al. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park
JP6022536B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
CA2542894C (en) Multi-environment wastewater treatment method
US9725346B2 (en) Devices, systems and methods for facilitating nutrient removal by anaerobic ammonia oxidation
FR2913234A1 (en) Treating urban/industrial used water containing sulfide and ammonium, sewage, condensates and leachate, comprises biologically treating used water in free culture by anoxic treatment to eliminate organic carbon using heterotrophic bacteria
Lemaire et al. Experience from start-up and operation of deammonification MBBR plants, and testing of a new deammonification IFAS configuration
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
WO2015072207A1 (en) Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
Choi et al. Evaluation of operating parameters affecting the two-stage nitritatin/anammox process in mainstream flows: From lab-scale to pilot-scale
KR20090011513A (en) Method for controling wastewater treatment process
JP6839047B2 (en) Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment
KR101634296B1 (en) Sbr wastewater treatment system using soil microorganism
WO2014059990A1 (en) Improved process and system for biological water purification
KR101709451B1 (en) Method for treating wastewater
KR101709452B1 (en) Method for treating wastewater
CN105314788B (en) Integrated multi-zone wastewater treatment system and process
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
US20120181233A1 (en) Wastewater treatment system and method
KR101743346B1 (en) Apparatus and method for treating wastewater
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6839047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250