JP2019023575A - Position detection device and position detection system - Google Patents

Position detection device and position detection system Download PDF

Info

Publication number
JP2019023575A
JP2019023575A JP2017142355A JP2017142355A JP2019023575A JP 2019023575 A JP2019023575 A JP 2019023575A JP 2017142355 A JP2017142355 A JP 2017142355A JP 2017142355 A JP2017142355 A JP 2017142355A JP 2019023575 A JP2019023575 A JP 2019023575A
Authority
JP
Japan
Prior art keywords
position detection
wave signal
signal
electromagnetic wave
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017142355A
Other languages
Japanese (ja)
Inventor
河野 実則
Mitsunori Kono
実則 河野
河野 公則
Kiminori Kono
公則 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCS Co Ltd
Original Assignee
RCS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCS Co Ltd filed Critical RCS Co Ltd
Priority to JP2017142355A priority Critical patent/JP2019023575A/en
Publication of JP2019023575A publication Critical patent/JP2019023575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

To provide a position detection device which is a weak wireless device and uses a magnetic force wave propagated by a variable magnetic field using an electromagnetic wave propagated by a variable electric field and a variable magnetic field, or a combination thereof.SOLUTION: The position detection device includes: transmitting means for transmitting an electromagnetic wave signal and a magnetic force wave signal simultaneously or in a time division manner; receiving means for receiving the electromagnetic wave signal and the magnetic force wave signal simultaneously or in a time division manner; or a combination thereof. The transmitting means includes an electromagnetic wave antenna and a magnetic force wave antenna. The receiving means includes an electromagnetic wave antenna and a magnetic force wave antenna. An electromagnetic wave signal and a magnetic force wave signal are emitted from the transmitting means provided at a first point and are received by the receiving means provided at a second point separated by a distance. A propagation time difference and/or a propagation phase difference between the received electromagnetic wave signal and the magnetic force wave signal are measured to accurately measure a distance between the first point and the second point by power receiving means.SELECTED DRAWING: Figure 2

Description

この発明は、微弱な無線機器であって、変動電界および変動磁界によって伝搬する電磁波を用い、変動磁界によって伝搬する磁力波を用い、あるいはこれらの組み合わせを用いる位置検知装置および位置検知システムに関するものである。
The present invention relates to a position detection device and a position detection system that are weak wireless devices that use an electromagnetic wave propagating by a varying electric field and a varying magnetic field, a magnetic wave that propagates by a varying magnetic field, or a combination thereof. is there.

従来から、電磁波信号を用いる位置測位装置が提案されている。(例えば、特許文献1から4)
特開2012−137478号 特許2897535号 特許2987654号 特開2016−180615号
Conventionally, a positioning device using an electromagnetic wave signal has been proposed. (For example, Patent Documents 1 to 4)
JP 2012-137478 A Japanese Patent No. 2897535 Patent 29987654 JP-A-2006-180615

図7は、特許文献1に記載されている従来の「位置測位装置および距離補正手段」に用いられる、位置測位装置の位置測位データであり、第1送受信手段と第2送受信手段との間を、固定長の同軸ケーブルと可変減衰器とを介して接続し、可変減衰器の減衰量を変化させながら距離を測定した結果、同軸ケーブルが固定長であるにも関わらず、可変減衰器の減衰量を変化させるだけで、測定距離が20m近く変化する問題点があった。測定誤差を生じる原因は、前記可変減衰器の減衰量を変化させることで、前記受信手段の受信入力が変化すると、受信機内部の伝搬遅延時間が大きく変化し、距離の測定誤差を生じるためである。   FIG. 7 shows the position positioning data of the position positioning device used in the conventional “position positioning device and distance correction means” described in Patent Document 1, and the distance between the first transmitting / receiving means and the second transmitting / receiving means. As a result of connecting a fixed length coaxial cable and a variable attenuator and measuring the distance while changing the amount of attenuation of the variable attenuator, the attenuation of the variable attenuator despite the fact that the coaxial cable is fixed length There was a problem that the measurement distance changed by nearly 20 m just by changing the amount. The cause of the measurement error is that by changing the attenuation of the variable attenuator, if the reception input of the receiving means changes, the propagation delay time inside the receiver changes greatly, resulting in a distance measurement error. is there.

前記特許文献1では、前記問題点を改善するために、第2送受信手段で前記無線信号を受信すると、前記第2送受信手段で受信した無線信号から前記起点信号を復調するとともに、前記第2送受信手段の内部で生じる伝達位相誤差もしくは伝達遅延誤差を検出しあるいは推定して補正をし、前記補正した起点信号と同期した位置測位信号を含む無線信号を時分割のタイミングで折返し送信し、前記第1送受信手段において、前記第2送受信手段から受信した位置測位信号を復調するとともに、前記第1送受信手段の内部で生じる伝達位相誤差もしくは伝達遅延誤差を検出しあるいは推定して補正をし、自局で生成した起点信号を基準として前記補正した位置測位信号の伝達位相もしくは伝達遅延時間を測定して、相互間の距離を算出するとしているが、回路が複雑であるにも関わらず誤差補正が不十分であり、高価となる問題点があった。   In Patent Document 1, in order to improve the problem, when the second transmission / reception means receives the wireless signal, the second transmission / reception means demodulates the starting signal from the wireless signal received by the second transmission / reception means, and the second transmission / reception means. Detecting or estimating a transmission phase error or a transmission delay error generated inside the means, correcting the error, transmitting a radio signal including a positioning signal synchronized with the corrected starting signal at a time division timing, In one transmission / reception means, the position measurement signal received from the second transmission / reception means is demodulated, and a transmission phase error or a transmission delay error generated inside the first transmission / reception means is detected or estimated and corrected. Measure the transmission phase or transmission delay time of the corrected positioning signal using the origin signal generated in step 1 as a reference, and calculate the distance between them. Are, but the circuit is insufficient despite the error correction is complex, there is expensive to become issues.

一方、前記特許文献2に記載されている従来の「トランスポンダ式安全装置」に用いられる距離測定装置では、電波信号と超音波信号との伝搬速度の差を利用して距離の測定を行っており、工場内などの騒音の大きな現場では誤動作が生じるなどの問題点があった。
また、前記特許文献3に記載されている従来の「距離測定装置」に用いられる距離測定装置では、発信された超音波信号が障害物によって反射され、発信点で反射されて受信されるまでの時間によって距離を測定しており、工場内などの騒音の大きな現場では誤動作が生じるなどの問題点があった。
また、前記特許文献4に記載されている従来の「磁力波信号を用いる位置測定装置および位置測位システム」に用いられる距離測定装置では、トランスポンダ式で有り、相手局からの返答を待って距離を測定する必要があった。
On the other hand, the distance measuring device used in the conventional “transponder type safety device” described in Patent Document 2 measures the distance using the difference in propagation speed between the radio wave signal and the ultrasonic signal. However, there were problems such as malfunctions at sites with high noise such as in factories.
Further, in the distance measuring device used in the conventional “distance measuring device” described in Patent Document 3, the transmitted ultrasonic signal is reflected by an obstacle and is reflected and received at the transmitting point. The distance was measured over time, and there were problems such as malfunctions at sites with high noise such as in factories.
In addition, the distance measuring device used in the conventional “position measuring device and position measuring system using magnetic wave signal” described in Patent Document 4 is a transponder type, and waits for a response from the partner station to set the distance. It was necessary to measure.

この発明は、上記の問題点を解決するためになされたものであり、41MHzまでの低い周波数帯域を用い、変動電界および変動磁界によって伝搬する電磁波信号と、変動磁界のみによって伝搬する磁力波信号を用い、両者間の伝搬速度の差を利用して一方向の通信で距離の測定が可能であり、高精度の位置検知装置を安価に提供することを目的とする。
The present invention has been made to solve the above-described problems. An electromagnetic wave signal propagated by a varying electric field and a varying magnetic field, and a magnetic wave signal propagated only by the varying magnetic field using a low frequency band up to 41 MHz. It is an object of the present invention to provide a high-accuracy position detection device at a low cost by using a difference in propagation speed between the two and measuring a distance by one-way communication.

この発明に係わる位置検知装置において、電磁波信号と磁力波信号とを組み合わせることによって、(1)電磁波信号の伝搬速度が毎秒300,000kmと高速であるのに比較して、前記磁力波信号の伝搬速度は太陽から放射される磁気嵐の伝搬速度と同程度である毎秒300km程度であり、両者の伝搬速度の差によって高精度の位置検知が可能となること、(2)従来の電磁波信号を用いる位置検知では、受信機への受信入力レベルが変化することで、受信機内部の伝搬遅延時間が60ns程度変化するために、距離の測定において20m程度の測定誤差を生じること、(3)電磁波信号と磁力波信号とを切替えて用いると、受信入力が変化するために生じる距離の測定誤差が1000分の1に抑制され、測定誤差が2cm程度に縮減できること、(4)従来の電磁波信号の伝搬減衰量が距離の2乗に比例するのに対して、磁力波信号の伝搬減衰量が距離の4乗あるいは6乗に比例するため、屋内での反射波の影響を受けにくいこと、(5)調音波信号のように工場内の騒音などの影響を受けないことなどの利点が得られる。   In the position detection device according to the present invention, by combining the electromagnetic wave signal and the magnetic wave signal, (1) the propagation speed of the electromagnetic wave signal is higher than that of 300,000 km / second. Is about 300 km / s, which is about the same as the propagation speed of a magnetic storm radiated from the sun, and it is possible to detect the position with high accuracy by the difference between the two propagation speeds. (2) Position detection using a conventional electromagnetic wave signal Then, since the propagation delay time in the receiver changes by about 60 ns due to the change in the reception input level to the receiver, a measurement error of about 20 m occurs in the distance measurement, and (3) electromagnetic wave signal and magnetic force When the wave signal is switched and used, the measurement error of the distance caused by the change of the received input is suppressed to 1/1000, and the measurement error can be reduced to about 2 cm. (4) Transmission of the conventional electromagnetic wave signal The attenuation is proportional to the square of the distance, whereas the propagation attenuation of the magnetic wave signal is proportional to the fourth or sixth power of the distance, so that it is not easily affected by the reflected wave indoors. (5) Advantages such as not being affected by noise in the factory, such as a sonic signal, can be obtained.

この発明に係わる位置検知装置では、 共振状態の電磁波アンテナを含み、非共振状態の磁力波アンテナを含み、送信手段を含み、受信手段を含み、伝搬時間差あるいは伝搬位相差の測定手段を含み、あるいはこれらの組合せを含み、前記送信手段が、前記電磁波アンテナを接続し、前記磁力波アンテナを接続し、電磁波信号を送信し、磁力波信号を送信し、自局の識別信号を送信し、自局の位置情報を送信し、付加情報を送信し、位置検知信号を送信し、あるいはこれらの組合せを行い、前記受信手段が、前記電磁波アンテナを接続し、前記磁力波アンテナを接続し、電磁波信号を受信し、磁力波信号を受信し、前記送信手段の識別信号を受信し、前記送信手段の位置情報を受信し、前記付加情報を受信し、前記位置検知信号を受信し、前記伝搬時間差あるいは伝搬位相差の測定手段によって前記送信手段からの距離を測定し、あるいはこれらの組合せを行うことによって、高精度の位置検知が可能となる。
The position detection apparatus according to the present invention includes a resonance electromagnetic wave antenna, a non-resonance magnetic wave antenna, a transmission means, a reception means, a propagation time difference or propagation phase difference measurement means, or Including these combinations, the transmission means connects the electromagnetic wave antenna, connects the magnetic wave antenna, transmits an electromagnetic wave signal, transmits a magnetic wave signal, transmits an identification signal of the local station, Transmitting the position information, transmitting additional information, transmitting a position detection signal, or performing a combination thereof, the receiving means connecting the electromagnetic wave antenna, connecting the magnetic wave antenna, Receiving, receiving the magnetic wave signal, receiving the identification signal of the transmission means, receiving the positional information of the transmission means, receiving the additional information, receiving the position detection signal, By measuring the distance from the transmitting means by the means for measuring the propagation time difference or the propagation phase difference, or by combining these, it is possible to detect the position with high accuracy.

従来から、位置検知に電磁波信号を用いると受信入力の変化によって受信機内部の伝搬遅延時間が変化するために、20m程度の測定誤差を生じる問題点があったため、電磁波と超音波との伝搬速度の差を利用して距離を測定する方法が採用されている。しかし、超音波は周辺の音響雑音によって妨害を受け、周辺の反響雑音の影響を受けるなど、測定誤差を生じる問題点があった。
そこで、電磁波信号と磁力波信号との伝搬速度の差を利用して距離を測定することで、これらの問題を解決し高精度の位置検知を可能とする位置検知装置を安価に提供することができる。
Conventionally, when an electromagnetic wave signal is used for position detection, the propagation delay time inside the receiver changes due to a change in the received input, which causes a measurement error of about 20 m. A method of measuring the distance using the difference is adopted. However, the ultrasonic wave is disturbed by the surrounding acoustic noise and has the problem of causing a measurement error such as being influenced by the surrounding echo noise.
Therefore, by measuring the distance using the difference in propagation speed between the electromagnetic wave signal and the magnetic wave signal, it is possible to provide a position detection device that solves these problems and enables highly accurate position detection at low cost. it can.

本発明の第1の実施形態における位置検知装置の構成図The block diagram of the position detection apparatus in the 1st Embodiment of this invention 本発明の第1の実施形態における位置検知装置の他の構成図The other block diagram of the position detection apparatus in the 1st Embodiment of this invention 本発明の第1の実施形態における受信手段の他の構成図Another block diagram of the receiving means in the first embodiment of the present invention 本発明の第1の実施形態におけるアンテナ手段の他の構成図Another block diagram of the antenna means in the first embodiment of the present invention 本発明の第1の実施形態における位置検知信号の構成図Configuration diagram of position detection signal in the first embodiment of the present invention 本発明の第1の実施形態における位置検知のタイミングチャートTiming chart of position detection in the first embodiment of the present invention 従来の実施例による位置測位データPositioning data according to previous examples

図1から図6、および請求項1に示すように、変動電界と変動磁界との交互作用によって伝搬する電磁波信号と変動磁界のみによって伝搬する磁力波信号との伝搬速度さを用いる高精度の位置検知装置および位置検知システムにおいて、 前記位置検知装置が、電磁波信号と磁力波信号とを同時あるいは時分割で送信する送信手段と、電磁波信号と磁力波信号とを同時あるいは時分割で受信する受信手段と、あるいはこれらの組合せで構成され、 前記送信手段が電磁波アンテナと磁力波アンテナとを含み、前記受信手段が電磁波アンテナと磁力波アンテナとを含み、放射された電磁波信号と磁力波信号とを受信し、 前記受信手段によって受信された電磁波信号と磁力波信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記受電手段において、前記第1の地点と前記第2の地点との距離を高精度で測定する。   As shown in FIGS. 1 to 6 and claim 1, a highly accurate position using the propagation speed of an electromagnetic wave signal propagating by the interaction of a varying electric field and a varying magnetic field and a magnetic wave signal propagating only by the varying magnetic field In the detection device and the position detection system, the position detection device transmits the electromagnetic wave signal and the magnetic wave signal simultaneously or in time division, and the reception unit receives the electromagnetic wave signal and the magnetic wave signal simultaneously or in time division. Or a combination thereof, wherein the transmitting means includes an electromagnetic wave antenna and a magnetic wave antenna, and the receiving means includes an electromagnetic wave antenna and a magnetic wave antenna, and receives the radiated electromagnetic wave signal and the magnetic wave signal. Measuring a propagation time difference and / or a propagation phase difference between the electromagnetic wave signal and the magnetic wave signal received by the receiving means, and receiving the power Oite, it measures the distance between the second point and the first point with high precision.

図1から図6、および請求項2に示すように、前記電磁波アンテナと磁力波アンテナとが、同一あるいは一部が同一のアンテナを共振状態としあるいは非共振状態として切替え、共振状態のアンテナと非共振状態のアンテナとを切替え、あるいはこれらの組合せである。
図1から図6、および請求項3に示すように、前記電磁波アンテナが前記電磁波信号の周波数に対して共振状態であり、前記磁力波アンテナが前記磁力波信号の住は数に対して非共振状態で有り、共振状態に近い非共振状態で有り、負荷Qが50以下であり、あるいはこれらの組合せである。
図1から図6、および請求項4に示すように、前記電磁波信号の伝搬速度が毎秒300,000kmであり、前記磁力波信号の伝搬速度が毎秒300kmであると推定され、両者の伝搬速度の差から、高精度で距離を測定する。
As shown in FIGS. 1 to 6 and claim 2, the electromagnetic wave antenna and the magnetic wave antenna are switched to a resonance state or a non-resonance state by switching the same or part of the same antenna to a resonance state antenna and a non-resonance state. The resonance antenna is switched or a combination thereof.
As shown in FIGS. 1 to 6 and claim 3, the electromagnetic wave antenna is in a resonance state with respect to the frequency of the electromagnetic wave signal, and the magnetic wave antenna is non-resonant with respect to the number of the magnetic wave signal dwells. In a non-resonant state close to the resonance state, the load Q is 50 or less, or a combination thereof.
As shown in FIGS. 1 to 6 and claim 4, it is estimated that the propagation speed of the electromagnetic wave signal is 300,000 km per second, the propagation speed of the magnetic wave signal is 300 km per second, and the difference between the propagation speeds of the two is estimated. To measure the distance with high accuracy.

図1から図6、および請求項5に示すように、前記送信手段が複数でありかつ離散的に固定して配置され、前記複数の送信手段から起点信号を含む電磁波信号と、位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が移動体に搭載され、前記受信手段が前記送信手段から受信した前記起点信号と位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記受信手段が前記複数の送信手段からの距離を高精度で測定し、自局の位置を三角法あるいは双曲線航法によって検知する。   As shown in FIG. 1 to FIG. 6 and claim 5, there are a plurality of the transmission means and are arranged discretely fixed, and an electromagnetic wave signal including an origin signal from the plurality of transmission means, and a position detection signal. Including a magnetic wave signal including the reception means is mounted on a moving body, and the reception means receives a propagation time difference and / or a propagation phase difference between the origin signal and the position detection signal received from the transmission means. The receiving means measures the distance from the plurality of transmitting means with high accuracy, and detects the position of the own station by trigonometry or hyperbolic navigation.

図1から図6、および請求項6に示すように、前記送信手段が、移動体に搭載され、前記送信手段から起点信号を含む電磁波信号と位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が複数でありかつ離散的に固定して配置され、前記受信手段が、前記送信手段から受信した前記起点信号と前記位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記送信手段からの距離を高精度で測定して結果をセンタサーバーに転送し、前記センタサーバーにおいて前記複数の受信手段から転送された測定結果から、前記送信手段の位置を三角法あるいは双曲線航法によって検知する。   As shown in FIGS. 1 to 6 and claim 6, the transmission unit is mounted on a moving body, and an electromagnetic wave signal including an origin signal and a magnetic wave signal including a position detection signal are intermittently transmitted from the transmission unit. A plurality of receiving means are arranged in a discrete and fixed manner, and the receiving means calculates a propagation time difference and / or a propagation phase difference between the origin signal received from the transmitting means and the position detection signal. And measuring the distance from the transmission means with high accuracy and transferring the result to a center server. From the measurement results transferred from the plurality of reception means in the center server, the position of the transmission means is triangulated or Detect by hyperbolic navigation.

図1から図6、および請求項7に示すように、前記送信手段が、複数のアンテナを搭載して周期的に切替えながら、起点信号を含む電磁波信号と位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が前記送信手段から受信した前記起点信号と前記位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記送信手段からの距離と方向とを測定し、自局の位置を検知する。
図1から図6、および請求項8に示すように、前記送信手段が付加情報を含めて送信し、前記固定局あるいは地上局から送信される遠隔制御情報であり、前記移動体から送信されるセンシング情報であり、あるいはこれらの組合せである。
As shown in FIG. 1 to FIG. 6 and claim 7, the transmitting means mounts a plurality of antennas and periodically switches between an electromagnetic wave signal including an origin signal and a magnetic wave signal including a position detection signal. Transmitting intermittently, the reception means measures the propagation time difference and / or propagation phase difference between the origin signal received from the transmission means and the position detection signal, and measures the distance and direction from the transmission means. Detect the location of your station.
As shown in FIG. 1 to FIG. 6 and claim 8, the transmission means transmits remote control information including additional information and is transmitted from the fixed station or ground station, and transmitted from the mobile unit. It is sensing information or a combination of these.

図1から図6、および請求項9に示すように、前記送信手段が付加情報を含めて送信し、前記固定局あるいは地上局から送信される遠隔制御情報であり、前記移動体から送信されるセンシング情報であり、あるいはこれらの組合せである。
図1から図6、および請求項10に示すように、前記送信手段が、同期信号、MACレイヤ、起点信号、位置検知信号、付加情報、あるいはこれらの組合せを含むスペクトル拡散符号を送信する。
As shown in FIG. 1 to FIG. 6 and claim 9, the transmission means transmits remote control information including additional information and is transmitted from the fixed station or ground station and transmitted from the mobile unit. It is sensing information or a combination of these.
As shown in FIGS. 1 to 6 and claim 10, the transmission means transmits a spread spectrum code including a synchronization signal, a MAC layer, an origin signal, a position detection signal, additional information, or a combination thereof.

図1から図6、および請求項11に示すように、前記送信手段あるいは受信手段の何れか一方あるいは両方が、複数でありかつ離散的に固定して配置され、低電力で広エリアの通信ネットワークを介してセンターサーバーに接続される。
図1から図6、および請求項12に示すように、前記移動体が、飛行物体であり、地上走行物体であり、屋内移動物体であり、あるいはこれらの組合せである。
図1から図6、および請求項13に示すように、前記送信手段が、マーカに組込まれ、地図上の任意の地点に設置され、地点登録され、ナビゲーションの起点、中継点、あるいは終点として利用され、位置標識として利用され、地図上にカスタマイズされ、あるいはこれらの組合せである。
As shown in FIG. 1 to FIG. 6 and claim 11, either one or both of the transmitting means and the receiving means are plural and discretely fixedly arranged, and are a low power and wide area communication network. Connected to the center server.
As shown in FIGS. 1 to 6 and claim 12, the moving body is a flying object, a ground traveling object, an indoor moving object, or a combination thereof.
As shown in FIGS. 1 to 6 and claim 13, the transmission means is incorporated in a marker, installed at an arbitrary point on the map, registered as a point, and used as a navigation start point, relay point, or end point. Used as a location indicator, customized on a map, or a combination thereof.

(実施の形態1)
図1は、本発明の第1の実施形態による位置検知装置の構成図であり、700aは送信アンテナ、700bは受信アンテナ、701はスペクトル拡散符号生成手段、702はDC/ACインバータ、703はインピーダンス変換手段、704は帯域通過フイルタ、705は受信信号増幅手段、706はA/Dコンバータ、707はDSPである。
ここで、送信アンテナ700aと受信アンテナ700bとがループアンテナであり、スパイラルアンテナであり、ヘリカルアンテナであり、電磁波信号を送受信するアンテナであり、磁力波信号を送受信するアンテナであり、あるいはこれらの組合せであり、お互いに水平方向に対向しており、お互いに垂直方向に対向しており、お互いの間隔がD(m)であり、あるいはこれらの組合せであるものとする。
(Embodiment 1)
FIG. 1 is a configuration diagram of a position detection apparatus according to a first embodiment of the present invention, in which 700a is a transmission antenna, 700b is a reception antenna, 701 is a spread spectrum code generation means, 702 is a DC / AC inverter, and 703 is impedance. Conversion means, 704 is a band pass filter, 705 is a reception signal amplification means, 706 is an A / D converter, and 707 is a DSP.
Here, the transmitting antenna 700a and the receiving antenna 700b are loop antennas, spiral antennas, helical antennas, antennas that transmit and receive electromagnetic wave signals, antennas that transmit and receive magnetic wave signals, or a combination thereof. It is assumed that they are opposed to each other in the horizontal direction, are opposed to each other in the vertical direction, and the distance between them is D (m), or a combination thereof.

また、前記スペクトル拡散符号生成手段701において、41MHz以下の低い周波帯域を搬送波として用い、入力されたベースバンド信号を低速度のスペクトル拡散符号に変換し、前記DC/ACインバータ702によって電力増幅し、送信アンテナ700aから電磁波信号および/あるいは磁力波信号として外部に放射し、前記送信アンテナからはD(m)離れた受信アンテナ700bによって前記電磁波信号および/あるいは磁力波信号として受信し、インピーダンス変換手段703によって低インピーダンスの受信入力に変換し、選択フイルタ704によって必要な周波数を選択し、受信信号増幅手段706によって必要なレベルまで増幅し、ADコンバータ706およびデジタルシグナルプロセッサ(DSP)707によってベースバンド信号に復調する。   Further, in the spread spectrum code generation means 701, a low frequency band of 41 MHz or less is used as a carrier wave, an input baseband signal is converted into a low speed spread spectrum code, and power is amplified by the DC / AC inverter 702. An electromagnetic wave signal and / or a magnetic wave signal is radiated from the transmitting antenna 700a to the outside, and the electromagnetic wave signal and / or the magnetic wave signal is received by the receiving antenna 700b away from the transmitting antenna by D (m). Is converted to a low-impedance reception input, a necessary frequency is selected by a selection filter 704, amplified to a necessary level by a reception signal amplification means 706, and a baseband signal is obtained by an AD converter 706 and a digital signal processor (DSP) 707. To demodulate.

また、前記送信手段と受信手段との間の距離を測定するために、前記送信手段から起点信号を含む電磁波信号および/あるいは位置検知信号を含む磁力波を送信アンテナから前記受信手段に向けて間欠的に送信し、前記受信手段が受信アンテナで受信して周波数を選択し、増幅手段で増幅した後にADコンバータによってデジタル信号に変換し、DSPによって前記起点信号に同期した基準クロックを生成し、前記生成した基準クロックによって前記位置検知信号の伝搬時間あるいは伝搬位相を測定し、前記送信手段からの距離を高精度で測定することができる。   Further, in order to measure the distance between the transmission means and the reception means, an electromagnetic wave signal including an origin signal and / or a magnetic wave including a position detection signal is intermittently transmitted from the transmission antenna toward the reception means. And the reception means receives the reception antenna, selects a frequency, amplifies the amplification means, converts the digital signal by an AD converter, generates a reference clock synchronized with the origin signal by a DSP, The propagation time or propagation phase of the position detection signal can be measured with the generated reference clock, and the distance from the transmitting means can be measured with high accuracy.

また、前記送信手段が複数組であり、屋内の天井などに間隔を置いて離散的に設置され、前記受信手段が移動体に設置され前記複数組の送信手段の内の少なくとも3局から前記起点信号と位置検知信号とが受信できると、各局からの距離が高精度で測定可能となり、三角法もしくは双曲線航法によって、移動体の現在位置を高精度で検知することができる。
また、従来の電磁波信号の伝搬減衰量が距離の2乗に比例するのに対して、磁力波信号の伝搬減衰量が距離の4乗もしくは6乗に比例するため、後者の磁力波信号の方が屋内での反射波の影響を受けにくい利点が得られる。
Further, the transmitting means is a plurality of sets, and is installed discretely at intervals on an indoor ceiling, etc., and the receiving means is installed on a moving body, and the starting point is from at least three stations of the plurality of sets of transmitting means. If the signal and the position detection signal can be received, the distance from each station can be measured with high accuracy, and the current position of the moving body can be detected with high accuracy by trigonometry or hyperbolic navigation.
Further, the propagation attenuation amount of the electromagnetic wave signal is proportional to the square of the distance, whereas the propagation attenuation amount of the magnetic wave signal is proportional to the fourth power or the sixth power of the distance. Provides the advantage of being less susceptible to reflected waves indoors.

ここで、前記受信手段において、前記電磁波信号を用いて受信した起点信号を基準とし、前記磁力波信号を用いて受信した位置検知信号の伝搬時間差あるいは伝搬位相差を測定することで、電磁波信号の伝搬速度が毎秒300.000kmであり、磁力波信号の伝搬速度が実測値で毎秒300km程度であることから、両者の伝搬速度の差が1000倍であることから、前記送信手段からの距離が高精度で測定可能となり、かつ、前記受信手段への受信入力の変化によって生じる受信機内部の伝搬遅延時間によって生じる位置検知誤差が電磁波信号のみを用いて測定する場合の1000分の1に抑制され、±2cm程度の誤差に縮減されることから、高精度の位置検知が可能となる。
また、磁力波信号を用いると、アンテナが非共振状態であるため帯域幅を拡大できることから、スペクトル拡散符号を含む広帯域の信号を用いることが可能となる。
Here, the receiving means measures the propagation time difference or propagation phase difference of the position detection signal received using the magnetic wave signal with reference to the origin signal received using the electromagnetic wave signal, thereby Propagation speed is 300.000km per second, and the propagation speed of magnetic wave signal is about 300km per second in the measured value, so the difference between the two propagation speed is 1000 times, so the distance from the transmission means is high accuracy And the position detection error caused by the propagation delay time inside the receiver caused by the change in the reception input to the receiving means is suppressed to 1/1000 of the case of measuring using only the electromagnetic wave signal, ± Since the error is reduced to about 2cm, highly accurate position detection is possible.
In addition, when a magnetic wave signal is used, the bandwidth can be expanded because the antenna is in a non-resonant state, and thus a wideband signal including a spread spectrum code can be used.

図2に本発明の第1の実施形態における位置検知装置の他の構成図を示し、700a、700bは低い周波帯域のアンテナ、801a、801bは磁性体、802a、802bは共振コンデンサ、803a、803bは切替手段、804はMOSFETインバータ、805は位置測位送信手段、806はソースホロア変換手段、807は位置測位受信手段である。
ここで、低い周波帯域のアンテナ700a、700bと共振コンデンサ803a、803bとは、直列共振あるいは並列共振状態で有るものとする。
FIG. 2 shows another configuration diagram of the position detection apparatus according to the first embodiment of the present invention, in which 700a and 700b are low frequency band antennas, 801a and 801b are magnetic materials, 802a and 802b are resonance capacitors, and 803a and 803b. Is a switching means, 804 is a MOSFET inverter, 805 is a position positioning transmission means, 806 is a source follower conversion means, and 807 is a position positioning reception means.
Here, it is assumed that the low-frequency band antennas 700a and 700b and the resonance capacitors 803a and 803b are in a series resonance state or a parallel resonance state.

また、前記切替手段803a、803bは、電磁波信号を送受信する場合には共振コンデンサ側に、磁力波信号を送受信する場合にはアンテナ側に、前記制御手段によって切替えられる。
一方、前記位置測位送信手段では、同期信号、MACレイヤ、起点信号、位置検知信号、付加情報、あるいはこれらを組合せによるデジタル信号を生成し、前記MOSFETインバータによって、前記生成されたデジタル信号を電力増幅し、低インピーダンスの信号電力として出力する。
また、前記位置測位受信手段では、受信周波数の選択、受信信号の増幅、スペクトルの逆拡散、誤り訂正、距離の測定、あるいはこれらの組合せを行い、位置検知の結果を出力する。
The switching means 803a and 803b are switched by the control means to the resonant capacitor side when transmitting and receiving electromagnetic wave signals and to the antenna side when transmitting and receiving magnetic wave signals.
On the other hand, the position measurement transmission means generates a digital signal based on a synchronization signal, a MAC layer, an origin signal, a position detection signal, additional information, or a combination thereof, and the MOSFET inverter power-amplifies the generated digital signal. And output as low impedance signal power.
Further, the position positioning receiving means performs selection of reception frequency, amplification of received signal, spectrum despreading, error correction, distance measurement, or a combination thereof, and outputs a position detection result.

図3に本発明の第1の実施形態における受信手段の他の構成図を示し、600は誘導結合する変動磁界、601は局部発振手段、602はMI素子ミキサ、603は検出コイル、703はインピーダンス変換手段、704は帯域通過選択手段、708は中間周波増幅手段である。
ここで、前記MI素子ミキサ602に変動磁界600が誘導結合すると、MI素子ミキサの抵抗成分が急激に変動し、MI素子の2乗特性によって局発周波数と混合されて中間周波数を発生し、当該中間周波数を検出コイル603で検出し、インピーダンス変換手段703によって低インピーダンスに変換され、帯域通過選択手段704によって中間周波信号を選択し、中間周波増幅器708で増幅して出力する。
また、MI素子ミキサは超小型化が可能であり、電磁波信号の変動磁界成分と、磁力波信号の変動磁界とを受信することが出来る。
FIG. 3 shows another block diagram of the receiving means in the first embodiment of the present invention, in which 600 is a variable magnetic field to be inductively coupled, 601 is a local oscillating means, 602 is an MI element mixer, 603 is a detection coil, and 703 is impedance. Conversion means, 704 is a band pass selection means, and 708 is an intermediate frequency amplification means.
Here, when the variable magnetic field 600 is inductively coupled to the MI element mixer 602, the resistance component of the MI element mixer rapidly changes and is mixed with the local frequency by the square characteristic of the MI element to generate an intermediate frequency. The intermediate frequency is detected by the detection coil 603, converted to low impedance by the impedance conversion unit 703, the intermediate frequency signal is selected by the band pass selection unit 704, amplified by the intermediate frequency amplifier 708, and output.
Further, the MI element mixer can be miniaturized, and can receive the variable magnetic field component of the electromagnetic wave signal and the variable magnetic field of the magnetic wave signal.

図4に本発明の第1の実施形態におけるアンテナ手段の他の構成図を示し、600は誘導結合する変動磁界、700aから700dは低い周波帯域のアンテナ、811はアンテナ切替手段、812はアンテナ接続コネクタ、900はアンテナ配置図である。
ここで、低い周波帯域のアンテナ700aから700dは、アンテナ配置図900に示すように等間隔で配置され、アンテナ切替手段によって周期的に切替えられ、アンテナコネクタを介して前記受信手段に接続され、前記アンテナ手段によって前記送信手段が位置する方向を測定できる。
また、前記低い周波帯域のアンテナ700aから700dは、伝搬速度が毎秒300km程度の磁力波信号の波長の4分の1程度(周波数が1.5MHzで間隔が5cm)とすることで、前記磁力波信号が放射された方向の測定誤差は±1°以下が実現可能である。
FIG. 4 shows another configuration diagram of the antenna unit according to the first embodiment of the present invention, in which 600 is a variable magnetic field to be inductively coupled, 700a to 700d are low frequency band antennas, 811 is an antenna switching unit, and 812 is an antenna connection. A connector 900 is an antenna arrangement diagram.
Here, the low frequency band antennas 700a to 700d are arranged at equal intervals as shown in the antenna arrangement diagram 900, periodically switched by the antenna switching means, connected to the receiving means via an antenna connector, and The direction in which the transmitting means is located can be measured by the antenna means.
Also, the antennas 700a to 700d in the low frequency band have the propagation speed of about one quarter of the wavelength of the magnetic wave signal having a propagation speed of about 300 km / second (frequency is 1.5 MHz and the interval is 5 cm). The measurement error in the direction in which the signal is radiated can be ± 1 ° or less.

図5は、本発明の第1の実施形態における測定信号の構成図であり、61は同期信号(Start Frame Delimiter)、62はMACレイヤ、63−1から63−nは起点信号であり、かつ61?63は電磁波信号として送信され、64−1から64−nは位置検知信号であり、かつ磁力波信号として送信される。
ここで、前記同期信号61は複数ビットのユニークワードであり、前記送信手段と受信手段との間で大まかな制御タイミングを合わせるためのものである。
FIG. 5 is a configuration diagram of a measurement signal according to the first embodiment of the present invention, in which 61 is a synchronization signal (Start Frame Delimiter), 62 is a MAC layer, 63-1 to 63-n are origin signals, and 61-63 are transmitted as electromagnetic wave signals, 64-1 to 64-n are position detection signals, and are transmitted as magnetic wave signals.
Here, the synchronization signal 61 is a unique word of a plurality of bits, and is used for adjusting a rough control timing between the transmission means and the reception means.

また、前記MACレイヤ62は、自局の識別番号、相手先番号、付加情報、あるいはこれらの組合せから構成されるが、低い周波帯域ではデータの伝送速度が制限されるため簡略化する必要がある。
また、前記起点信号63は、電磁波信号として送信され、前記送信手段と受信手段との間でより精密な同期を確立するための信号である。
一方、前記位置測位信号64は、磁力波信号として送信され、前記送信手段と受信手段との間の距離および/あるいは方向を多かい精度で測定するための信号である。
The MAC layer 62 is composed of its own station identification number, destination number, additional information, or a combination thereof. However, since the data transmission rate is limited in a low frequency band, it needs to be simplified. .
The starting signal 63 is transmitted as an electromagnetic wave signal, and is a signal for establishing more precise synchronization between the transmitting means and the receiving means.
On the other hand, the position positioning signal 64 is transmitted as a magnetic wave signal, and is a signal for measuring the distance and / or direction between the transmitting means and the receiving means with high accuracy.

また、前記間欠送信の時間と間隔は前記送信手段の設置密度によって制限を受けるが、前記間欠送信の間隔をCR発振器などの自励発振器で制御することで、複数の送受信手段の間で相互間の同期を取らず非同期で間欠送信できることから、重複する確率が低くなり、経済的な装置運用が可能となる。
また、前記測定信号は通常スペクトル拡散符号として送受信される。
In addition, the intermittent transmission time and interval are limited by the installation density of the transmission means, but by controlling the intermittent transmission interval with a self-excited oscillator such as a CR oscillator, a plurality of transmission / reception means can be connected to each other. Since asynchronous transmission can be performed asynchronously without synchronization, the probability of duplication is reduced and economical operation of the apparatus becomes possible.
The measurement signal is usually transmitted and received as a spread spectrum code.

図6は、本発明の第1の実施形態における位置検知のタイミングチャートであり、71aは前記受信手段が受信した起点信号、71bは前記受信手段が受信した位置測位信号、72は起点信号と位置測位信号との伝搬時間差あるいは伝搬位相差、73a、73bは時間軸である。
ここで、71aは前記送信手段から電磁波信号として送信され、前記受信手段で電磁波信号として受信した起点信号であり、71bは前記送信手段から磁力波信号として送信され、前記受信手段で磁力波信号として受信した位置測位信号であり、72は両者間に生じた伝搬遅延時間差あるいは伝搬遅延位相差である。
FIG. 6 is a timing chart of position detection in the first embodiment of the present invention, in which 71a is a starting point signal received by the receiving means, 71b is a position positioning signal received by the receiving means, and 72 is a starting point signal and position. The propagation time difference or propagation phase difference from the positioning signal, and 73a and 73b are time axes.
Here, 71a is an origin signal transmitted as an electromagnetic wave signal from the transmitting means and received as an electromagnetic wave signal by the receiving means, 71b is transmitted as a magnetic wave signal from the transmitting means, and as a magnetic wave signal by the receiving means. The received positioning signal 72 is a propagation delay time difference or a propagation delay phase difference generated between them.

また、電磁波信号の伝搬速度をCm(m/s)とし、磁力波信号の伝搬速度をCn(m/s)とし、前記送信手段から電磁波信号として送信される起点信号をASin(ωt)とすると、前記起点信号が距離L(m)を伝搬し受信手段で電磁波信号として受信するとBSin(ωt+(2πL/Cm))に変化し、一方、前記送信手段から磁力波信号として送信される位置検知信号をCSin(ωt)とすると、前記位置検測位信号が距離L(m)を伝搬し受信手段で磁力波信号として受信するとDSin(ωt+(2πL/Cn))に変化するものとする。
前記受信手段で受信した起点信号と位置測位信号との位相差θは、θ=(2πL/Cn)-(2πL/Cm)となり、Cm>>Cnの場合、θ≒(2πL/Cn)となり、距離L(m)は、L=(θ*(Cn/2π))から求められる。
Further, the propagation speed of the electromagnetic wave signal is Cm (m / s), the propagation speed of the magnetic wave signal is Cn (m / s), and the origin signal transmitted as an electromagnetic wave signal from the transmission means is ASin (ωt). When the starting signal propagates a distance L (m) and is received as an electromagnetic wave signal by the receiving means, it changes to BSin (ωt + (2πL / Cm)), while the position detecting signal transmitted as a magnetic wave signal from the transmitting means Is assumed to be CSin (ωt), the position measurement signal changes to DSin (ωt + (2πL / Cn)) when it propagates the distance L (m) and is received as a magnetic wave signal by the receiving means.
The phase difference θ between the origin signal received by the receiving means and the positioning signal is θ = (2πL / Cn) − (2πL / Cm), and when Cm >> Cn, θ≈ (2πL / Cn), The distance L (m) is obtained from L = (θ * (Cn / 2π)).

以上の説明では、低い周波数帯域を用いる位置検知装置について述べたが、前記電磁波信号の伝搬損は距離の2乗に比例して増加するのに対して、前記磁力波信号の伝搬損は距離の4乗あるいは6乗に比例して増加するので、前記磁力波信号によって測定可能な距離に制約を受けるが、屋内などの閉空間では、逆に前記磁力波信号では反射波が急激に減衰するため、反射波の影響を受けにくい利点があり、複数台の固定局を広いエリアに設置し、通信ネットワークに接続することで、広域での高精度の位置検知システムとして活用できる。
In the above description, the position detection device using a low frequency band has been described. However, the propagation loss of the electromagnetic wave signal increases in proportion to the square of the distance, whereas the propagation loss of the magnetic wave signal is Since it increases in proportion to the 4th or 6th power, the distance that can be measured by the magnetic wave signal is limited. However, in a closed space such as indoors, the reflected wave attenuates rapidly in the magnetic wave signal. It has the advantage that it is not easily affected by reflected waves. By installing multiple fixed stations in a wide area and connecting them to a communication network, it can be used as a highly accurate position detection system in a wide area.

本発明は上記のように構成されているため、高精度の位置検知装置位置検知システムが屋内・屋外を問わず安価に実現できることから、実用的価値が高いものである。
Since this invention is comprised as mentioned above, since a highly accurate position detection apparatus position detection system can be implement | achieved cheaply regardless of indoors and the outdoors, its practical value is high.

700a、700b 低い周波帯域のアンテナ
802a、802b 共振コンデンサ
803a、803b 切替手段
804 MOSFETインバータ
805 位置測位送信手段
806 ソースホロア変換手段
807 位置測位受信手段
700a, 700b Low frequency band antennas 802a, 802b Resonance capacitors 803a, 803b Switching means 804 MOSFET inverter 805 Position positioning transmission means 806 Source follower conversion means 807 Position positioning reception means

Claims (13)

変動電界と変動磁界との交互作用によって伝搬する電磁波信号と変動磁界のみによって伝搬する磁力波信号との伝搬速度の差を利用する高精度の位置検知装置および位置検知システムにおいて、
前記位置検知装置が、電磁波信号と磁力波信号とを同時あるいは時分割で送信する送信手段と、電磁波信号と磁力波信号とを同時あるいは時分割で受信する受信手段と、あるいはこれらの組合せで構成され、
前記送信手段が電磁波アンテナと磁力波アンテナとを含み、前記受信手段が電磁波アンテナと磁力波アンテナとを含み、
第1の地点に設けられた前記送信手段から電磁波信号と磁力波信号とを放射し、距離を隔てた第2の地点に設けられた前記受信手段によって前記放射された電磁波信号と磁力波信号とを受信し、
前記受信手段によって受信された電磁波信号と磁力波信号との伝搬時間差および/あるいは伝搬位相差を測定し、
前記受電手段において、前記第1の地点と前記第2の地点との距離を高精度で測定することを特徴とする位置検知装置および位置検知システム。
In a high-accuracy position detection apparatus and position detection system that uses a difference in propagation speed between an electromagnetic wave signal propagated by the interaction of a varying electric field and a varying magnetic field and a magnetic wave signal propagated only by the varying magnetic field,
The position detection device includes a transmission unit that transmits an electromagnetic wave signal and a magnetic wave signal simultaneously or in time division, a reception unit that receives the electromagnetic wave signal and the magnetic wave signal simultaneously or in a time division, or a combination thereof. And
The transmitting means includes an electromagnetic wave antenna and a magnetic wave antenna, and the receiving means includes an electromagnetic wave antenna and a magnetic wave antenna,
An electromagnetic wave signal and a magnetic wave signal are radiated from the transmitting means provided at the first point, and the electromagnetic wave signal and the magnetic wave signal emitted by the receiving means provided at the second point separated from each other Receive
Measuring the propagation time difference and / or propagation phase difference between the electromagnetic wave signal and the magnetic wave signal received by the receiving means;
A position detection device and a position detection system, wherein the power receiving unit measures the distance between the first point and the second point with high accuracy.
前記請求項第1項において、前記電磁波アンテナと磁力波アンテナとが、同一あるいは一部が同一のアンテナを共振状態としあるいは非共振状態として切替え、共振状態のアンテナと非共振状態のアンテナとを切替え、あるいはこれらの組合せであることを特徴とする位置検知装置および位置検知システム。
The electromagnetic wave antenna and the magnetic wave antenna according to claim 1, wherein the same or part of the same antenna is switched to a resonance state or a non-resonance state, and a resonance state antenna and a non-resonance state antenna are switched. A position detection device and a position detection system characterized by being a combination thereof.
前記請求項第1項において、前記電磁波アンテナが前記電磁波信号の周波数に対して共振状態であり、前記磁力波アンテナが前記磁力波信号の住は数に対して非共振状態で有り、共振状態に近い非共振状態で有り、負荷Qが50以下であり、あるいはこれらの組合せであることを特徴とする位置検知装置および位置検知システム。
2. The electromagnetic wave antenna according to claim 1, wherein the electromagnetic wave antenna is in a resonance state with respect to the frequency of the electromagnetic wave signal, and the magnetic wave antenna is in a non-resonant state with respect to the number of dwells of the magnetic wave signal. A position detection device and a position detection system which are in a non-resonant state and have a load Q of 50 or less, or a combination thereof.
前記請求項第1項において、前記電磁波信号の伝搬速度が毎秒300,000kmであり、前記磁力波信号の伝搬速度が毎秒300kmであると推定され、両者の伝搬速度の差から、高精度で距離を測定することを特徴とする位置検知装置および位置検知システム。
In claim 1, the propagation speed of the electromagnetic wave signal is estimated to be 300,000 km / sec, the propagation speed of the magnetic wave signal is estimated to be 300 km / sec, and the distance between the two is determined with high accuracy from the difference between the propagation speeds of the two. A position detection device and a position detection system characterized by measuring.
前記請求項第1項から第4項までの何れかにおいて、前記送信手段が複数でありかつ離散的に固定して配置され、前記複数の送信手段から起点信号を含む電磁波信号と、位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が移動体に搭載され、前記受信手段が前記送信手段から受信した前記起点信号と位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記受信手段が前記複数の送信手段からの距離を高精度で測定し、自局の位置を三角法あるいは双曲線航法によって検知することを特徴とする位置検知装置および位置検知システム。
5. The electromagnetic wave signal according to claim 1, wherein a plurality of the transmission means are arranged in a discrete and fixed manner, and an electromagnetic wave signal including a starting point signal from the plurality of transmission means, and a position detection signal. And the reception means is mounted on a moving body, and the reception means receives the propagation time difference and / or propagation phase difference between the origin signal and the position detection signal received from the transmission means. A position detecting device and a position detecting system, wherein the receiving means measures the distance from the plurality of transmitting means with high accuracy, and detects the position of the own station by trigonometry or hyperbolic navigation.
前記請求項第1項から第3項までの何れかにおいて、前記送信手段が、移動体に搭載され、前記送信手段から起点信号を含む電磁波信号と位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が複数でありかつ離散的に固定して配置され、前記受信手段が、前記送信手段から受信した前記起点信号と前記位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記送信手段からの距離を高精度で測定して結果をセンタサーバーに転送し、前記センタサーバーにおいて前記複数の受信手段から転送された測定結果から、前記送信手段の位置を三角法あるいは双曲線航法によって検知することを特徴とする位置検知装置および位置検知システム。
4. The method according to claim 1, wherein the transmission unit is mounted on a moving body, and an electromagnetic wave signal including an origin signal and a magnetic wave signal including a position detection signal are intermittently transmitted from the transmission unit. A plurality of receiving means and discretely fixedly arranged, and the receiving means receives a propagation time difference and / or a propagation phase difference between the origin signal and the position detection signal received from the transmitting means. And measuring the distance from the transmission means with high accuracy and transferring the result to a center server. From the measurement results transferred from the plurality of reception means in the center server, the position of the transmission means is trigonometric. Or the position detection apparatus and position detection system characterized by detecting by hyperbolic navigation.
前記請求項第1項から第3項までの何れかにおいて、前記送信手段が、複数のアンテナを搭載して周期的に切替えながら、起点信号を含む電磁波信号と位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が前記送信手段から受信した前記起点信号と前記位置検知信号との伝搬時間差および/あるいは伝搬位相差を測定し、前記送信手段からの距離と方向とを測定し、自局の位置を検知することを特徴とする位置検知装置および位置検知システム。
In any one of the first to third aspects of the invention, the transmission means includes a plurality of antennas and periodically switches the electromagnetic wave signal including the origin signal and the magnetic wave signal including the position detection signal. Is transmitted intermittently, the reception means measures the propagation time difference and / or propagation phase difference between the origin signal received from the transmission means and the position detection signal, and measures the distance and direction from the transmission means. And a position detection system for detecting the position of the local station.
前記請求項第1項から第3項までの何れかにおいて、前記送信手段が、起点信号を含む電磁波信号と位置検知信号を含む磁力波信号とを間欠的に送信し、前記受信手段が、複数のアンテナを搭載して周期的に切替えながら、前記送信手段から受信した前記起点信号と前記位置検知信号との伝搬時間差あるいは伝搬位相差を測定し、前記送信手段からの距離と方向とを測定し、前記送信手段の位置を検知することを特徴とする位置検知装置および位置検知システム。
4. The method according to claim 1, wherein the transmitting means intermittently transmits an electromagnetic wave signal including a starting point signal and a magnetic wave signal including a position detection signal, and the receiving means includes a plurality of receiving means. Measure the propagation time difference or propagation phase difference between the origin signal received from the transmission means and the position detection signal, and measure the distance and direction from the transmission means while periodically switching the antenna. A position detection device and a position detection system for detecting the position of the transmission means.
前記請求項第1項から第8項までの何れかにおいて、前記送信手段が付加情報を含めて送信し、前記固定局あるいは地上局から送信される遠隔制御情報であり、前記移動体から送信されるセンシング情報であり、あるいはこれらの組合せであることを特徴とする位置検知装置および位置検知システム。
The remote control information transmitted from the fixed station or the ground station, which is transmitted from the fixed station or the ground station, transmitted from the mobile unit according to any one of claims 1 to 8. Sensing information or a combination of these sensing information and position sensing system.
前記請求項第1項から第9項までの何れかにおいて、前記送信手段が、同期信号、MACレイヤ、起点信号、位置検知信号、付加情報、あるいはこれらの組合せを含むスペクトル拡散符号を送信することを特徴とする位置検知装置および位置検知システム。
The transmission means according to any one of claims 1 to 9, wherein the transmission means transmits a spread spectrum code including a synchronization signal, a MAC layer, an origin signal, a position detection signal, additional information, or a combination thereof. A position detection device and a position detection system.
前記請求項第1項から第10項までの何れかにおいて、前記送信手段あるいは受信手段の何れか一方あるいは両方が、複数でありかつ離散的に固定して配置され、低電力で広エリアの通信ネットワークを介してセンターサーバーに接続されることを特徴とする位置検知装置および位置検知システム。
11. The communication apparatus according to claim 1, wherein either one or both of the transmission means and the reception means are plural and discretely fixedly arranged, and have a low power and wide area communication. A position detection device and a position detection system connected to a center server via a network.
前記請求項第1項から第11項までの何れかにおいて、前記移動体が、飛行物体であり、地上走行物体であり、屋内移動物体であり、あるいはこれらの組合せであることを特徴とする位置検知装置および位置検知システム。
12. The position according to claim 1, wherein the moving body is a flying object, a ground traveling object, an indoor moving object, or a combination thereof. Detection device and position detection system.
前記請求項第1項から第12項までの何れかにおいて、前記送信手段が、マーカに組込まれ、地図上の任意の地点に設置され、地点登録され、ナビゲーションの起点、中継点、あるいは終点として利用され、位置標識として利用され、地図上にカスタマイズされ、あるいはこれらの組合せであることを特徴とする位置検知装置および位置検知システム。   The transmission means according to any one of claims 1 to 12, wherein the transmission means is incorporated in a marker, installed at an arbitrary point on the map, registered as a point, and as a navigation start point, relay point, or end point. A position detection device and a position detection system, characterized in that they are used, used as position signs, customized on a map, or a combination thereof.
JP2017142355A 2017-07-23 2017-07-23 Position detection device and position detection system Pending JP2019023575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142355A JP2019023575A (en) 2017-07-23 2017-07-23 Position detection device and position detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142355A JP2019023575A (en) 2017-07-23 2017-07-23 Position detection device and position detection system

Publications (1)

Publication Number Publication Date
JP2019023575A true JP2019023575A (en) 2019-02-14

Family

ID=65368433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142355A Pending JP2019023575A (en) 2017-07-23 2017-07-23 Position detection device and position detection system

Country Status (1)

Country Link
JP (1) JP2019023575A (en)

Similar Documents

Publication Publication Date Title
US9357353B2 (en) Positioning
US10142778B2 (en) Direction finding for legacy bluetooth devices
EP3373471A1 (en) Method and apparatus for focused data communications
US20090149198A1 (en) System and method for tracking position
US8576818B2 (en) Location of mobile network nodes
US20070139200A1 (en) Methods and system for reduced attenuation in tracking objects using rf technology
TW201305589A (en) WLAN-based positioning system
KR20100006961A (en) Method and system for localization using one-way ranging technique
JP2006349515A (en) System and method for measuring displacement
WO2019113231A1 (en) Narrowband single base location system
JPWO2009145325A1 (en) Mobile body relative position detection system and mobile body performing relative position detection
CN105277936A (en) Range finding system based on mobile phone and method thereof
Blumenthal et al. Minimal transmission power as distance estimation for precise localization in sensor networks
Neri et al. DOA and TOA based localization services protocol in IEEE 802.11 networks
US11079463B2 (en) Method and device for position determination
JP2019023575A (en) Position detection device and position detection system
KR101043539B1 (en) Mobile communication terminal with survey function and method of controlling the same
JP2011107102A (en) Autonomous movement support system and control method therefor
US7031727B2 (en) Method of location using signals of unknown origin
CN104378737A (en) Enhanced positioning method, device and system
JPH09236651A (en) Position locator
JP2014175999A (en) Mobile communication system
EP2815249A1 (en) Method and apparatus for estimating a distance and a location through near-field multi-frequency radio transmissions
Ens et al. Robust multi-carrier frame synchronization for localization systems with ultrasound
KR101231799B1 (en) System for calculating self position information