JP2019022872A - Method for forming lipid bilayer membrane and instrument for the same - Google Patents

Method for forming lipid bilayer membrane and instrument for the same Download PDF

Info

Publication number
JP2019022872A
JP2019022872A JP2017142685A JP2017142685A JP2019022872A JP 2019022872 A JP2019022872 A JP 2019022872A JP 2017142685 A JP2017142685 A JP 2017142685A JP 2017142685 A JP2017142685 A JP 2017142685A JP 2019022872 A JP2019022872 A JP 2019022872A
Authority
JP
Japan
Prior art keywords
lipid
compartment
hole
aqueous medium
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017142685A
Other languages
Japanese (ja)
Inventor
宣雄 三澤
Yoshio Misawa
宣雄 三澤
昌治 竹内
Shoji Takeuchi
昌治 竹内
寿久 大崎
Toshihisa Osaki
寿久 大崎
厚輝 神谷
Koki Kamiya
厚輝 神谷
聡志 藤井
Satoshi Fujii
聡志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Institute of Industrial Science and Technology filed Critical Kanagawa Institute of Industrial Science and Technology
Priority to JP2017142685A priority Critical patent/JP2019022872A/en
Publication of JP2019022872A publication Critical patent/JP2019022872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

To provide a method for forming a lipid bilayer membrane, the method allowing for direct contact of aqueous medium with a gas composition in atmosphere with a lipid bilayer membrane formed, and achieving electrical insulation of both sections partitioned by the lipid bilayer membrane while the direct contact is allowed, and to provide an instrument for the method for forming a lipid bilayer membrane.SOLUTION: The method for forming a lipid bilayer membrane includes: a step of adding lipid solution in which lipid membrane-forming lipid is dissolved into organic solvent to a through-hole of a partition wall having the through-hole, thereby forming a membrane of lipid solution covering the through-hole; and a step of immersing an obtained partition wall into aqueous medium, thereby forming a lipid bilayer membrane in the lipid solution covering the through-hole. The aqueous medium is housed in a chamber, the chamber is separated into a first section and a second section in an insulated manner by immersing the partition wall into the aqueous medium, and the aqueous medium housed in at least either one of the first section and the second section directly contacts outside air.SELECTED DRAWING: Figure 1

Description

本発明は、脂質二重膜の形成方法及びそのための器具に関する。   The present invention relates to a method for forming a lipid bilayer membrane and a device therefor.

生物を構成する細胞や、細胞内に存在するミトコンドリア、ゴルジ体、小胞体等の各種オルガネラ、細胞核等は、外側が生体膜で覆われており、この生体膜は、基本的に脂質二重膜から構成されている。生理活性を有する様々なタンパク質、すなわち、レセプターや酵素等がこの脂質二重膜を貫通する形で脂質二重膜上に保持されている。これらの膜貫通タンパク質は、生体内で重要な役割を果たしている。特に、細胞膜上に存在する各種レセプターは、生体内に存在するリガンドと結合することにより、様々な生理学的反応を引き起こす引き金になることがわかっている。このため、レセプターの機能を亢進する各種リガンドや、レセプターの機能を阻害する阻害剤等が医薬品として用いられており、また、新たな医薬品として利用可能な天然又は人工のリガンドや阻害剤が研究されている。また、嗅覚レセプターを脂質二重膜に保持して臭気センサーを開発する研究も行われている。   Cells that make up living organisms, various organelles such as mitochondria, Golgi bodies, and endoplasmic reticulum, cell nuclei, etc. are covered with a biological membrane on the outside. This biological membrane is basically a lipid bilayer membrane. It is composed of Various proteins having physiological activity, that is, receptors, enzymes, and the like, are retained on the lipid bilayer membrane in a form that penetrates the lipid bilayer membrane. These transmembrane proteins play an important role in vivo. In particular, it has been found that various receptors present on cell membranes trigger various physiological reactions by binding to ligands present in the living body. For this reason, various ligands that enhance the function of the receptor, inhibitors that inhibit the function of the receptor, and the like are used as pharmaceuticals, and natural or artificial ligands and inhibitors that can be used as new pharmaceuticals have been studied. ing. Research is also underway to develop odor sensors by holding olfactory receptors on lipid bilayers.

これらの膜貫通タンパク質や、そのリガンド、阻害剤、又は臭気センサー等を開発するためには、生体内と同じ状態、すなわち、膜貫通タンパク質が生体膜に保持された状態で各種測定を行うことが望まれる。従来より、脂質二重膜の形成方法自体は周知であり、液滴接触法、刷毛塗り法、吹き付け法及び貼り合わせ法が知られている。これらのうち、脂質二重膜形成操作が簡便で、かつ、脂質二重膜形成後の測定操作も簡便に行うことができる、液滴接触法が広く用いられている。液滴接触法では、例えば、浅い円筒状の凹部(ウェル)を2個隣接して配置し、かつ、2個のウェルが互いに接する境界部分を空隙(一辺数mm程度)としたダブルウェルチャンバーを用いる方法が知られている。この方法は、このダブルウェルチャンバーの各ウェルに脂質溶液を充填し、次いで、各ウェルに水系緩衝液を添加して脂質溶液中に緩衝液の液滴を形成させると、ウェルの境界部分で脂質溶液と緩衝液との界面が形成され、この部分に脂質二重膜が形成されることを利用するものである。   In order to develop these transmembrane proteins and their ligands, inhibitors, odor sensors, etc., various measurements must be performed in the same state as in the living body, that is, with the transmembrane protein held on the biological membrane. desired. Conventionally, a lipid bilayer membrane formation method itself is well known, and a droplet contact method, a brush coating method, a spraying method, and a bonding method are known. Among these, the droplet contact method is widely used because the lipid bilayer membrane formation operation is simple and the measurement operation after the lipid bilayer membrane formation can be easily performed. In the droplet contact method, for example, a double well chamber in which two shallow cylindrical recesses (wells) are arranged adjacent to each other and a boundary portion where the two wells are in contact with each other is formed as a gap (about several mm on a side). The method used is known. In this method, each well of the double well chamber is filled with a lipid solution, and then an aqueous buffer solution is added to each well to form droplets of the buffer solution in the lipid solution. This utilizes the fact that an interface between a solution and a buffer solution is formed, and a lipid bilayer is formed in this portion.

液滴接触法では脂質が分散した有機溶媒中に水滴を配置して水滴同士の界面で脂質二重膜を得るため、水相が油相に囲まれた形状をとる。脂質二重膜に膜タンパク質である化学受容体を再構成し、化学物質検出に利用する場合は油中に沈んだ液滴内には外部から化学物質を加えにくく、特に雰囲気のガス分子は油相に阻まれ、到達しにくいことが問題となっている。その解決策として、部分的に液滴の表面が露出した公知技術(非特許文献1)がある。この系は、油相を染みこませた基板上に水系の液滴を滴下するものであるが、水系液滴へのガス成分の溶け込みが未実証であり、また、脂質二重膜形成後の測定操作が煩雑である。さらに、脂質二重膜に再構成した膜タンパク質を介したイオン電流を計測する場合は膜で隔てられた二つの領域が予め電気的に絶縁される必要がある。従来の液滴接触法では液滴を油相で覆うことで安定した絶縁性が得られているが、雰囲気ガスの溶け込み効率が低いことがその代償となっている。   In the droplet contact method, water droplets are placed in an organic solvent in which lipids are dispersed, and a lipid bilayer membrane is obtained at the interface between the water droplets. Therefore, the aqueous phase is surrounded by an oil phase. When a chemical receptor, a membrane protein, is reconstituted in a lipid bilayer membrane and used for chemical substance detection, it is difficult to add chemical substances from the outside into droplets that have submerged in oil. The problem is that it is difficult to reach because of the phase. As a solution, there is a known technique (Non-Patent Document 1) in which the surface of the droplet is partially exposed. This system drops aqueous droplets on a substrate impregnated with an oil phase, but it has not been demonstrated that gas components have dissolved in the aqueous droplets. The measurement operation is complicated. Furthermore, when measuring an ionic current through a membrane protein reconstituted into a lipid bilayer membrane, the two regions separated by the membrane must be electrically insulated in advance. In the conventional droplet contact method, stable insulation is obtained by covering the droplets with an oil phase, but the price is compensated by the low melting efficiency of the atmospheric gas.

J. B. Boreykoa, G. Polizos, P. G. Datskos, S. A. Sarles, and C. P. Collier: “Air-stable droplet interface bilayers on oil-infused surfaces”, Proc. Nat. Acad. Sci. USA, Vol. 111, pp. 7588-7593 (2014).JB Boreykoa, G. Polizos, PG Datskos, SA Sarles, and CP Collier: “Air-stable droplet interface bilayers on oil-infused surfaces”, Proc. Nat. Acad. Sci. USA, Vol. 111, pp. 7588-7593 (2014).

したがって、本発明の目的は、脂質二重膜を形成した状態で、水系媒体に雰囲気中のガス成分を直接接触させることができ、かつ、この状態で、脂質二重膜で隔てられた両区画の電気的絶縁が達成されている、脂質二重膜の形成方法及びそのための器具を提供することである。   Accordingly, an object of the present invention is to allow the gas component in the atmosphere to be in direct contact with the aqueous medium in a state where the lipid bilayer membrane is formed, and in this state, both compartments separated by the lipid bilayer membrane. It is intended to provide a method for forming a lipid bilayer membrane and a device therefor in which electrical insulation is achieved.

本願発明者らは、鋭意研究の結果、貫通孔を有する隔壁の貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液を加えて貫通孔を覆う脂質溶液の膜を形成し、この状態で隔壁を、水系媒体中に浸漬して、貫通孔を覆う脂質溶液中に脂質二重膜を形成し、この際、水系媒体は、チャンバー内に収容されており、前記隔壁を水系媒体中に浸漬することによりチャンバーが第1の区画と第2の区画に絶縁的に分離され、かつ、前記第1の区画及び前記第2の区画の少なくともいずれか一方に収容された前記水系媒体が、直接外気と接触する構成とすることにより、脂質二重膜を形成した状態で、水系媒体に雰囲気中のガス成分を直接接触させることができ、かつ、この状態で、脂質二重膜で隔てられた両区画の電気的絶縁が達成されることを見出し、本発明を完成した。   As a result of earnest research, the inventors of the present application added a lipid solution in which a lipid film-forming lipid is dissolved in an organic solvent to a through-hole of a partition wall having a through-hole to form a lipid solution membrane covering the through-hole, In this state, the partition wall is immersed in an aqueous medium to form a lipid bilayer in the lipid solution covering the through-hole. At this time, the aqueous medium is accommodated in the chamber, and the partition wall is stored in the aqueous medium. The chamber is insulated into a first compartment and a second compartment by dipping in, and the aqueous medium accommodated in at least one of the first compartment and the second compartment is In the state in which the lipid bilayer membrane is formed, the gas component in the atmosphere can be brought into direct contact with the aqueous medium, and in this state, it is separated by the lipid bilayer membrane. Found that electrical insulation of both compartments was achieved The present invention has been completed.

すなわち、本発明は、貫通孔を有する隔壁の前記貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液を加えて前記貫通孔を覆う前記脂質溶液の膜を形成する工程と、
得られた隔壁を、水系媒体中に浸漬して、前記貫通孔を覆う前記脂質溶液中に脂質二重膜を形成する工程とを含み、
前記水系媒体は、チャンバー内に収容されており、前記隔壁を水系媒体中に浸漬することにより前記チャンバーが第1の区画と第2の区画に絶縁的に分離され、かつ、前記第1の区画及び前記第2の区画の少なくともいずれか一方に収容された前記水系媒体が、直接外気と接触する、脂質二重膜の形成方法を提供する。
That is, the present invention includes a step of adding a lipid solution in which a lipid film-forming lipid is dissolved in an organic solvent to the through-hole of the partition wall having a through-hole to form a membrane of the lipid solution covering the through-hole,
Immersing the obtained partition wall in an aqueous medium to form a lipid bilayer in the lipid solution covering the through-hole,
The aqueous medium is accommodated in a chamber, and the chamber is insulated into a first compartment and a second compartment by immersing the partition wall in the aqueous medium, and the first compartment And a method for forming a lipid bilayer, wherein the aqueous medium accommodated in at least one of the second compartments is in direct contact with outside air.

また、本発明は、上記本発明の方法により形成した脂質二重膜に、所望の膜貫通性生理活性タンパク質を再構成し、前記外気を被検物質含有雰囲気として被検物質を前記水系媒体に供給することを含む、被検物質の調査方法を提供する。   In the present invention, the lipid bilayer membrane formed by the above-described method of the present invention is reconstituted with a desired transmembrane bioactive protein, and the test substance is used as the aqueous medium with the outside air as the test substance-containing atmosphere. A method for investigating a test substance including supplying is provided.

さらに、本発明は、上記本発明の方法により脂質二重膜を形成するための脂質二重膜形成器具であって、
底板と、側壁を有し、内部に水系媒体が収容されるチャンバーと;
貫通孔を有する隔壁であって、前記貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液を加えて前記貫通孔を覆う前記脂質溶液の膜を形成したものを、前記水系媒体が収容された前記チャンバー内に浸漬することにより、前記チャンバーが第1の区画と第2の区画に絶縁的に分離される、隔壁と;
を具備し、
前記チャンバーの前記側壁には、1個又は複数個の貫通孔が設けられ、該貫通孔を介して、前記第1の区画及び前記第2の区画に収容された水系媒体の少なくとも一方が外気と直接接触する、
脂質二重膜形成器具を提供する。
Furthermore, the present invention is a lipid bilayer membrane forming device for forming a lipid bilayer membrane by the method of the present invention,
A bottom plate and a chamber having a sidewall and containing an aqueous medium therein;
A partition having a through-hole, wherein a lipid solution in which a lipid film-forming lipid is dissolved in an organic solvent is added to the through-hole to form a membrane of the lipid solution that covers the through-hole. A partition wall that is insulatively separated into a first compartment and a second compartment by immersing in the chamber containing
Comprising
One or a plurality of through holes are provided in the side wall of the chamber, and at least one of the aqueous medium accommodated in the first compartment and the second compartment is outside air through the through holes. Direct contact,
A device for forming a lipid bilayer membrane is provided.

本発明により、脂質二重膜を形成した状態で、水系媒体に雰囲気中のガス成分を直接接触させることができ、かつ、この状態で、脂質二重膜で隔てられた両区画の電気的絶縁が達成されている、脂質二重膜の形成方法及びそのための器具が初めて提供された。本発明の方法によれば、雰囲気中のガス成分を水系媒体中に十分溶かし込むことが可能となり、脂質二重膜に担持した膜タンパク質等とガス成分との相互作用の研究や、臭気センサーの開発に大いに貢献するものと考えられる。   According to the present invention, the gas component in the atmosphere can be directly brought into contact with the aqueous medium in a state where the lipid bilayer membrane is formed, and in this state, the electrical insulation of both compartments separated by the lipid bilayer membrane is achieved. For the first time, a method for forming a lipid bilayer membrane and a device therefor have been provided. According to the method of the present invention, the gas component in the atmosphere can be sufficiently dissolved in the aqueous medium, the interaction between the membrane protein and the like carried on the lipid bilayer membrane and the gas component, and the odor sensor It is thought to contribute greatly to development.

本発明の方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the method of this invention. 本発明の他の一実施形態を説明するための模式図である。It is a schematic diagram for demonstrating other one Embodiment of this invention. 本発明の実施例において作製したチャンバーデバイスを説明するための模式図である。It is a schematic diagram for demonstrating the chamber device produced in the Example of this invention. 本発明の実施例において行った、隔壁の貫通孔を脂質溶液で被覆する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of coat | covering the through-hole of a partition with a lipid solution performed in the Example of this invention. 本発明の実施例において行った、電気的計測を説明するための模式図である。It is a schematic diagram for demonstrating the electrical measurement performed in the Example of this invention. 本発明の実施例において行った、脂質二重膜の形成方法を説明するための模式図である。It is a schematic diagram for demonstrating the formation method of a lipid bilayer membrane performed in the Example of this invention. 本発明の実施例において行った、α−ヘモリシンを脂質二重膜に再構成した際の電流の経時変化を示す図である。It is a figure which shows the time-dependent change of the electric current at the time of reconstituting (alpha) -hemolysin to the lipid bilayer membrane performed in the Example of this invention. 本発明の実施例において行った、雰囲気中のガスの取り込みを調べる方法を説明するための模式図である。It is a schematic diagram for demonstrating the method performed in the Example of this invention which investigates the uptake | capture of the gas in atmosphere. 本発明の実施例において行った、オクテノールの取り込み試験の結果を示す図である。It is a figure which shows the result of the uptake | capture test of octenol performed in the Example of this invention.

まず、図1に基づき、本発明の脂質二重膜形成方法の原理を説明する。   First, the principle of the method for forming a lipid bilayer membrane of the present invention will be described with reference to FIG.

本発明の方法では、水系媒体を収容するチャンバー(凹部)10を用いる。図1に示すチャンバーは、液滴接触法で用いられるダブルウェルチャンバー(円筒状のウェル2個が融合した、ひょうたん形のチャンバー)の形態であるが、これに限定されるものではなく、後述する実施例で用いているような円筒状や他の形状であってもよい。水系媒体としては、通常、水、又は水を溶媒とする緩衝液が用いられる。緩衝液としては、生物適合性があることが知られている、例えばリン酸緩衝液等の周知の緩衝液を用いることができる。チャンバー10は、凹部であるから、必然的に側壁と底部を有する。図1に示す例では、円筒状のウェル2個が融合する部分(ひょうたん形の中央部分)に溝12が形成されている。溝12には、後述する隔壁が挿入される。溝12は、貫通していてもよいし、チャンバー12の深さが十分な場合には、貫通していなくてもよい。チャンバー10の側壁には、貫通孔14が形成されている。チャンバー10に水系媒体が収容された際には、水系媒体は、貫通孔14を介して直接外気と接触する。なお、貫通孔14は、1個でもよいが、隔壁挿入後に隔てられる両方の区画内の水系媒体がそれぞれ外気と直接接触するように複数設けることも可能である。   In the method of the present invention, a chamber (recess) 10 for containing an aqueous medium is used. The chamber shown in FIG. 1 is in the form of a double well chamber (a gourd-shaped chamber in which two cylindrical wells are fused) used in the droplet contact method, but is not limited to this and will be described later. It may be cylindrical or other shapes as used in the embodiments. As the aqueous medium, water or a buffer solution containing water as a solvent is usually used. As the buffer solution, a known buffer solution known to be biocompatible, such as a phosphate buffer solution, can be used. Since the chamber 10 is a recess, it necessarily has a side wall and a bottom. In the example shown in FIG. 1, a groove 12 is formed in a portion where two cylindrical wells are fused (a central portion of a gourd). A partition wall described later is inserted into the groove 12. The groove 12 may penetrate or may not penetrate if the depth of the chamber 12 is sufficient. A through hole 14 is formed in the side wall of the chamber 10. When the aqueous medium is accommodated in the chamber 10, the aqueous medium comes into direct contact with the outside air through the through hole 14. In addition, although the number of the through holes 14 may be one, it is also possible to provide a plurality of aqueous media so that the aqueous media in both compartments separated after the partition wall is inserted are in direct contact with the outside air.

本発明の方法では、チャンバー内に収容された水系媒体中に浸漬されてチャンバーを第1の区画と第2の区画に2分する隔壁16が用いられる。隔壁16に設けられる貫通孔の直径は、特に限定されないが、通常、300μm〜1.2mm程度である。前記貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液18を加えて前記貫通孔を覆う前記脂質溶液18の膜を形成する。脂質膜形成性脂質としては、脂質二重膜、すなわち、親水性領域と疎水性領域を1分子中に有する脂質分子が、疎水性領域を内側、親水性領域を外側に向けて2層に並んだ膜を形成できる脂質であれば特に限定されないが、生体膜における反応を模するためには、生体膜と同じか類似したものが好ましく、この分野において従来から広く用いられているリン脂質、例えば、ジフィタノイルフォスファチジルコリン(diphytanoyl phosphatidylcholine, DPhPC)、ジパルミトイルフォスファチジルコリン(dipalmytoyl phosphatidylcholine)、パルミトイルオレオイルフォスファチジルコリン(1-Palmitoyl 2-Oleoyl phosphatidylcholine, POPC)、ジオレオイルフォスファチジルコリン(Dioleoyl phosphatidylcholine, DOPC)等を好ましい例として挙げることができる。これらの多くは市販されているので、市販品を好ましく用いることができる。脂質を溶解する有機溶媒としては、n-デカンのような脂肪族炭化水素溶媒が好ましい。脂質溶液中の脂質の濃度は、脂質二重膜が形成可能な濃度であれば特に限定されないが、通常、1g/L〜50g/L程度、好ましくは5g/L〜25g/L程度である。   In the method of the present invention, a partition wall 16 is used that is immersed in an aqueous medium accommodated in the chamber and divides the chamber into a first compartment and a second compartment. Although the diameter of the through-hole provided in the partition 16 is not specifically limited, Usually, it is about 300 micrometers-1.2 mm. A lipid solution 18 in which a lipid film-forming lipid is dissolved in an organic solvent is added to the through-hole to form a membrane of the lipid solution 18 that covers the through-hole. As lipid membrane-forming lipids, lipid bilayer membranes, that is, lipid molecules having a hydrophilic region and a hydrophobic region in one molecule are arranged in two layers with the hydrophobic region on the inside and the hydrophilic region on the outside. It is not particularly limited as long as it is a lipid capable of forming a membrane, but in order to simulate a reaction in a biological membrane, the same or similar to the biological membrane is preferable, and phospholipids that have been widely used in this field, for example, Diphytanoyl phosphatidylcholine (diphytanoyl phosphatidylcholine, DPhPC), dipalmytoyl phosphatidylcholine, dipalmytoyl phosphatidylcholine, 1-Palmitoyl 2-Oleoyl phosphatidylcholine, POPC A preferred example is dioleoyl phosphatidylcholine (DOPC). Since many of these are commercially available, commercially available products can be preferably used. As the organic solvent for dissolving the lipid, an aliphatic hydrocarbon solvent such as n-decane is preferable. The lipid concentration in the lipid solution is not particularly limited as long as the lipid bilayer can be formed, but is usually about 1 g / L to 50 g / L, preferably about 5 g / L to 25 g / L.

本発明で用いるチャンバー及び隔壁は、その全体を撥水処理することが好ましい。この撥水処理により、後述するように、隔壁をチャンバー内に挿入した際に、隔壁により分離される第1の区画と第2の区画の間の絶縁が達成されやすくなる。また、貫通孔14は、通常、直径3mm程度であるが、この程度の大きさの貫通孔がチャンバー側壁に開口していても水系媒体は漏出することがない。同様に、溝12の幅は、通常1mm〜2mm程度であるが、この程度の幅の溝が貫通していても水系媒体が漏出することはない。撥水処理は、好ましくは、フッ素コート剤に隔壁やチャンバー全体を浸漬することにより行うことができ、フッ素コート剤としては、ポリテトラフルオロエチレンのようなフッ素樹脂の溶液を好ましく用いることができる。このようなフッ素コート剤は市販されているので、市販品を好ましく用いることができる。なお、隔壁の貫通孔の周辺まで撥水処理を行うと、脂質溶液が隔壁に付着しにくくなり、貫通孔を脂質溶液で被覆しにくくなるので、貫通孔の周辺は、例えばシリコーンゴムのマスクで被覆した状態でフッ素コート剤に浸漬することが好ましい。   The chamber and partition used in the present invention are preferably subjected to water repellent treatment as a whole. By this water repellent treatment, as will be described later, when the partition wall is inserted into the chamber, insulation between the first partition and the second partition separated by the partition wall is easily achieved. The through-hole 14 is usually about 3 mm in diameter, but the aqueous medium does not leak out even if a through-hole having such a size opens on the side wall of the chamber. Similarly, the width of the groove 12 is usually about 1 mm to 2 mm, but the aqueous medium does not leak even if the groove having this width penetrates. The water-repellent treatment can be preferably performed by immersing the partition walls or the entire chamber in a fluorine coating agent, and a fluorine resin solution such as polytetrafluoroethylene can be preferably used as the fluorine coating agent. Since such a fluorine coating agent is commercially available, a commercially available product can be preferably used. If the water-repellent treatment is performed up to the periphery of the through hole of the partition wall, the lipid solution becomes difficult to adhere to the partition wall, and it becomes difficult to cover the through hole with the lipid solution. It is preferable to immerse in a fluorine coating agent in a coated state.

脂質二重膜を形成する際には、上記のように貫通孔を脂質溶液18で被覆した隔壁16を、溝12に挿入し、貫通孔を被覆する脂質溶液18を水系媒体中に浸漬する。そうすると、隔壁16により、チャンバー10は、第1の区画20と第2の区画22に分離される。そして、脂質溶液中の脂質の各分子が、親水性部分を外側(水系媒体側)に向け、疎水性部分を内側に向けた状態で整列し、脂質二重膜が形成される。この状態で、隔壁16や溝12の寸法を隙間がほとんど生じないように的確に設計しておけば、上記した撥水処理により、第1の区画と第2の区画22は絶縁される。ここで、「絶縁」とは、第1の区画と第2の区画が電気的に絶縁されていることを意味し、第1の区画と第2の区画には水系媒体が収容されているから、水系媒体中で、第1の区画と第2の区画の間を移動するイオンの流れが生じないことを意味する。なお、第1の区画と第2の区画が絶縁されたか否かは、下記実施例で具体的に記載するように、α−ヘモリシンのようなチャネルタンパク質を脂質二重膜中に担持(再構成)し、イオンチャネルが開いて初めて両区画間に電流が流れ、かつ、再構成されるチャネルタンパク質の分子数が増えるに従って、階段状に電流が増大することにより確認することができる。   When forming the lipid bilayer membrane, the partition wall 16 in which the through hole is covered with the lipid solution 18 as described above is inserted into the groove 12, and the lipid solution 18 covering the through hole is immersed in the aqueous medium. Then, the partition 10 separates the chamber 10 into the first compartment 20 and the second compartment 22. The lipid molecules in the lipid solution are aligned with the hydrophilic portion facing outward (aqueous medium side) and the hydrophobic portion facing inward to form a lipid bilayer membrane. In this state, if the dimensions of the partition wall 16 and the groove 12 are appropriately designed so that almost no gap is generated, the first partition and the second partition 22 are insulated by the water repellent treatment described above. Here, “insulation” means that the first compartment and the second compartment are electrically insulated, and an aqueous medium is accommodated in the first compartment and the second compartment. This means that there is no flow of ions moving between the first compartment and the second compartment in the aqueous medium. Whether or not the first compartment and the second compartment are insulated is determined by carrying a channel protein such as α-hemolysin in the lipid bilayer (reconstitution), as specifically described in the following examples. It can be confirmed that the current flows between both compartments only after the ion channel is opened, and the current increases stepwise as the number of reconstituted channel proteins increases.

また、上記のようにして脂質二重膜を形成した状態において、第1の区画20内の水系媒体は、チャンバー側壁に開口する貫通孔14を介して直接外気と接触する。図1に示す実施形態では、チャンバーの上部も開口しているが、脂質溶液で貫通孔を被覆した隔壁16を水系媒体内に挿入することにより、脂質溶液の一部が隔壁から離脱して水系媒体の上部に脂質溶液の薄層を形成する(たとえ目視によっては観察できない程度の厚さの層であっても)可能性があり(脂質溶液は水よりも比重が小さいので上部に層を形成する)、水系媒体が直接外気と接触することが必ずしも確保されない。これに対し、チャンバー側壁に貫通孔14を設けた場合には、たとえ脂質溶液の一部が隔壁から離脱しても、脂質溶液は水系媒体よりも上に層を形成するから、貫通孔14から露出する水系媒体の少なくとも1部は、直接外気と接触することが常に確保される。   Further, in the state in which the lipid bilayer membrane is formed as described above, the aqueous medium in the first compartment 20 is in direct contact with the outside air through the through-hole 14 that opens to the side wall of the chamber. In the embodiment shown in FIG. 1, the upper part of the chamber is also open. However, by inserting the partition wall 16 covered with the through hole with the lipid solution into the aqueous medium, a part of the lipid solution is detached from the partition wall and the aqueous system is removed. There is a possibility that a thin layer of lipid solution is formed on the top of the medium (even if it is a layer that cannot be observed visually), because the specific gravity of lipid solution is smaller than that of water. However, it is not always ensured that the aqueous medium is in direct contact with the outside air. On the other hand, when the through hole 14 is provided on the side wall of the chamber, the lipid solution forms a layer above the aqueous medium even if a part of the lipid solution is detached from the partition wall. It is always ensured that at least a part of the exposed aqueous medium is in direct contact with the outside air.

次に、チャンバーの構成が図1のものとは異なる第2の実施形態について、図2に基づき説明する。図2(A)は、隔壁の平面図である。図2(B)は、チャンバーデバイスの構造を示しており、上部プレート23と下部プレート24を含む。上部プレート23と下部プレート24を重ねて熱融着させた状態が図2(C)に示されており、図2(C)におけるa-b線切断部端面図と、c-d線切断部端面図が図2(D)に示されている。上部プレート23には、水平方向に円筒状の貫通孔26が設けられており、この貫通孔がチャンバーを構成する。すなわち、貫通孔26は、円筒状のチャンバーを構成し、この水平方向に延びる円筒状のチャンバーの両端の側壁が全面的に開口されてチャンバーが外部と連通していると考えることができる。この態様では、隔壁により分離される第1の区画と第2の区画の両方に収容される水系媒体が、それぞれ外気と直接接触することになる。なお、上記したとおり、撥水処理を施すことにより、直径3mm程度の開口からは液は漏出しなくなる。また、上部プレート23には、貫通孔26と直交する貫通スリット28が設けられており、この貫通スリット28に隔壁が挿入される。さらに、上部プレート23には、前記貫通スリット28の延長線上の両側に、それぞれ貫通孔30aと30bが設けられており、これらの貫通孔のいずれかから、後述するフルオロカーボンが注入される。さらに、貫通孔26の底部には、後述する電極を挿入するための貫通孔31aと31bが形成されている(図2(D)参照)。   Next, a second embodiment in which the chamber configuration is different from that of FIG. 1 will be described with reference to FIG. FIG. 2A is a plan view of the partition wall. FIG. 2B shows the structure of the chamber device, which includes an upper plate 23 and a lower plate 24. The state where the upper plate 23 and the lower plate 24 are overlapped and heat-sealed is shown in FIG. 2 (C), and the end view of the ab line cut portion and the end view of the cd line cut portion in FIG. 2 (C) are shown. 2 (D). The upper plate 23 is provided with a cylindrical through hole 26 in the horizontal direction, and this through hole constitutes a chamber. That is, the through-hole 26 constitutes a cylindrical chamber, and it can be considered that the side walls at both ends of the cylindrical chamber extending in the horizontal direction are fully opened and the chamber communicates with the outside. In this aspect, the aqueous medium accommodated in both the first compartment and the second compartment separated by the partition walls is in direct contact with the outside air. As described above, the water repellent treatment prevents the liquid from leaking from the opening having a diameter of about 3 mm. The upper plate 23 is provided with a through slit 28 orthogonal to the through hole 26, and a partition wall is inserted into the through slit 28. Further, the upper plate 23 is provided with through holes 30a and 30b on both sides of the extension line of the through slit 28, respectively, and fluorocarbon to be described later is injected from either of these through holes. Furthermore, through holes 31a and 31b for inserting electrodes to be described later are formed at the bottom of the through hole 26 (see FIG. 2D).

下部プレート24には、上部プレートを重ね合わせた際に、上記貫通スリット28の真下に来る部分に溝32が形成されており、この溝には、後述するフルオロカーボンが収容される。さらに、下部プレート24には、上部プレートを重ね合わせた際に、貫通孔26の真下に来る部分に2つの貫通孔34aと34bが設けられており、ここに電極が挿入され、電極の頂部は、貫通孔34aと34b及び上部プレート23に設けられた貫通孔31aと31bを介して貫通孔26、すなわちチャンバー内に到達する。   A groove 32 is formed in the lower plate 24 at a portion that is directly below the through slit 28 when the upper plate is overlaid. This groove accommodates fluorocarbon to be described later. Further, the lower plate 24 is provided with two through holes 34a and 34b in a portion that is directly below the through hole 26 when the upper plate is overlapped, and an electrode is inserted therein, and the top of the electrode is Through the through holes 34a and 34b and the through holes 31a and 31b provided in the upper plate 23, the through holes 26, that is, the chambers are reached.

図1に示す実施形態と同様、図2に示す実施形態においても、隔壁(貫通孔の周辺を除く)と、上部プレート23と下部プレート24を重ねて熱融着したものの全体をフッ素コート剤で撥水処理することが好ましい。   As in the embodiment shown in FIG. 1, in the embodiment shown in FIG. 2, the whole of the partition wall (excluding the periphery of the through hole) and the upper plate 23 and the lower plate 24 which are heat-sealed with a fluorine coating agent are used. It is preferable to perform a water repellent treatment.

脂質二重膜を形成する場合には、貫通孔26から水系媒体を注入して貫通孔に水系媒体を収容する。また、フルオロカーボンのような、水よりも比重が大きく、水と混じらない絶縁性液体を、貫通孔30a又は30bから注入して溝32内に収容する。一方、図1の実施形態の場合と同様にして、貫通孔17を脂質溶液で被覆し、これを貫通スリット28に挿入する。隔壁16を図2(A)に示すようにT字形とし、T字の横棒の部分を貫通スリット28よりも長くしておけば、T字の横棒の部分を上側にして貫通スリット28に止まるところまで挿入すればよくなり、操作が簡単である。なお、隔壁16の貫通孔17は、T字の横棒の部分を上側にして貫通スリット28に止まるところまで挿入した際に貫通孔26の断面(長手方向に直交する方向の断面の円形)の中心付近に来るように寸法設計しておく。隔壁16を貫通スリット28に挿入すると、脂質溶液で被覆された、隔壁16の貫通孔17が貫通孔26内の水系媒体内に位置することになり、貫通孔17の部分に脂質二重膜が形成される。この際、隔壁16の下端部が、溝32に挿入され、溝32内に収容されている絶縁性液体に浸漬されるように寸法設計しておく。そうすることにより、隔壁16の下端部が絶縁性液体に浸漬され、隔壁16により分離される第1の区画と第2の区画の底部境界が確実に絶縁されるので好ましい。上記のとおり、電極を挿入しておけば、第1の区画と第2の区画の間を流れる電流を測定することができる。   In the case of forming a lipid bilayer membrane, an aqueous medium is injected from the through hole 26 and the aqueous medium is accommodated in the through hole. Further, an insulating liquid, such as fluorocarbon, having a specific gravity greater than that of water and not mixed with water is injected from the through hole 30a or 30b and accommodated in the groove 32. On the other hand, the through-hole 17 is covered with a lipid solution and inserted into the through-slit 28 in the same manner as in the embodiment of FIG. If the partition 16 has a T-shape as shown in FIG. 2A and the portion of the T-shaped horizontal bar is longer than the through-slit 28, the portion of the T-shaped horizontal bar becomes the upper side of the through-slit 28. It only has to be inserted until it stops, and the operation is simple. The through-hole 17 of the partition wall 16 has a cross-section of the through-hole 26 (a circular cross-section in a direction perpendicular to the longitudinal direction) when inserted to a position where the T-shaped horizontal bar is on the upper side and stops at the through-slit 28. Design the dimensions so that they are near the center. When the partition wall 16 is inserted into the through slit 28, the through hole 17 of the partition wall 16 covered with the lipid solution is positioned in the aqueous medium in the through hole 26, and a lipid bilayer membrane is formed in the through hole 17 portion. It is formed. At this time, the size is designed so that the lower end portion of the partition wall 16 is inserted into the groove 32 and immersed in the insulating liquid accommodated in the groove 32. By doing so, since the lower end part of the partition 16 is immersed in an insulating liquid and the bottom boundary of the 1st division and the 2nd division separated by the partition 16 is reliably insulated, it is preferable. As described above, if an electrode is inserted, the current flowing between the first compartment and the second compartment can be measured.

以上、説明した方法により、隔壁の貫通孔部分に脂質二重膜を形成した状態で、水系媒体にガス成分を含む外気を直接接触させることにより、ガス成分を脂質二重膜に効率的に作用させることができる。脂質二重膜に、所望の膜貫通性生理活性タンパク質を再構成しておき、外気を被検物質含有雰囲気として被検物質を前記水系媒体に供給し、第1の区画と第2の区画の間を流れる電流を測定することにより、被検物質の調査を行うことができる。すなわち、脂質二重膜に保持された、所望の膜貫通性生理活性タンパク質に対する被検物質の作用を調べることができるし、嗅覚レセプターを脂質二重膜に再構成しておけば、被検物質である臭気を検出することができる。   By the method described above, with the lipid bilayer membrane formed in the through-hole part of the partition wall, the gas component is effectively acted on the lipid bilayer membrane by bringing the aqueous medium directly into contact with the aqueous medium. Can be made. A desired membrane-spanning physiologically active protein is reconstituted in the lipid bilayer membrane, and the test substance is supplied to the aqueous medium using the outside air as the test substance-containing atmosphere, and the first compartment and the second compartment By measuring the current flowing between them, the test substance can be investigated. That is, the action of the test substance on the desired transmembrane bioactive protein held in the lipid bilayer membrane can be examined, and if the olfactory receptor is reconstituted in the lipid bilayer membrane, the test substance It is possible to detect odors.

以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

実施例1
1. 脂質が溶けた有機溶媒試料の調製
25mg/mLの1,2-ジオレイル-sn-グリセロ-3-フォスフォコリン(DOPC)/クロロホルム溶液を300μLと25mg/mLの1,2-ジオレオイル-sn-グリセロ-3-フォスフォエタノールアミン(DOPE)/クロロホルム溶液100μLを混合して透明ガラス製バイアルに入れ、バイアル蓋を緩めた状態で低真空デシケータ内にて室温で2時間以上脱気し、クロロホルムを揮発させた。上記の乾燥混合脂質試料にn-デカン500μLを加えてボルテックス等で十分に攪拌し、20mg/mLの脂質デカン溶液(重量比DOPC:DOPE=3:1)を得た。当該脂質デカン溶液は室温にて保管し、使用期限は約一週間以内として使用した。
Example 1
1. Preparation of organic solvent sample with dissolved lipid
300 μL of 25 mg / mL 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) / chloroform solution and 25 mg / mL 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) ) / Chloroform solution (100 μL) was mixed and placed in a transparent glass vial, and the vial was loosened and degassed in a low vacuum desiccator for 2 hours or more at room temperature to volatilize chloroform. To the above dry mixed lipid sample, 500 μL of n-decane was added and stirred well by vortexing or the like to obtain a 20 mg / mL lipid decane solution (weight ratio DOPC: DOPE = 3: 1). The lipid decane solution was stored at room temperature and used for an expiration date of about one week.

2. 有孔隔壁およびチャンバデバイスの作製およびその表面処理
厚さ75μmのアクリルフィルムをミリング装置にて切削し、図3左に示す寸法のT字型の有孔隔壁を作製した(図3と図2は同じ図であるが、図3には実施例で実際に作製した器具の寸法が記載されている)。また同様に厚さ4mmのアクリルプレートをミリング装置で切削して図3中央に示す寸法の二つの部品を作製した後、熱圧着装置にて接合し、図3右に示す概観のチャンバデバイスを得た。
2. Fabrication and surface treatment of perforated partition walls and chamber devices A 75 μm thick acrylic film was cut with a milling device to produce a T-shaped perforated partition wall with the dimensions shown on the left in FIG. 2 is the same figure, but FIG. 3 shows the dimensions of the instrument actually produced in the example). Similarly, a 4 mm thick acrylic plate is cut with a milling machine to produce two parts with the dimensions shown in the center of FIG. 3, and then joined with a thermocompression bonding machine to obtain a chamber device with an overview shown on the right of FIG. It was.

作製した有孔隔壁は以下の手順で表面処理等を行った(図4)。
●生検トレパンを用いて型抜きした直径3mm(厚さ不問)のシリコンゴム片をマスクとして貫通孔を覆うように隔壁両面から手作業で配置し、密着させた後、フッ素コート剤(AGC旭硝子社製SFE-DP02H)を隔壁両面に2μLずつ滴下し、室温で20分間静置して乾燥させた。
●シリコンゴムを外した後、前述の脂質デカン溶液を隔壁両面の貫通孔周辺に0.5μLずつ滴下し、室温で30分間以上静置して乾燥させ脂質フィルムを堆積した。
●チャンバデバイスへ有孔隔壁を挿入する直前に再度、前述の脂質デカン溶液0.5μLを隔壁片面の貫通孔周辺に滴下した。
The produced perforated partition wall was subjected to surface treatment and the like by the following procedure (FIG. 4).
● A silicon rubber piece 3mm in diameter (no matter the thickness) punched out using a biopsy trepan is manually placed from both sides of the partition wall so as to cover the through-hole using a mask as a mask, and then a fluorine coating agent (AGC Asahi Glass) 2 μL each of SFE-DP02H (manufactured by Sangyo Co., Ltd.) was dropped on both sides of the partition wall, and left to stand at room temperature for 20 minutes to dry.
After removing the silicone rubber, 0.5 μL of the above-described lipid decane solution was added dropwise around the through-holes on both sides of the partition wall, allowed to stand at room temperature for 30 minutes or more, and dried to deposit a lipid film.
-Immediately before inserting the perforated partition into the chamber device, 0.5 μL of the aforementioned lipid decane solution was again dropped around the through hole on one side of the partition.

作製した熱圧着後のチャンバデバイスは以下の手順で表面処理および電極設置を行った。
●SFE-DP02H(AGC旭硝子社製)にチャンバデバイス全体を数秒間浸漬してから取り出し、室温で20分間乾燥させた。
●チャンバデバイスに直径1mm(長さ不問)の二本の銀線を差し込んで銀/塩化銀ペーストで間隙を埋め、さらにデバイス底面の電極露出部分にドータイトを塗布して電極を固定した。
●増幅器と接続するためのBNCソケットにはドータイトを用いて上記の二電極下端をBNCソケット側の配線と接合した(図5)。
The manufactured chamber device after thermocompression bonding was subjected to surface treatment and electrode installation according to the following procedure.
● The entire chamber device was immersed in SFE-DP02H (manufactured by AGC Asahi Glass Co., Ltd.) for several seconds and then taken out and dried at room temperature for 20 minutes.
● Two silver wires with a diameter of 1 mm (regardless of length) were inserted into the chamber device, the gap was filled with silver / silver chloride paste, and electrode was fixed on the exposed portion of the electrode by applying dotite.
● The lower end of the above two electrodes was joined to the wiring on the BNC socket side using dotite for the BNC socket to connect to the amplifier (Fig. 5).

3. 脂質膜の形成
チャンバデバイスに予めフルオロカーボン液(Sigma-Aldrich社製、Fluorinert(登録商標)FC-40)を溜めた後、緩衝溶液50μLを横穴に注入した。有孔隔壁の孔周辺片面に脂質デカン溶液0.5μLを滴下したものを図6のように手作業でチャンバデバイスに挿入して緩衝溶液を二つに分断し、二つに区切られた領域の界面に脂質膜を形成した。
3. Formation of lipid membrane A fluorocarbon solution (Fluorinert (registered trademark) FC-40, manufactured by Sigma-Aldrich) was previously stored in the chamber device, and 50 μL of a buffer solution was injected into the side hole. A lipid decane solution of 0.5 μL dropped on one side of the perforated partition wall is manually inserted into the chamber device as shown in FIG. 6 to divide the buffer solution into two, and the interface between the two regions A lipid membrane was formed.

実施例2
前述の脂質膜形成の際の緩衝溶液に終濃度が2μMとなるようにα−ヘモリシンを混合した。電極を増幅器に接続し、+100mVの電圧を印加しながら電流値変化を計測した。結果を図7に示す。
Example 2
Α-hemolysin was mixed with the buffer solution in the above lipid membrane formation so that the final concentration was 2 μM. The electrode was connected to an amplifier, and the change in current value was measured while applying a voltage of +100 mV. The results are shown in FIG.

図7に示すように、α−ヘモリシンが脂質二重膜に再構成されて形成したナノポアに起因する電流値変化が観測された。電流は、時間の経過とともに階段状に増加しており、脂質二重膜に再構成されるα−ヘモリシンの分子数が増えるに従って電流が増加することが示されている。このことから、上記の方法により、隔壁で隔てられた第1の区画と第2の区画が絶縁されていることがわかる。   As shown in FIG. 7, a change in current value due to nanopores formed by reconstituting α-hemolysin into a lipid bilayer was observed. It has been shown that the current increases stepwise with time, and that the current increases as the number of α-hemolysin molecules reconstituted in the lipid bilayer increases. From this, it can be seen that the first section and the second section separated by the partition are insulated by the above method.

実施例3
揮発性化学物質であるオクテノール原液1mLを濾紙にしみ込ませ、密閉容器内に室温で静置した。同容器内に図6に示した脂質二重膜が形成されたデバイスを前述の濾紙の隣に配置し、室温で30分間放置した(図8のb)。その後、緩衝溶液を回収してクロマトグラフィーにて分析を行った。一方、従来の液滴接触法における水系媒体へのオクテノールの取り込みをシミュレートすべく、緩衝液にn-デカンを加えた系も同様に試験した(図8のa)。
Example 3
1 mL of octenol stock solution, which is a volatile chemical substance, was soaked in filter paper and allowed to stand in a sealed container at room temperature. The device in which the lipid bilayer membrane shown in FIG. 6 was formed in the same container was placed next to the filter paper, and left at room temperature for 30 minutes (b in FIG. 8). Thereafter, the buffer solution was recovered and analyzed by chromatography. On the other hand, a system in which n-decane was added to a buffer solution was also tested in order to simulate the incorporation of octenol into an aqueous medium in the conventional droplet contact method (FIG. 8a).

結果を図9に示す。図9に示されるように、a、bともオクテノールのピークが観察されたが、本願発明によるbの方が、はるかに大きなピークが観察された。このことから、本発明の方法によれば、従来から多用されている液滴接触法と比較して、水系媒体に多量のガス成分を取り込めることが明らかになった。   The results are shown in FIG. As shown in FIG. 9, octenol peaks were observed for both a and b, but a much larger peak was observed for b according to the present invention. From this, it became clear that according to the method of the present invention, a large amount of gas components can be taken into the aqueous medium as compared with the droplet contact method that has been widely used conventionally.

10 チャンバー
12 溝
14 貫通孔
16 隔壁
17 貫通孔
18 脂質溶液
20 第1の区画
22 第2の区画
23 上部プレート
24 下部プレート
26 貫通孔
28 貫通スリット
30a 貫通孔
30b 貫通孔
31a 貫通孔
31b 貫通孔
32 溝
34a 貫通孔
34b 貫通孔
DESCRIPTION OF SYMBOLS 10 Chamber 12 Groove 14 Through-hole 16 Partition 17 Through-hole 18 Lipid solution 20 1st division 22 2nd division 23 Upper plate 24 Lower plate 26 Through-hole 28 Through slit 30a Through-hole 30b Through-hole 31a Through-hole 31b Through-hole 32 Groove 34a Through hole 34b Through hole

Claims (15)

貫通孔を有する隔壁の前記貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液を加えて前記貫通孔を覆う前記脂質溶液の膜を形成する工程と、
得られた隔壁を、水系媒体中に浸漬して、前記貫通孔を覆う前記脂質溶液中に脂質二重膜を形成する工程とを含み、
前記水系媒体は、チャンバー内に収容されており、前記隔壁を水系媒体中に浸漬することにより前記チャンバーが第1の区画と第2の区画に絶縁的に分離され、かつ、前記第1の区画及び前記第2の区画の少なくともいずれか一方に収容された前記水系媒体が、直接外気と接触する、脂質二重膜の形成方法。
Adding a lipid solution in which a lipid film-forming lipid is dissolved in an organic solvent to the through-hole of the partition wall having a through-hole to form a membrane of the lipid solution covering the through-hole,
Immersing the obtained partition wall in an aqueous medium to form a lipid bilayer in the lipid solution covering the through-hole,
The aqueous medium is accommodated in a chamber, and the chamber is insulated into a first compartment and a second compartment by immersing the partition wall in the aqueous medium, and the first compartment And a method of forming a lipid bilayer in which the aqueous medium housed in at least one of the second compartments is in direct contact with outside air.
前記第1の区画及び/又は前記第2の区画に収容された前記水系媒体は、前記チャンバーの側壁に設けられた貫通孔を介して直接外気と接触する、請求項1記載の方法。   The method according to claim 1, wherein the aqueous medium accommodated in the first compartment and / or the second compartment is in direct contact with outside air through a through hole provided in a side wall of the chamber. 前記隔壁及び前記チャンバーが撥水処理されている請求項1又は2記載の方法。   The method according to claim 1, wherein the partition wall and the chamber are subjected to water repellent treatment. 前記撥水処理が、フッ素コート剤を塗布することにより行われる請求項3記載の方法。   The method according to claim 3, wherein the water repellent treatment is performed by applying a fluorine coating agent. 前記チャンバーが、水平方向に延びる円筒状の貫通孔の形態にある請求項3又は4記載の方法。   The method according to claim 3 or 4, wherein the chamber is in the form of a cylindrical through hole extending in the horizontal direction. 前記水系媒体の下に、該水系媒体よりも比重が大きく、水と混じらない絶縁性液体を収容し、前記隔壁の下端部を該絶縁性液体に浸漬することにより、前記第1の区画と前記第2の区画の底部境界を絶縁する、請求項1〜5のいずれか1項に記載の方法。   Under the aqueous medium, containing an insulating liquid having a specific gravity greater than that of the aqueous medium and not mixed with water, and immersing the lower end of the partition wall in the insulating liquid, the first compartment and the 6. A method according to any one of the preceding claims, wherein the bottom boundary of the second compartment is insulated. 前記絶縁性液体がフルオロカーボンである請求項6記載の方法。   The method of claim 6, wherein the insulating liquid is a fluorocarbon. 請求項1〜7のいずれか1項に記載の方法により形成した脂質二重膜に、所望の膜貫通性生理活性タンパク質を再構成し、前記外気を被検物質含有雰囲気として被検物質を前記水系媒体に供給することを含む、被検物質の調査方法。   A lipid transmembrane formed by the method according to any one of claims 1 to 7, wherein a desired transmembrane bioactive protein is reconstituted, and the test substance is used as the test substance-containing atmosphere. A method for investigating a test substance, including supplying to an aqueous medium. 前記第1の区画と前記第2の区画の間を流れる電流を測定することを含む請求項8記載の方法。   9. The method of claim 8, comprising measuring a current flowing between the first compartment and the second compartment. 請求項1記載の方法により脂質二重膜を形成するための脂質二重膜形成器具であって、
底部と、側壁を有し、内部に水系媒体が収容されるチャンバーと;
貫通孔を有する隔壁であって、前記貫通孔に、脂質膜形成性脂質が有機溶媒中に溶解した脂質溶液を加えて前記貫通孔を覆う前記脂質溶液の膜を形成したものを、前記水系媒体が収容された前記チャンバー内に浸漬することにより、前記チャンバーが第1の区画と第2の区画に絶縁的に分離される、隔壁と;
を具備し、
前記チャンバーの前記側壁には、1個又は複数個の貫通孔が設けられ、該貫通孔を介して、前記第1の区画及び前記第2の区画に収容された水系媒体の少なくとも一方が外気と直接接触する、
脂質二重膜形成器具。
A lipid bilayer membrane forming device for forming a lipid bilayer membrane according to the method of claim 1,
A chamber having a bottom and side walls and containing an aqueous medium therein;
A partition having a through-hole, wherein a lipid solution in which a lipid film-forming lipid is dissolved in an organic solvent is added to the through-hole to form a membrane of the lipid solution that covers the through-hole. A partition wall that is insulatively separated into a first compartment and a second compartment by immersing in the chamber containing
Comprising
One or a plurality of through holes are provided in the side wall of the chamber, and at least one of the aqueous medium accommodated in the first compartment and the second compartment is outside air through the through holes. Direct contact,
Lipid bilayer forming device.
前記隔壁及び前記チャンバーが撥水処理されている請求項10記載の器具。   The instrument according to claim 10, wherein the partition wall and the chamber are subjected to water repellent treatment. 前記撥水処理が、フッ素コート剤を塗布することにより行われる請求項11記載の器具。   The instrument according to claim 11, wherein the water repellent treatment is performed by applying a fluorine coating agent. 前記チャンバーが、水平方向に延びる円筒状の貫通孔の形態にある請求項11又は12記載の器具。   13. A device according to claim 11 or 12, wherein the chamber is in the form of a cylindrical through-hole extending in the horizontal direction. 前記チャンバーの前記底部には、前記隔壁の下端部が挿入される溝が形成されており、該溝には前記水系媒体よりも比重の大きな絶縁性液体が収容され、前記隔壁の下端部が該絶縁性液体に浸漬されることにより前記第1の区画と前記第2の区画の底部境界が絶縁される、請求項10〜13のいずれか1項に記載の器具。   A groove into which the lower end of the partition wall is inserted is formed at the bottom of the chamber. The groove contains an insulating liquid having a specific gravity greater than that of the aqueous medium, and the lower end of the partition wall is 14. A device according to any one of claims 10 to 13, wherein the bottom boundary of the first compartment and the second compartment is insulated by immersion in an insulating liquid. 前記底板には、前記第1の区画及び前記第2の区画にそれぞれ連通する、電極挿入用の貫通孔が設けられている、請求項10〜14のいずれか1項に記載の器具。   The instrument according to any one of claims 10 to 14, wherein the bottom plate is provided with a through-hole for inserting an electrode, which communicates with the first compartment and the second compartment, respectively.
JP2017142685A 2017-07-24 2017-07-24 Method for forming lipid bilayer membrane and instrument for the same Pending JP2019022872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142685A JP2019022872A (en) 2017-07-24 2017-07-24 Method for forming lipid bilayer membrane and instrument for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142685A JP2019022872A (en) 2017-07-24 2017-07-24 Method for forming lipid bilayer membrane and instrument for the same

Publications (1)

Publication Number Publication Date
JP2019022872A true JP2019022872A (en) 2019-02-14

Family

ID=65368748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142685A Pending JP2019022872A (en) 2017-07-24 2017-07-24 Method for forming lipid bilayer membrane and instrument for the same

Country Status (1)

Country Link
JP (1) JP2019022872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201088A (en) * 2019-06-07 2020-12-17 地方独立行政法人神奈川県立産業技術総合研究所 Measurement device
WO2021066179A1 (en) * 2019-10-04 2021-04-08 地方独立行政法人神奈川県立産業技術総合研究所 Measurement instrument and method for measuring target substance using same
CN113007030A (en) * 2019-12-19 2021-06-22 新疆金风科技股份有限公司 Tower, forming method, wind generating set and protective cover

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201088A (en) * 2019-06-07 2020-12-17 地方独立行政法人神奈川県立産業技術総合研究所 Measurement device
JP7239923B2 (en) 2019-06-07 2023-03-15 地方独立行政法人神奈川県立産業技術総合研究所 measuring device
WO2021066179A1 (en) * 2019-10-04 2021-04-08 地方独立行政法人神奈川県立産業技術総合研究所 Measurement instrument and method for measuring target substance using same
CN113007030A (en) * 2019-12-19 2021-06-22 新疆金风科技股份有限公司 Tower, forming method, wind generating set and protective cover
CN113007030B (en) * 2019-12-19 2023-05-05 新疆金风科技股份有限公司 Tower, forming method, wind generating set and protective cover

Similar Documents

Publication Publication Date Title
US11898984B2 (en) Nanopore arrays for sequencing nucleic acids
US8707892B2 (en) Method and apparatus for single side bilayer formation
Cohen et al. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane.
CN1161606C (en) Biosensor comprising a lipid membrane containing gated ion channels
JP2019022872A (en) Method for forming lipid bilayer membrane and instrument for the same
Sarles et al. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks
Santos et al. Electrochemical properties of phospholipid monolayers at liquid–liquid interfaces
CN102216773B (en) Method for forming artificial lipid membrane
Navrátil et al. Electrochemical measurements on supported phospholipid bilayers: preparation, properties and ion transport using incorporated ionophores
Okuno et al. A simple method for ion channel recordings using fine gold electrode
Dilger et al. Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles
Mårtensson et al. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations
Katsu et al. Simultaneous measurements of K+ and calcein release from liposomes and the determination of pore size formed in a membrane
Navrátil et al. Supported phospholipid membranes formation at a gel electrode and transport of divalent cations across them
Sarangi et al. Interaction of Miltefosine with Microcavity Supported Lipid Membrane: Biophysical insights from electrochemical impedance spectroscopy
Parisová et al. Influence of low molecular weight organic acids on transport of cadmium and copper ions across model phospholipid membranes
Naumowicz et al. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol
JP7058858B2 (en) Lipid bilayer membrane forming instrument and lipid bilayer membrane forming method using it
Stefanowska et al. Electrochemical studies of the mitochondrial ROMK2 potassium channel activity reconstituted into the free-standing and tethered bilayer lipid membranes
Frey et al. Horizontal black lipid bilayer membranes for studying pore-forming toxins
US20220326204A1 (en) Measurement instrument and method for measuring target substance using same
JP2015077559A (en) Lipid double membrane forming instrument
Santos et al. Adsorption–Penetration Studies of Glucose Oxidase into Phospholipid Monolayers at the 1, 2‐Dichloroethane/Water Interface
JP6877028B2 (en) Lipid bilayer film forming apparatus, lipid bilayer film forming method, and evaluation system
Cernescu et al. Biophysical changes induced by cholesterol on phosphatidylcholine artificial biomembranes containing alamethicin oligomers

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302