JP2019022368A - Stator core - Google Patents

Stator core Download PDF

Info

Publication number
JP2019022368A
JP2019022368A JP2017140269A JP2017140269A JP2019022368A JP 2019022368 A JP2019022368 A JP 2019022368A JP 2017140269 A JP2017140269 A JP 2017140269A JP 2017140269 A JP2017140269 A JP 2017140269A JP 2019022368 A JP2019022368 A JP 2019022368A
Authority
JP
Japan
Prior art keywords
stator core
refrigerant
outer peripheral
steel plate
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140269A
Other languages
Japanese (ja)
Other versions
JP6850219B2 (en
Inventor
正人 河野
Masato Kono
正人 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017140269A priority Critical patent/JP6850219B2/en
Publication of JP2019022368A publication Critical patent/JP2019022368A/en
Application granted granted Critical
Publication of JP6850219B2 publication Critical patent/JP6850219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a stator core which is inexpensive, has a simple structure, and achieves high cooling performance.SOLUTION: A stator core 10 is formed by laminating multiple steel plates 11. On an outer peripheral surface 15 of the stator core 10, a refrigerant storage part S which stores a refrigerant is formed at an area including an axial center part of the stator core 10.SELECTED DRAWING: Figure 1

Description

本発明は、効率的に冷却可能なステータコアに関する。   The present invention relates to a stator core that can be efficiently cooled.

回転電機のステータは、ステータコアに巻線が巻回されて構成されている。ステータは、回転電機が作動する際の銅損や渦電流損失などによる発熱で温度が上昇する。このため、冷媒供給パイプからステータコアの外周面に冷却油などの冷媒を滴下して冷却する方式が知られている。冷媒の滴下による冷却方式は、冷媒がステータコアの外周面を伝ってすぐに流れ落ちてしまうため冷媒が均等にゆきわたらず、ステータコアの外周面のうち、特に積厚が長いステータでは端部に対して中央部で十分な冷却効果が得られない場合があった。特許文献1には、外周に切り欠きを設けた多数の珪素鋼板を積層し、該切り欠きを周方向に連続させて螺旋状の冷媒通路を形成するようにした液冷モータが開示されている。   A stator of a rotating electrical machine is configured by winding a winding around a stator core. The temperature of the stator rises due to heat generated by copper loss or eddy current loss when the rotating electrical machine operates. For this reason, a method is known in which a coolant such as cooling oil is dropped from the coolant supply pipe onto the outer peripheral surface of the stator core to cool the stator core. In the cooling method by dripping the refrigerant, the refrigerant flows down immediately along the outer peripheral surface of the stator core, so that the refrigerant does not spread evenly. In some cases, a sufficient cooling effect could not be obtained at the center. Patent Document 1 discloses a liquid cooling motor in which a large number of silicon steel plates provided with notches on the outer periphery are stacked and the notches are continuous in the circumferential direction to form a spiral refrigerant passage. .

特開平7−264810号公報JP 7-264810 A

しかしながら、特許文献1に記載の液冷モータによると、ステータコアの外周に、切り欠きを連続させた螺旋状の冷媒通路を配置しているが、螺旋溝では、冷媒がすぐに流れ落ちてしまい、ステータコアから冷媒への受熱時間が十分に確保できず、冷却が不十分になる可能性がある。また、高温になり易いステータコア中央部の冷却能力が不足する可能性があった。   However, according to the liquid-cooled motor described in Patent Document 1, a spiral refrigerant passage having a continuous notch is disposed on the outer periphery of the stator core. However, in the spiral groove, the refrigerant immediately flows down, and the stator core There is a possibility that the heat receiving time from the refrigerant to the refrigerant cannot be sufficiently secured and cooling becomes insufficient. In addition, there is a possibility that the cooling capacity of the center portion of the stator core, which is likely to become high temperature, is insufficient.

本発明の目的は、安価、かつ簡単な構造で、高い冷却性能を有するステータコアを提供することである。   An object of the present invention is to provide a stator core having high cooling performance with an inexpensive and simple structure.

上記の目的を達成するために、請求項1に記載の発明は、
複数の鋼板(例えば、後述の実施形態での鋼板11)が積層されて構成されたステータコア(例えば、後述の実施形態でのステータコア10)であって、
該ステータコアの外周面(例えば、後述の実施形態での外周面15)には、前記ステータコアの軸方向中央部を含む領域に冷媒を貯留する冷媒貯留部(例えば、後述の実施形態での冷媒貯留部S)が形成されている。
In order to achieve the above object, the invention described in claim 1
A stator core (for example, a stator core 10 in an embodiment described later) formed by laminating a plurality of steel plates (for example, a steel plate 11 in an embodiment described later),
On the outer peripheral surface of the stator core (for example, the outer peripheral surface 15 in the embodiments described later), a refrigerant storage portion (for example, refrigerant storage in the embodiments described later) that stores the refrigerant in a region including the axial central portion of the stator core. Part S) is formed.

また、請求項2に記載の発明は、請求項1に記載の発明において、
前記鋼板は、
第1領域(例えば、後述の実施形態での第1領域P1)の外周面に第1凹部(例えば、後述の実施形態での凹部17B)が形成された第1鋼板と、
前記第1領域とは異なる第2領域(例えば、後述の実施形態での第2領域P2)の外周面に第2凹部(例えば、後述の実施形態での凹部17A)が形成された第2鋼板と、を含み、
前記第1鋼板と前記第2鋼板とが重ねて配置されることで、前記冷媒貯留部が形成されている。
The invention according to claim 2 is the invention according to claim 1,
The steel plate
A first steel plate in which a first recess (for example, a recess 17B in an embodiment described later) is formed on the outer peripheral surface of the first region (for example, the first region P1 in the embodiment described later);
A second steel plate in which a second recess (for example, a recess 17A in an embodiment described later) is formed on an outer peripheral surface of a second region (for example, a second region P2 in an embodiment described later) different from the first region. And including
The refrigerant storage section is formed by arranging the first steel plate and the second steel plate so as to overlap each other.

また、請求項3に記載の発明では、請求項2に記載の発明において、
前記第1鋼板と前記第2鋼板は同一形状であって、
前記第1鋼板と前記第2鋼板とを転積することで、前記第1凹部及び前記第2凹部の位相が異なる。
In the invention according to claim 3, in the invention according to claim 2,
The first steel plate and the second steel plate have the same shape,
By rolling the first steel plate and the second steel plate, the phases of the first recess and the second recess are different.

また、請求項4に記載の発明は、請求項2又は3に記載の発明において、
前記第1凹部及び前記第2凹部には、前記鋼板同士を連結する溶接部(例えば、後述の実施形態での溶接部19)が軸方向に亘って形成されている。
The invention according to claim 4 is the invention according to claim 2 or 3,
In the first recess and the second recess, a welded portion (for example, a welded portion 19 in an embodiment described later) that connects the steel plates is formed in the axial direction.

また、請求項5に記載の発明は、請求項2〜4のいずれかに記載の発明において、
前記第1凹部と前記第2凹部が組み合わされて前記冷媒貯留部が複数設けられている。
The invention according to claim 5 is the invention according to any one of claims 2 to 4,
A plurality of the refrigerant reservoirs are provided by combining the first recess and the second recess.

また、請求項6に記載の発明では、請求項1〜5のいずれか1項に記載の発明において、
前記冷媒貯留部には、周方向に向かって滑らかに傾斜する傾斜面(例えば、後述の実施形態での傾斜面22)が接続されている。
Moreover, in invention of Claim 6, in invention of any one of Claims 1-5,
An inclined surface that is smoothly inclined in the circumferential direction (for example, an inclined surface 22 in an embodiment described later) is connected to the refrigerant reservoir.

また、請求項7に記載の発明では、請求項2に記載の発明において、
前記第1凹部及び前記第2凹部は、前記ステータコアの軸方向中央部が周方向に窪んだV字形状を有する。
Further, in the invention described in claim 7, in the invention described in claim 2,
The first recess and the second recess have a V shape in which a central portion in the axial direction of the stator core is recessed in the circumferential direction.

請求項1に記載の発明によれば、ステータコアの外周面にはステータコアの軸方向中央部を含む領域に冷媒を貯留する冷媒貯留部が形成されているので、これまで冷却しづらかったステータコアの軸方向中央部の外周面を適切に冷却することができる。   According to the first aspect of the present invention, since the coolant storing portion for storing the coolant is formed on the outer peripheral surface of the stator core in the region including the central portion in the axial direction of the stator core, the shaft of the stator core that has been difficult to cool so far. The outer peripheral surface at the center in the direction can be appropriately cooled.

請求項2に記載の発明によれば、第1領域の外周面に第1凹部が形成された第1鋼板と、第2領域の外周面に第2凹部が形成された第2鋼板とが重ねて配置されることで外周面に冷媒貯留部が形成されるので、ステータコアの表面積を増やし放熱能力を向上させながら、冷媒貯留部に留まる冷媒によりステータコアの外周面を適切に冷却することができる。   According to invention of Claim 2, the 1st steel plate in which the 1st recessed part was formed in the outer peripheral surface of a 1st area | region, and the 2nd steel plate in which the 2nd recessed part was formed in the outer peripheral surface of a 2nd area | region are piled up. Since the refrigerant storage portion is formed on the outer peripheral surface by being arranged in this manner, the outer peripheral surface of the stator core can be appropriately cooled by the refrigerant remaining in the refrigerant storage portion while increasing the surface area of the stator core and improving the heat dissipation capability.

請求項3に記載の発明によれば、第1鋼板と第2鋼板は同一形状であるので、鋼板の打ち抜き型が一種類でよく製造コストの増加を抑制できる。   According to invention of Claim 3, since the 1st steel plate and the 2nd steel plate are the same shapes, the punching type | mold of a steel plate may be one kind, and the increase in manufacturing cost can be suppressed.

請求項4に記載の発明によれば、外周面が窪んだ第1凹部及び第2凹部に鋼板同士を連結する溶接部が設けられることで、外周面からの溶接部の張り出しを防止できる。また、第1凹部及び第2凹部においてステータコアの表面積が増えるので冷却能力が向上する。   According to the fourth aspect of the present invention, by providing the welded portion for connecting the steel plates to the first concave portion and the second concave portion in which the outer peripheral surface is recessed, it is possible to prevent the weld portion from protruding from the outer peripheral surface. Further, since the surface area of the stator core is increased in the first recess and the second recess, the cooling capacity is improved.

請求項5に記載の発明によれば、第1凹部と前記第2凹部が組み合わされて冷媒貯留部が複数設けられることで、冷却能力を向上させることができる。   According to invention of Claim 5, a cooling capability can be improved by combining a 1st recessed part and a said 2nd recessed part, and providing multiple refrigerant | coolant storage parts.

請求項6に記載の発明によれば、冷媒貯留部には、周方向に向かって滑らかに傾斜する傾斜面が接続されているので、冷媒の排出性を向上させ、冷媒貯留部に冷媒が滞留し続けることを防止できる。   According to the sixth aspect of the present invention, since the inclined surface that is smoothly inclined in the circumferential direction is connected to the refrigerant reservoir, the refrigerant discharge performance is improved and the refrigerant is retained in the refrigerant reservoir. Can be prevented from continuing.

請求項7に記載の発明によれば、第1凹部及び第2凹部は、ステータコアの軸方向中央部が周方向に窪んだV字形状を有するので、これまで冷却しづらかったステータコアの軸方向中央部の外周面を適切に冷却することができる。   According to the seventh aspect of the present invention, since the first recess and the second recess have a V-shape in which the axial central portion of the stator core is recessed in the circumferential direction, the axial center of the stator core that has been difficult to cool so far. The outer peripheral surface of a part can be cooled appropriately.

本発明の第1実施形態のステータコアの斜視図である。It is a perspective view of the stator core of 1st Embodiment of this invention. 図1に示すステータコアを構成する鋼板の正面図である。It is a front view of the steel plate which comprises the stator core shown in FIG. 図1に示すステータコアの組立方法を説明する説明図である。It is explanatory drawing explaining the assembly method of the stator core shown in FIG. 第2実施形態のステータコアの斜視図である。It is a perspective view of the stator core of 2nd Embodiment. 図4に示すステータコアを構成する鋼板の正面図である。It is a front view of the steel plate which comprises the stator core shown in FIG. 図3のA部分の拡大図である。It is an enlarged view of A part of FIG. 第2実施形態の変形例のステータコアの斜視図である。It is a perspective view of the stator core of the modification of 2nd Embodiment. 第3実施形態のステータコアの斜視図である。It is a perspective view of the stator core of 3rd Embodiment.

以下、本発明の各実施形態について、図面を参照して説明する。   Hereinafter, each embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、第1実施形態のステータコアの斜視図である。図1に示すように、本実施形態のステータコア10は、電磁鋼板などの複数の鋼板11(図2参照)が積層されて形成され、略円環状のステータコア本体12と、ステータコア本体12の外周部に周方向等間隔で設けられ複数(図に示す実施例では4個)のステータコア固定部13と、を有する。ステータコア固定部13には、ステータコア10を不図示の筺体などに固定するためのボルトが挿通されるボルト貫通孔14が設けられている。
(First embodiment)
FIG. 1 is a perspective view of a stator core according to the first embodiment. As shown in FIG. 1, the stator core 10 of the present embodiment is formed by laminating a plurality of steel plates 11 (see FIG. 2) such as electromagnetic steel plates, and has a substantially annular stator core body 12 and an outer peripheral portion of the stator core body 12. And a plurality of (four in the embodiment shown in the figure) stator core fixing portions 13 provided at equal intervals in the circumferential direction. The stator core fixing portion 13 is provided with a bolt through hole 14 through which a bolt for fixing the stator core 10 to a housing (not shown) or the like is inserted.

また、ステータコア10は中心線O(不図示のロータの回転軸線)が水平面に対し傾斜した姿勢で配置される。ステータコア10の上方(図1の例では右上方)には、冷媒供給パイプ25が配置されており、該冷媒供給パイプ25から冷却油などの冷媒Rがステータコア10の後述の外周部右上面31に滴下される。   Further, the stator core 10 is arranged in a posture in which a center line O (rotation axis of a rotor not shown) is inclined with respect to a horizontal plane. A refrigerant supply pipe 25 is disposed above the stator core 10 (upper right in the example of FIG. 1), and a refrigerant R such as cooling oil flows from the refrigerant supply pipe 25 to an outer peripheral portion right upper surface 31 (described later) of the stator core 10. It is dripped.

図2は図1に示すステータコアを構成する鋼板の正面図である。図2に示すように、鋼板11には、周方向で異なる位相に溝16A、16Bが設けられている。具体的には、各ステータコア固定部13間に形成されたステータコア本体12の4つの外周面15の内、1つのステータコア固定部13Aを挟んで円周方向両側に配置された一対の外周面15A,15Bに、それぞれ周方向でステータコア固定部13Aに近い領域に一対の溝16A,16Bが切り欠かれて形成されている。   FIG. 2 is a front view of a steel plate constituting the stator core shown in FIG. As shown in FIG. 2, the steel plate 11 is provided with grooves 16A and 16B at different phases in the circumferential direction. Specifically, among the four outer peripheral surfaces 15 of the stator core body 12 formed between the stator core fixing portions 13, a pair of outer peripheral surfaces 15A disposed on both sides in the circumferential direction across one stator core fixing portion 13A, A pair of grooves 16A and 16B are formed in 15B in a region close to the stator core fixing portion 13A in the circumferential direction.

より具体的には、ステータコア固定部13Aの周方向一方(図2において左上側)の外周面15Aに、この外周面15Aの中間部とステータコア10の中心線Oとを結ぶ周方向中心線CLからステータコア固定部13Aに向かってα°の領域に溝16Aが形成されており、ステータコア固定部13Aの周方向他方(図2において右上側)の外周面15Bに、この外周面15Bの中間部とステータコア10の中心線Oとを結ぶ周方向中心線CLからステータコア固定部13Aに向かってα°の領域に溝16Bが形成されている。   More specifically, from the circumferential center line CL connecting the intermediate portion of the outer peripheral surface 15A and the center line O of the stator core 10 to the outer peripheral surface 15A of the stator core fixing portion 13A in the circumferential direction (upper left in FIG. 2). A groove 16A is formed in a region of α ° toward the stator core fixing portion 13A, and an intermediate portion of the outer peripheral surface 15B and the stator core are formed on the outer peripheral surface 15B on the other circumferential side (upper right side in FIG. 2) of the stator core fixing portion 13A. A groove 16B is formed in a region of α ° from the circumferential center line CL connecting the 10 center lines O toward the stator core fixing portion 13A.

図3(a)に示すように、複数の鋼板11は、位相を揃えて積層することで溝16A,16Bにより外周面15A,15Bに積層方向に延びる凹部17A,17Bが形成される。そして、図3(b)に示すように、積層された複数の鋼板11を積層方向の略中央で2つのブロックB1,B2に分割し、ブロックB2をブロックB1に対して90°回転(図3では時計まわり)させて組み付ける(転積)ことで図1に示すステータコア10が形成される。   As shown in FIG. 3A, the plurality of steel plates 11 are laminated with the phases being aligned, so that recesses 17A and 17B extending in the stacking direction are formed on the outer peripheral surfaces 15A and 15B by the grooves 16A and 16B. And as shown in FIG.3 (b), the some laminated | stacked steel plate 11 is divided | segmented into two blocks B1, B2 in the approximate center of the lamination direction, and block B2 is rotated 90 degrees with respect to block B1 (FIG. 3). Then, the stator core 10 shown in FIG. 1 is formed by assembling (rolling) clockwise.

なお、以下の説明において、ブロックB1のステータコア固定部13Aが位置するステータコア固定部13を頂部固定部30と呼び、ブロックB1の外周面15Bが位置する外周面を外周部右上面31と呼び、ブロックB1の外周面15Aが位置する外周面を外周部左上面32と呼ぶ。   In the following description, the stator core fixing portion 13 where the stator core fixing portion 13A of the block B1 is located is called a top fixing portion 30, and the outer peripheral surface where the outer peripheral surface 15B of the block B1 is located is called an outer peripheral right upper surface 31. The outer peripheral surface on which the outer peripheral surface 15A of B1 is located is referred to as the outer peripheral left upper surface 32.

冷媒供給パイプ25が配置された、図1のステータコア10の外周部右上面31に着目すると、ブロックB1の凹部17Bが周方向中心線CLに対し頂部固定部30の近位側の第1領域P1に形成され、ブロックB2の凹部17Aが周方向中心線CLに対し頂部固定部30の遠位側の第2領域P2に形成される。即ち、ステータコア10の外周部右上面31には、周方向中心線CLを挟んで周方向でオフセットし、且つブロックB1とブロックB2との境界面Mを挟んで軸方向でオフセットするように、ブロックB1の凹部17BとブロックB2の凹部17Aとが形成される。   Focusing on the right upper surface 31 of the outer peripheral portion of the stator core 10 in FIG. 1 where the refrigerant supply pipe 25 is disposed, the concave portion 17B of the block B1 is a first region P1 on the proximal side of the top fixing portion 30 with respect to the circumferential center line CL. The concave portion 17A of the block B2 is formed in the second region P2 on the distal side of the top fixing portion 30 with respect to the circumferential center line CL. That is, on the outer peripheral right upper surface 31 of the stator core 10, the block is offset in the circumferential direction across the circumferential center line CL, and is offset in the axial direction across the boundary surface M between the block B1 and the block B2. A concave portion 17B of B1 and a concave portion 17A of the block B2 are formed.

図1に戻って、冷媒供給パイプ25から滴下する冷却油などの冷媒がステータコア10の外周部右上面31に滴下されると、冷媒は、ブロックB1の凹部17Bに流れるとともに、ブロックB2の凹部17Aに流れる。ブロックB2の凹部17Aに流入した冷媒は、ステータコア10の軸方向中央部に位置するブロックB1とブロックB2との境界面MとブロックB2の凹部17Aとで形成される段差によって形成される冷媒貯留部Sに留まる。このように冷媒が冷媒貯留部Sに一定の時間留まることで、ステータコア10との間で熱を授受してステータコア10の外周面、特に外周面の軸方向中央部を効果的に冷却する。   Returning to FIG. 1, when a coolant such as cooling oil dripped from the coolant supply pipe 25 is dropped onto the outer peripheral portion right upper surface 31 of the stator core 10, the coolant flows into the recess 17 </ b> B of the block B <b> 1 and the recess 17 </ b> A of the block B <b> 2. Flowing into. The refrigerant that has flowed into the concave portion 17A of the block B2 is a refrigerant storage portion formed by a step formed by the boundary surface M between the block B1 and the block B2 located in the axial center portion of the stator core 10 and the concave portion 17A of the block B2. Stay in S. As described above, the refrigerant stays in the refrigerant storage portion S for a certain period of time, so that heat is exchanged with the stator core 10 to effectively cool the outer peripheral surface of the stator core 10, particularly the axial central portion of the outer peripheral surface.

また、ステータコア10の表面積は、凹部17A,17Bを設けることで増大するので、放熱による冷却に寄与する。本実施形態では、転積回数が1回の場合を示したが、複数回の転積も可能であり、転積回数が多いほど、即ち、ブロックB1とブロックB2とが積み重なるほど表面積が増大して放熱効率が向上する。なお、図1のステータコア10の外周部左上面32には、ブロックB1の凹部17Aのみが形成されているが、ステータコア10の外周部左上面32にも冷媒供給パイプ25が配置される場合、図2のステータコア10において、外周部左下面にも凹部を形成することで、図1のステータコア10の左上面にもブロックB2の凹部とブロックB1の端面とによって冷媒貯留部Sを形成することができる。なお、第2実施形態以降の説明においても、ステータコア10の外周部右上面にのみ冷媒貯留部Sが形成される場合を例に説明する。   Moreover, since the surface area of the stator core 10 is increased by providing the recesses 17A and 17B, it contributes to cooling by heat dissipation. In the present embodiment, the case where the number of inversions is one time has been shown. However, a plurality of inversions are possible, and the surface area increases as the number of inversions increases, that is, as the block B1 and the block B2 are stacked. This improves heat dissipation efficiency. Note that only the concave portion 17A of the block B1 is formed on the outer peripheral left upper surface 32 of the stator core 10 in FIG. 1, but when the refrigerant supply pipe 25 is also disposed on the outer peripheral upper left surface 32 of the stator core 10, FIG. In the stator core 10 of No. 2, the concave portion is also formed on the lower left surface of the outer peripheral portion, so that the refrigerant reservoir S can be formed on the upper left surface of the stator core 10 of FIG. 1 by the concave portion of the block B2 and the end surface of the block B1. . In the description of the second and subsequent embodiments, an example in which the refrigerant reservoir S is formed only on the right upper surface of the outer periphery of the stator core 10 will be described.

以上説明したように、本実施形態に係るステータコア10によれば、ステータコア10の外周面15にはステータコア10の軸方向中央部を含む領域に冷媒を貯留する冷媒貯留部Sが形成されているので、これまで冷却しづらかったステータコア10の軸方向中央部の外周面を適切に冷却することができる。   As described above, according to the stator core 10 according to the present embodiment, the outer peripheral surface 15 of the stator core 10 is formed with the refrigerant storage portion S that stores the refrigerant in the region including the axial center portion of the stator core 10. The outer peripheral surface of the axially central portion of the stator core 10 that has been difficult to cool can be appropriately cooled.

また、第1領域P1の外周面に凹部17Bが形成されたブロックB1と、第2領域P2の外周面に凹部17Aが形成された第2ブロックB2とが重ねて配置されることで外周面15に冷媒貯留部Sが形成されるので、ステータコア10の表面積を増やし放熱能力を向上させながら、冷媒貯留部Sに留まる冷媒によりステータコア10の外周面15を適切に冷却することができる。   Further, the outer peripheral surface 15 is formed by overlapping the block B1 in which the concave portion 17B is formed on the outer peripheral surface of the first region P1 and the second block B2 in which the concave portion 17A is formed on the outer peripheral surface of the second region P2. Therefore, the outer peripheral surface 15 of the stator core 10 can be appropriately cooled by the refrigerant remaining in the refrigerant storage portion S while increasing the surface area of the stator core 10 and improving the heat dissipation capability.

また、ステータコア10の断面形状は、積層方向で異なるので、凹部17A,17Bの位置でトルク波形が異なる波形となってトルクリップルが低減する効果も有する。   Further, since the cross-sectional shape of the stator core 10 differs in the stacking direction, the torque waveform is different at the positions of the recesses 17A and 17B, and the torque ripple is also reduced.

また、ブロックB1を構成する鋼板11とブロックB2を構成する鋼板11は同一形状であって、ブロックB1とブロックB2とを転積することで凹部17A、17Bの位相が異なるように配置されるので、鋼板11の打ち抜き型が一種類でよく製造コストの増加を抑制できる。   Moreover, since the steel plate 11 which comprises the block B1 and the steel plate 11 which comprises the block B2 are the same shape, and it arrange | positions so that the phase of recessed part 17A, 17B may differ by rolling block B1 and block B2. Further, only one type of punching die for the steel plate 11 may be used, and an increase in manufacturing cost can be suppressed.

(第2実施形態)
図4は、第2実施形態のステータコアの斜視図であり、図5は、図4に示すステータコアを構成する鋼板の正面図である。第2実施形態のステータコアが第1実施形態のステータコアと異なる点は、溝の形状、及び転積回数である。この点以外は第1実施形態と同様であるので、図1と同一又は同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Second Embodiment)
FIG. 4 is a perspective view of a stator core according to the second embodiment, and FIG. 5 is a front view of a steel plate constituting the stator core shown in FIG. The stator core of the second embodiment is different from the stator core of the first embodiment in the shape of the groove and the number of rolls. Except for this point, the second embodiment is the same as the first embodiment. Therefore, the same or equivalent parts as those in FIG.

本実施形態の鋼板11では、図5に示すように、溝16C、16Dが、ステータコア固定部13Aに近い側の溝端部からβ°(2α°>β°>α°)の領域、即ちステータコア固定部13Aに近い側の溝端部から周方向中心線CL(図2参照)を超えた領域に形成されている。   In the steel plate 11 of the present embodiment, as shown in FIG. 5, the grooves 16C and 16D are in the region of β ° (2α °> β °> α °) from the groove end portion on the side close to the stator core fixing portion 13A, that is, the stator core fixing. It is formed in a region beyond the circumferential center line CL (see FIG. 2) from the groove end near the portion 13A.

複数の鋼板11は、位相を揃えて積層することで溝16C,16Dにより外周面15A,15Bに積層方向に延びる凹部17C,17Dが形成される。そして、積層された複数の鋼板11を積層方向で4つのブロックB1〜B4に分割し、ブロックB2をブロックB1に対して90°回転(図4では時計まわり)させ、続いてブロックB3をこのブロックB2に対して90°回転(図4では反時計まわり)させ、ブロックB4をこのブロックB3に対して90°回転(図4では時計まわり)させて組み付ける(転積)ことで図4に示すステータコア10が形成される。即ち、第2実施形態のステータコア10は、ブロックB1〜B4が3回転積されて形成されている。   By laminating the plurality of steel plates 11 with the phases aligned, recesses 17C and 17D extending in the stacking direction are formed on the outer peripheral surfaces 15A and 15B by the grooves 16C and 16D. The plurality of stacked steel plates 11 are divided into four blocks B1 to B4 in the stacking direction, the block B2 is rotated by 90 ° with respect to the block B1 (clockwise in FIG. 4), and then the block B3 is changed to this block. The stator core shown in FIG. 4 is rotated by 90 ° with respect to B2 (counterclockwise in FIG. 4), and is assembled (rolled) by rotating block B4 by 90 ° with respect to this block B3 (clockwise in FIG. 4). 10 is formed. In other words, the stator core 10 of the second embodiment is formed by stacking the blocks B1 to B4 three times.

冷媒供給パイプ25が配置された、図4のステータコア10の外周部右上面31に着目すると、ブロックB1、B3の凹部17Dが周方向中心線CLに対し頂部固定部30の近位側の第1領域P1に形成され、ブロックB2、B4の凹部17Cが周方向中心線CLに対し頂部固定部30の遠位側の第2領域P2に形成される。即ち、ステータコア10の外周部右上面31には、周方向中心線CLを挟んで周方向でオフセットし、且つ各ブロックB1〜B4の境界面Mを挟んで軸方向でオフセットするように、凹部17C、17Dが形成される。   Focusing on the right upper surface 31 of the outer peripheral portion of the stator core 10 of FIG. 4 where the refrigerant supply pipe 25 is disposed, the concave portion 17D of the blocks B1 and B3 is the first on the proximal side of the top fixing portion 30 with respect to the circumferential center line CL. The recesses 17C of the blocks B2 and B4 are formed in the region P1, and are formed in the second region P2 on the distal side of the top fixing part 30 with respect to the circumferential center line CL. That is, on the right upper surface 31 of the outer peripheral portion of the stator core 10, the concave portion 17 </ b> C is offset in the circumferential direction across the circumferential center line CL and offset in the axial direction across the boundary surface M between the blocks B <b> 1 to B <b> 4. , 17D are formed.

本実施形態では、鋼板11に形成される溝16C、16Dが周方向中心線CLを超えた領域に形成されるので、ブロックB1〜B4の凹部17C、17Dが軸方向に連続するように形成される。   In the present embodiment, since the grooves 16C and 16D formed in the steel plate 11 are formed in a region beyond the circumferential center line CL, the recesses 17C and 17D of the blocks B1 to B4 are formed so as to be continuous in the axial direction. The

冷媒供給パイプ25から滴下する冷却油などの冷媒がステータコア10の外周部右上面31に滴下されると、冷媒は、ブロックB1〜B4の凹部17C、17Dに流れる。ブロックB2の凹部17Cに流入した冷媒は、ブロックB1とブロックB2との境界面MとブロックB2の凹部17Cとに形成される段差によって形成される冷媒貯留部Sに留まり、ブロックB4の凹部17Cに流入した冷媒は、ブロックB3とブロックB4との境界面MとブロックB4の凹部17Cとに形成される段差によって形成される冷媒貯留部Sに留まる。このように冷媒が冷媒貯留部Sに一定の時間留まることで、ステータコア10との間で熱を授受してステータコア10の外周面、特に外周面の軸方向中央部を効果的に冷却する。   When refrigerant such as cooling oil dripping from the refrigerant supply pipe 25 is dropped on the outer peripheral right upper surface 31 of the stator core 10, the refrigerant flows into the recesses 17C and 17D of the blocks B1 to B4. The refrigerant flowing into the concave portion 17C of the block B2 remains in the refrigerant storage portion S formed by the step formed on the boundary surface M between the block B1 and the block B2 and the concave portion 17C of the block B2, and enters the concave portion 17C of the block B4. The refrigerant that has flowed in remains in the refrigerant storage portion S formed by a step formed at the boundary surface M between the block B3 and the block B4 and the concave portion 17C of the block B4. As described above, the refrigerant stays in the refrigerant storage portion S for a certain period of time, so that heat is exchanged with the stator core 10 to effectively cool the outer peripheral surface of the stator core 10, particularly the axial central portion of the outer peripheral surface.

以上説明したように、本実施形態に係るステータコア10によれば、ステータコア10の外周面15にはステータコア10の軸方向中央部を含む領域に冷媒を貯留する冷媒貯留部Sが形成されているので、これまで冷却しづらかったステータコア10の軸方向中央部の外周面を適切に冷却することができる。なお、ステータコア10の軸方向中央部とは、ステータコア10の端面から離間した部分を意味し、ステータコア10の両端面から等距離に位置する部分のみを意味するものではない。   As described above, according to the stator core 10 according to the present embodiment, the outer peripheral surface 15 of the stator core 10 is formed with the refrigerant storage portion S that stores the refrigerant in the region including the axial center portion of the stator core 10. The outer peripheral surface of the axially central portion of the stator core 10 that has been difficult to cool can be appropriately cooled. The central portion in the axial direction of the stator core 10 means a portion that is separated from the end face of the stator core 10, and does not mean only a portion that is equidistant from both end faces of the stator core 10.

また、第1領域P1の外周面に凹部17Dが形成されたブロックB1、B3と、第2領域P2の外周面に凹部17Cが形成されたブロックB2、B4とが重ねて配置されることで外周面15に冷媒貯留部Sが形成されるので、ステータコア10の表面積を増やし放熱能力を向上させながら、冷媒貯留部Sに留まる冷媒によりステータコア10の外周面15を適切に冷却することができる。   Further, the blocks B1 and B3 in which the recesses 17D are formed on the outer peripheral surface of the first region P1 and the blocks B2 and B4 in which the recesses 17C are formed on the outer peripheral surface of the second region P2 are arranged so as to overlap each other. Since the refrigerant storage portion S is formed on the surface 15, the outer peripheral surface 15 of the stator core 10 can be appropriately cooled by the refrigerant remaining in the refrigerant storage portion S while increasing the surface area of the stator core 10 and improving the heat dissipation capability.

また、凹部17C、17Dが組み合わされて冷媒貯留部Sが複数設けられることで、冷却能力を向上させることができる。   Moreover, the cooling capacity can be improved by combining the recesses 17C and 17D and providing a plurality of the refrigerant reservoirs S.

また、ブロックB2の冷媒貯留部Sには、多くの冷媒が貯留して効果的に冷却するが、滞留時間が長すぎると冷媒の温度が高くなって冷却効果が低減する虞がある。このため、適切な時間滞留した後、排出されることが望ましい。したがって、図6に示すように、冷媒の下流側となる凹部17Cの壁20に傾斜面22を設けて、適宜の滞留時間後に冷媒を排出することが好ましい。   Further, in the refrigerant storage section S of the block B2, a large amount of refrigerant is stored and effectively cooled. However, if the residence time is too long, the temperature of the refrigerant becomes high and the cooling effect may be reduced. For this reason, it is desirable to discharge after having stayed for an appropriate time. Therefore, as shown in FIG. 6, it is preferable to provide an inclined surface 22 on the wall 20 of the recess 17C on the downstream side of the refrigerant, and discharge the refrigerant after an appropriate residence time.

また、図7に示すように、軸方向に連続する凹部17C,17Dの内部には、鋼板11のばらけ防止のため、鋼板11を一体に溶接する溶接部19が設けられていてもよい。溶接部19は、軸方向に連続する凹部17C,17D内を通る1本の直線で形成することができ、凹部が螺旋状やリング状に形成された従来のステータコアにおける溶接部が、斜めや段付きとなる溶接部と比較して容易に形成することができる。   Further, as shown in FIG. 7, a welded portion 19 that welds the steel plate 11 integrally may be provided in the recesses 17 </ b> C and 17 </ b> D that are continuous in the axial direction in order to prevent the steel plate 11 from being scattered. The welded portion 19 can be formed by a single straight line passing through the recesses 17C and 17D that are continuous in the axial direction, and the welded portion in the conventional stator core in which the recesses are formed in a spiral shape or a ring shape is inclined or stepped. It can be easily formed as compared with the welded part.

なお、溶接部19は、凹部17C,17Dの内部に径方向外方に突出する突起部(図示せず)を設け、該突起部を溶接するようにしてもよい。溶接部19が凹部17C,17D内にあることで、溶接部19がステータコア10の外周面15から突出することがなく、ステータコア10のレイアウトの自由度が向上する。   In addition, the welding part 19 may provide the protrusion part (not shown) which protrudes radially outward inside the recessed part 17C, 17D, and may make it weld this protrusion part. Since the welded portion 19 is in the recesses 17 </ b> C and 17 </ b> D, the welded portion 19 does not protrude from the outer peripheral surface 15 of the stator core 10, and the degree of freedom in the layout of the stator core 10 is improved.

さらに、冷媒が側方から噴射される場合には、凹部17C,17Dに冷媒の噴射側が低くなる勾配や段差を設けて、冷媒の滞留時間を増やすようにしてもよい。   Furthermore, when the refrigerant is injected from the side, the recesses 17C and 17D may be provided with a gradient or a step that lowers the refrigerant injection side to increase the residence time of the refrigerant.

(第3実施形態)
図8は、第3実施形態のステータコア10の斜視図である。第3実施形態のステータコア10では、ステータコア10の外周部右上面31に凹部17が周方向に窪む略V字形に形成される。なお、第1実施形態と同一又は同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Third embodiment)
FIG. 8 is a perspective view of the stator core 10 of the third embodiment. In the stator core 10 of the third embodiment, the concave portion 17 is formed in a substantially V-shape that is recessed in the circumferential direction on the outer peripheral right upper surface 31 of the stator core 10. In addition, the same code | symbol or an equivalent code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and description is simplified or abbreviate | omitted.

図4に示すように、本実施形態のステータコア10は、周方向長さが同じ長さの溝16が、周方向位相を互い異ならせて、例えば、周方向位相が所定角度ずつ大きく形成された多数の鋼板11を、溝16の周方向位相が次第に大きくなる順、及び次第に小さくなる順に積層することで、周方向に窪む略V字形の凹部17が形成されている。   As shown in FIG. 4, in the stator core 10 of the present embodiment, the grooves 16 having the same circumferential length are formed such that the circumferential phase is different from each other, for example, the circumferential phase is increased by a predetermined angle. By laminating a large number of steel plates 11 in the order in which the circumferential phase of the grooves 16 gradually increases and gradually decreases, a substantially V-shaped recess 17 that is recessed in the circumferential direction is formed.

凹部17を周方向に窪む略V字形にすることで、滴下した冷媒がV字形の谷部26の近傍に形成される冷媒貯留部Sに集中し、谷部26の近傍を重点的に冷却することが可能となる。谷部26の位置及び数は、鋼板11の積層順を変更すれば自由に設定することができる。従って、谷部26を軸方向中央に設定すれば、高温になり易いステータコア10の軸方向中央部の外周面15を適切に冷却することができる。   By making the concave portion 17 substantially V-shaped recessed in the circumferential direction, the dropped refrigerant concentrates in the refrigerant storage portion S formed in the vicinity of the V-shaped trough portion 26, and the vicinity of the trough portion 26 is intensively cooled. It becomes possible to do. The position and number of the valleys 26 can be freely set by changing the stacking order of the steel plates 11. Therefore, if the valley portion 26 is set at the center in the axial direction, the outer peripheral surface 15 at the center portion in the axial direction of the stator core 10 that is likely to be hot can be appropriately cooled.

また、V字形の谷部26は、1つに限定されず、複数設けることもでき、冷却したい部位を狙って効果的に冷却することが可能となる。   Further, the V-shaped valley portion 26 is not limited to one, and a plurality of V-shaped valley portions 26 can be provided, and it is possible to effectively cool the target portion to be cooled.

以上説明したように、本実施形態に係るステータコア10によれば、凹部17は、軸方向中央部が周方向に窪んだV字形状を有するので、これまで冷却しづらかったステータコア10の軸方向中央部の外周面15を適切に冷却することができる。   As described above, according to the stator core 10 according to the present embodiment, the concave portion 17 has a V-shape in which the central portion in the axial direction is recessed in the circumferential direction, and thus the central portion in the axial direction of the stator core 10 that has been difficult to cool so far. The outer peripheral surface 15 of the part can be cooled appropriately.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
なお、第1及び第2実施形態では、同一形状の鋼板を転積することで異なる領域に凹部を形成することで冷媒貯留部を形成したが、必ずしも同一形状の鋼板を転積する必要はなく、異なる形状の鋼板を積層することで異なる領域に凹部を形成し、それにより冷媒貯留部を形成してもよい。即ち、第1鋼板と第2鋼板とは同一形状であってもよく、異形状であってもよい。
In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
In addition, in 1st and 2nd embodiment, although the refrigerant | coolant storage part was formed by forming a recessed part in a different area | region by rolling a steel plate of the same shape, it is not necessary to roll a steel plate of the same shape. Alternatively, the concave portions may be formed in different regions by laminating steel plates having different shapes, thereby forming the refrigerant reservoir. That is, the first steel plate and the second steel plate may have the same shape or different shapes.

10 ステータコア
11 鋼板
15 外周面
17〜17D 凹部
19 溶接部
22 傾斜面
P1 第1領域
P2 第2領域
S 冷媒貯留部
DESCRIPTION OF SYMBOLS 10 Stator core 11 Steel plate 15 Outer peripheral surface 17-17D Concave part 19 Welding part 22 Inclined surface P1 1st area | region P2 2nd area | region S Refrigerant storage part

Claims (7)

複数の鋼板が積層されて構成されたステータコアであって、
該ステータコアの外周面には、前記ステータコアの軸方向中央部を含む領域に冷媒を貯留する冷媒貯留部が形成されている、ステータコア。
A stator core formed by laminating a plurality of steel plates,
A stator core in which a refrigerant reservoir for storing refrigerant is formed in an outer peripheral surface of the stator core in a region including an axial central portion of the stator core.
請求項1に記載のステータコアであって、
前記鋼板は、
第1領域の外周面に第1凹部が形成された第1鋼板と、
前記第1領域とは異なる第2領域の外周面に第2凹部が形成された第2鋼板と、を含み、
前記第1鋼板と前記第2鋼板とが重ねて配置されることで、前記冷媒貯留部が形成されている、ステータコア。
The stator core according to claim 1,
The steel plate
A first steel plate in which a first recess is formed on the outer peripheral surface of the first region;
A second steel plate having a second recess formed on the outer peripheral surface of the second region different from the first region,
A stator core in which the refrigerant reservoir is formed by overlapping the first steel plate and the second steel plate.
請求項2に記載のステータコアであって、
前記第1鋼板と前記第2鋼板は同一形状であって、
前記第1鋼板と前記第2鋼板とを転積することで、前記第1凹部及び前記第2凹部の位相が異なる、ステータコア。
The stator core according to claim 2,
The first steel plate and the second steel plate have the same shape,
A stator core in which the phases of the first recess and the second recess are different by rolling the first steel plate and the second steel plate.
請求項2又は3に記載のステータコアであって、
前記第1凹部及び前記第2凹部には、前記鋼板同士を連結する溶接部が軸方向に亘って形成されている、ステータコア。
The stator core according to claim 2 or 3,
The stator core in which the welding part which connects the said steel plates is formed in the said 1st recessed part and the said 2nd recessed part over the axial direction.
請求項2〜4のいずれか1項に記載のステータコアであって、
前記第1凹部と前記第2凹部が組み合わされて前記冷媒貯留部が複数設けられている、ステータコア。
The stator core according to any one of claims 2 to 4, wherein
A stator core in which the first recess and the second recess are combined to provide a plurality of the refrigerant reservoirs.
請求項1〜5のいずれか1項に記載のステータコアであって、
前記冷媒貯留部には、周方向に向かって滑らかに傾斜する傾斜面が接続されている、ステータコア。
The stator core according to any one of claims 1 to 5,
A stator core, to which the inclined surface that smoothly inclines in the circumferential direction is connected to the refrigerant reservoir.
請求項2に記載のステータコアであって、
前記第1凹部及び前記第2凹部は、前記ステータコアの軸方向中央部が周方向に窪んだV字形状を有する、ステータコア。
The stator core according to claim 2,
The first concave portion and the second concave portion have a V-shape in which a central portion in the axial direction of the stator core is recessed in the circumferential direction.
JP2017140269A 2017-07-19 2017-07-19 Stator core Active JP6850219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140269A JP6850219B2 (en) 2017-07-19 2017-07-19 Stator core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140269A JP6850219B2 (en) 2017-07-19 2017-07-19 Stator core

Publications (2)

Publication Number Publication Date
JP2019022368A true JP2019022368A (en) 2019-02-07
JP6850219B2 JP6850219B2 (en) 2021-03-31

Family

ID=65354465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140269A Active JP6850219B2 (en) 2017-07-19 2017-07-19 Stator core

Country Status (1)

Country Link
JP (1) JP6850219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111092A (en) * 2021-01-18 2022-07-29 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Stator batten, stator core and motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033916A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Cooler of motor
JP2012210027A (en) * 2011-03-29 2012-10-25 Fuji Heavy Ind Ltd Cooling structure for electric motor
JP2013017334A (en) * 2011-07-05 2013-01-24 Aisin Aw Co Ltd Rotary electric machine
JP2017005785A (en) * 2015-06-05 2017-01-05 ダイキン工業株式会社 Stator, motor and manufacturing method of stator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033916A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Cooler of motor
JP2012210027A (en) * 2011-03-29 2012-10-25 Fuji Heavy Ind Ltd Cooling structure for electric motor
JP2013017334A (en) * 2011-07-05 2013-01-24 Aisin Aw Co Ltd Rotary electric machine
JP2017005785A (en) * 2015-06-05 2017-01-05 ダイキン工業株式会社 Stator, motor and manufacturing method of stator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111092A (en) * 2021-01-18 2022-07-29 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Stator batten, stator core and motor

Also Published As

Publication number Publication date
JP6850219B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5913160B2 (en) Rotating electric machine rotor and rotating electric machine
JP6451856B2 (en) Rotating electric machine cooling structure
EP2058926B1 (en) Enhanced motor cooling system
EP2961043B1 (en) Rotor of rotary electric machine
US8304940B2 (en) Stator
JP5716505B2 (en) Rotating electric machine stator
JP6508682B2 (en) Stator winding and stator
EP2658089B1 (en) Stator cooling channel tolerant to localized blockage
JP7139969B2 (en) Rotating electric machine
JP6079733B2 (en) Rotating electrical machine rotor
JP6279763B2 (en) Induction motor
JP2009055737A (en) Rotor and rotary electric machine
CN103620918A (en) Cooling structure of rotary electric machine
KR20180041672A (en) Casting cooling system for electric machines
US20140035404A1 (en) Angled weld end turns for coolant access
US20130342052A1 (en) Electric machine with circumferential rotor and housing fins
US20140102685A1 (en) Device for cooling a component of an electrical machine using cooling coils
JP2010268561A (en) Rotor for rotating electrical machine and the rotating electrical machine
JP6247555B2 (en) Rotating electric machine
WO2015174145A1 (en) Embedded-permanent-magnet dynamoelectric device
JP2019022368A (en) Stator core
JP2015204667A (en) Rotary electric machine, and manufacturing method of rotary electric machine
US10069360B2 (en) Electric rotary machine
JP2013220004A (en) Induction motor
JP2021002996A (en) Stator, electric machine, vehicle, and method for producing stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6850219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150