JP2019022157A - Subscriber line terminal apparatus - Google Patents
Subscriber line terminal apparatus Download PDFInfo
- Publication number
- JP2019022157A JP2019022157A JP2017141244A JP2017141244A JP2019022157A JP 2019022157 A JP2019022157 A JP 2019022157A JP 2017141244 A JP2017141244 A JP 2017141244A JP 2017141244 A JP2017141244 A JP 2017141244A JP 2019022157 A JP2019022157 A JP 2019022157A
- Authority
- JP
- Japan
- Prior art keywords
- subscriber line
- onu
- olt
- time
- dsp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Small-Scale Networks (AREA)
Abstract
Description
本発明は、加入者線端局装置に関する。 The present invention relates to a subscriber line terminal station apparatus.
アクセスサービスの高速化に対するニーズの高まりにより、FTTH(Fiber To The Home)の普及が世界的に進んでいる。FTTHサービスの大部分はPON(Passive Optical Network)方式により提供されている。図4に示すように、PON方式では、1台の加入者線端局装置(OLT:Optical Line Terminal)が時分割多重(TDM)により複数の加入者線終端装置(ONU:Optical Network Unit)を収容しており、経済性に優れている。日本における現在の主力システムは、伝送速度がギガビット級であるGE−PON(Gigabit Ethernet(登録商標) PON)である。GE−PONは、イーサネット(登録商標)通信をアクセスネットワークに適用することを目的にIEEE(米国電気電子技術者協会)802委員会で標準化された規格IEEE 802.3ah(例えば、非特許文献1参照)の中の一規格である。 Due to increasing needs for high-speed access services, FTTH (Fiber To The Home) is spreading worldwide. Most of the FTTH services are provided by the PON (Passive Optical Network) method. As shown in FIG. 4, in the PON system, one subscriber line terminal equipment (OLT: Optical Line Terminal) is connected to a plurality of subscriber line termination equipment (ONU: Optical Network Unit) by time division multiplexing (TDM). It is housed and is economical. The current main system in Japan is GE-PON (Gigabit Ethernet (registered trademark) PON) whose transmission speed is a gigabit class. GE-PON is a standard IEEE 802.3ah standardized by the IEEE (American Institute of Electrical and Electronics Engineers) 802 committee for the purpose of applying Ethernet (registered trademark) communication to an access network (see, for example, Non-Patent Document 1). Is one of the standards.
図5は、IEEE 802.3ahのレイヤ構造を示す図である。ONU_xは、OLTと接続される複数のONUのうちのx番目(xは1以上の整数)のONUであることを示す。ONUは、PHY(PHYsical sublayer)と呼ばれる物理層と、MAC(Media Access Control)と呼ばれるデータリンク副層とを有する構成である。MACは、MAC制御副層(MAC control client)と、MAC副層(MAC sublayer)とを有する。MAC制御副層は、MAC副層のリアルタイム制御及び操作を行うオプションのサブレイヤである。MAC副層は、データのMACフレーム化(フレーム化、MACアドレス付加、エラー検出)及び媒体アクセス(衝突検知、延期処理)を実行する。物理層は、MACと物理層の仲介を担うRS(Reconciliation sublayer)及びGMII(Gigabit media independent interface)を介してMACと接続される。さらに物理層は、PCS(Physical Coding Sublayer)と呼ばれるデータを符号化する部分と、PMD(Physical Medium Dependent)と呼ばれる物理媒体に接続する部分とを有する。PCSとPMDは、PMA(Physical Medium Attachment)により接続される。PMAは、データのシリアル化を行う。 FIG. 5 is a diagram showing the layer structure of IEEE 802.3ah. ONU_x indicates the xth (x is an integer equal to or greater than 1) ONU among a plurality of ONUs connected to the OLT. The ONU has a configuration including a physical layer called PHY (PHYsical sublayer) and a data link sublayer called MAC (Media Access Control). The MAC has a MAC control sublayer (MAC control client) and a MAC sublayer. The MAC control sublayer is an optional sublayer that performs real-time control and operation of the MAC sublayer. The MAC sublayer executes data MAC framing (framing, MAC address addition, error detection) and medium access (collision detection, postponement processing). The physical layer is connected to the MAC via an RS (Reconciliation sublayer) that acts as an intermediary between the MAC and the physical layer and a GMII (Gigabit media independent interface). Further, the physical layer has a part that encodes data called PCS (Physical Coding Sublayer) and a part that connects to a physical medium called PMD (Physical Medium Dependent). PCS and PMD are connected by PMA (Physical Medium Attachment). PMA serializes data.
PON方式ではディスカバリプロセス中に、OLTがそれぞれのONUとの間のRTT(Round Trip Time:フレーム往復時間)測定を行う。RTT測定は定期的に行われ、線路条件の変化などによりズレが生じた場合には随時補正される。RTTは、図6に示すように測定される。OLTがDiscovery GATE信号を送信してからRegister REQ信号を受信するまでの経過時間をTresponse、ONUがDiscovery GATE信号を受信してからRegister REQ信号を送信するまでの時間をTwait、OLTからONUへの下りの伝搬遅延をTDownstream、そして、ONUからOLTへの上りの伝搬遅延をTUpstreamとすると、RTTは以下の式(1)で算出される。 In the PON system, the OLT performs RTT (Round Trip Time) measurement with each ONU during the discovery process. The RTT measurement is periodically performed, and is corrected as needed when a deviation occurs due to a change in line conditions or the like. RTT is measured as shown in FIG. T response indicates the elapsed time from when the OLT transmits the Discovery GATE signal until the Register REQ signal is received, and T wait indicates the time from when the ONU receives the Discovery GATE signal until it transmits the Register REQ signal. Assuming that the downstream propagation delay to T Downstream and the upstream propagation delay from the ONU to the OLT is T Upstream , RTT is calculated by the following equation (1).
RTT=Tresponse−Twait=TDownstream+TUpstream …(1) RTT = T response −T wait = T Downstream + T Upstream (1)
また、PON方式では、MPCP(Multi Point Control Protocol)というプロトコルを使用して上り信号制御を実現する。OLTは、GATEフレームを用いて、それぞれのONUが時間的に衝突することなく上り信号を送信できるように、送信開始時刻、送信量を各ONUに指示する。一方、ONUは、REPORTフレームを用いて自装置のバッファに蓄積されている送信待ちのデータ量をOLTに伝える。ここで、ONUからOLTへの上り帯域を、トラフィック量に応じて動的に割り当てる機能を動的帯域割当て(DBA:Dynamic Bandwidth Allocation)機能と呼ぶ。OLTが、短いDBA周期で複数ONUの帯域要求を収集して割当帯域を切替えることで、多くのONUに無駄なく帯域を割り当てることができ、上りデータの送信待ち時間を短くすることができる。 In the PON system, uplink signal control is realized using a protocol called MPCP (Multi Point Control Protocol). The OLT uses the GATE frame to instruct each ONU about the transmission start time and the transmission amount so that each ONU can transmit an upstream signal without colliding in time. On the other hand, the ONU uses the REPORT frame to inform the OLT the amount of data waiting for transmission stored in its own buffer. Here, the function of dynamically allocating the upstream band from the ONU to the OLT according to the traffic amount is referred to as a dynamic bandwidth allocation (DBA) function. The OLT collects bandwidth requests of a plurality of ONUs in a short DBA cycle and switches the allocated bandwidth, so that bandwidth can be allocated to many ONUs without waste and the transmission waiting time for uplink data can be shortened.
DBA機能では、OLTは、測定したRTTを補うために、それぞれのONUの上り信号の送信開始時刻Tgrantedを計算する。図7は、従来のGE−PONシステムにおけるDBAの計算を説明するための図である。なお、以下では、OLTにおける時刻を基準にして、受信や送信などに関する各タイミングの時刻を表す。x番目(xは1以上の整数)のONUをONU♯xとすると、ONU♯xの上り信号の送信開始時刻Tgranted_xは、OLTにおけるONU♯xからの上り信号の受信開始時刻Tdesired_xと、ONU♯xのラウンドトリップタイムRTTxとを用いて、以下の式(2)で表される。 In the DBA function, the OLT calculates an upstream signal transmission start time T granted of each ONU in order to supplement the measured RTT. FIG. 7 is a diagram for explaining DBA calculation in a conventional GE-PON system. In the following, the time at each timing related to reception, transmission, and the like is represented with reference to the time in the OLT. Assuming that the xth ONU (x is an integer of 1 or more) ONU # x, ONU # x upstream signal transmission start time T granted_x is the upstream signal reception start time T desired_x from ONU # x in OLT, Using the round trip time RTT x of ONU # x, it is expressed by the following equation (2).
Tgranted_x=Tdesired_x−RTTx …(2) T granted_x = T desired_x− RTT x (2)
一方で、ユーザトラフィック要求の増大から、光アクセスネットワークの益々の大容量化・経済化が求められている。その実現に向け、デジタル信号処理(DSP:Digital Signal Processing)技術をPONシステムに適用したDSP−PON方式が注目され、研究開発・実用化が活発化している。DSP−PONシステムでは、OLT及びONUの両方にDSP処理部を備える構成でもよく、いずれか片方にDSP処理部を備える構成でもよい。 On the other hand, as the demand for user traffic increases, the capacity and economy of optical access networks are increasing. To realize this, a DSP-PON system in which a digital signal processing (DSP) technology is applied to a PON system attracts attention, and research and development / practical use has been activated. The DSP-PON system may have a configuration in which both the OLT and the ONU include a DSP processing unit, or may have a configuration in which one of the DSP processing units is provided.
DSP−PON方式におけるRTTは、OLT及びONU内のDSP処理にかかる時間が追加されるため、図8のように測定され、式(3)で表される。OLT内送信器のDSP処理遅延をTOLT−Tx−DSP、下りの伝搬遅延をTDownstream、ONU内受信器のDSP処理遅延をTONU−Rx−DSP、ONU内送信器のDSP処理遅延をTONU−Tx−DSP、上りの伝搬遅延をTUpstream、そしてOLT内受信器のDSP処理遅延をTOLT−Rx−DSPとする。 The RTT in the DSP-PON system is measured as shown in FIG. 8 because the time required for DSP processing in the OLT and ONU is added, and is expressed by Expression (3). The DSP processing delay of the transmitter in the OLT is T OLT-Tx-DSP , the downstream propagation delay is T Downstream , the DSP processing delay of the receiver in the ONU is T ONU-Rx-DSP , and the DSP processing delay of the transmitter in the ONU is T It is assumed that ONU-Tx-DSP , the upstream propagation delay is T Upstream , and the DSP processing delay of the intra-OLT receiver is T OLT-Rx-DSP .
RTT=Tresponse−Twait
=TOLT−Tx−DSP+TDownstream+TONU−Rx−DSP+TONU−Tx−DSP+TUpstream+TOLT−Rx−DSP …(3)
RTT = T response −T wait
= T OLT-Tx-DSP + T Downstream + T ONU-Rx-DSP + T ONU-Tx-DSP + T Upstream + T OLT-Rx-DSP (3)
DSP技術をPONシステムに適用したDSP−PON方式では、DSPの処理時間が変動することが懸念される。例えば、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)技術を用いる場合は、OFDM信号がシンボル長Tの間隔で伝送されるため、OFDMシンボル長だけDSP処理遅延が変動する。更に、ONUにトラフィックがバースト的に入力されると、1周期で受信トラフィックをOLTに送ることができず、数周期にわたって送ることになる。そのため、OFDMシンボル長Tの数倍の遅延が発生し、OFDMシンボル長の数倍だけ処理遅延が変動する。 In the DSP-PON system in which the DSP technology is applied to the PON system, there is a concern that the processing time of the DSP varies. For example, when OFDM (Orthogonal Frequency Division Multiplexing) technology is used, since the OFDM signal is transmitted at intervals of the symbol length T, the DSP processing delay varies by the OFDM symbol length. Further, when traffic is input to the ONU in a burst manner, the received traffic cannot be sent to the OLT in one cycle, but is sent over several cycles. For this reason, a delay several times the OFDM symbol length T occurs, and the processing delay varies by several times the OFDM symbol length.
このようにDSPの処理時間が変動することでRTTが変動するため、DBA機能において、それぞれのONUについて測定したRTTを用いて送信開始時刻Tgrantedを計算した場合、図9に示すように、複数のONUからの上りバースト光信号の衝突を引き起こすことがあるという課題が生じる。例えば、ONU#3のラウンドトリップタイムRTT3は、最小値RTT3_minからRTT3_maxの間で変動する。そのため、ある時点で測定したRTT3を使用して、送信開始時刻Tgranted_3を式(2)により算出した場合、RTT3の揺らぎにより、ONU#3の前後で他のONUが送信した上りバースト光信号とのフレーム衝突が発生することがある。
Since the RTT varies as the DSP processing time varies in this way, when the transmission start time T granted is calculated using the RTT measured for each ONU in the DBA function, as shown in FIG. There arises a problem that an upstream burst optical signal from an ONU may cause a collision. For example, the round trip time RTT 3 of
上記事情に鑑み、本発明は、信号処理時間に揺らぎが生じる場合であっても、時分割多重により通信する複数の加入者線終端装置への帯域割当を精度よく行うことができる加入者線端局装置を提供することを目的としている。 In view of the above circumstances, the present invention provides a subscriber line end capable of accurately performing bandwidth allocation to a plurality of subscriber line termination devices communicating by time division multiplexing even when fluctuations occur in signal processing time. The object is to provide a station apparatus.
本発明の一態様は、複数の加入者線終端装置と接続される加入者線端局装置であって、当該加入者線端局装置における前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、を備える。 One aspect of the present invention is a subscriber line terminal device connected to a plurality of subscriber line terminators, and the reception start timing of an uplink signal from the subscriber line terminator in the subscriber line terminal device A bandwidth allocating unit that allocates a blank time between the reception completion timing of the uplink signal from the other subscriber line terminating device.
本発明の一態様は、上述の加入者線端局装置であって、前記加入者線終端装置のラウンドトリップタイムの最小値を取得する取得部をさらに備え、前記帯域割当部は、前記加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた前記受信開始タイミング及び当該加入者線終端装置について取得した前記ラウンドトリップタイムの最小値を用いて決定する。 One aspect of the present invention is the above-described subscriber line terminal station apparatus, further comprising an acquisition unit that acquires a minimum value of a round trip time of the subscriber line termination apparatus, wherein the bandwidth allocation unit includes the subscriber The transmission start timing of the uplink signal assigned to the line terminating device is determined using the reception start timing assigned to the subscriber line terminating device and the minimum value of the round trip time acquired for the subscriber line terminating device.
本発明の一態様は、上述の加入者線端局装置であって、前記取得部は、前記加入者線終端装置のラウンドトリップタイムの最大値を取得し、前記帯域割当部は、前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の前記加入者線終端装置について取得した前記ラウンドトリップタイムの最大値と最小値の差分、又は、前記差分に係数を掛けた値を加えて算出する。 One aspect of the present invention is the above-described subscriber line terminal station device, wherein the acquisition unit acquires a maximum value of a round trip time of the subscriber line termination device, and the bandwidth allocation unit includes the subscriber The reception start timing of the uplink signal from the line terminating device is acquired for the other subscriber line terminating device at the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line terminating device. The difference between the maximum value and the minimum value of the round trip time, or a value obtained by multiplying the difference by a coefficient is calculated.
本発明により、信号処理時間に揺らぎが生じる場合であっても、時分割多重により通信する複数の加入者線終端装置への帯域割当を精度よく行うことが可能となる。 According to the present invention, even when fluctuations occur in the signal processing time, it is possible to perform bandwidth allocation to a plurality of subscriber line terminating devices communicating by time division multiplexing with high accuracy.
以下、図面を参照しながら本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態によるDSP−PONシステム1の構成図である。DSP−PONシステム1は、1台のOLT(加入者線端局装置)3が、時分割多重(TDM)により複数台のONU(加入者線終端装置)5を収容する構成である。OLT3から1本の光ファイバにより送信される下り光信号は、光スプリッタにより複数のONU5それぞれと接続される光ファイバに分配される。また、時分割で複数のONU5それぞれから光ファイバにより送信される上り光信号は、光スプリッタにより合波されて1本の光ファイバによりOLT3に送信される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a DSP-
OLT3は、PHY(PHYsical sublayer)と呼ばれる物理層31と、データリンク副層のMAC(Media Access Control)32とを備える。OLT3の物理層31は、DSP処理部311を備える。同様に、ONU5は、PHYと呼ばれる物理層51と、データリンク副層のMAC52とを備える。ONU5の物理層51は、DSP処理部511を備える。DSP処理部311及びDSP処理部511は、DSPによる信号処理を行う。同図では、OLT3とONU5の両方にDSP処理部を備えているが、いずれか一方のみにDSP処理部を備える構成でもよい。
The
図2は、DSP−PONシステム1のレイヤ構造を示す図である。
OLT3の物理層31(PHY)は、PMDにDSP処理部311及びADC(Digital to Analog Converter)/DAC(Analog to Digital Converter)312を設けている点を除き、図5に示す従来技術のOLTの物理層と同様の構成である。同様に、ONU5の物理層51は、PMDにDSP処理部511及びADC/DAC512を設けている点を除き、図5に示す従来技術のONUの物理層と同様の構成である。
FIG. 2 is a diagram showing a layer structure of the DSP-
The physical layer 31 (PHY) of the
OLT3からONU5へ信号を送信する場合、OLT3の物理層31内のPMDにおいては、DSP処理部311がデジタル信号処理した送信信号を、ADC/DAC312のDACがアナログ信号に変換し、送信器(Tx:Transmitter)に入力する。ONU5の物理層51内のPMDにおいては、受信器(Rx:Receiver)がOLT3から受信したアナログ信号を、ADC/DAC512のADCがデジタル信号に変換し、DSP処理部511がデジタル信号処理を行う。
When transmitting a signal from the
ONU5からOLT3へ信号を送信する場合、ONU5のPMDにおいては、DSP処理部511がデジタル信号処理した送信信号を、ADC/DAC512のDACがアナログ信号に変換し、送信器(Tx)に入力する。OLT3のPMDにおいては、受信器(Rx)がONU5から受信したアナログ信号を、ADC/DAC312のADCがデジタル信号に変換し、DSP処理部311がデジタル信号処理を行う。
When transmitting a signal from the
OLT3のMAC32及びONU5のMAC52はそれぞれ、図5に示す従来技術のOLTのMAC及びONUのMACと同様の構成である。ただし、MAC32のMAC制御副層(MAC control client)321が各ONU5への帯域割当を行う処理において、各ONU5に対して複数回のRTT測定を行って得られたRTT(フレーム往復時間)の最小値及び最大値を使用する点が異なる。
The
MAC制御副層321のディスカバリ処理部(Discovery process)3211は、従来技術と同様に、OLT3に接続されているONU5を発見するためのディスカバリプロセスの実行を制御し、そのプロセス中にRTT測定を行う。例えば、ディスカバリ処理部3211は、OLT3との接続が確認されたONU5に対してRTT測定用信号の送信要求を送信し、ONU5から返送された応答に設定されている応答送信時刻、OLT3におけるその応答の受信時刻、OLT3及びONU5のクロックのずれ等の情報に基づいてRTTを取得する。MAC制御副層321のレポート処理部(Reporting process)3212は、各ONU5に上り信号を送信するための帯域を割り当てる帯域割当を行う。帯域割当では、各ONU5の送信開始時刻と、送信を許可する上りデータ量とを決定する。
The discovery processing unit (Discovery process) 3211 of the
続いて、DSP−PONシステム1の処理について説明する。
DSP−PONシステム1は、OLT3とONU5の間でRTT測定を定期的に行う。OLT3のディスカバリ処理部3211は、ONU5ごとに、複数回RTT測定を行って取得したRTTの最大値と最小値を得る。x番目(xは1以上の整数)のONU5であるONU♯xについて取得したRTTの最小値及び最大値をそれぞれ、RTTx_min及びRTTx_maxとする。ディスカバリ処理部3211は、各ONU#xについて得られたRTTx_min、及び、RTTx_maxをレポート処理部3212に出力する。
Next, processing of the DSP-
The DSP-
図3は、ONU5におけるDBAの計算を説明するための図である。なお、同図では、OLT3における時刻を基準にして、受信や送信などに関する各タイミングの時刻を表している。
OLT3のレポート処理部3212は、各ONU5から通知された送信データ量と、ディスカバリ処理部3211から受信した各ONU#xのRTTx_min及びRTTx_maxとを用いて、DSP−PONシステム1のDBA機能を実行する。このDBA機能において、レポート処理部3212は、各ONU#xにおける上り信号(上りバースト光信号)の送信開始時刻Tgranted_xを、OLT3におけるONU♯xからの上り信号の受信開始時刻Tdesired_xと、ONU♯xのラウンドトリップタイムの最小値RTTx_minとを用いて、以下の式(4)により算出する。
FIG. 3 is a diagram for explaining the calculation of DBA in the
The
Tgranted_x=Tdesired_x−RTTx_min …(4) T granted_x = T desired_x− RTT x_min (4)
レポート処理部3212は、式(4)において用いられるONU♯xからの上り信号の受信開始時刻Tdesired_xを、以下のように算出する。ONU#xの前に上り信号を送信する他のONU5をONU#y(y≠x、yは1以上の整数)とする。レポート処理部3212は、ONU♯xからの上り信号の受信開始時刻Tdesired_xを、ONU#yからの上り信号の受信完了時刻Tend_yに、余白時間を加えて算出する。余白時間は、ONU#yのラウンドトリップタイムの最大値RTTy_maxと最小値RTTy_minとの差分dy(=RTTy_max−RTTy_min)、又は、この差分dyに所定の係数を乗算した値である。レポート処理部3212は、ONU#yからの上り信号の受信完了時刻Tend_yを、ONU#yからの上り信号の受信開始時刻Tdesired_yに、ONU#yに許可した上りデータ量の送信にかかる時間を加えて算出する。例えば、上りデータ量は、データ送信の単位時間であるタイムスロットの数に変換可能である。そのため、受信開始時刻に応じたタイムスロットに、上りデータ量に応じたタイムスロット数を加算して得られたタイムスロットの位置が、受信完了時刻を表す。
The
OLT3が、ONU#xに送信開始時刻Tgranted_xを指示するときには、OLT3とONU#xの間の時刻のズレや伝搬遅延等を考慮して、ONU#xにおける送信開始時刻Tgranted_xを表すタイミングの情報を通知する。
When the
なお、DSP−PONシステム1がRTT測定を行うプロセスは、ディスカバリプロセスに限らない。ディスカバリプロセス以外で行うRTT測定は、OLT3のディスカバリ処理部3211が実行してもよく、レポート処理部3212が実行してもよく、MAC制御副層321内の図示しない機能部が実行してもよい。例えば、ディスカバリプロセスでは、ONU5がOLT3へ送信するREGISTER REQメッセージに設定したタイムスタンプを用いてRTT測定を行い、その後は、ONU5がOLT3へ定期的に送信するREPORTメッセージに設定したタイムスタンプを用いてRTT測定を行うことができる。
The process in which the DSP-
上述した実施形態によれば、加入者線端局装置は、時分割多重により複数の加入者線終端装置を収容する。例えば、加入者線端局装置はOLT3であり、加入者線終端装置はONU5である。加入者線端局装置は、当該加入者線端局装置における加入者線終端装置からの上り信号の受信開始タイミングを、他の加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、を備える。帯域割当部は、例えば、レポート処理部3212である。
According to the embodiment described above, the subscriber line terminal station apparatus accommodates a plurality of subscriber line termination apparatuses by time division multiplexing. For example, the subscriber line terminal equipment is OLT3, and the subscriber line termination equipment is ONU5. The subscriber line end station apparatus sets the reception start timing of the uplink signal from the subscriber line termination apparatus in the subscriber line end station apparatus to the reception completion timing of the uplink signal from another subscriber line termination apparatus. A bandwidth allocating unit that allocates the margin time. The bandwidth allocation unit is, for example, the
加入者線端局装置は、加入者線終端装置のラウンドトリップタイムの最小値及び最大値を取得する取得部をさらに備える。取得部は、例えば、ディスカバリ処理部3211である。帯域割当部は、加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた受信開始タイミング及び当該加入者線終端装置について取得したラウンドトリップタイムの最小値を用いて決定する。
The subscriber line terminal device further includes an acquisition unit that acquires the minimum value and the maximum value of the round trip time of the subscriber line terminal device. The acquisition unit is, for example, the
また、帯域割当部は、加入者線終端装置からの上り信号の受信開始タイミングを、他の加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の加入者線終端装置について取得したラウンドトリップタイムの最大値と最小値の差分、又は、その差分に係数を掛けた値を加えて算出する。 In addition, the bandwidth allocating unit sets the reception start timing of the uplink signal from the subscriber line termination device to the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line termination device, to other subscribers. The difference is calculated by adding the difference between the maximum value and the minimum value of the round trip time acquired for the line terminating device, or a value obtained by multiplying the difference by a coefficient.
デジタル処理を利用するPONでは、従来のDSP処理を行わない方式と比べてDSP演算時間分だけタイムラグが生じる。このタイムラグは変動があるため、OLTからONUへのタイミング制御に時間的ずれが生じ、従来と同様の帯域割当を行った場合は、ONUからOLT向けの上り信号の衝突等による遅延が生じてしまう。そこで、上述した実施形態のように、OLT3において、DSP処理遅延の変動を吸収するように、それぞれのONU5からの上り信号の受信開始時刻及びONU5の上り信号の送信開始時刻を決定することで、ラウンドトリップタイムが揺らいだ場合も、複数のONU5からの上りバースト光信号の衝突を防ぐことができる。従って、DSP処理遅延に関わらず、OLT3からONU5への帯域割当の精度を維持できる。これにより、DSPによるデジタル信号処理化によるOLTの大容量化も可能となる。
In a PON using digital processing, a time lag is generated by the DSP calculation time compared to a conventional method in which DSP processing is not performed. Since this time lag varies, there is a time lag in the timing control from the OLT to the ONU, and a delay due to collision of upstream signals from the ONU to the OLT occurs when bandwidth allocation is performed in the same manner as before. . Therefore, as in the above-described embodiment, in the
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.
TDMA(時分割多重アクセス)により通信する装置に利用可能である。 It can be used for a device that communicates by TDMA (Time Division Multiple Access).
1…DSP−PONシステム, 3…OLT, 5…ONU, 31…物理層, 32…MAC, 51…物理層, 52…MAC, 311…DSP処理部, 312…ADC/DAC, 321…MAC制御副層, 3211…ディスカバリ処理部, 3212…レポート処理部, 511…DSP処理部, 512…ADC/DAC
DESCRIPTION OF
Claims (3)
当該加入者線端局装置における前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、
を備える加入者線端局装置。 A subscriber line terminal device connected to a plurality of subscriber line terminators,
A blank time is provided between the reception start timing of the uplink signal from the subscriber line termination device in the subscriber line terminal station device and the reception completion timing of the uplink signal from the other subscriber line termination device. Bandwidth allocation unit to allocate,
A subscriber line terminal apparatus.
前記帯域割当部は、前記加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた前記受信開始タイミング及び当該加入者線終端装置について取得したラウンドトリップタイムの最小値を用いて決定する、
請求項1に記載の加入者線端局装置。 An acquisition unit for acquiring a minimum value of the round trip time of the subscriber line termination device;
The bandwidth allocating unit sets the transmission start timing of the uplink signal allocated to the subscriber line terminating device, the reception start timing allocated to the subscriber line terminating device, and the minimum round trip time acquired for the subscriber line terminating device. To determine using the value,
The subscriber line terminal apparatus according to claim 1.
前記帯域割当部は、前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の前記加入者線終端装置について取得した前記ラウンドトリップタイムの最大値と最小値の差分、又は、前記差分に係数を掛けた値を加えて算出する、
請求項2に記載の加入者線端局装置。 The acquisition unit further acquires a maximum value of a round trip time of the subscriber line termination device,
The band allocating unit sets the reception start timing of the uplink signal from the subscriber line termination device to the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line termination device. The difference between the maximum value and the minimum value of the round trip time acquired for the subscriber line termination device, or a value obtained by multiplying the difference by a coefficient,
The subscriber line terminal station apparatus according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017141244A JP6861593B2 (en) | 2017-07-20 | 2017-07-20 | Subscriber line end station equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017141244A JP6861593B2 (en) | 2017-07-20 | 2017-07-20 | Subscriber line end station equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019022157A true JP2019022157A (en) | 2019-02-07 |
JP6861593B2 JP6861593B2 (en) | 2021-04-21 |
Family
ID=65353122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017141244A Active JP6861593B2 (en) | 2017-07-20 | 2017-07-20 | Subscriber line end station equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6861593B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113727218A (en) * | 2020-05-25 | 2021-11-30 | 中国电信股份有限公司 | Method for setting length of static window and related equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008283323A (en) * | 2007-05-09 | 2008-11-20 | Hitachi Communication Technologies Ltd | Dynamic band assignment system for pon system |
JP2013535929A (en) * | 2010-08-11 | 2013-09-12 | トムソン ライセンシング | Combining bandwidth-aware routing with channel selection and channel switching in multi-hop wireless home networks |
-
2017
- 2017-07-20 JP JP2017141244A patent/JP6861593B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008283323A (en) * | 2007-05-09 | 2008-11-20 | Hitachi Communication Technologies Ltd | Dynamic band assignment system for pon system |
JP2013535929A (en) * | 2010-08-11 | 2013-09-12 | トムソン ライセンシング | Combining bandwidth-aware routing with channel selection and channel switching in multi-hop wireless home networks |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113727218A (en) * | 2020-05-25 | 2021-11-30 | 中国电信股份有限公司 | Method for setting length of static window and related equipment |
CN113727218B (en) * | 2020-05-25 | 2023-03-31 | 中国电信股份有限公司 | Method for setting length of static window and related equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6861593B2 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4096017B2 (en) | Optical signal transmission timing adjustment method | |
JP6429225B2 (en) | Optical terminal equipment and uplink scheduling method for optical network | |
JP5084919B2 (en) | Master station apparatus and grant allocation method | |
JP2010219978A (en) | Optical transmission line terminal, passive optical network system, and bandwidth assignment method | |
US20100080558A1 (en) | Passive Optical Network System and Operating Method Thereof | |
WO2013155951A1 (en) | Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network | |
EP3780424B1 (en) | Message processing method and device | |
JP6802119B2 (en) | Optical communication system | |
JP6459588B2 (en) | Access control system, access control method, master station device, and slave station device | |
CN111901706B (en) | ONU discovery ranging method and system in TDM PON | |
JP6861593B2 (en) | Subscriber line end station equipment | |
WO2019235564A1 (en) | Optical line terminal and band allocation method | |
JP6093282B2 (en) | Optical communication system, communication control method, and station side optical line terminator | |
JP4877483B2 (en) | Transmission allocation method and apparatus | |
JP6134247B2 (en) | Optical communication system, signal transmission control method, and station side optical line termination device | |
JP6600293B2 (en) | Optical communication system, child node, and optical communication method | |
JP6712239B2 (en) | Optical communication system | |
JP2011166328A (en) | Optical transmission system, optical line terminal and upward transmission control method | |
WO2015077943A1 (en) | Method, apparatus and system for allocating uplink bandwidth in passive optical network | |
JP6148140B2 (en) | Station-side terminator and subscriber-side terminator | |
JP4941225B2 (en) | Optical signal transmission timing adjustment method | |
JP2019022158A (en) | Subscriber line terminal apparatus | |
JP7158310B2 (en) | Optical communication device and control method | |
JP6792525B2 (en) | Optical communication system | |
JP2017204822A (en) | Optical line network system, optical transmission device and optical transmission method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6861593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |