JP2019022157A - Subscriber line terminal apparatus - Google Patents

Subscriber line terminal apparatus Download PDF

Info

Publication number
JP2019022157A
JP2019022157A JP2017141244A JP2017141244A JP2019022157A JP 2019022157 A JP2019022157 A JP 2019022157A JP 2017141244 A JP2017141244 A JP 2017141244A JP 2017141244 A JP2017141244 A JP 2017141244A JP 2019022157 A JP2019022157 A JP 2019022157A
Authority
JP
Japan
Prior art keywords
subscriber line
onu
olt
time
dsp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017141244A
Other languages
Japanese (ja)
Other versions
JP6861593B2 (en
Inventor
由美子 妹尾
Yumiko Senoo
由美子 妹尾
裕隆 氏川
Hirotaka Ujikawa
裕隆 氏川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017141244A priority Critical patent/JP6861593B2/en
Publication of JP2019022157A publication Critical patent/JP2019022157A/en
Application granted granted Critical
Publication of JP6861593B2 publication Critical patent/JP6861593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)

Abstract

To provide a subscriber line terminal apparatus capable of accurately performing bandwidth allocation to a plurality of subscriber line terminating apparatuses communicating by time division multiplexing even when fluctuation occurs in a signal processing time.SOLUTION: An OLT 3 accommodates a plurality of ONUs 5 by time division multiplexing. A bandwidth allocation unit of the OLT 3 allocates a reception start timing of an uplink signal from the ONU 5 in its own device so as to provide a margin time with a reception completion timing of an uplink signal from the other ONU 5. The bandwidth allocation unit also determines a transmission start timing of an uplink signal to be allocated to the ONU 5 using the reception start timing assigned to the ONU 5 and the minimum value of a round trip time acquired for the ONU 5.SELECTED DRAWING: Figure 1

Description

本発明は、加入者線端局装置に関する。   The present invention relates to a subscriber line terminal station apparatus.

アクセスサービスの高速化に対するニーズの高まりにより、FTTH(Fiber To The Home)の普及が世界的に進んでいる。FTTHサービスの大部分はPON(Passive Optical Network)方式により提供されている。図4に示すように、PON方式では、1台の加入者線端局装置(OLT:Optical Line Terminal)が時分割多重(TDM)により複数の加入者線終端装置(ONU:Optical Network Unit)を収容しており、経済性に優れている。日本における現在の主力システムは、伝送速度がギガビット級であるGE−PON(Gigabit Ethernet(登録商標) PON)である。GE−PONは、イーサネット(登録商標)通信をアクセスネットワークに適用することを目的にIEEE(米国電気電子技術者協会)802委員会で標準化された規格IEEE 802.3ah(例えば、非特許文献1参照)の中の一規格である。   Due to increasing needs for high-speed access services, FTTH (Fiber To The Home) is spreading worldwide. Most of the FTTH services are provided by the PON (Passive Optical Network) method. As shown in FIG. 4, in the PON system, one subscriber line terminal equipment (OLT: Optical Line Terminal) is connected to a plurality of subscriber line termination equipment (ONU: Optical Network Unit) by time division multiplexing (TDM). It is housed and is economical. The current main system in Japan is GE-PON (Gigabit Ethernet (registered trademark) PON) whose transmission speed is a gigabit class. GE-PON is a standard IEEE 802.3ah standardized by the IEEE (American Institute of Electrical and Electronics Engineers) 802 committee for the purpose of applying Ethernet (registered trademark) communication to an access network (see, for example, Non-Patent Document 1). Is one of the standards.

図5は、IEEE 802.3ahのレイヤ構造を示す図である。ONU_xは、OLTと接続される複数のONUのうちのx番目(xは1以上の整数)のONUであることを示す。ONUは、PHY(PHYsical sublayer)と呼ばれる物理層と、MAC(Media Access Control)と呼ばれるデータリンク副層とを有する構成である。MACは、MAC制御副層(MAC control client)と、MAC副層(MAC sublayer)とを有する。MAC制御副層は、MAC副層のリアルタイム制御及び操作を行うオプションのサブレイヤである。MAC副層は、データのMACフレーム化(フレーム化、MACアドレス付加、エラー検出)及び媒体アクセス(衝突検知、延期処理)を実行する。物理層は、MACと物理層の仲介を担うRS(Reconciliation sublayer)及びGMII(Gigabit media independent interface)を介してMACと接続される。さらに物理層は、PCS(Physical Coding Sublayer)と呼ばれるデータを符号化する部分と、PMD(Physical Medium Dependent)と呼ばれる物理媒体に接続する部分とを有する。PCSとPMDは、PMA(Physical Medium Attachment)により接続される。PMAは、データのシリアル化を行う。   FIG. 5 is a diagram showing the layer structure of IEEE 802.3ah. ONU_x indicates the xth (x is an integer equal to or greater than 1) ONU among a plurality of ONUs connected to the OLT. The ONU has a configuration including a physical layer called PHY (PHYsical sublayer) and a data link sublayer called MAC (Media Access Control). The MAC has a MAC control sublayer (MAC control client) and a MAC sublayer. The MAC control sublayer is an optional sublayer that performs real-time control and operation of the MAC sublayer. The MAC sublayer executes data MAC framing (framing, MAC address addition, error detection) and medium access (collision detection, postponement processing). The physical layer is connected to the MAC via an RS (Reconciliation sublayer) that acts as an intermediary between the MAC and the physical layer and a GMII (Gigabit media independent interface). Further, the physical layer has a part that encodes data called PCS (Physical Coding Sublayer) and a part that connects to a physical medium called PMD (Physical Medium Dependent). PCS and PMD are connected by PMA (Physical Medium Attachment). PMA serializes data.

PON方式ではディスカバリプロセス中に、OLTがそれぞれのONUとの間のRTT(Round Trip Time:フレーム往復時間)測定を行う。RTT測定は定期的に行われ、線路条件の変化などによりズレが生じた場合には随時補正される。RTTは、図6に示すように測定される。OLTがDiscovery GATE信号を送信してからRegister REQ信号を受信するまでの経過時間をTresponse、ONUがDiscovery GATE信号を受信してからRegister REQ信号を送信するまでの時間をTwait、OLTからONUへの下りの伝搬遅延をTDownstream、そして、ONUからOLTへの上りの伝搬遅延をTUpstreamとすると、RTTは以下の式(1)で算出される。 In the PON system, the OLT performs RTT (Round Trip Time) measurement with each ONU during the discovery process. The RTT measurement is periodically performed, and is corrected as needed when a deviation occurs due to a change in line conditions or the like. RTT is measured as shown in FIG. T response indicates the elapsed time from when the OLT transmits the Discovery GATE signal until the Register REQ signal is received, and T wait indicates the time from when the ONU receives the Discovery GATE signal until it transmits the Register REQ signal. Assuming that the downstream propagation delay to T Downstream and the upstream propagation delay from the ONU to the OLT is T Upstream , RTT is calculated by the following equation (1).

RTT=Tresponse−Twait=TDownstream+TUpstream …(1) RTT = T response −T wait = T Downstream + T Upstream (1)

また、PON方式では、MPCP(Multi Point Control Protocol)というプロトコルを使用して上り信号制御を実現する。OLTは、GATEフレームを用いて、それぞれのONUが時間的に衝突することなく上り信号を送信できるように、送信開始時刻、送信量を各ONUに指示する。一方、ONUは、REPORTフレームを用いて自装置のバッファに蓄積されている送信待ちのデータ量をOLTに伝える。ここで、ONUからOLTへの上り帯域を、トラフィック量に応じて動的に割り当てる機能を動的帯域割当て(DBA:Dynamic Bandwidth Allocation)機能と呼ぶ。OLTが、短いDBA周期で複数ONUの帯域要求を収集して割当帯域を切替えることで、多くのONUに無駄なく帯域を割り当てることができ、上りデータの送信待ち時間を短くすることができる。   In the PON system, uplink signal control is realized using a protocol called MPCP (Multi Point Control Protocol). The OLT uses the GATE frame to instruct each ONU about the transmission start time and the transmission amount so that each ONU can transmit an upstream signal without colliding in time. On the other hand, the ONU uses the REPORT frame to inform the OLT the amount of data waiting for transmission stored in its own buffer. Here, the function of dynamically allocating the upstream band from the ONU to the OLT according to the traffic amount is referred to as a dynamic bandwidth allocation (DBA) function. The OLT collects bandwidth requests of a plurality of ONUs in a short DBA cycle and switches the allocated bandwidth, so that bandwidth can be allocated to many ONUs without waste and the transmission waiting time for uplink data can be shortened.

DBA機能では、OLTは、測定したRTTを補うために、それぞれのONUの上り信号の送信開始時刻Tgrantedを計算する。図7は、従来のGE−PONシステムにおけるDBAの計算を説明するための図である。なお、以下では、OLTにおける時刻を基準にして、受信や送信などに関する各タイミングの時刻を表す。x番目(xは1以上の整数)のONUをONU♯xとすると、ONU♯xの上り信号の送信開始時刻Tgranted_xは、OLTにおけるONU♯xからの上り信号の受信開始時刻Tdesired_xと、ONU♯xのラウンドトリップタイムRTTとを用いて、以下の式(2)で表される。 In the DBA function, the OLT calculates an upstream signal transmission start time T granted of each ONU in order to supplement the measured RTT. FIG. 7 is a diagram for explaining DBA calculation in a conventional GE-PON system. In the following, the time at each timing related to reception, transmission, and the like is represented with reference to the time in the OLT. Assuming that the xth ONU (x is an integer of 1 or more) ONU # x, ONU # x upstream signal transmission start time T granted_x is the upstream signal reception start time T desired_x from ONU # x in OLT, Using the round trip time RTT x of ONU # x, it is expressed by the following equation (2).

granted_x=Tdesired_x−RTT …(2) T granted_x = T desired_x− RTT x (2)

一方で、ユーザトラフィック要求の増大から、光アクセスネットワークの益々の大容量化・経済化が求められている。その実現に向け、デジタル信号処理(DSP:Digital Signal Processing)技術をPONシステムに適用したDSP−PON方式が注目され、研究開発・実用化が活発化している。DSP−PONシステムでは、OLT及びONUの両方にDSP処理部を備える構成でもよく、いずれか片方にDSP処理部を備える構成でもよい。   On the other hand, as the demand for user traffic increases, the capacity and economy of optical access networks are increasing. To realize this, a DSP-PON system in which a digital signal processing (DSP) technology is applied to a PON system attracts attention, and research and development / practical use has been activated. The DSP-PON system may have a configuration in which both the OLT and the ONU include a DSP processing unit, or may have a configuration in which one of the DSP processing units is provided.

DSP−PON方式におけるRTTは、OLT及びONU内のDSP処理にかかる時間が追加されるため、図8のように測定され、式(3)で表される。OLT内送信器のDSP処理遅延をTOLT−Tx−DSP、下りの伝搬遅延をTDownstream、ONU内受信器のDSP処理遅延をTONU−Rx−DSP、ONU内送信器のDSP処理遅延をTONU−Tx−DSP、上りの伝搬遅延をTUpstream、そしてOLT内受信器のDSP処理遅延をTOLT−Rx−DSPとする。 The RTT in the DSP-PON system is measured as shown in FIG. 8 because the time required for DSP processing in the OLT and ONU is added, and is expressed by Expression (3). The DSP processing delay of the transmitter in the OLT is T OLT-Tx-DSP , the downstream propagation delay is T Downstream , the DSP processing delay of the receiver in the ONU is T ONU-Rx-DSP , and the DSP processing delay of the transmitter in the ONU is T It is assumed that ONU-Tx-DSP , the upstream propagation delay is T Upstream , and the DSP processing delay of the intra-OLT receiver is T OLT-Rx-DSP .

RTT=Tresponse−Twait
=TOLT−Tx−DSP+TDownstream+TONU−Rx−DSP+TONU−Tx−DSP+TUpstream+TOLT−Rx−DSP …(3)
RTT = T response −T wait
= T OLT-Tx-DSP + T Downstream + T ONU-Rx-DSP + T ONU-Tx-DSP + T Upstream + T OLT-Rx-DSP (3)

IEEE Standard 802.3ah,2004年IEEE Standard 802.3ah, 2004

DSP技術をPONシステムに適用したDSP−PON方式では、DSPの処理時間が変動することが懸念される。例えば、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)技術を用いる場合は、OFDM信号がシンボル長Tの間隔で伝送されるため、OFDMシンボル長だけDSP処理遅延が変動する。更に、ONUにトラフィックがバースト的に入力されると、1周期で受信トラフィックをOLTに送ることができず、数周期にわたって送ることになる。そのため、OFDMシンボル長Tの数倍の遅延が発生し、OFDMシンボル長の数倍だけ処理遅延が変動する。   In the DSP-PON system in which the DSP technology is applied to the PON system, there is a concern that the processing time of the DSP varies. For example, when OFDM (Orthogonal Frequency Division Multiplexing) technology is used, since the OFDM signal is transmitted at intervals of the symbol length T, the DSP processing delay varies by the OFDM symbol length. Further, when traffic is input to the ONU in a burst manner, the received traffic cannot be sent to the OLT in one cycle, but is sent over several cycles. For this reason, a delay several times the OFDM symbol length T occurs, and the processing delay varies by several times the OFDM symbol length.

このようにDSPの処理時間が変動することでRTTが変動するため、DBA機能において、それぞれのONUについて測定したRTTを用いて送信開始時刻Tgrantedを計算した場合、図9に示すように、複数のONUからの上りバースト光信号の衝突を引き起こすことがあるという課題が生じる。例えば、ONU#3のラウンドトリップタイムRTTは、最小値RTT3_minからRTT3_maxの間で変動する。そのため、ある時点で測定したRTTを使用して、送信開始時刻Tgranted_3を式(2)により算出した場合、RTTの揺らぎにより、ONU#3の前後で他のONUが送信した上りバースト光信号とのフレーム衝突が発生することがある。 Since the RTT varies as the DSP processing time varies in this way, when the transmission start time T granted is calculated using the RTT measured for each ONU in the DBA function, as shown in FIG. There arises a problem that an upstream burst optical signal from an ONU may cause a collision. For example, the round trip time RTT 3 of ONU # 3 varies between the RTT 3_Max from the minimum RTT 3_min. Therefore, when the RTT 3 measured at a certain time is used to calculate the transmission start time T granted_3 by the equation (2), the upstream burst light transmitted by other ONUs before and after the ONU # 3 due to the fluctuation of the RTT 3 Frame collision with the signal may occur.

上記事情に鑑み、本発明は、信号処理時間に揺らぎが生じる場合であっても、時分割多重により通信する複数の加入者線終端装置への帯域割当を精度よく行うことができる加入者線端局装置を提供することを目的としている。   In view of the above circumstances, the present invention provides a subscriber line end capable of accurately performing bandwidth allocation to a plurality of subscriber line termination devices communicating by time division multiplexing even when fluctuations occur in signal processing time. The object is to provide a station apparatus.

本発明の一態様は、複数の加入者線終端装置と接続される加入者線端局装置であって、当該加入者線端局装置における前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、を備える。   One aspect of the present invention is a subscriber line terminal device connected to a plurality of subscriber line terminators, and the reception start timing of an uplink signal from the subscriber line terminator in the subscriber line terminal device A bandwidth allocating unit that allocates a blank time between the reception completion timing of the uplink signal from the other subscriber line terminating device.

本発明の一態様は、上述の加入者線端局装置であって、前記加入者線終端装置のラウンドトリップタイムの最小値を取得する取得部をさらに備え、前記帯域割当部は、前記加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた前記受信開始タイミング及び当該加入者線終端装置について取得した前記ラウンドトリップタイムの最小値を用いて決定する。   One aspect of the present invention is the above-described subscriber line terminal station apparatus, further comprising an acquisition unit that acquires a minimum value of a round trip time of the subscriber line termination apparatus, wherein the bandwidth allocation unit includes the subscriber The transmission start timing of the uplink signal assigned to the line terminating device is determined using the reception start timing assigned to the subscriber line terminating device and the minimum value of the round trip time acquired for the subscriber line terminating device.

本発明の一態様は、上述の加入者線端局装置であって、前記取得部は、前記加入者線終端装置のラウンドトリップタイムの最大値を取得し、前記帯域割当部は、前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の前記加入者線終端装置について取得した前記ラウンドトリップタイムの最大値と最小値の差分、又は、前記差分に係数を掛けた値を加えて算出する。   One aspect of the present invention is the above-described subscriber line terminal station device, wherein the acquisition unit acquires a maximum value of a round trip time of the subscriber line termination device, and the bandwidth allocation unit includes the subscriber The reception start timing of the uplink signal from the line terminating device is acquired for the other subscriber line terminating device at the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line terminating device. The difference between the maximum value and the minimum value of the round trip time, or a value obtained by multiplying the difference by a coefficient is calculated.

本発明により、信号処理時間に揺らぎが生じる場合であっても、時分割多重により通信する複数の加入者線終端装置への帯域割当を精度よく行うことが可能となる。   According to the present invention, even when fluctuations occur in the signal processing time, it is possible to perform bandwidth allocation to a plurality of subscriber line terminating devices communicating by time division multiplexing with high accuracy.

本発明の一実施形態によるDSP−PONシステムの構成図である。1 is a configuration diagram of a DSP-PON system according to an embodiment of the present invention. 同実施形態によるDSP−PONシステムのレイヤ構造を示す図である。It is a figure which shows the layer structure of the DSP-PON system by the embodiment. 同実施形態によるDBAの計算を説明するための図である。It is a figure for demonstrating calculation of DBA by the embodiment. 従来のPONシステムの構成図である。It is a block diagram of the conventional PON system. 従来のGE−PONシステムのレイヤ構造を示す図である。It is a figure which shows the layer structure of the conventional GE-PON system. 従来のGE−PONシステムにおけるラウンドトリップタイムを示す図である。It is a figure which shows the round trip time in the conventional GE-PON system. 従来のGE−PONシステムにおけるDBAの計算を説明するための図である。It is a figure for demonstrating calculation of DBA in the conventional GE-PON system. DSP−PONシステムにおけるラウンドトリップタイムを示す図である。It is a figure which shows the round trip time in a DSP-PON system. DSP−PONシステムにおける上り信号のフレーム衝突を示す図である。It is a figure which shows the frame collision of the upstream signal in a DSP-PON system.

以下、図面を参照しながら本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態によるDSP−PONシステム1の構成図である。DSP−PONシステム1は、1台のOLT(加入者線端局装置)3が、時分割多重(TDM)により複数台のONU(加入者線終端装置)5を収容する構成である。OLT3から1本の光ファイバにより送信される下り光信号は、光スプリッタにより複数のONU5それぞれと接続される光ファイバに分配される。また、時分割で複数のONU5それぞれから光ファイバにより送信される上り光信号は、光スプリッタにより合波されて1本の光ファイバによりOLT3に送信される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a DSP-PON system 1 according to an embodiment of the present invention. The DSP-PON system 1 is configured such that one OLT (subscriber line terminal equipment) 3 accommodates a plurality of ONUs (subscriber line termination equipment) 5 by time division multiplexing (TDM). The downstream optical signal transmitted from the OLT 3 through one optical fiber is distributed to the optical fibers connected to each of the plurality of ONUs 5 by the optical splitter. Further, the upstream optical signals transmitted from each of the plurality of ONUs 5 in time division through the optical fiber are combined by the optical splitter and transmitted to the OLT 3 through one optical fiber.

OLT3は、PHY(PHYsical sublayer)と呼ばれる物理層31と、データリンク副層のMAC(Media Access Control)32とを備える。OLT3の物理層31は、DSP処理部311を備える。同様に、ONU5は、PHYと呼ばれる物理層51と、データリンク副層のMAC52とを備える。ONU5の物理層51は、DSP処理部511を備える。DSP処理部311及びDSP処理部511は、DSPによる信号処理を行う。同図では、OLT3とONU5の両方にDSP処理部を備えているが、いずれか一方のみにDSP処理部を備える構成でもよい。   The OLT 3 includes a physical layer 31 called a PHY (PHYsical sublayer) and a data link sublayer MAC (Media Access Control) 32. The physical layer 31 of the OLT 3 includes a DSP processing unit 311. Similarly, the ONU 5 includes a physical layer 51 called PHY and a data link sublayer MAC 52. The physical layer 51 of the ONU 5 includes a DSP processing unit 511. The DSP processing unit 311 and the DSP processing unit 511 perform signal processing by the DSP. In the figure, both the OLT 3 and the ONU 5 are provided with DSP processing units, but a configuration may be provided in which only one of them is provided with a DSP processing unit.

図2は、DSP−PONシステム1のレイヤ構造を示す図である。
OLT3の物理層31(PHY)は、PMDにDSP処理部311及びADC(Digital to Analog Converter)/DAC(Analog to Digital Converter)312を設けている点を除き、図5に示す従来技術のOLTの物理層と同様の構成である。同様に、ONU5の物理層51は、PMDにDSP処理部511及びADC/DAC512を設けている点を除き、図5に示す従来技術のONUの物理層と同様の構成である。
FIG. 2 is a diagram showing a layer structure of the DSP-PON system 1.
The physical layer 31 (PHY) of the OLT 3 is provided with a DSP processor 311 and an ADC (Digital to Analog Converter) / DAC (Analog to Digital Converter) 312 in the PMD. The configuration is the same as that of the physical layer. Similarly, the physical layer 51 of the ONU 5 has the same configuration as the physical layer of the conventional ONU shown in FIG. 5 except that the DSP processing unit 511 and the ADC / DAC 512 are provided in the PMD.

OLT3からONU5へ信号を送信する場合、OLT3の物理層31内のPMDにおいては、DSP処理部311がデジタル信号処理した送信信号を、ADC/DAC312のDACがアナログ信号に変換し、送信器(Tx:Transmitter)に入力する。ONU5の物理層51内のPMDにおいては、受信器(Rx:Receiver)がOLT3から受信したアナログ信号を、ADC/DAC512のADCがデジタル信号に変換し、DSP処理部511がデジタル信号処理を行う。   When transmitting a signal from the OLT 3 to the ONU 5, in the PMD in the physical layer 31 of the OLT 3, the DAC of the ADC / DAC 312 converts the transmission signal digitally processed by the DSP processing unit 311 into an analog signal, and the transmitter (Tx : Transmitter). In the PMD in the physical layer 51 of the ONU 5, the analog signal received by the receiver (Rx: Receiver) from the OLT 3 is converted into a digital signal by the ADC of the ADC / DAC 512, and the DSP processing unit 511 performs digital signal processing.

ONU5からOLT3へ信号を送信する場合、ONU5のPMDにおいては、DSP処理部511がデジタル信号処理した送信信号を、ADC/DAC512のDACがアナログ信号に変換し、送信器(Tx)に入力する。OLT3のPMDにおいては、受信器(Rx)がONU5から受信したアナログ信号を、ADC/DAC312のADCがデジタル信号に変換し、DSP処理部311がデジタル信号処理を行う。   When transmitting a signal from the ONU 5 to the OLT 3, in the PMD of the ONU 5, the transmission signal digitally processed by the DSP processing unit 511 is converted into an analog signal by the DAC of the ADC / DAC 512 and input to the transmitter (Tx). In the PMD of the OLT 3, the analog signal received by the receiver (Rx) from the ONU 5 is converted into a digital signal by the ADC of the ADC / DAC 312 and the DSP processing unit 311 performs digital signal processing.

OLT3のMAC32及びONU5のMAC52はそれぞれ、図5に示す従来技術のOLTのMAC及びONUのMACと同様の構成である。ただし、MAC32のMAC制御副層(MAC control client)321が各ONU5への帯域割当を行う処理において、各ONU5に対して複数回のRTT測定を行って得られたRTT(フレーム往復時間)の最小値及び最大値を使用する点が異なる。   The MAC 32 of the OLT 3 and the MAC 52 of the ONU 5 have the same configuration as the MAC of the OLT and the MAC of the ONU shown in FIG. However, in the process in which the MAC control sub-layer (MAC control client) 321 of the MAC 32 assigns the bandwidth to each ONU 5, the minimum RTT (frame round trip time) obtained by performing RTT measurement a plurality of times for each ONU 5 The difference is that the value and the maximum value are used.

MAC制御副層321のディスカバリ処理部(Discovery process)3211は、従来技術と同様に、OLT3に接続されているONU5を発見するためのディスカバリプロセスの実行を制御し、そのプロセス中にRTT測定を行う。例えば、ディスカバリ処理部3211は、OLT3との接続が確認されたONU5に対してRTT測定用信号の送信要求を送信し、ONU5から返送された応答に設定されている応答送信時刻、OLT3におけるその応答の受信時刻、OLT3及びONU5のクロックのずれ等の情報に基づいてRTTを取得する。MAC制御副層321のレポート処理部(Reporting process)3212は、各ONU5に上り信号を送信するための帯域を割り当てる帯域割当を行う。帯域割当では、各ONU5の送信開始時刻と、送信を許可する上りデータ量とを決定する。   The discovery processing unit (Discovery process) 3211 of the MAC control sublayer 321 controls the execution of the discovery process for discovering the ONU 5 connected to the OLT 3 and performs RTT measurement during the process, as in the prior art. . For example, the discovery processing unit 3211 transmits an RTT measurement signal transmission request to the ONU 5 whose connection with the OLT 3 has been confirmed, and the response transmission time set in the response returned from the ONU 5, the response in the OLT 3 RTT is acquired based on information such as the reception time of the OLT 3 and the clock deviation of the OLT 3 and the ONU 5. A report processing unit (Reporting process) 3212 of the MAC control sublayer 321 performs band allocation to allocate a band for transmitting an uplink signal to each ONU 5. In bandwidth allocation, the transmission start time of each ONU 5 and the amount of uplink data permitted to be transmitted are determined.

続いて、DSP−PONシステム1の処理について説明する。
DSP−PONシステム1は、OLT3とONU5の間でRTT測定を定期的に行う。OLT3のディスカバリ処理部3211は、ONU5ごとに、複数回RTT測定を行って取得したRTTの最大値と最小値を得る。x番目(xは1以上の整数)のONU5であるONU♯xについて取得したRTTの最小値及び最大値をそれぞれ、RTTx_min及びRTTx_maxとする。ディスカバリ処理部3211は、各ONU#xについて得られたRTTx_min、及び、RTTx_maxをレポート処理部3212に出力する。
Next, processing of the DSP-PON system 1 will be described.
The DSP-PON system 1 periodically performs RTT measurement between the OLT 3 and the ONU 5. The discovery processing unit 3211 of the OLT 3 obtains the maximum value and the minimum value of RTT obtained by performing RTT measurement a plurality of times for each ONU 5. Let RTT x_min and RTT x_max be the RTT minimum and maximum values acquired for ONU # x, which is the xth (x is an integer equal to or greater than 1) ONU # x. The discovery processing unit 3211 outputs the RTT x_min and the RTT x_max obtained for each ONU # x to the report processing unit 3212.

図3は、ONU5におけるDBAの計算を説明するための図である。なお、同図では、OLT3における時刻を基準にして、受信や送信などに関する各タイミングの時刻を表している。
OLT3のレポート処理部3212は、各ONU5から通知された送信データ量と、ディスカバリ処理部3211から受信した各ONU#xのRTTx_min及びRTTx_maxとを用いて、DSP−PONシステム1のDBA機能を実行する。このDBA機能において、レポート処理部3212は、各ONU#xにおける上り信号(上りバースト光信号)の送信開始時刻Tgranted_xを、OLT3におけるONU♯xからの上り信号の受信開始時刻Tdesired_xと、ONU♯xのラウンドトリップタイムの最小値RTTx_minとを用いて、以下の式(4)により算出する。
FIG. 3 is a diagram for explaining the calculation of DBA in the ONU 5. In the figure, the time of each timing related to reception, transmission, and the like is represented with reference to the time in the OLT 3.
The report processing unit 3212 of the OLT 3 uses the transmission data amount notified from each ONU 5 and the RTT x_min and RTT x_max of each ONU # x received from the discovery processing unit 3211 to perform the DBA function of the DSP-PON system 1. Run. In this DBA function, the report processing unit 3212 sets the transmission start time T granted_x of the upstream signal (upstream burst optical signal) in each ONU #x , the reception start time T desired_x of the upstream signal from the ONU #x in the OLT 3, and the ONU Using the minimum value RTT x_min of the round trip time of #x , the following equation (4) is used for calculation.

granted_x=Tdesired_x−RTTx_min …(4) T granted_x = T desired_x− RTT x_min (4)

レポート処理部3212は、式(4)において用いられるONU♯xからの上り信号の受信開始時刻Tdesired_xを、以下のように算出する。ONU#xの前に上り信号を送信する他のONU5をONU#y(y≠x、yは1以上の整数)とする。レポート処理部3212は、ONU♯xからの上り信号の受信開始時刻Tdesired_xを、ONU#yからの上り信号の受信完了時刻Tend_yに、余白時間を加えて算出する。余白時間は、ONU#yのラウンドトリップタイムの最大値RTTy_maxと最小値RTTy_minとの差分d(=RTTy_max−RTTy_min)、又は、この差分dに所定の係数を乗算した値である。レポート処理部3212は、ONU#yからの上り信号の受信完了時刻Tend_yを、ONU#yからの上り信号の受信開始時刻Tdesired_yに、ONU#yに許可した上りデータ量の送信にかかる時間を加えて算出する。例えば、上りデータ量は、データ送信の単位時間であるタイムスロットの数に変換可能である。そのため、受信開始時刻に応じたタイムスロットに、上りデータ量に応じたタイムスロット数を加算して得られたタイムスロットの位置が、受信完了時刻を表す。 The report processing unit 3212 calculates the reception start time T desired_x of the uplink signal from the ONU # x used in Expression (4) as follows. Another ONU 5 that transmits an upstream signal before ONU # x is assumed to be ONU # y (y ≠ x, where y is an integer of 1 or more). The report processing unit 3212 calculates the uplink signal reception start time T desired_x from the ONU # x by adding the margin time to the uplink signal reception completion time Tend_y from the ONU # y. Margin time, ONU # y round trip time maximum RTT y_max and minimum value RTT y_min and the difference d y (= RTT y_max -RTT y_min ), or a value obtained by multiplying a predetermined coefficient to the difference d y is there. The report processing unit 3212 sets the upstream signal reception completion time T end_y from the ONU #y to the upstream signal reception start time T desired_y from the ONU #y , and the time taken to transmit the upstream data amount permitted to the ONU #y. Calculate by adding. For example, the amount of uplink data can be converted into the number of time slots that are unit times of data transmission. Therefore, the position of the time slot obtained by adding the number of time slots corresponding to the uplink data amount to the time slot corresponding to the reception start time represents the reception completion time.

OLT3が、ONU#xに送信開始時刻Tgranted_xを指示するときには、OLT3とONU#xの間の時刻のズレや伝搬遅延等を考慮して、ONU#xにおける送信開始時刻Tgranted_xを表すタイミングの情報を通知する。 When the OLT 3 instructs the transmission start time T granted_x to the ONU #x , the timing indicating the transmission start time T granted_x in the ONU #x is taken into account in consideration of time lag and propagation delay between the OLT 3 and the ONU #x . Notify information.

なお、DSP−PONシステム1がRTT測定を行うプロセスは、ディスカバリプロセスに限らない。ディスカバリプロセス以外で行うRTT測定は、OLT3のディスカバリ処理部3211が実行してもよく、レポート処理部3212が実行してもよく、MAC制御副層321内の図示しない機能部が実行してもよい。例えば、ディスカバリプロセスでは、ONU5がOLT3へ送信するREGISTER REQメッセージに設定したタイムスタンプを用いてRTT測定を行い、その後は、ONU5がOLT3へ定期的に送信するREPORTメッセージに設定したタイムスタンプを用いてRTT測定を行うことができる。   The process in which the DSP-PON system 1 performs RTT measurement is not limited to the discovery process. The RTT measurement other than the discovery process may be executed by the discovery processing unit 3211 of the OLT 3, may be executed by the report processing unit 3212, or may be executed by a function unit (not shown) in the MAC control sublayer 321. . For example, in the discovery process, RTT measurement is performed using the time stamp set in the REGISTER REQ message transmitted from the ONU 5 to the OLT 3, and thereafter, the time stamp set in the REPORT message periodically transmitted from the ONU 5 to the OLT 3 is used. RTT measurement can be performed.

上述した実施形態によれば、加入者線端局装置は、時分割多重により複数の加入者線終端装置を収容する。例えば、加入者線端局装置はOLT3であり、加入者線終端装置はONU5である。加入者線端局装置は、当該加入者線端局装置における加入者線終端装置からの上り信号の受信開始タイミングを、他の加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、を備える。帯域割当部は、例えば、レポート処理部3212である。   According to the embodiment described above, the subscriber line terminal station apparatus accommodates a plurality of subscriber line termination apparatuses by time division multiplexing. For example, the subscriber line terminal equipment is OLT3, and the subscriber line termination equipment is ONU5. The subscriber line end station apparatus sets the reception start timing of the uplink signal from the subscriber line termination apparatus in the subscriber line end station apparatus to the reception completion timing of the uplink signal from another subscriber line termination apparatus. A bandwidth allocating unit that allocates the margin time. The bandwidth allocation unit is, for example, the report processing unit 3212.

加入者線端局装置は、加入者線終端装置のラウンドトリップタイムの最小値及び最大値を取得する取得部をさらに備える。取得部は、例えば、ディスカバリ処理部3211である。帯域割当部は、加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた受信開始タイミング及び当該加入者線終端装置について取得したラウンドトリップタイムの最小値を用いて決定する。   The subscriber line terminal device further includes an acquisition unit that acquires the minimum value and the maximum value of the round trip time of the subscriber line terminal device. The acquisition unit is, for example, the discovery processing unit 3211. The band allocating unit uses the transmission start timing of the uplink signal allocated to the subscriber line terminating device, using the reception start timing allocated to the subscriber line terminating device and the minimum value of the round trip time acquired for the subscriber line terminating device. To decide.

また、帯域割当部は、加入者線終端装置からの上り信号の受信開始タイミングを、他の加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の加入者線終端装置について取得したラウンドトリップタイムの最大値と最小値の差分、又は、その差分に係数を掛けた値を加えて算出する。   In addition, the bandwidth allocating unit sets the reception start timing of the uplink signal from the subscriber line termination device to the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line termination device, to other subscribers. The difference is calculated by adding the difference between the maximum value and the minimum value of the round trip time acquired for the line terminating device, or a value obtained by multiplying the difference by a coefficient.

デジタル処理を利用するPONでは、従来のDSP処理を行わない方式と比べてDSP演算時間分だけタイムラグが生じる。このタイムラグは変動があるため、OLTからONUへのタイミング制御に時間的ずれが生じ、従来と同様の帯域割当を行った場合は、ONUからOLT向けの上り信号の衝突等による遅延が生じてしまう。そこで、上述した実施形態のように、OLT3において、DSP処理遅延の変動を吸収するように、それぞれのONU5からの上り信号の受信開始時刻及びONU5の上り信号の送信開始時刻を決定することで、ラウンドトリップタイムが揺らいだ場合も、複数のONU5からの上りバースト光信号の衝突を防ぐことができる。従って、DSP処理遅延に関わらず、OLT3からONU5への帯域割当の精度を維持できる。これにより、DSPによるデジタル信号処理化によるOLTの大容量化も可能となる。   In a PON using digital processing, a time lag is generated by the DSP calculation time compared to a conventional method in which DSP processing is not performed. Since this time lag varies, there is a time lag in the timing control from the OLT to the ONU, and a delay due to collision of upstream signals from the ONU to the OLT occurs when bandwidth allocation is performed in the same manner as before. . Therefore, as in the above-described embodiment, in the OLT 3, by determining the reception start time of the upstream signal from each ONU 5 and the transmission start time of the upstream signal of the ONU 5 so as to absorb the fluctuation of the DSP processing delay, Even when the round trip time fluctuates, collision of upstream burst optical signals from a plurality of ONUs 5 can be prevented. Therefore, the accuracy of bandwidth allocation from the OLT 3 to the ONU 5 can be maintained regardless of the DSP processing delay. Thereby, the capacity of the OLT can be increased by digital signal processing by the DSP.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

TDMA(時分割多重アクセス)により通信する装置に利用可能である。   It can be used for a device that communicates by TDMA (Time Division Multiple Access).

1…DSP−PONシステム, 3…OLT, 5…ONU, 31…物理層, 32…MAC, 51…物理層, 52…MAC, 311…DSP処理部, 312…ADC/DAC, 321…MAC制御副層, 3211…ディスカバリ処理部, 3212…レポート処理部, 511…DSP処理部, 512…ADC/DAC DESCRIPTION OF SYMBOLS 1 ... DSP-PON system, 3 ... OLT, 5 ... ONU, 31 ... Physical layer, 32 ... MAC, 51 ... Physical layer, 52 ... MAC, 311 ... DSP processing part, 312 ... ADC / DAC, 321 ... MAC control sub Layer, 3211 ... discovery processing unit, 3212 ... report processing unit, 511 ... DSP processing unit, 512 ... ADC / DAC

Claims (3)

複数の加入者線終端装置と接続される加入者線端局装置であって、
当該加入者線端局装置における前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上り信号の受信完了タイミングとの間に余白時間を設けるように割り当てる帯域割当部、
を備える加入者線端局装置。
A subscriber line terminal device connected to a plurality of subscriber line terminators,
A blank time is provided between the reception start timing of the uplink signal from the subscriber line termination device in the subscriber line terminal station device and the reception completion timing of the uplink signal from the other subscriber line termination device. Bandwidth allocation unit to allocate,
A subscriber line terminal apparatus.
前記加入者線終端装置のラウンドトリップタイムの最小値を取得する取得部をさらに備え、
前記帯域割当部は、前記加入者線終端装置に割り当てる上り信号の送信開始タイミングを、当該加入者線終端装置に割り当てた前記受信開始タイミング及び当該加入者線終端装置について取得したラウンドトリップタイムの最小値を用いて決定する、
請求項1に記載の加入者線端局装置。
An acquisition unit for acquiring a minimum value of the round trip time of the subscriber line termination device;
The bandwidth allocating unit sets the transmission start timing of the uplink signal allocated to the subscriber line terminating device, the reception start timing allocated to the subscriber line terminating device, and the minimum round trip time acquired for the subscriber line terminating device. To determine using the value,
The subscriber line terminal apparatus according to claim 1.
前記取得部は、前記加入者線終端装置のラウンドトリップタイムの最大値をさらに取得し、
前記帯域割当部は、前記加入者線終端装置からの上り信号の受信開始タイミングを、他の前記加入者線終端装置からの上りデータ送信量に応じた上り信号の受信完了タイミングに、他の前記加入者線終端装置について取得した前記ラウンドトリップタイムの最大値と最小値の差分、又は、前記差分に係数を掛けた値を加えて算出する、
請求項2に記載の加入者線端局装置。
The acquisition unit further acquires a maximum value of a round trip time of the subscriber line termination device,
The band allocating unit sets the reception start timing of the uplink signal from the subscriber line termination device to the reception completion timing of the uplink signal according to the uplink data transmission amount from the other subscriber line termination device. The difference between the maximum value and the minimum value of the round trip time acquired for the subscriber line termination device, or a value obtained by multiplying the difference by a coefficient,
The subscriber line terminal station apparatus according to claim 2.
JP2017141244A 2017-07-20 2017-07-20 Subscriber line end station equipment Active JP6861593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141244A JP6861593B2 (en) 2017-07-20 2017-07-20 Subscriber line end station equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141244A JP6861593B2 (en) 2017-07-20 2017-07-20 Subscriber line end station equipment

Publications (2)

Publication Number Publication Date
JP2019022157A true JP2019022157A (en) 2019-02-07
JP6861593B2 JP6861593B2 (en) 2021-04-21

Family

ID=65353122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141244A Active JP6861593B2 (en) 2017-07-20 2017-07-20 Subscriber line end station equipment

Country Status (1)

Country Link
JP (1) JP6861593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727218A (en) * 2020-05-25 2021-11-30 中国电信股份有限公司 Method for setting length of static window and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283323A (en) * 2007-05-09 2008-11-20 Hitachi Communication Technologies Ltd Dynamic band assignment system for pon system
JP2013535929A (en) * 2010-08-11 2013-09-12 トムソン ライセンシング Combining bandwidth-aware routing with channel selection and channel switching in multi-hop wireless home networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283323A (en) * 2007-05-09 2008-11-20 Hitachi Communication Technologies Ltd Dynamic band assignment system for pon system
JP2013535929A (en) * 2010-08-11 2013-09-12 トムソン ライセンシング Combining bandwidth-aware routing with channel selection and channel switching in multi-hop wireless home networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727218A (en) * 2020-05-25 2021-11-30 中国电信股份有限公司 Method for setting length of static window and related equipment
CN113727218B (en) * 2020-05-25 2023-03-31 中国电信股份有限公司 Method for setting length of static window and related equipment

Also Published As

Publication number Publication date
JP6861593B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP4096017B2 (en) Optical signal transmission timing adjustment method
JP6429225B2 (en) Optical terminal equipment and uplink scheduling method for optical network
JP5084919B2 (en) Master station apparatus and grant allocation method
JP2010219978A (en) Optical transmission line terminal, passive optical network system, and bandwidth assignment method
US20100080558A1 (en) Passive Optical Network System and Operating Method Thereof
WO2013155951A1 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
EP3780424B1 (en) Message processing method and device
JP6802119B2 (en) Optical communication system
JP6459588B2 (en) Access control system, access control method, master station device, and slave station device
CN111901706B (en) ONU discovery ranging method and system in TDM PON
JP6861593B2 (en) Subscriber line end station equipment
WO2019235564A1 (en) Optical line terminal and band allocation method
JP6093282B2 (en) Optical communication system, communication control method, and station side optical line terminator
JP4877483B2 (en) Transmission allocation method and apparatus
JP6134247B2 (en) Optical communication system, signal transmission control method, and station side optical line termination device
JP6600293B2 (en) Optical communication system, child node, and optical communication method
JP6712239B2 (en) Optical communication system
JP2011166328A (en) Optical transmission system, optical line terminal and upward transmission control method
WO2015077943A1 (en) Method, apparatus and system for allocating uplink bandwidth in passive optical network
JP6148140B2 (en) Station-side terminator and subscriber-side terminator
JP4941225B2 (en) Optical signal transmission timing adjustment method
JP2019022158A (en) Subscriber line terminal apparatus
JP7158310B2 (en) Optical communication device and control method
JP6792525B2 (en) Optical communication system
JP2017204822A (en) Optical line network system, optical transmission device and optical transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150