JP2019020401A - Analytic method of chemical compound - Google Patents

Analytic method of chemical compound Download PDF

Info

Publication number
JP2019020401A
JP2019020401A JP2018128985A JP2018128985A JP2019020401A JP 2019020401 A JP2019020401 A JP 2019020401A JP 2018128985 A JP2018128985 A JP 2018128985A JP 2018128985 A JP2018128985 A JP 2018128985A JP 2019020401 A JP2019020401 A JP 2019020401A
Authority
JP
Japan
Prior art keywords
compound
compounds
purity
peak
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018128985A
Other languages
Japanese (ja)
Other versions
JP7110770B2 (en
Inventor
公彦 冨士田
Kimihiko Fujita
公彦 冨士田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2019020401A publication Critical patent/JP2019020401A/en
Application granted granted Critical
Publication of JP7110770B2 publication Critical patent/JP7110770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method enabling a simple analysis on a degree of purity of a prescribed compound from among a plurality of chemical compounds including an element of a same kind but different in structural formula or configuration, and impurities being the other chemical compounds.SOLUTION: An analytic method includes an analytic step of analyzing a degree of purity of a chemical compound X from among chemical compounds X, Y containing an element α, from a peak derived from the prescribed chemical compound X containing the element α and a peak derived from the chemical compound Y being a chemical compound containing the element α and other than the prescribed chemical compound X, in an NMR spectrum having the element α that can be nuclear magnetic resonated (excluding hydrogen, carbon, nitrogen and oxygen) as a core.SELECTED DRAWING: None

Description

本発明は、化合物の分析方法に属する。   The present invention belongs to a method for analyzing a compound.

従来、試料に含有される化合物の情報を得るための分析手法としては、高速液体クロマトグラフ(HPLC)、ガスクロマトグラフ(GC)等の各種クロマトグラフィーあるいはガスクロマトグラフ質量分析計(GC−MS)や液体クロマトグラフ質量分析計(LC−MS)、誘導結合プラズマ発光質量分析装置(ICP)(特許文献1の段落0087)等の質量分析が広く利用されている。これらの手法は、互いに異種の元素を有する化合物を別々に検出する上では有用である。   Conventionally, as an analytical method for obtaining information on a compound contained in a sample, various chromatographies such as high performance liquid chromatograph (HPLC) and gas chromatograph (GC), or a gas chromatograph mass spectrometer (GC-MS) or liquid Mass spectrometry such as a chromatograph mass spectrometer (LC-MS) and an inductively coupled plasma emission mass spectrometer (ICP) (paragraph 0087 of Patent Document 1) is widely used. These techniques are useful for separately detecting compounds having different elements.

特開2017−66463号公報JP 2017-66463 A

試料に含有される化合物のうち、例えば有機金属錯体のように同種の元素を有するが配位子の数が異なることに起因して構造式や組成として異なる複数の化合物を分けて分析するには多くの困難が伴う。例えば上記の各種クロマトグラフィーや質量分析装置を使用する場合、同種の元素を有するが構造式や組成として異なる複数の化合物を各々分離するための分離条件の検討が必要となり、結果が得られるまで多くの時間を要してしまう。
なお、本明細書においては「所定の化合物の純度」「不純物」という用語を使用するが、「所定の化合物の純度」は、同種の元素を有するが構造式や組成として異なる複数の化合物のうち、所定の化合物の含有量(重量)の割合(後述の本実施形態での化合物X、Yの合計重量に対する化合物Xの重量の割合)のことを指し、「不純物」は、所望でない化合物(後述の本実施形態での化合物Y)のことを指す。
To analyze multiple compounds that have the same kind of element as the organometallic complex, but have different structural formulas and compositions due to the different number of ligands. There are many difficulties. For example, when using the above-mentioned various chromatographs and mass spectrometers, it is necessary to study separation conditions for separating a plurality of compounds having the same kind of elements but having different structural formulas and compositions, and there are many until the results are obtained. Takes time.
In the present specification, the terms “purity of a predetermined compound” and “impurity” are used. The “purity of a predetermined compound” refers to a compound having a similar element but having a different structural formula or composition. , Refers to the ratio of the content (weight) of a given compound (ratio of the weight of compound X to the total weight of compounds X and Y in this embodiment described later), and “impurity” refers to an undesired compound (described later) The compound Y) in the present embodiment.

本発明の課題は、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することにある。   An object of the present invention is to provide a technique that can easily analyze the purity of a predetermined compound or impurities other than a plurality of compounds having the same kind of elements but having different structural formulas and compositions. is there.

本発明者は上記の知見に基づき、上記課題を解決するための手段を検討した。その結果、核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたうえで、核磁気共鳴分光法(以降、単にNMRと称する。)を用いた測定によって、同種の元素を有するが構造式や組成として異なる複数の化合物各々に由来したピークを表出させて、上記のような純度に係る分析を行う、という新規かつ画期的な手法を想到した。   Based on the above findings, the present inventor has studied means for solving the above problems. As a result, the element α (excluding hydrogen, carbon, nitrogen, oxygen) capable of nuclear magnetic resonance was used as a nucleus, and the same kind was measured by measurement using nuclear magnetic resonance spectroscopy (hereinafter simply referred to as NMR). A new and epoch-making technique has been conceived in which peaks derived from each of a plurality of compounds having elements but having different structural formulas and compositions are expressed and the analysis relating to the purity as described above is performed.

上記の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって前記所定の化合物X以外の化合物Y由来のピークと、から、該元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析を行う分析工程を有する、化合物の分析方法である。
The embodiments of the present invention made based on the above findings are as follows.
The first aspect of the present invention is:
In an NMR spectrum having a nuclear magnetic resonance element α (excluding hydrogen, carbon, nitrogen, and oxygen) as a nucleus, a peak derived from a predetermined compound X containing the element α and a compound containing the element α And a compound analysis method comprising an analysis step of analyzing the purity of the compound X of the compounds X and Y containing the element α from the peak derived from the compound Y other than the predetermined compound X. .

本発明の第2の態様は、第1の態様に記載の発明において、
前記元素αは、Sn、S、P、Cl、Mn、Rh、Pb、Pd、Cr、Cu、Mo、Liのいずれかである。
According to a second aspect of the present invention, in the invention according to the first aspect,
The element α is any one of Sn, S, P, Cl, Mn, Rh, Pb, Pd, Cr, Cu, Mo, and Li.

本発明の第3の態様は、第1または第2の態様に記載の発明において、
前記分析工程においては化合物X由来のピークと化合物Y由来のピークとから化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行う。
According to a third aspect of the present invention, in the invention according to the first or second aspect,
In the analysis step, quantitative analysis is performed on at least one of compound X and compound Y from the peak derived from compound X and the peak derived from compound Y.

本発明によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することが可能となる。   According to the present invention, it is possible to provide a method capable of easily analyzing the purity of a predetermined compound or impurities other than a plurality of compounds having the same kind of elements but having different structural formulas and compositions. It becomes possible.

本実施形態における試料管(二重管)の概略断面図である。It is a schematic sectional drawing of the sample tube (double tube) in this embodiment.

以下、本発明の実施の形態について説明する。
なお、本明細書において「〜」は所定の数値以上かつ所定の数値以下のことを指す。
また、本明細書における「化合物」とは元素そのもの(例えば金属単体)であるものは含まず、例えば複数の種類の元素を含有するものを指す。
また、特記の無い場合、スペクトルやピークとは、核磁気共鳴分光法を用いた測定における、縦軸を検出強度、横軸を化学シフト(ppm)とした際のスペクトルやピークを指す。
Embodiments of the present invention will be described below.
In the present specification, “to” refers to a value greater than or equal to a predetermined value and less than or equal to a predetermined value.
In addition, the “compound” in the present specification does not include an element itself (for example, a simple metal), but refers to a substance containing a plurality of types of elements, for example.
Unless otherwise specified, the spectrum and peak refer to a spectrum or peak in the measurement using nuclear magnetic resonance spectroscopy when the vertical axis indicates the detection intensity and the horizontal axis indicates the chemical shift (ppm).

本実施形態に係る化合物の分析方法は主として分析工程と、該分析に対する準備工程とを有する。分析工程においては、核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって所定の化合物X以外の化合物Y由来のピークと、から、化合物Xの純度に係る分析を行う。   The compound analysis method according to the present embodiment mainly includes an analysis step and a preparation step for the analysis. In the analysis step, in an NMR spectrum having a nuclear magnetic resonance element α (excluding hydrogen, carbon, nitrogen and oxygen) as a nucleus, a peak derived from a predetermined compound X containing the element α and the element α An analysis relating to the purity of the compound X is performed from the peak derived from the compound Y other than the predetermined compound X.

本実施形態においてはNMRを行う際に核磁気共鳴可能な元素αを使用するが、この元素αにおいては核磁気共鳴可能なものであって水素、炭素、窒素、酸素が(場合によってはリン、アルミニウムも)除かれたものであり、そうであれば特に限定は無い。例えば、化合物X、Yとなっても常磁性を有する金属元素(例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co))を元素α(すなわちNMRの核)とした場合に、これらのαを含む化合物は、NMRスペクトルがブロードとなり、構造に関する情報を、不可能ではないが多少得づらくなる。
その一方、後述のマンガン(Mn)のように、価数が0価、2価、3価および4価であるMnは常磁性を示す一方で、価数が7価であるMnは常磁性を示さないような場合、Mnを元素α(すなわちNMRの核)としても差し支えない。
In the present embodiment, an element α capable of nuclear magnetic resonance is used when performing NMR, and this element α is capable of nuclear magnetic resonance, and hydrogen, carbon, nitrogen, and oxygen (in some cases, phosphorus, (Aluminum is also excluded), so that there is no particular limitation. For example, when compounds X and Y are paramagnetic metal elements (for example, iron (Fe), nickel (Ni), cobalt (Co)) are used as the element α (that is, the nucleus of NMR), these α In a compound containing, the NMR spectrum becomes broad, and it becomes difficult to obtain information on the structure, although it is not impossible.
On the other hand, like manganese (Mn) described later, Mn having a valence of 0, 2, 3, and 4 is paramagnetic, while Mn having a valence of 7 is paramagnetic. If not shown, Mn may be the element α (ie, NMR nucleus).

例えば元素αは核磁気共鳴可能である金属元素であるのが好ましい。こうすることにより、後述の実施例の項目にて示すように、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物Xの純度や化合物X以外の化合物Yであるところの不純物についてさらに簡便に分析可能となる。例えば、該元素αを含有する化合物であって化合物X以外の化合物Yは、化合物Xとは異なるピークを表出させる。本実施形態においてはこれを利用して化合物Xの純度に係る分析を行う。   For example, the element α is preferably a metal element capable of nuclear magnetic resonance. By doing so, as shown in the item of the examples described later, the purity of a predetermined compound X or a compound Y other than the compound X among a plurality of compounds having the same kind of element but different in structural formula and composition This makes it possible to more easily analyze the impurities. For example, a compound Y containing the element α and a compound Y other than the compound X displays a peak different from the compound X. In this embodiment, the analysis which concerns on the purity of the compound X is performed using this.

元素αの具体例を以下に列挙する。
元素αが硫黄(S)の場合、化合物Xが硫酸ナトリウム(NaSO)、不純物である化合物Y1がチオ硫酸(H)としてもよい。硫酸ナトリウムは排水処理に用いられることがある。その一方、この試薬としての硫酸ナトリウムに不純物としてチオ硫酸が混在していた場合、排水中に白濁をもたらす等の不具合をもたらすおそれもある。
そこで、この試薬に対し本実施形態を適用すなわちこの試薬に対してSを核としてNMR測定を行うことにより、試薬における硫酸ナトリウムの純度を予め把握することが可能となる。
Specific examples of the element α are listed below.
When the element α is sulfur (S), the compound X may be sodium sulfate (Na 2 SO 4 ), and the impurity compound Y1 may be thiosulfuric acid (H 2 S 2 O 3 ). Sodium sulfate may be used for wastewater treatment. On the other hand, when thiosulfuric acid is mixed as an impurity in the sodium sulfate as the reagent, there is a risk of causing problems such as white turbidity in the waste water.
Therefore, the purity of sodium sulfate in the reagent can be grasped in advance by applying this embodiment to this reagent, that is, by performing NMR measurement with S as a nucleus for this reagent.

元素αがリン(P)の場合、試薬がリン系有機溶媒であり例えば化合物Xがリン酸ジエチルヘキシル、不純物である化合物Yがリン酸モノエチルヘキシル、化合物Yがリン酸としてもよい。リン酸系有機溶媒は所望の元素を抽出するために用いられる。その一方、その一方、この試薬としてのリン酸ジエチルヘキシルに不純物としてリン酸モノエチルヘキシルおよびリン酸が混在していた場合、抽出効率の低下等の不具合をもたらすおそれもある。
そこで、この試薬に対し本実施形態を適用すなわちこの試薬に対してPを核としてNMR測定を行うことにより、試薬におけるリン酸ジエチルヘキシルの純度を予め把握することが可能となる。
When the element α is phosphorus (P), the reagent is phosphorus-based organic solvent such compounds wherein X is phosphate diethylhexyl, compounds which are impurities Y 1 is phosphoric acid mono-ethylhexyl, compound Y 2 may be phosphoric acid. The phosphoric acid organic solvent is used for extracting a desired element. On the other hand, when diethylhexyl phosphate as the reagent is mixed with monoethylhexyl phosphate and phosphoric acid as impurities, there is a risk of causing problems such as a decrease in extraction efficiency.
Therefore, the purity of diethylhexyl phosphate in the reagent can be grasped in advance by applying this embodiment to this reagent, that is, by performing NMR measurement with P as the nucleus for this reagent.

元素αが塩素(Cl)の場合、例えば塩素ガスを溶液中に吹き込み対象物に対して溶解ないし浸出処理を行う際に、正常な溶解ないし浸出処理が行われるには溶液中で塩素ガスは塩化物イオンとなる必要がある。
その一方、溶液中で、塩素ガスの塩素が次亜塩素酸、亜塩素酸、あるいは塩素ガスのままとなっている可能性もある。
そこで、塩化物イオンを化合物Xとし、不純物である次亜塩素酸、亜塩素酸、あるいは塩素ガスをそれぞれY、Y、Yとしてもよい。つまり、塩素ガスが吹き込まれた溶液に対し本実施形態を適用すなわちこの溶液に対してClを核としてNMR測定を行うことにより、溶液における塩化物イオンの純度(例えば濃度)を予め把握することが可能となる。
When the element α is chlorine (Cl), for example, when chlorine gas is blown into the solution and the object is dissolved or leached, the normal solution or leaching is performed. It needs to be a physical ion.
On the other hand, chlorine in chlorine gas may remain as hypochlorous acid, chlorous acid, or chlorine gas in the solution.
Therefore, chloride ions may be compound X, and hypochlorous acid, chlorous acid, or chlorine gas as impurities may be Y 1 , Y 2 , and Y 3 , respectively. That is, the purity (for example, concentration) of chloride ions in the solution can be grasped in advance by applying the present embodiment to the solution into which chlorine gas is blown, that is, by performing NMR measurement with Cl as a nucleus for this solution. It becomes possible.

上記以外の元素αとしては、例えばすず(Sn)またはマンガン(Mn)が挙げられる。Snについては実施例の項目にて後述する。Mnの場合、化合物XをMnO としてもよい。同様の過酸化やそれ以外の組成の違いの有無による純度の把握は、他の金属元素にも適用可能である。例えば、白金族元素やその他(ロジウム(Rh)、鉛(Pb)、パラジウム(Pd)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、リチウム(Li))を元素αとした場合にも適用可能である。 Examples of other elements α include tin (Sn) and manganese (Mn). Sn will be described later in the example section. In the case of Mn, the compound X may be MnO 4 . The determination of purity based on the presence or absence of similar peroxidation or other compositional differences can also be applied to other metal elements. For example, when a platinum group element and others (rhodium (Rh), lead (Pb), palladium (Pd), chromium (Cr), copper (Cu), molybdenum (Mo), lithium (Li))) are used as the element α. Is also applicable.

なお、化合物X、Yの同定は、所定の元素を核にしたときの公知の化学シフト対応表を使用すればよい。仮に新規物質について化合物X、Yの同定を行うことになったとしても、標準液を作製したうえで通常のNMR(核をH等)にて化合物X、Yを同定すれば済む。   In addition, what is necessary is just to use the well-known chemical shift correspondence table | surface when the compound X and Y make a predetermined element a nucleus. Even if the compounds X and Y are identified for the new substance, the compounds X and Y may be identified by ordinary NMR (nuclear is H or the like) after preparing a standard solution.

化合物Xには特に限定は無いが、有機金属化合物または無機金属錯体であれば、後述の実施例の項目にて示すように、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物Xの純度や化合物X以外の化合物Yであるところの不純物についてさらに簡便に分析可能となる。例えば、有機金属化合物または無機金属錯体だと、配位子の種類や配位数が化合物Xとは異なる化合物Yや、炭化水素骨格が化合物Xとは異なる化合物Yが生成される可能性があり、そうなると化合物Yは化合物Xとは異なるピークを表出させる。本実施形態においてはこれを利用して化合物Xの純度に係る分析を行っている。   The compound X is not particularly limited, but if it is an organometallic compound or an inorganic metal complex, as shown in the item of the examples described later, among the plurality of compounds having the same kind of elements but having different structural formulas and compositions It becomes possible to more easily analyze the purity of the predetermined compound X and impurities that are the compound Y other than the compound X. For example, in the case of an organometallic compound or an inorganic metal complex, there is a possibility that a compound Y having a different ligand type or coordination number from the compound X or a compound Y having a hydrocarbon skeleton different from the compound X may be generated. Then, Compound Y will exhibit a different peak from Compound X. In this embodiment, the analysis which concerns on the purity of the compound X is performed using this.

化合物Yは、例えば構造式や組成が多少異なる化合物であり、複数種類存在する場合はスペクトルにおける低い化学シフト側から順に化合物Y、Y、Y・・・と称し、これらを総称して化合物Yと称する。 Compound Y is, for example, a compound having a slightly different structural formula and composition, and when there are a plurality of types, they are referred to as compounds Y 1 , Y 2 , Y 3. This is referred to as Compound Y.

なお、NMRを用いた測定の具体的手法としては公知の手法を用いればよく特に限定は無いが、以下、一例を挙げる。   In addition, as a specific method of measurement using NMR, there is no particular limitation as long as a known method may be used, but an example is given below.

本実施形態におけるNMRを用いた測定(本実施形態においてはFTNMR測定(FTNMR:Fourier Transfer NMR、以下、特記の無い限りNMRはFTNMRを指す。))においては、図1に示すような二重管、さらに言うと各管が同心となる多重管(もちろん三重管や四重管などであっても構わない。)を用いる。当該多重管のうち一つの管には磁場固定用重水素化溶媒(いわゆるロック溶媒)を配置し、別の管には上記化合物Xおよび化合物Yを含有する測定対象を配置するのが好ましい。例えば、多重管が二重管の場合、中心の管にはロック溶媒を配置し、その外側の管には測定対象を配置するのが好ましい。
ちなみに本実施形態における、上記化合物Xおよび化合物Y、ひいてはそれらを含有する測定対象の形態には特に限定は無いが、液体である方が簡便に分析可能であり好ましい。
In the measurement using NMR in the present embodiment (in this embodiment, FTNMR measurement (FTNMR: Fourier Transfer NMR, hereinafter, NMR refers to FTNMR unless otherwise specified)), a double tube as shown in FIG. In addition, a multiple tube (of course, a triple tube or a quadruple tube may be used) in which each tube is concentric. It is preferable to place a deuterated solvent for magnetic field fixation (so-called lock solvent) in one of the multiple tubes and a measurement object containing the compound X and compound Y in another tube. For example, when the multiple tube is a double tube, it is preferable to dispose the lock solvent in the central tube and dispose the measurement object in the outer tube.
Incidentally, although there is no particular limitation on the form of the above-described compound X and compound Y, and thus the measurement target containing them in the present embodiment, a liquid is preferred because it can be easily analyzed.

なお、分析工程にて行う分析の内容であるが、NMRスペクトルにおいて化合物Xに起因する大きなピークの他に何本のピークが存在するかを調べることにより、何種類の化合物Yが存在するか、という定性的な分析を行うことが可能となる。   In addition, the content of the analysis performed in the analysis step, how many kinds of compound Y is present by examining how many peaks are present in addition to the large peak due to compound X in the NMR spectrum, Qualitative analysis can be performed.

また、定量的な分析を行う場合の手法は公知の手法を採用すればよい。例えば後述の実施例の項目にて示すように、NMRスペクトルにおける化合物Xに由来するピークの面積と化合物Y、Y、・・・に由来するピークの面積の合計値との比(例えば面積百分率)により、該元素αを含有する化合物のうちの化合物Xの純度(すなわち純物である化合物Xと不純物である化合物Yとの合計重量に対する化合物Xの割合)を定量的に求めることが可能となる。もちろん純度ではなく不純度を求めても構わず、該不純度から純度を求めても構わず、化合物XとYとの含有量(重量、モル)の比を求めても構わない。つまり、化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行えばよい。 A known method may be adopted as a method for performing quantitative analysis. For example, as shown in the item of Examples described later, the ratio (for example, area) of the peak area derived from the compound X in the NMR spectrum to the total value of the peak areas derived from the compounds Y 1 , Y 2 ,. It is possible to quantitatively determine the purity of the compound X among the compounds containing the element α (that is, the ratio of the compound X to the total weight of the pure compound X and the impurity compound Y). It becomes. Of course, not the purity but the purity may be obtained, the purity may be obtained from the purity, or the content (weight, mole) ratio of the compounds X and Y may be obtained. That is, a quantitative analysis may be performed on at least one of the compound X and the compound Y.

なお、化合物Xに係る純度に係る分析の一環として化合物X、Yの濃度を定量する場合には、以下の手法を用いることも可能である。
一例を挙げると、化合物Xについてピーク面積と濃度との関係を表す検量線を作製しておき、化合物X、Yを含有する測定対象をNMRにかけNMRスペクトルを取得し、化合物Xに由来するピークの面積を求め、該検量線により濃度を求めるという手法を採用すればよい。
また、上記の例では内管にロック溶媒を挿入したが、元素αを含有する化合物であって化合物X、Yとは化学シフト(ピーク位置)が被らない濃度既知の化合物を基準物質としつつ該基準物質に対してロック溶媒を加えたものを使用しても構わない。該基準物質に由来するピークと、測定対象に含有される化合物X、Yに由来するピークとを一つのスペクトルで得ることができ、組成および濃度が既知の該基準物質に由来するピークの面積と化合物Xに由来するピークの面積との比から、化合物Xの濃度、ひいては一つのNMRスペクトル上に存在する化合物Yに由来するピーク面積に基づいて化合物Y、Y、Y・・・の濃度を算出することが可能となる。複数の測定対象を用意しておき、各測定対象における化合物X、Y各々の濃度の大小により純度を判断するという手法を用い、純度に係る分析を行ってもよい。
In the case where the concentrations of the compounds X and Y are quantified as part of the analysis relating to the purity related to the compound X, the following method can also be used.
As an example, a calibration curve representing the relationship between the peak area and the concentration for Compound X is prepared, a measurement target containing Compounds X and Y is subjected to NMR, an NMR spectrum is obtained, and a peak derived from Compound X is obtained. What is necessary is just to employ | adopt the method of calculating | requiring an area and calculating | requiring a density | concentration with this calibration curve.
In the above example, the lock solvent is inserted into the inner tube, but the compound containing the element α and having a chemical concentration (peak position) that does not suffer from chemical shift (peak position) is used as a reference substance. A material obtained by adding a lock solvent to the reference material may be used. The peak derived from the reference substance and the peak derived from the compounds X and Y contained in the measurement target can be obtained in one spectrum, and the area of the peak derived from the reference substance having a known composition and concentration Based on the ratio of the peak area derived from compound X to the concentration of compound X, and hence the peak area derived from compound Y present on one NMR spectrum, compound Y 1 , Y 2 , Y 3 . The concentration can be calculated. A plurality of measurement objects may be prepared, and the purity analysis may be performed using a method of determining the purity based on the concentration of each of the compounds X and Y in each measurement object.

本実施形態においては、スペクトルのピークの面積は、ピークが出ていないピークの両端部分の間に基準となる直線を設定し、当該直線から上の部分すなわちピークの部分の強度の積分値として得ている。当該手法は、後述の実施例の項目に記載されたNMR装置を使用すれば容易に実施可能である。   In this embodiment, the area of the peak of the spectrum is obtained as an integral value of the intensity of the upper part of the straight line, that is, the peak part, by setting a reference straight line between both end parts of the peak where no peak appears. ing. This technique can be easily implemented by using an NMR apparatus described in the item of the examples described later.

以上に列挙した各分析内容をまとめて本実施形態においては「元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析」と称する。   The analysis contents listed above are collectively referred to as “analysis relating to the purity of the compound X among the compounds X and Y containing the element α” in the present embodiment.

以上の結果、本実施形態によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することが可能となる。しかも、試料を非破壊で分析することが可能であり、試料の変質といった形態変化を伴わずに分析可能となる。   As a result of the above, according to the present embodiment, the purity of a given compound among a plurality of compounds having the same kind of elements but differing in the structural formula and composition, and a technique capable of easily analyzing impurities that are other compounds Can be provided. In addition, the sample can be analyzed nondestructively, and analysis can be performed without morphological change such as alteration of the sample.

本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。   The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as the specific effects obtained by the constituent elements of the invention and combinations thereof can be derived.

以下、本項目について説明する。本項目においては、化合物Xを所定の有機すず(Sn)化合物とした。つまり化合物Yは、すずを含有しつつも化合物Xとは異なる組成や構造式を有するものである。そのうえで実施例および比較例を行っているが、本発明の技術的範囲は本項目の記載に限定されるものではない。
説明の便宜上、比較例から説明し、その後、実施例について説明する。
This item will be described below. In this item, Compound X was a predetermined organotin (Sn) compound. That is, compound Y has a composition and structural formula different from compound X while containing tin. Furthermore, although an Example and a comparative example are performed, the technical scope of this invention is not limited to description of this item.
For convenience of explanation, the comparative example will be described, and then the example will be described.

所定の組成および構造式を有する有機すず化合物(化合物X)を純分として含有する試料A、試料B、試料Cを用意した。
(比較例1)
試料Aに含有される、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの複数の不純物(化合物Y)の割合を確認するために、化合物XをHPLC分析で定量しようと試みた。しかしながら、化合物Xのみならず化合物Yも、分析で使用する分離カラムに吸着してしまい、化合物Xを定量することができなかった。
Sample A, Sample B, and Sample C containing an organotin compound (Compound X) having a predetermined composition and structural formula as a pure component were prepared.
(Comparative Example 1)
The ratio of the pure content of the organic tin compound (compound X) having a predetermined composition and structure and the plurality of impurities (compound Y) that are organic tin compounds having a composition or structure other than that contained in the sample A To confirm, an attempt was made to quantify compound X by HPLC analysis. However, not only compound X but also compound Y was adsorbed on the separation column used in the analysis, and compound X could not be quantified.

(比較例2)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、化合物XをLC/MS分析で定量しようと試みた。しかしながら、化合物Xのみならず化合物Yも、分析で使用する分離カラムに吸着し、化合物Xを定量することが困難であった。
(Comparative Example 2)
In order to confirm the ratio of the pure organic tin compound (compound X) contained in the sample A to the impurity (compound Y), an attempt was made to quantify the compound X by LC / MS analysis. However, not only compound X but also compound Y was adsorbed on the separation column used in the analysis, and it was difficult to quantify compound X.

(比較例3)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、予め、化合物XとYに対するエチル化およびブチル化による誘導体化処理を行い、GC分析で定量しようと試みた。しかしながら、化合物Yが上手く誘導体化できず、定量することが困難であった。
(Comparative Example 3)
In order to confirm the proportion of the pure organic tin compound (compound X) contained in sample A and the ratio of impurities (compound Y), a derivatization treatment by ethylation and butylation of compounds X and Y was previously performed. And attempted to quantify by GC analysis. However, Compound Y could not be derivatized well and was difficult to quantify.

(比較例4)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、予め、化合物XとYを水素化し、GC/MS分析で定量した。しかしながらこの定量に際し誘導体化処理を行う必要があるため、化合物XとYの割合を確認できるまでに1日を要した。
(Comparative Example 4)
In order to confirm the ratio of the pure organic tin compound (compound X) contained in sample A and the ratio of impurities (compound Y), compounds X and Y were previously hydrogenated and quantified by GC / MS analysis. . However, since it is necessary to perform a derivatization treatment for this determination, it took one day before the ratio of the compounds X and Y could be confirmed.

(実施例1)
試料Aの有機すず化合物の溶液を図1に示す試料管(二重管)の外管(日本精密化学製N−5P)に添加し、FTNMR測定時に必要な磁場固定用重水素化溶媒である重クロロホルム(関東化学製、特級)を二重管の内管(日本精密化学製N−502A)に添加した。その後、内管を外管に挿入し、119Sn核観測のFTNMR測定(Bruker Biospin製AVANCE400型)を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出した。
次に、純分と不純物が与えるピークの全面積に対する純分のピーク面積を百分率で算出し、有機すず化合物の純分と不純物の割合を確認した。その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は82.8%と17.2%であり、所要時間はたったの10分であった。
Example 1
The organic tin compound solution of sample A is added to the outer tube (N-5P manufactured by Nippon Seimitsu Chemical Co., Ltd.) of the sample tube (double tube) shown in FIG. Deuterated chloroform (manufactured by Kanto Chemical Co., Ltd., special grade) was added to the inner tube (N-502A, manufactured by Nippon Seimitsu Chemical). After that, the inner tube was inserted into the outer tube, and 119 NMR Sn observation FTNMR measurement (AVANCE400 type manufactured by Bruker Biospin) was performed. or to obtain a NMR spectrum of impurities where an organic tin compound having the structure (compound Y 1, Y 2, Y 3 ···). Subsequently, the pure component observed on the NMR spectrum and the peak for the impurity were assigned, and the area of the peak given by the pure component and the impurity was calculated.
Next, the peak area of the pure part relative to the total area of the peak given by the pure part and the impurity was calculated as a percentage, and the ratio of the pure part of the organic tin compound and the impurity was confirmed. As a result, the ratio of the pure organic tin compound (compound X) to the impurity (compound Y) was 82.8% and 17.2%, and the required time was only 10 minutes.

(実施例2)
実施例1で使用した有機すず化合物を試料Bにしたこと以外は、実施例1と同様の測定を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出した。
その後、有機すず化合物の純分と不純物の割合を確認した。その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は71.4%と28.6%であり、所要時間はたったの12分であった。
(Example 2)
Except that the organotin compound used in Example 1 was changed to Sample B, the same measurement as in Example 1 was performed, and the pure content of the organotin compound (compound X) having a predetermined composition and structure, and the composition that was not so or to obtain a NMR spectrum of impurities where an organic tin compound having the structure (compound Y 1, Y 2, Y 3 ···). Subsequently, the pure component observed on the NMR spectrum and the peak for the impurity were assigned, and the area of the peak given by the pure component and the impurity was calculated.
Thereafter, the pure content of the organic tin compound and the ratio of impurities were confirmed. As a result, the ratio of the pure organic tin compound (compound X) to the impurity (compound Y) was 71.4% and 28.6%, and the required time was only 12 minutes.

(実施例3)
実施例1で使用した有機すず化合物を試料Cにしたこと以外は、実施例1と同様の測定を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出し、有機すず化合物の純分と不純物の割合を確認した。
その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は91.5%と8.5%であり、所要時間はたったの14分であった。
(Example 3)
Except that the organotin compound used in Example 1 was changed to Sample C, the same measurement as in Example 1 was performed, and the pure content of the organotin compound (compound X) having a predetermined composition and structure, and the composition that was not so or to obtain a NMR spectrum of impurities where an organic tin compound having the structure (compound Y 1, Y 2, Y 3 ···). Subsequently, the pure component observed on the NMR spectrum and the peak for the impurity were assigned, the area of the pure component and the peak given by the impurity was calculated, and the ratio of the pure component of the organic tin compound to the impurity was confirmed.
As a result, the ratio of pure organic tin compound (compound X) to impurities (compound Y) was 91.5% and 8.5%, and the required time was only 14 minutes.

上記の各実施例の結果をまとめたものを以下の表1に示す。
上記表1が示すように、各実施例によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能であることがわかった。

Table 1 below summarizes the results of the above examples.
As shown in Table 1 above, according to each example, the purity of a given compound among a plurality of compounds having the same kind of element but different in structural formula and composition, and impurities that are other compounds can be easily obtained. It was found that analysis was possible.

Claims (3)

核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって前記所定の化合物X以外の化合物Y由来のピークと、から、該元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析を行う分析工程を有する、化合物の分析方法。   In an NMR spectrum having a nuclear magnetic resonance element α (excluding hydrogen, carbon, nitrogen, and oxygen) as a nucleus, a peak derived from a predetermined compound X containing the element α and a compound containing the element α And a compound-analyzing method comprising an analysis step of analyzing the purity of the compound X of the compounds X and Y containing the element α from the peak derived from the compound Y other than the predetermined compound X. 前記元素αは、Sn、S、P、Cl、Mn、Rh、Pb、Pd、Cr、Cu、Mo、Liのいずれかである、請求項1に記載の化合物の分析方法。   The method for analyzing a compound according to claim 1, wherein the element α is any one of Sn, S, P, Cl, Mn, Rh, Pb, Pd, Cr, Cu, Mo, and Li. 前記分析工程においては化合物X由来のピークと化合物Y由来のピークとから化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行う、請求項1または2に記載の化合物の分析方法。
The compound analysis method according to claim 1 or 2, wherein in the analysis step, quantitative analysis is performed on at least one of compound X and compound Y from a peak derived from compound X and a peak derived from compound Y.
JP2018128985A 2017-07-14 2018-07-06 Compound analysis method Active JP7110770B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138202 2017-07-14
JP2017138202 2017-07-14

Publications (2)

Publication Number Publication Date
JP2019020401A true JP2019020401A (en) 2019-02-07
JP7110770B2 JP7110770B2 (en) 2022-08-02

Family

ID=65355376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128985A Active JP7110770B2 (en) 2017-07-14 2018-07-06 Compound analysis method

Country Status (1)

Country Link
JP (1) JP7110770B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190846A (en) * 1984-03-10 1985-09-28 Jeol Ltd Nuclear magnetic reasonance apparatus
US20130116547A1 (en) * 2011-09-15 2013-05-09 The United States Government As Represented By The Department Of Veteran Affairs Measurement of Anaplerotic Flux by Hyperpolarization Transfer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190846A (en) * 1984-03-10 1985-09-28 Jeol Ltd Nuclear magnetic reasonance apparatus
US20130116547A1 (en) * 2011-09-15 2013-05-09 The United States Government As Represented By The Department Of Veteran Affairs Measurement of Anaplerotic Flux by Hyperpolarization Transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL WEBER ET AL.: ""Method development in quantitativeNMR towards metrologically traceable organic certified reference", ANALYTICAL & BIOANALYTICALCHEMISTRY, vol. 407, no. 11, JPN6022001364, April 2015 (2015-04-01), pages 3115 - 3123, XP035445230, ISSN: 0004684057, DOI: 10.1007/s00216-014-8306-6 *

Also Published As

Publication number Publication date
JP7110770B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
Kimura et al. The DBP exposome: Development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns
Abdolmohammad-Zadeh et al. A novel microextraction technique based on 1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milk samples
Agüera et al. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters
McIndoe et al. Assigning the ESI mass spectra of organometallic and coordination compounds
Hernández et al. Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology
Ibáñez et al. Comprehensive analytical strategies based on high-resolution time-of-flight mass spectrometry to identify new psychoactive substances
Feist et al. Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system
Zhang et al. Characterization of brominated disinfection byproducts formed during chloramination of fulvic acid in the presence of bromide
Xiao et al. Effects of enhanced coagulation on polar halogenated disinfection byproducts in drinking water
Hill et al. High-performance liquid chromatography–isotope dilution inductively coupled plasma mass spectrometry for speciation studies: an overview
Li et al. Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry
Ieda et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples
DeBord et al. Profiling of heroin and assignment of provenance by 87Sr/86Sr isotope ratio analysis
Khalifa et al. Selective separation of gadolinium from a series of f-block elements by cloud point extraction and its application for analysis of real samples
Liu et al. Profiling of illicit cocaine seized in China by ICP-MS analysis of inorganic elements
Khogare et al. Development of novel solvent extraction method for determination of gold (III) using 4-heptylaminopyridine: application to alloys and environmental analysis
Barnard et al. Hydroxyoxime stability and unusual cobalt loading behaviour in the LIX 63–Versatic 10–tributyl phosphate synergistic system under synthetic laterite conditions
Koper et al. Elemental analysis of 3, 4-methylenedioxymethamphetamine (MDMA): A tool to determine the synthesis method and trace links
Lee et al. Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard
Ivanova et al. Determination of lanthanoids and some heavy and toxic elements in plant certified reference materials by inductively coupled plasma mass spectrometry
Arain et al. A innovative switchable polarity solvent, based on 1, 8‐diazabicyclo‐[5.4. 0]‐undec‐7‐ene and decanol was prepared for enrichment of aluminum in biological sample prior to analysis by flame atomic absorption spectrometry
Lu et al. Combining high resolution mass spectrometry with a halogen extraction code to characterize and identify brominated disinfection byproducts formed during ozonation
Vizioli et al. Disinfection byproducts in emerging countries
Sasaki et al. Extraction and separation between light and heavy lanthanides by N, N, N′, N′-tetraoctyl-diglycolamide from organic acid
JP7110770B2 (en) Compound analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7110770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150