JP2019019997A - Compression type refrigerator - Google Patents

Compression type refrigerator Download PDF

Info

Publication number
JP2019019997A
JP2019019997A JP2017136307A JP2017136307A JP2019019997A JP 2019019997 A JP2019019997 A JP 2019019997A JP 2017136307 A JP2017136307 A JP 2017136307A JP 2017136307 A JP2017136307 A JP 2017136307A JP 2019019997 A JP2019019997 A JP 2019019997A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
load factor
flow rate
refrigeration load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017136307A
Other languages
Japanese (ja)
Other versions
JP6826959B2 (en
Inventor
哲 金
Tetsu Kin
哲 金
石山 健
Ken Ishiyama
健 石山
宏幸 山田
Hiroyuki Yamada
宏幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2017136307A priority Critical patent/JP6826959B2/en
Priority to CN201810698098.0A priority patent/CN109253555B/en
Priority to CN201821030568.8U priority patent/CN208779744U/en
Publication of JP2019019997A publication Critical patent/JP2019019997A/en
Application granted granted Critical
Publication of JP6826959B2 publication Critical patent/JP6826959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Abstract

To provide a compression type refrigerator which does not require a high-precision and expensive measuring apparatus such as temperature sensor or pressure sensor and is capable of using a general-purpose, inexpensive and simple measuring apparatus and securing an optimal refrigerant possession quantity corresponding to a refrigeration load or an operation point (a point determined from the refrigeration load and a differential pressure between an evaporator and a condenser) in the evaporator.SOLUTION: A compression type refrigerator comprises: first flow control means 6 which is installed in piping connecting an evaporator 3 with an economizer 4; second flow control means 7 which is installed in piping connecting the economizer 4 with a condenser 2; a control device 10 which performs opening/closing control of the first flow control means 6 and/or the second flow control means 7; and refrigeration load rate calculation means which calculates a refrigeration load rate during operation of the compression type refrigerator. The control device 10 compares a refrigeration load rate calculation value which is calculated by the refrigeration load rate calculation means, with a preset refrigeration load rate setting value and based on a comparison result, a refrigerant possession quantity of the evaporator 3 is controlled by the first flow control means 6 and/or the second flow control means 7.SELECTED DRAWING: Figure 1

Description

本発明は、蒸発器、圧縮機、凝縮器を備えた圧縮式冷凍機に係り、特にシェル内部に伝熱管群を配置し、伝熱管内に冷水を通水して、シェルに液冷媒を満たす満液式蒸発器を備えた圧縮式冷凍機に関するものである。   The present invention relates to a compression type refrigerator having an evaporator, a compressor, and a condenser, and in particular, a heat transfer tube group is arranged inside the shell, and cold water is passed through the heat transfer tube to fill the shell with liquid refrigerant. The present invention relates to a compression type refrigerator equipped with a full liquid evaporator.

従来、冷凍空調装置などに利用される圧縮式冷凍機は、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスにする圧縮機と、高圧の冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。
上記圧縮式冷凍機は、シェルの内部に伝熱管群を配置し、伝熱管内に冷水を通水して、シェルに液冷媒を満たす満液式蒸発器を用いることが多い。
上述した満液式蒸発器では、伝熱の効率が冷凍機のCOP(成績係数)に影響を与える。伝熱管群が冷媒に浸漬する高さで沸騰伝熱特性が変化するので、従来は、蒸発器の冷媒液位を制御することによって蒸発器における伝熱の効率が下がらないようにしていた。
2. Description of the Related Art Conventionally, a compression type refrigerator used for a refrigeration air conditioner or the like is composed of a closed system in which a refrigerant is enclosed, an evaporator that draws heat from cold water (cooled fluid) and evaporates the refrigerant to exert a refrigeration effect. A compressor that compresses the refrigerant gas evaporated in the evaporator into a high-pressure refrigerant gas, a condenser that cools and condenses the high-pressure refrigerant gas with cooling water (cooling fluid), and depressurizes the condensed refrigerant And an expansion valve (expansion mechanism) that is expanded by being connected by a refrigerant pipe.
In many cases, the above-mentioned compression refrigerator uses a full-liquid evaporator in which a heat transfer tube group is arranged inside a shell, cold water is passed through the heat transfer tube, and the shell fills with liquid refrigerant.
In the above-described full liquid evaporator, the efficiency of heat transfer affects the COP (coefficient of performance) of the refrigerator. Since the boiling heat transfer characteristics change depending on the height at which the heat transfer tube group is immersed in the refrigerant, conventionally, the efficiency of heat transfer in the evaporator has not been lowered by controlling the refrigerant liquid level of the evaporator.

蒸発器の冷媒液位の制御に関しては、特開2014−85048号公報(特許文献1)において、冷水出口温度と蒸発器冷媒温度の温度差として定義される蒸発器LTDと冷凍能力との相関関係を利用して蒸発器への冷媒配管に設置された制御弁を制御することにより、蒸発器に流入する冷媒の流量を制御して蒸発器の冷媒液位を制御する技術が提案されている。   Regarding the control of the refrigerant liquid level of the evaporator, in JP-A-2014-85048 (Patent Document 1), the correlation between the evaporator LTD defined as the temperature difference between the chilled water outlet temperature and the evaporator refrigerant temperature and the refrigerating capacity. A technique has been proposed in which the flow rate of the refrigerant flowing into the evaporator is controlled by controlling a control valve installed in the refrigerant pipe to the evaporator using the above, thereby controlling the refrigerant liquid level of the evaporator.

特開2014−85048号公報JP 2014-85048 A

特許文献1に提案されているように、蒸発器のLTDと冷凍能力(負荷)との相関関係を利用して蒸発器に流入する冷媒の流量を制御する場合、下記のような問題点がある。
(1)高負荷時と低負荷時のLTDの差は小さく、厳密に制御しようとすると、高精度(高価)な温度センサまたは圧力センサが必要となり、製品コストが高くなる。
(2)冷凍負荷あるいは冷却水温度の変動幅が大きく、変動の頻度が高い場合、制御弁の実開閉動作の遅延により、冷媒の流量制御が困難な場合がある。
(3)実運用上、伝熱管が汚れた場合、目標LTDに近づけることが困難である。
As proposed in Patent Document 1, when the flow rate of the refrigerant flowing into the evaporator is controlled using the correlation between the LTD of the evaporator and the refrigerating capacity (load), there are the following problems. .
(1) The difference in LTD between high load and low load is small, and precise control requires a highly accurate (expensive) temperature sensor or pressure sensor, which increases the product cost.
(2) When the fluctuation range of the refrigeration load or the cooling water temperature is large and the fluctuation frequency is high, it may be difficult to control the flow rate of the refrigerant due to the delay of the actual opening / closing operation of the control valve.
(3) In actual operation, when the heat transfer tube becomes dirty, it is difficult to bring it close to the target LTD.

本発明は、上述の事情に鑑みなされたもので、高精度で高価な温度センサや圧力センサ等の計測機器を必要とせず、汎用されている安価で簡易な計測機器を用いることができ、蒸発器において冷凍負荷あるいは、運転点(冷凍負荷及び蒸発器と凝縮器間の差圧により定まる点)に応じて最適な冷媒保有量を確保することができる圧縮式冷凍機を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and does not require a highly accurate and expensive measuring device such as a temperature sensor or a pressure sensor, and can use a general-purpose inexpensive and simple measuring device. It is an object of the present invention to provide a compression type refrigerator that can secure an optimum refrigerant holding amount according to a refrigeration load or an operating point (a point determined by a refrigeration load and a differential pressure between an evaporator and a condenser). To do.

上述の目的を達成するため、蒸発器、圧縮機、凝縮器、エコノマイザを備えた圧縮式冷凍機において、前記蒸発器と前記エコノマイザを接続する配管に設置された第1流量制御手段と、前記エコノマイザと前記凝縮器を接続する配管に設置された第2流量制御手段と、前記第1流量制御手段および/または前記第2流量制御手段の開閉制御を行う制御装置と、前記圧縮式冷凍機の運転中の冷凍負荷率を算出する冷凍負荷率算出手段とを備え、前記制御装置は、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値を予め設定された冷凍負荷率設定値と比較し、比較結果に基づいて前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする。   In order to achieve the above-mentioned object, in a compression refrigerator having an evaporator, a compressor, a condenser, and an economizer, a first flow rate control means installed in a pipe connecting the evaporator and the economizer, and the economizer And a second flow rate control means installed in a pipe connecting the condenser, a control device for controlling the opening and closing of the first flow rate control means and / or the second flow rate control means, and the operation of the compression refrigerator Refrigeration load factor calculation means for calculating a refrigeration load factor in the control unit, the control device compares the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means with a preset refrigeration load factor setting value, The refrigerant holding amount of the evaporator is controlled by the first flow rate control means and / or the second flow rate control means based on the comparison result.

本発明の好ましい態様によれば、所定の定格冷却水入口温度における前記圧縮式冷凍機に充填される冷媒充填量として、定格負荷率において蒸発器のLTDが最も小さくなる第1冷媒充填量と、所定の低負荷率において蒸発器の許容LTDを満たす第2冷媒充填量の2つを設定し、前記2つの冷媒充填量における、定格冷却水入口温度での冷凍負荷率とLTDとの関係を表わすグラフを求め、前記冷凍負荷率設定値は、前記2つの冷媒充填量における、蒸発器の低負荷率から定格負荷率までの蒸発器のLTDのグラフの交点における冷凍負荷率であることを特徴とする。
本発明によれば、高負荷から低負荷の範囲全体において、1点の交点のみで簡易的に定格負荷側(高負荷側)と低負荷側のそれぞれに最適な蒸発器のLTDを得ることができる。
According to a preferred aspect of the present invention, as the refrigerant charging amount charged in the compression refrigerator at a predetermined rated cooling water inlet temperature, the first refrigerant charging amount at which the LTD of the evaporator becomes the smallest at the rated load factor, Two of the second refrigerant filling amounts that satisfy the allowable LTD of the evaporator at a predetermined low load factor are set, and the relationship between the refrigeration load factor and the LTD at the rated cooling water inlet temperature in the two refrigerant filling amounts is expressed. A graph is obtained, and the set value of the refrigeration load factor is a refrigeration load factor at an intersection of the graphs of the LTD of the evaporator from the low load factor of the evaporator to the rated load factor in the two refrigerant charging amounts. To do.
According to the present invention, it is possible to easily obtain the optimum LTD of the evaporator on each of the rated load side (high load side) and the low load side simply at one intersection point in the entire range from high load to low load. it can.

本発明の好ましい態様によれば、所定の低冷却水入口温度において前記2つの冷媒充填量における、蒸発器の低負荷率から定格負荷率までのLTDのグラフの交点における冷凍負荷率、またはグラフが交差しない場合は、前記第2冷媒充填量における所定の定格冷凍負荷率(100%)を低温側冷凍負荷率として求め、前記第2冷媒充填量における所定の定格冷却水入口温度と所定の低冷却水入口温度のそれぞれについて、冷凍負荷率と、蒸発器と凝縮器との差圧との関係を表わすグラフを求め、前記定格冷却水入口温度について求められたグラフ上の前記冷凍負荷率設定値に対応する点Aを決定し、前記低冷却水入口温度について求められたグラフ上の前記低温側冷凍負荷率に対応する点Bを決定し、前記点Aと前記点Bとを結んだ直線または該直線に近似する近似曲線により仕切られる第1設定運転範囲と第2設定運転範囲を求め、前記冷凍負荷率算出値および前記蒸発器と前記凝縮器間の差圧により定まる運転点が前記第1設定運転範囲または前記第2設定運転範囲のいずれかにあるかに応じて、前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする。
本発明によれば、所定の定格冷却水温度から低冷却水温度における、高負荷から低負荷の運転範囲において、前記運転点に応じて、最適な蒸発器のLTDを得ることができる。
According to a preferred aspect of the present invention, the refrigeration load factor at the intersection of the LTD graphs from the low load factor of the evaporator to the rated load factor, or the graph, at the two refrigerant charging amounts at a predetermined low cooling water inlet temperature, When not intersecting, a predetermined rated refrigeration load factor (100%) in the second refrigerant charge amount is obtained as a low temperature side refrigeration load factor, and a predetermined rated cooling water inlet temperature and a predetermined low cooling in the second refrigerant charge amount are obtained. For each of the water inlet temperatures, a graph representing the relationship between the refrigeration load factor and the differential pressure between the evaporator and the condenser is obtained, and the refrigeration load factor set value on the graph obtained for the rated cooling water inlet temperature is obtained. A corresponding point A is determined, a point B corresponding to the low temperature side refrigeration load factor on the graph obtained for the low cooling water inlet temperature is determined, and a straight line connecting the point A and the point B is determined. Obtains a first set operating range and a second set operating range that are partitioned by an approximate curve that approximates the straight line, and an operating point determined by the calculated value of the refrigeration load factor and the differential pressure between the evaporator and the condenser is The refrigerant possession amount of the evaporator is controlled by the first flow rate control means and / or the second flow rate control means depending on whether it is in one set operation range or the second set operation range. And
ADVANTAGE OF THE INVENTION According to this invention, the optimal LTD of an evaporator can be obtained according to the said operating point in the driving | running | working range of high load to low load from predetermined rated cooling water temperature to low cooling water temperature.

本発明の好ましい態様によれば、前記点Aと前記点Bを結んだ直線または近似曲線を延長した線が、許容される全運転範囲と交差する点A’及び点B’を求め、該点A’及び点B’に基づいて前記第1設定運転範囲及び前記第2設定運転範囲を補正することを特徴とする。
本発明の好ましい態様によれば、前記第1流量制御手段および/または前記第2流量制御手段の上流側に設けられた冷媒液を貯留可能な空間に設けられた液面検出手段と、前記液面検出手段には、所定の上側液位及び下側液位が設定され、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値よりも大きい場合は、前記空間内の冷媒液の液面が前記上側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御し、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値よりも小さい場合は、前記空間内の冷媒液の液面が前記下側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御することを特徴とする。
According to a preferred aspect of the present invention, a point A ′ and a point B ′ at which a straight line connecting the point A and the point B or a line obtained by extending an approximate curve intersects the entire allowable operating range are obtained, and the point The first set operation range and the second set operation range are corrected based on A ′ and point B ′.
According to a preferred aspect of the present invention, the liquid level detection means provided in the space capable of storing the refrigerant liquid provided upstream of the first flow rate control means and / or the second flow rate control means, and the liquid A predetermined upper liquid level and lower liquid level are set in the surface detection means, and when the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means is larger than the refrigeration load factor setting value, The first flow rate control means and / or the second flow rate control means is controlled so that the liquid level of the refrigerant liquid becomes the upper liquid level, and the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means is the refrigeration load factor. When the load factor is smaller than the set value, the first flow rate control means and / or the second flow rate control means are controlled so that the liquid level of the refrigerant liquid in the space becomes the lower liquid level. To do.

本発明の好ましい態様によれば、前記凝縮器は、下部に前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、前記第2流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする。
本発明の好ましい態様によれば、前記エコノマイザは、下部に前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、前記第1流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする。
According to a preferred aspect of the present invention, the condenser has a space capable of storing a predetermined amount of refrigerant liquid capable of controlling a refrigerant holding amount of the evaporator at a lower portion, and the second flow rate control means. The refrigerant holding amount of the evaporator is controlled only by the above.
According to a preferred aspect of the present invention, the economizer has a space capable of storing a predetermined amount of refrigerant liquid capable of controlling a refrigerant holding amount of the evaporator at a lower portion, and includes only the first flow rate control means. The refrigerant holding amount of the evaporator is controlled by the above.

本発明の好ましい態様によれば、前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な貯留容器を前記蒸発器と前記エコノマイザを接続する配管に設け、前記第1流量制御手段により前記蒸発器の冷媒保有量を制御するか、または前記貯留容器を前記エコノマイザと前記凝縮器を接続する配管に設け、前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする。
本発明の好ましい態様によれば、前記凝縮器の下部に、前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能なサブクーラを備え、前記第2流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする。
According to a preferred aspect of the present invention, a storage container capable of storing a predetermined amount of refrigerant liquid capable of controlling a refrigerant holding amount of the evaporator is provided in a pipe connecting the evaporator and the economizer, The refrigerant holding amount of the evaporator is controlled by one flow rate control means, or the storage container is provided in a pipe connecting the economizer and the condenser, and the refrigerant holding amount of the evaporator is set by the second flow rate control means. It is characterized by controlling.
According to a preferred aspect of the present invention, a subcooler capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant retained in the evaporator is provided below the condenser, and only the second flow rate control means. The refrigerant holding amount of the evaporator is controlled by the above.

本発明の好ましい態様によれば、前記凝縮器、前記エコノマイザ、および前記蒸発器と前記エコノマイザを接続する配管または前記エコノマイザと前記凝縮器を接続する配管に設けられた貯留容器における複数の貯留空間の組み合わせを利用して前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留し、前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする。   According to a preferred aspect of the present invention, a plurality of storage spaces in a storage container provided in the condenser, the economizer, and a pipe connecting the evaporator and the economizer or a pipe connecting the economizer and the condenser are provided. A predetermined amount of refrigerant liquid capable of controlling the refrigerant holding amount of the evaporator is stored using a combination, and the refrigerant holding of the evaporator is stored by the first flow rate control unit and / or the second flow rate control unit. It is characterized by controlling the amount.

本発明の他の態様は、蒸発器、圧縮機、凝縮器を備えた圧縮式冷凍機において、前記蒸発器と前記凝縮器を接続する配管に設置された流量制御手段と、前記流量制御手段の開閉制御を行う制御装置と、前記圧縮式冷凍機の運転中の冷凍負荷率を算出する冷凍負荷率算出手段とを備え、前記制御装置は、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値を予め設定された冷凍負荷率設定値と比較し、比較結果に基づいて前記流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする。
この態様は、エコノマイザを備えない圧縮式冷凍機において適用可能である。
According to another aspect of the present invention, there is provided a compression type refrigerator having an evaporator, a compressor, and a condenser, a flow rate control unit installed in a pipe connecting the evaporator and the condenser, and the flow rate control unit. A control device that performs opening / closing control; and a refrigeration load factor calculation unit that calculates a refrigeration load factor during operation of the compression refrigerator, wherein the control device calculates the refrigeration load factor calculated by the refrigeration load factor calculation unit The value is compared with a preset refrigeration load factor set value, and the refrigerant holding amount of the evaporator is controlled by the flow rate control means based on the comparison result.
This aspect is applicable to a compression refrigerator that does not include an economizer.

本発明の好ましい態様によれば、前記蒸発器の水室を流れる冷水の入口温度と出口温度を測定する温度測定手段と、前記冷水の流量を測定する流量測定手段とを備え、前記冷凍負荷率算出手段は、前記温度測定手段と前記流量測定手段で得られた測定値に基づいて冷凍負荷率を算出することを特徴とする。   According to a preferred aspect of the present invention, the refrigeration load factor includes temperature measuring means for measuring an inlet temperature and an outlet temperature of the cold water flowing through the water chamber of the evaporator, and a flow rate measuring means for measuring the flow rate of the cold water. The calculating means calculates a refrigeration load factor based on measured values obtained by the temperature measuring means and the flow rate measuring means.

本発明は、以下に列挙する効果を奏する。
(1)高精度で高価な温度センサや圧力センサ等の計測機器を必要とせず、汎用されている簡易な計測機器を用いることができる。
(2)冷凍負荷あるいは冷却水温度の変動幅が大きく、変動の頻度が高い場合であっても、蒸発器において冷凍負荷に応じて最適な冷媒保有量を確保することができる。
(3)伝熱管の汚れの状態にかかわらず、蒸発器において冷凍負荷に応じて最適な冷媒保有量を確保することができる。
The present invention has the following effects.
(1) A high-precision and expensive measurement device such as a temperature sensor or a pressure sensor is not required, and a general-purpose simple measurement device can be used.
(2) Even when the fluctuation range of the refrigeration load or the cooling water temperature is large and the fluctuation frequency is high, an optimum refrigerant holding amount can be secured in the evaporator according to the refrigeration load.
(3) Regardless of the state of the heat transfer tube, the evaporator can ensure the optimum amount of refrigerant in accordance with the refrigeration load.

図1は、本発明に係る圧縮式冷凍機の一実施形態を示す模式図である。FIG. 1 is a schematic view showing an embodiment of a compression refrigerator according to the present invention. 図2(a),(b),(c),(d)は、冷凍負荷と蒸発器の冷媒保有量との関係を示す模式図である。FIGS. 2A, 2B, 2C, and 2D are schematic views showing the relationship between the refrigeration load and the amount of refrigerant stored in the evaporator. 図3は、上記試験結果を示すグラフであり、冷凍負荷率(%)と、冷水出口温度と蒸発器冷媒温度の温度差として定義される蒸発器LTD(℃)との関係を示すグラフである。FIG. 3 is a graph showing the test results, showing the relationship between the refrigeration load factor (%) and the evaporator LTD (° C.) defined as the temperature difference between the cold water outlet temperature and the evaporator refrigerant temperature. . 図4は、上記試験結果を示すグラフであり、冷凍負荷率(%)と、冷水出口温度と蒸発器冷媒温度の温度差として定義される蒸発器LTD(℃)との関係を示すグラフである。FIG. 4 is a graph showing the test results, showing the relationship between the refrigeration load factor (%) and the evaporator LTD (° C.) defined as the temperature difference between the cold water outlet temperature and the evaporator refrigerant temperature. . 図5は、冷凍負荷率(%)と、蒸発器と凝縮器の差圧(kPa)との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the refrigeration load factor (%) and the differential pressure (kPa) between the evaporator and the condenser. 図6は、定格運転条件における冷媒量(kg)と蒸発器のLTDとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the refrigerant amount (kg) and the evaporator LTD under rated operating conditions. 図7は、前記蒸発器の冷媒保有量の差分の全量を貯留する貯留容器を設けた実施形態を示す模式図である。FIG. 7 is a schematic diagram showing an embodiment in which a storage container for storing the entire difference in the refrigerant holding amount of the evaporator is provided. 図8は、前記蒸発器の冷媒保有量の差分の一部を貯留する貯留容器を設けた実施形態を示す模式図である。FIG. 8 is a schematic view showing an embodiment in which a storage container for storing a part of the difference in the refrigerant holding amount of the evaporator is provided. 図9は、前記蒸発器の冷媒保有量の差分の一部を貯留する貯留容器を設けた別の実施形態を示す模式図である。FIG. 9 is a schematic view showing another embodiment in which a storage container for storing a part of the difference in the refrigerant holding amount of the evaporator is provided. 図10は、エコノマイザを備えない圧縮式冷凍機において、前記蒸発器の冷媒保有量の差分の一部を貯留する貯留容器を設けた別の実施形態を示す模式図である。FIG. 10 is a schematic view showing another embodiment in which a storage container for storing a part of the difference in the refrigerant holding amount of the evaporator is provided in a compression refrigerator that does not include an economizer.

以下、本発明に係る圧縮式冷凍機の実施形態を図1乃至図10を参照して説明する。図1乃至図10において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明に係る圧縮式冷凍機の一実施形態を示す模式図である。図1に示すように、圧縮式冷凍機は、冷媒を圧縮する圧縮機1と、圧縮された冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器2と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、凝縮器2と蒸発器3との間に配置される中間冷却器であるエコノマイザ4とを備え、これら各機器を冷媒が循環する冷媒配管5によって連結して構成されている。
Hereinafter, an embodiment of a compression refrigerator according to the present invention will be described with reference to FIGS. 1 to 10. 1 to 10, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a schematic view showing an embodiment of a compression refrigerator according to the present invention. As shown in FIG. 1, the compression refrigerator includes a compressor 1 that compresses refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with cooling water (cooling fluid), and cold water (cooled fluid). ), An evaporator 3 that evaporates the refrigerant and exerts a refrigeration effect, and an economizer 4 that is an intermediate cooler disposed between the condenser 2 and the evaporator 3. Are connected by a refrigerant pipe 5 that circulates.

図1に示す実施形態においては、圧縮機1は、多段ターボ圧縮機から構成されている。多段ターボ圧縮機は、冷媒配管5によってエコノマイザ4と接続されており、エコノマイザ4で分離された冷媒ガスは多段ターボ圧縮機の多段の圧縮段の中間部分に導入されるようになっている。   In the embodiment shown in FIG. 1, the compressor 1 is composed of a multistage turbo compressor. The multistage turbo compressor is connected to the economizer 4 by the refrigerant pipe 5, and the refrigerant gas separated by the economizer 4 is introduced into an intermediate portion of the multistage compression stage of the multistage turbo compressor.

図1に示すように、蒸発器3とエコノマイザ4とを接続する冷媒配管5には、電動式の制御弁6が設けられている。制御弁6は、エコノマイザ4から蒸発器3に流れる冷媒の流量を制御する第1流量制御手段を構成している。第1流量制御手段は、電動式の制御弁とオリフィスとを直列又は並列に組み合わせた構成でもよい。
また、エコノマイザ4と凝縮器2とを接続する冷媒配管5には、電動式の制御弁7が設けられている。制御弁7は、凝縮器2からエコノマイザ4に流れる冷媒の流量を制御する第2流量制御手段を構成している。第2流量制御手段は、電動式の制御弁とオリフィスとを直列又は並列に組み合わせた構成でもよい。
As shown in FIG. 1, an electric control valve 6 is provided in the refrigerant pipe 5 that connects the evaporator 3 and the economizer 4. The control valve 6 constitutes a first flow rate control means for controlling the flow rate of the refrigerant flowing from the economizer 4 to the evaporator 3. The first flow rate control means may have a configuration in which an electric control valve and an orifice are combined in series or in parallel.
The refrigerant pipe 5 that connects the economizer 4 and the condenser 2 is provided with an electric control valve 7. The control valve 7 constitutes second flow rate control means for controlling the flow rate of the refrigerant flowing from the condenser 2 to the economizer 4. The second flow rate control means may have a configuration in which an electric control valve and an orifice are combined in series or in parallel.

エコノマイザ4には、エコノマイザ4内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段8が設けられている。また、凝縮器2には、凝縮器2内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段9が設けられている。制御弁6、制御弁7、液面検出手段8および液面検出手段9は、それぞれ制御装置10に接続されている。   The economizer 4 is provided with a liquid level detecting means 8 comprising a liquid level gauge, a limit switch, a float switch or the like for detecting the liquid level of the refrigerant liquid stored in the economizer 4. Further, the condenser 2 is provided with a liquid level detecting means 9 comprising a liquid level gauge, a limit switch, a float switch or the like for detecting the liquid level of the refrigerant liquid stored in the condenser 2. The control valve 6, the control valve 7, the liquid level detection means 8 and the liquid level detection means 9 are each connected to the control device 10.

図1に示すように、蒸発器3には、冷水入口温度を測定する温度センサT1と、冷水出口温度を測定する温度センサT2とが設置されている。すなわち、温度センサT1により蒸発器3内の冷媒と熱交換する冷水の入口温度を測定し、温度センサT2により蒸発器3内の冷媒と熱交換した後の冷水の出口温度を測定するようになっている。温度センサT1および温度センサT2は、それぞれ制御装置10に接続されている。また、冷水入口または出口配管に冷水流量を計測する流量センサFEが設置されている。流量センサFEは制御装置10に接続されている。制御装置10は冷凍負荷率算出手段を備えており、冷凍負荷率算出手段は、温度センサT1で測定した冷水入口温度と温度センサT2で測定した冷水出口温度との温度差と、流量センサFEで計測した冷水流量から冷凍負荷率を算出するようになっている。
なお、図1に示すように、冷水入口配管と冷水出口配管との間に差圧計ΔPeを設けて蒸発器3の冷水出入口での圧力差を計測し、冷凍負荷率算出手段により、圧力差から蒸発器3を流れる冷水流量を推算し、推算した冷水流量と、冷水入口温度と冷水出口温度との温度差から冷凍負荷率を算出してもよい。
As shown in FIG. 1, the evaporator 3 is provided with a temperature sensor T1 for measuring the cold water inlet temperature and a temperature sensor T2 for measuring the cold water outlet temperature. That is, the temperature sensor T1 measures the inlet temperature of cold water that exchanges heat with the refrigerant in the evaporator 3, and the temperature sensor T2 measures the outlet temperature of cold water after heat exchange with the refrigerant in the evaporator 3. ing. The temperature sensor T1 and the temperature sensor T2 are connected to the control device 10, respectively. In addition, a flow rate sensor FE for measuring the cold water flow rate is installed at the cold water inlet or outlet pipe. The flow sensor FE is connected to the control device 10. The control device 10 is provided with a refrigeration load factor calculating means. The refrigeration load factor calculating means includes a temperature difference between the chilled water inlet temperature measured by the temperature sensor T1 and the chilled water outlet temperature measured by the temperature sensor T2, and a flow rate sensor FE. The refrigeration load factor is calculated from the measured cold water flow rate.
As shown in FIG. 1, a differential pressure gauge ΔPe is provided between the chilled water inlet pipe and the chilled water outlet pipe to measure the pressure difference at the chilled water inlet / outlet of the evaporator 3, and the refrigeration load factor calculating means calculates the pressure difference. The flow rate of cold water flowing through the evaporator 3 is estimated, and the refrigeration load factor may be calculated from the estimated cold water flow rate and the temperature difference between the cold water inlet temperature and the cold water outlet temperature.

制御装置10は、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値を予め設定された冷凍負荷率設定値(後述する)と比較し、比較結果に基づいて制御弁6からなる第1流量制御手段および/または制御弁7からなる第2流量制御手段により蒸発器3の冷媒保有量を制御するように構成されている。すなわち、制御装置10は、冷凍負荷率によって蒸発器3の冷媒保有量を制御するように構成されている。   The control device 10 compares the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means with a preset refrigeration load factor setting value (described later), and based on the comparison result, the first flow rate composed of the control valve 6. The refrigerant holding amount of the evaporator 3 is controlled by the second flow rate control means including the control means and / or the control valve 7. That is, the control device 10 is configured to control the refrigerant holding amount of the evaporator 3 based on the refrigeration load factor.

図2(a),(b),(c),(d)は、冷凍負荷と蒸発器3の冷媒保有量との関係を示す模式図である。図2(a),(b),(c),(d)において、蒸発器3内の略逆台形状の実線は伝熱管群3aを示し、点線は平均沸騰液面ALを示す。
図2(a),(b)は、低負荷時において冷媒保有量が少ない場合(図2(a))と多い場合(図2(b))との比較を示す図である。
図2(a)に示すように、冷媒保有量が少ない場合には、露出される伝熱管が多くなり、伝熱面積が小さくなり、LTDが大きくなる。
図2(b)に示すように、冷媒保有量が多い場合には、露出される伝熱管が少なくなり、伝熱面積が大きくなり、LTDが小さくなる。
図2(a),(b)に示すように、低負荷時、沸騰状態は穏やかで、平均沸騰液面は低い。伝熱に寄与できる伝熱面積の大小で、LTDが異なる。LTDを小さくするため、冷媒量を追加し続けると、LTDはある程度小さくなるが、更に、冷媒量を増やしていくと、下記、高負荷時と同じく、あるところから、サブマージ(液ヘッド)の影響により、LTDが大きくなる。
2A, 2 </ b> B, 2 </ b> C, and 2 </ b> D are schematic diagrams illustrating the relationship between the refrigeration load and the amount of refrigerant stored in the evaporator 3. 2A, 2B, 2C, and 2D, the substantially inverted trapezoidal solid line in the evaporator 3 indicates the heat transfer tube group 3a, and the dotted line indicates the average boiling liquid level AL.
2 (a) and 2 (b) are diagrams showing a comparison between a case where the refrigerant holding amount is small (FIG. 2 (a)) and a case where the refrigerant is large (FIG. 2 (b)) at low load.
As shown in FIG. 2A, when the refrigerant holding amount is small, the exposed heat transfer tubes increase, the heat transfer area decreases, and the LTD increases.
As shown in FIG. 2B, when the amount of refrigerant held is large, the exposed heat transfer tubes are reduced, the heat transfer area is increased, and the LTD is reduced.
As shown in FIGS. 2A and 2B, at a low load, the boiling state is gentle and the average boiling liquid level is low. The size of the heat transfer area that can contribute to heat transfer varies with LTD. If the amount of refrigerant continues to be added in order to reduce the LTD, the LTD will decrease to some extent, but if the amount of refrigerant is further increased, the effect of submerging (liquid head) from a certain point, as in the case of high load described below. As a result, the LTD increases.

図2(c),(d)は、高負荷時おいて冷媒保有量が少ない場合(図2(c))と多い場合(図2(d))との比較を示す図である。図2(c),(d)において、二点鎖線は、それぞれ同一冷媒保有量での低負荷時での平均沸騰液面を示す。
図2(c),(d)に示すように、高負荷時、沸騰状態は激しく、同一冷媒保有量において、高負荷時の平均沸騰液面ALは低負荷時の平均沸騰液面(二点鎖線で示す)より上昇する。この状態で、更に冷媒量を増やしていくと、平均沸騰液面が更に高くなり、あるところから、サブマージ(液ヘッド)の影響を受け始め、LTDが大きくなる傾向になる。平均沸騰液面の高さ増加により、伝熱管群3aの下部での沸騰が抑えられてしまう。これとは逆に、冷媒量を減らしていくと、あるところから、伝熱面積不足により、LTDが大きくなり始める。つまり、冷凍負荷に応じて最適液面が存在する。
2 (c) and 2 (d) are diagrams showing a comparison between a case where the refrigerant holding amount is small (FIG. 2 (c)) and a case where the refrigerant is large (FIG. 2 (d)) at high load. 2C and 2D, the alternate long and two short dashes line indicates the average boiling liquid level at low load with the same refrigerant holding amount.
As shown in FIGS. 2 (c) and 2 (d), when the load is high, the boiling state is intense, and with the same refrigerant content, the average boiling liquid level AL at high load is the average boiling liquid level at low load (two points). It is higher than that shown by the chain line. In this state, when the amount of refrigerant is further increased, the average boiling liquid level is further increased. From a certain point, the influence of submerging (liquid head) starts and the LTD tends to increase. Due to the increase in the average boiling liquid level, boiling at the bottom of the heat transfer tube group 3a is suppressed. On the contrary, if the amount of refrigerant is reduced, the LTD starts to increase from a certain point due to a lack of heat transfer area. That is, there exists an optimum liquid level according to the refrigeration load.

次に、図2に示す冷凍負荷に応じて最適液面が存在することを前提とし、図1に示す圧縮式冷凍機によって行った試験結果について説明する。
冷凍機に充填される総冷媒充填量として、第1冷媒充填量W1と第2冷媒充填量W2の異なる冷媒充填量で試験運転を行った。第1冷媒充填量W1と第2冷媒充填量W2との関係は、W1<W2である。各試験は、凝縮器2とエコノマイザ4に必要最低限の冷媒量を貯留させて行った。冷媒充填量W1および冷媒充填量W2でそれぞれ冷凍機を運転した場合、運転中に異なる点は、蒸発器3の冷媒保有量(W2−W1)である。すなわち、第2冷媒充填量W2で冷凍機を運転した場合に、蒸発器3の冷媒保有量は、第1冷媒充填量W1のときより(W2−W1)だけ増加させる。
Next, a description will be given of test results performed by the compression refrigerator shown in FIG. 1 on the premise that an optimum liquid level exists according to the refrigeration load shown in FIG.
The test operation was performed with different refrigerant charge amounts of the first refrigerant charge amount W1 and the second refrigerant charge amount W2 as the total refrigerant charge amount charged in the refrigerator. The relationship between the first refrigerant charge amount W1 and the second refrigerant charge amount W2 is W1 <W2. Each test was performed by storing the minimum amount of refrigerant in the condenser 2 and the economizer 4. When the refrigerator is operated with the refrigerant charging amount W1 and the refrigerant charging amount W2, respectively, the difference in operation is the refrigerant holding amount (W2-W1) of the evaporator 3. That is, when the refrigerator is operated with the second refrigerant filling amount W2, the refrigerant holding amount of the evaporator 3 is increased by (W2-W1) than when the first refrigerant filling amount W1.

図3および図4は、上記試験結果を示すグラフであり、冷凍負荷率(%)と、冷水出口温度と蒸発器冷媒温度の温度差として定義される蒸発器LTD(℃)との関係を示すグラフである。図3では凝縮器2の冷却水入口温度を32℃とし、図4では凝縮器2の冷却水入口温度を12℃としたものである。
図3に示す試験結果から、ある中間冷凍能力(冷凍負荷率A点)にて、第1冷媒充填量W1のグラフ(太い実線で示す)と第2冷媒充填量W2のグラフ(太い破線で示す)が交差する現象が現れた。冷凍負荷率A点より大きい定格負荷率側において第1冷媒充填量W1の場合のLTDは第2冷媒充填量W2の場合のLTDよりも小さく、冷凍負荷率A点より小さい低負荷率側において第2冷媒充填量W2の場合のLTDは第1冷媒充填量W1の場合のLTDよりも小さくなっている。すなわち、冷凍負荷率A点より大きい定格負荷率側において第1冷媒充填量W1の場合に蒸発器のLTDが最も小さくなっており、冷凍負荷率A点より小さい低負荷率側において第2冷媒充填量W2の場合に蒸発器のLTDが小さくなっている。
図4に示す試験結果では、第1冷媒充填量W1のグラフ(太い実線で示す)と第2冷媒充填量W2のグラフ(太い破線で示す)は、100%の負荷率(冷凍負荷率B点)で互いに最も近づくが、交差しなかった。
FIG. 3 and FIG. 4 are graphs showing the test results, showing the relationship between the refrigeration load factor (%) and the evaporator LTD (° C.) defined as the temperature difference between the chilled water outlet temperature and the evaporator refrigerant temperature. It is a graph. In FIG. 3, the cooling water inlet temperature of the condenser 2 is 32 ° C., and in FIG. 4, the cooling water inlet temperature of the condenser 2 is 12 ° C.
From the test results shown in FIG. 3, at a certain intermediate refrigeration capacity (refrigeration load factor A point), a graph of the first refrigerant charge amount W1 (shown by a thick solid line) and a graph of the second refrigerant charge amount W2 (shown by a thick broken line) ) Appeared. The LTD in the case of the first refrigerant charge amount W1 on the rated load factor side larger than the refrigeration load factor A point is smaller than the LTD in the case of the second refrigerant charge amount W2 and is lower on the low load factor side than the refrigeration load factor A point. The LTD in the case of the two refrigerant filling amounts W2 is smaller than the LTD in the case of the first refrigerant filling amount W1. In other words, the LTD of the evaporator is the smallest when the first refrigerant charging amount W1 is larger than the refrigeration load factor A, and the second refrigerant charging is smaller than the refrigeration load factor A. In the case of the quantity W2, the LTD of the evaporator is small.
In the test results shown in FIG. 4, the graph of the first refrigerant charge amount W1 (shown by a thick solid line) and the graph of the second refrigerant charge amount W2 (shown by a thick broken line) are 100% load factor (refrigeration load factor B point). ) Were closest to each other but did not intersect.

第1冷媒充填量W1のグラフと第2冷媒充填量W2のグラフが交差する現象が現れた図3から分かるように、冷凍機に第2冷媒充填量W2の冷媒を充填し、交点Aの冷凍負荷率を分岐点として、下記の(1)(2)のように、蒸発器LTDが極力小さくなるような蒸発器3の冷媒保有量とすることにより、冷凍負荷に応じて最適液面を確保することができ、蒸発器の伝熱性能を向上させることができる。
(1)冷凍機の運転中の冷凍負荷率が交点Aの冷凍負荷率より大きい場合、上述の第1冷媒充填量W1のときの蒸発器3の冷媒保有量になるように、凝縮器2および/またはエコノマイザ4に(W2−W1)の冷媒量を一時的に貯留する。なお、貯留容器を別途設置した場合(後述する)には、凝縮器2、エコノマイザ4および貯留容器のうち、少なくとも1つに(W2−W1)の冷媒量を一時的に貯留すればよい。
(2)冷凍機の運転中の冷凍負荷率が交点Aの冷凍負荷率以下である場合、上述の第2冷媒充填量W2のときの蒸発器3の冷媒保有量になるように、凝縮器2および/またはエコノマイザ4に一時的に貯留していた冷媒量を蒸発器3に送る。なお、貯留容器を別途設置した場合には、凝縮器2、エコノマイザ4および貯留容器のうちの少なくとも1つに一時的に貯留していた冷媒量を蒸発器3に送る。
図3において、細線は、上記(1)(2)の制御をまとめた制御線CLであり、細線は第1冷媒充填量W1のグラフまたは第2冷媒充填量W2のグラフと重なって表示されるべきものであるが、図示の便宜上、第1冷媒充填量W1のグラフまたは第2冷媒充填量W2のグラフのやや下に表示している。
As can be seen from FIG. 3 in which a phenomenon in which the graph of the first refrigerant charge amount W1 and the graph of the second refrigerant charge amount W2 intersect each other appears, the refrigerator is charged with the refrigerant of the second refrigerant charge amount W2, and the refrigeration at the intersection A Using the load factor as a branch point, as shown in (1) and (2) below, the optimum liquid level is ensured according to the refrigeration load by setting the amount of refrigerant in the evaporator 3 so that the evaporator LTD becomes as small as possible. It is possible to improve the heat transfer performance of the evaporator.
(1) When the refrigeration load factor during operation of the refrigerator is larger than the refrigeration load factor at the intersection A, the condenser 2 and the refrigerant 2 so that the amount of refrigerant retained in the evaporator 3 at the above-described first refrigerant charge amount W1 is obtained. / Or (e.g., the amount of refrigerant (W2-W1)) is temporarily stored in the economizer 4. When a storage container is separately installed (described later), the refrigerant amount (W2-W1) may be temporarily stored in at least one of the condenser 2, the economizer 4, and the storage container.
(2) When the refrigeration load factor during operation of the refrigerator is equal to or less than the refrigeration load factor at the intersection A, the condenser 2 is set so as to have the refrigerant holding amount of the evaporator 3 when the second refrigerant charging amount W2 is described above. The refrigerant amount temporarily stored in the economizer 4 is sent to the evaporator 3. When a storage container is separately installed, the amount of refrigerant temporarily stored in at least one of the condenser 2, the economizer 4, and the storage container is sent to the evaporator 3.
In FIG. 3, the thin line is a control line CL that summarizes the controls (1) and (2), and the thin line is displayed overlapping the graph of the first refrigerant filling amount W1 or the second refrigerant filling amount W2. Although it should be, for convenience of illustration, it is displayed slightly below the graph of the first refrigerant charge amount W1 or the graph of the second refrigerant charge amount W2.

図3に示す試験結果から、冷却水入口温度32℃を一般化して「所定の定格冷却水入口温度」と表現すれば、制御装置10に予め設定された冷凍負荷率設定値は、以下のように定義できる。
所定の定格冷却水入口温度における前記圧縮式冷凍機に充填される冷媒充填量として、定格負荷率において蒸発器3のLTDが最も小さくなる第1冷媒充填量W1と、所定の低負荷率において蒸発器3の許容LTDを満たす第2冷媒充填量W2の2つを設定し、前記2つの冷媒充填量W1,W2における、定格冷却水入口温度での冷凍負荷率とLTDとの関係を表わすグラフを求め、前記冷凍負荷率設定値は、前記2つの冷媒充填量W1,W2における、蒸発器3の低負荷率から定格負荷率までの蒸発器3のLTDのグラフの交点(すなわち図3に示す交点A)における冷凍負荷率である。
If the cooling water inlet temperature 32 ° C. is generalized from the test results shown in FIG. 3 and expressed as “predetermined rated cooling water inlet temperature”, the refrigeration load factor setting value preset in the control device 10 is as follows: Can be defined.
The refrigerant charge amount that fills the compression refrigerator at a predetermined rated cooling water inlet temperature is a first refrigerant charge amount W1 that minimizes the LTD of the evaporator 3 at the rated load factor, and evaporates at a predetermined low load factor. A graph representing the relationship between the refrigeration load factor and the LTD at the rated cooling water inlet temperature in the two refrigerant filling amounts W1 and W2 is set for the two refrigerant filling amounts W2 that satisfy the allowable LTD of the vessel 3 The refrigeration load factor setting value is obtained by calculating the intersection of the graphs of the LTD 3 of the evaporator 3 from the low load factor of the evaporator 3 to the rated load factor at the two refrigerant charging amounts W1 and W2 (that is, the intersection shown in FIG. 3). It is the refrigeration load factor in A).

なお、上述の説明においては、交点Aを分岐点として蒸発器3の冷媒保有量を制御する方法について述べたが、一つ又は複数の冷媒充填量について試験により得られた図3のグラフの波形の特性に応じて、低負荷率から定格負荷率までの蒸発器3のLTDが総じて小さくなる、あるいは一定の効果が得られる任意の1点を冷凍負荷率設定値として定め、冷凍機の運転中の冷凍負荷率を冷凍負荷率設定値と比較し、比較結果に基づいて蒸発器3の冷媒保有量を制御してもよい。   In the above description, the method of controlling the refrigerant holding amount of the evaporator 3 with the intersection A as a branch point has been described. However, the waveform of the graph of FIG. 3 obtained by a test for one or a plurality of refrigerant charging amounts. Depending on the characteristics, the LTD of the evaporator 3 from the low load factor to the rated load factor is generally reduced, or any one point where a certain effect is obtained is determined as the refrigeration load factor set value, and the refrigerator is in operation. May be compared with the refrigeration load factor set value, and the refrigerant holding amount of the evaporator 3 may be controlled based on the comparison result.

図5は、冷凍負荷率(%)と、蒸発器3と凝縮器2の差圧(kPa)との関係を示すグラフである。冷凍機に第2冷媒充填量W2の冷媒を充填し、冷凍機運転中における冷凍負荷率(%)と蒸発器−凝縮器間の差圧から図5の相関グラフを求めたものである。
図6は、定格運転条件における冷媒量(kg)と蒸発器のLTDとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the refrigeration load factor (%) and the differential pressure (kPa) between the evaporator 3 and the condenser 2. The refrigerant | coolant with the 2nd refrigerant | coolant filling amount W2 is filled into a refrigerator, and the correlation graph of FIG. 5 is calculated | required from the refrigerating load factor (%) and the differential pressure between an evaporator and a condenser during refrigerator operation.
FIG. 6 is a graph showing the relationship between the refrigerant amount (kg) and the evaporator LTD under rated operating conditions.

図5および図6の関係について、図3および図4の関係を考慮しつつ更に説明する。
まず、図6から説明すると、図6に示す定格運転条件における冷媒量(kg)と蒸発器3のLTDとの関係は、凝縮器2の冷却水入口温度が32℃、冷凍負荷率が100%の定格負荷率で求めたものである。
(1)図6に示すように、蒸発器のLTDが最も小さくなる冷媒量は、350kgである。したがって、前記第1冷媒充填量W1を350kgとする。
(2)上記(1)と同様に、定格冷却水温度(例えば、32℃)、あるいは低冷却水温度(例えば、12℃)における、低冷凍能力(例えば、冷凍負荷率20%)時に、蒸発器のLTDが許容されるLTD以下となる最も少ない冷媒充填量を決定する。冷媒充填量が最も少ないことにより安価である。図6では、定格運転条件(冷凍負荷率100%)における冷媒量と蒸発器3のLTDとの関係を図示しているが、低冷凍能力(例えば、冷凍負荷率20%)時におけるグラフは図6と同様であるため図示を省略するが、蒸発器3のLTDが許容されるLTD以下となる最も少ない充填量は400kgである。したがって、前記第2冷媒充填量W2を400kgとする。この第2冷媒充填量W2=400kgが実際に冷凍機に充填される冷媒充填量となる。
上記(1)と(2)の両充填量を決める際、エコノマイザ4と凝縮器2、あるいは貯留容器には、運転可能な同量の必要最低限の冷媒量を貯留するか、ある一定の冷媒量を貯留する。
第1冷媒充填量W1=350kg、第2冷媒充填量W2=400kgの場合、同じ運転条件下では、蒸発器3に貯留される冷媒量は(400kg−350kg)=50kgの違いがある。
The relationship between FIG. 5 and FIG. 6 will be further described in consideration of the relationship between FIG. 3 and FIG.
First, from FIG. 6, the relationship between the refrigerant amount (kg) and the LTD of the evaporator 3 under the rated operating condition shown in FIG. 6 is that the cooling water inlet temperature of the condenser 2 is 32 ° C. and the refrigeration load factor is 100%. It is obtained with the rated load factor.
(1) As shown in FIG. 6, the amount of the refrigerant with the smallest LTD of the evaporator is 350 kg. Therefore, the first refrigerant charging amount W1 is set to 350 kg.
(2) Similar to (1) above, evaporation occurs at a rated cooling water temperature (for example, 32 ° C.) or a low cooling water temperature (for example, 12 ° C.) at a low refrigeration capacity (for example, a refrigeration load factor of 20%). The smallest refrigerant charge amount is determined such that the LTD of the vessel is equal to or less than the allowable LTD. It is inexpensive because it has the smallest amount of refrigerant. In FIG. 6, the relationship between the refrigerant amount and the LTD of the evaporator 3 under the rated operating condition (refrigeration load factor 100%) is illustrated, but the graph at the time of low refrigeration capacity (for example, refrigeration load factor 20%) is illustrated. Although not shown in the figure because it is the same as 6, the smallest filling amount at which the LTD of the evaporator 3 is equal to or less than the allowable LTD is 400 kg. Therefore, the second refrigerant charging amount W2 is set to 400 kg. This second refrigerant charging amount W2 = 400 kg is the refrigerant charging amount actually charged in the refrigerator.
When determining both the charging amounts of (1) and (2) above, the economizer 4 and the condenser 2 or the storage container store the same minimum required amount of refrigerant that can be operated or a certain amount of refrigerant. Store the amount.
When the first refrigerant charging amount W1 = 350 kg and the second refrigerant charging amount W2 = 400 kg, the refrigerant amount stored in the evaporator 3 has a difference of (400 kg−350 kg) = 50 kg under the same operating conditions.

(3)図3に示すように、上記(1)と(2)の両充填量にて、定格冷却水温度(例:32℃)での、定格冷凍能力(例:負荷率100%)から低冷凍能力(例:負荷率20%)までの部分冷凍能力の性能試験を行い、各冷凍能力におけるLTDとの相関関係を求める。つまり、定格冷却水温度時の蒸発器3に貯留される50kgの冷媒量の違いによるLTDの変化傾向の確認を行う。
(4)図4に示すように、上記(3)と同じく、低冷却水温度(例:12℃)での、定格冷凍能力(例:負荷率100%)から低冷凍能力(例:負荷率20%)までの部分冷凍能力の性能試験を行い、各冷凍能力におけるLTDとの相関関係を求める。つまり、低冷却水温度時の蒸発器3に貯留される50kgの冷媒量の違いによるLTDの変化傾向の確認を行う。
上記(3)と(4)での定格/低冷却水温度、定格/低冷凍能力とは、自社設定あるいは客先指定の冷却水温度、冷凍能力の仕様条件等の運転範囲(1)のことを言う(運転範囲(1)は図5に図示)。
上記(3)と(4)の試験時、エコノマイザ4と凝縮器2、あるいは貯留容器には、運転可能な同量の必要最低限の冷媒量を貯留するか、ある一定の冷媒量を貯留する。
(3) As shown in FIG. 3, from the rated refrigeration capacity (example: load factor 100%) at the rated cooling water temperature (example: 32 ° C.) with both filling amounts (1) and (2) above. A performance test of partial refrigeration capacity up to a low refrigeration capacity (eg, load factor 20%) is performed, and a correlation with LTD in each refrigeration capacity is obtained. That is, the change tendency of LTD due to the difference in the amount of refrigerant of 50 kg stored in the evaporator 3 at the rated cooling water temperature is confirmed.
(4) As shown in FIG. 4, as in (3) above, the rated refrigeration capacity (eg, load factor 100%) to the low refrigeration capacity (eg, load factor) at a low cooling water temperature (eg, 12 ° C.). The performance test of partial refrigeration capacity up to 20%) is performed, and the correlation with LTD in each refrigeration capacity is obtained. That is, the LTD change tendency due to the difference in the amount of refrigerant of 50 kg stored in the evaporator 3 at the time of the low cooling water temperature is confirmed.
The rated / low cooling water temperature and rated / low refrigeration capacity in (3) and (4) above are the operating range (1) such as the specification conditions of the cooling water temperature and refrigeration capacity specified by the customer or the customer. (Operation range (1) is shown in FIG. 5).
During the tests (3) and (4) above, the economizer 4 and the condenser 2 or the storage container store the same minimum required amount of refrigerant that can be operated, or store a certain amount of refrigerant. .

(5)図5に示すように、実際に充填される充填量(例:W2=400kg)における、定格冷却水温度(例:32℃)と低冷却水温度(12℃)での、上記(3)と(4)の試験結果から、各々の冷凍能力と蒸発器−凝縮器間の差圧の関係を表す、曲線あるいは直線グラフ1およびグラフ2を作成する。すなわち、図5において上側の点線がグラフ1であり、下側の点線がグラフ2である。そして、図3において、350kg(W1)と400kg(W2)のグラフの交点(A点)における冷凍能力を求め、図5のグラフ1上で対応する点Aを求める。同様に、図4において、今回の実験結果においては、定格冷凍能力まで交点が現れなかったことから、図5のグラフ2上で400kgにおける定格冷凍能力(例:負荷率100%)の点をB点とする。図4において350kg(W1)と400kg(W2)のグラフが交差する場合は、350kgと400kgのグラフの交点をB点とし、その時の冷凍能力を求め、図5のグラフ2上で対応する点をB点とする。このようにして定まる点Bでの冷凍負荷率は、低温側冷凍負荷率と定義される。
(6)更に、図5において、冷凍機として実際運転可能な、冷凍能力の範囲と差圧範囲のグラフを作成する。図5において上側の実線がグラフ3であり、下側の実線がグラフ4である。これらグラフ3とグラフ4は、冷凍機のサージングライン、保護動作、故障回避動作、制限動作等を加味して適宜定めればよい。
グラフ3とグラフ4の両端を、上方に伸びる細線で表される直線、あるいは曲線(冷却水温度パターンが多い場合)で結ぶことで、2本の実線と2本の細線で囲まれた運転可能な全領域としての運転範囲(2)が定まる。つまり、冷凍機として、運転範囲(2)以外で運転することはできないので、伝熱管が汚れた場合でも蒸発器冷媒保有量制御が可能である。
(5) As shown in FIG. 5, the above-mentioned (at the rated cooling water temperature (example: 32 ° C.) and the low cooling water temperature (12 ° C.) in the filling amount (eg, W2 = 400 kg) actually filled ( From the test results of 3) and (4), a curve or a straight line graph 1 and a graph 2 representing the relationship between the refrigerating capacity and the pressure difference between the evaporator and the condenser are prepared. That is, in FIG. 5, the upper dotted line is the graph 1, and the lower dotted line is the graph 2. In FIG. 3, the refrigeration capacity at the intersection (point A) of the 350 kg (W1) and 400 kg (W2) graphs is obtained, and the corresponding point A on the graph 1 in FIG. 5 is obtained. Similarly, in FIG. 4, in the result of this experiment, no intersection appears up to the rated refrigeration capacity, so the point of the rated refrigeration capacity at 400 kg (example: load factor 100%) on the graph 2 in FIG. Let it be a point. In FIG. 4, when the graphs of 350 kg (W1) and 400 kg (W2) intersect, the intersection of the 350 kg and 400 kg graphs is designated as point B, the refrigeration capacity at that time is obtained, and the corresponding points on graph 2 of FIG. Let it be point B. The refrigeration load factor at the point B determined in this way is defined as a low temperature side refrigeration load factor.
(6) Further, in FIG. 5, a graph of the refrigeration capacity range and the differential pressure range that can be actually operated as a refrigerator is created. In FIG. 5, the upper solid line is the graph 3, and the lower solid line is the graph 4. These graphs 3 and 4 may be appropriately determined in consideration of the surging line of the refrigerator, the protective operation, the failure avoiding operation, the limiting operation, and the like.
By connecting both ends of Graph 3 and Graph 4 with a straight line or a curved line (when there are many cooling water temperature patterns), the operation surrounded by two solid lines and two thin lines is possible. The operation range (2) as a whole region is determined. That is, since the refrigerator cannot be operated outside the operating range (2), the evaporator refrigerant holding amount control is possible even when the heat transfer tube is dirty.

(7)次に、図5において、A点とB点を直線(冷却水温度が2点の場合)または近似曲線(複数冷却水温度で試験を行った場合)にて結び、B→Aの延長線とグラフ3の交点をグラフ3から求め、その点をA’とする。点A’は、B→Aの延長線とグラフ3の交点を中心とした設定許容範囲内で決定されてもよい。同じく、A→Bの延長線とグラフ4の交点をグラフ4から求め、その点をB’とする。点B’は、B→Aの延長線とグラフ4の交点を中心とした設定許容範囲内で決定されてもよい。こうして求めたB’−B−A−A’の線より、運転範囲(2)を第1設定運転範囲Iと第2設定運転範囲IIに分ける。そうすることで、図5が完成され、図5のデータを制御装置10のメモリに記憶しておく。負荷変動、冷却水温度変動等により、分岐線[B’−B−A−A’]を中心に、頻繁に左右に振れる場合に備え、分岐線[B’−B−A−A’]に対して、左右に不感帯(0〜数%)を設けるか、あるいは、一定時間内では蒸発器3の冷媒保有量制御を行わないとすることで、制御弁のハンチングを防ぐことができる。
(8)実施例として、運転点(冷凍負荷率算出値、および蒸発器3と凝縮器2間の差圧から決まる)が図5の第1設定運転範囲Iの領域に入った際、400kg−350kg=50kgの冷媒量を、エコノマイザ4、凝縮器2、あるいは貯留容器の一つあるいは複数の組み合わせに一時的に貯留する。また、運転点が第2設定運転範囲IIの領域に入った際、エコノマイザ4、凝縮器2、あるいは貯留容器の一つあるいは複数の組み合わせに一時的に貯留していた冷媒[400kg−350kg=50kg]を蒸発器3に戻す。
(7) Next, in FIG. 5, points A and B are connected by a straight line (when the cooling water temperature is 2 points) or an approximate curve (when testing is performed at multiple cooling water temperatures), and B → A The intersection of the extension line and the graph 3 is obtained from the graph 3, and the point is set as A ′. The point A ′ may be determined within a setting allowable range centered on the intersection of the extension line B → A and the graph 3. Similarly, the intersection of the extension line of A → B and the graph 4 is obtained from the graph 4, and the point is set as B ′. The point B ′ may be determined within a setting allowable range centered on the intersection of the extension line B → A and the graph 4. The operation range (2) is divided into a first set operation range I and a second set operation range II from the B′-BAA ′ line thus obtained. By doing so, FIG. 5 is completed, and the data of FIG. 5 is stored in the memory of the control device 10. The branch line [B'-BAA '] is prepared in case of frequent swinging left and right around the branch line [B'-BAA'] due to load fluctuation, cooling water temperature fluctuation, etc. On the other hand, dead zones (0 to several percent) are provided on the left and right sides, or the control of the amount of refrigerant in the evaporator 3 is not performed within a certain time, thereby preventing hunting of the control valve.
(8) As an example, when the operating point (determined from the calculated value of the refrigeration load factor and the differential pressure between the evaporator 3 and the condenser 2) enters the region of the first set operating range I in FIG. A refrigerant amount of 350 kg = 50 kg is temporarily stored in one or a plurality of combinations of the economizer 4, the condenser 2, or the storage container. Further, when the operating point enters the second set operating range II, the refrigerant temporarily stored in one or a combination of the economizer 4, the condenser 2, or the storage container [400 kg−350 kg = 50 kg]. ] Is returned to the evaporator 3.

図5に示す相関グラフから、冷却水入口温度12℃を一般化して「所定の低冷却水入口温度」と表現し、冷却水入口温度32℃を一般化して「所定の定格冷却水入口温度」と表現すれば、制御装置10による制御は、以下のように定義できる。
所定の低冷却水入口温度において前記2つの冷媒充填量W1,W2における、蒸発器3の低負荷率から定格負荷率までのLTDのグラフの交点における冷凍負荷率、またはグラフが交差しない場合は、前記第2冷媒充填量W2における所定の定格冷凍負荷率(100%)を低温側冷凍負荷率(図4の点Bの冷凍負荷率)として求め、前記第2冷媒充填量W2における所定の定格冷却水入口温度と所定の低冷却水入口温度のそれぞれについて、冷凍負荷率と、蒸発器3と凝縮器2との差圧との関係を表わすグラフ1,2を求め、前記定格冷却水入口温度について求められたグラフ1上の前記冷凍負荷率設定値に対応する点A(図5参照)を決定し、前記低冷却水入口温度について求められたグラフ2上の前記低温側冷凍負荷率に対応する点B(図5参照)を決定し、前記点Aと前記点Bとを結んだ直線または該直線に近似する近似曲線により仕切られる第1設定運転範囲Iと第2設定運転範囲IIを求め、前記冷凍負荷率算出値および蒸発器3と凝縮器2間の差圧により定まる運転点が前記第1設定運転範囲Iまたは前記第2設定運転範囲IIのいずれかにあるかに応じて、制御弁6からなる第1流量制御手段および/または制御弁7からなる第2流量制御手段により蒸発器3の冷媒保有量を制御する。
前記点Aと前記点Bを直線で結んだ場合は、制御を簡易的に行うことができ、前記点Aと前記点Bを近似曲線にて結ぶ場合は、各冷却水温度における低負荷率から定格負荷率までの蒸発器と凝縮器との差圧の関係を複数取得し、前記点Aと前記点B間で直線近似を行い曲線を作成することでより正確な設定運転範囲を求めることができる。さらに、点線の定格設定運転範囲に対し、点Aと点Bを結んだ直線または近似曲線を延長した線が、許容される全運転範囲(実線で示す)に交差する点A’及び点B’を求め、点A’及び点B’に基づいて第1設定運転範囲I及び第2設定運転範囲IIを補正してもよい。
From the correlation graph shown in FIG. 5, the cooling water inlet temperature 12 ° C. is generalized to be expressed as “predetermined low cooling water inlet temperature”, and the cooling water inlet temperature 32 ° C. is generalized to “predetermined rated cooling water inlet temperature”. In other words, the control by the control device 10 can be defined as follows.
When the cooling load rate at the intersection of the graphs of the LTD from the low load factor of the evaporator 3 to the rated load factor at the two refrigerant charging amounts W1 and W2 at a predetermined low cooling water inlet temperature, or when the graph does not intersect, A predetermined rated refrigeration load factor (100%) at the second refrigerant charge amount W2 is obtained as a low temperature side refrigeration load factor (refrigeration load factor at point B in FIG. 4), and a predetermined rated cooling at the second refrigerant charge amount W2 is obtained. For each of the water inlet temperature and the predetermined low cooling water inlet temperature, graphs 1 and 2 representing the relationship between the refrigeration load factor and the differential pressure between the evaporator 3 and the condenser 2 are obtained. A point A (see FIG. 5) corresponding to the refrigeration load factor set value on the obtained graph 1 is determined, and the low temperature side refrigeration load factor on the graph 2 obtained for the low cooling water inlet temperature is determined. Point B ( 5), a first set operating range I and a second set operating range II divided by a straight line connecting the point A and the point B or an approximate curve approximating the straight line are obtained, and the refrigeration load factor is determined. Depending on whether the operating point determined by the calculated value and the differential pressure between the evaporator 3 and the condenser 2 is in the first set operating range I or the second set operating range II, a second control valve 6 is provided. The refrigerant holding amount of the evaporator 3 is controlled by the second flow rate control means including the 1 flow rate control means and / or the control valve 7.
When the point A and the point B are connected by a straight line, the control can be easily performed. When the point A and the point B are connected by an approximate curve, the low load factor at each cooling water temperature is used. A more accurate setting operation range can be obtained by acquiring a plurality of pressure differential relationships between the evaporator and the condenser up to the rated load factor, and performing a linear approximation between the point A and the point B to create a curve. it can. Further, a point A ′ and a point B ′ where a straight line connecting point A and point B or a line obtained by extending an approximate curve intersects the entire allowable operating range (shown by a solid line) with respect to the rated setting operating range of the dotted line. And the first set operation range I and the second set operation range II may be corrected based on the points A ′ and B ′.

次に、冷媒貯留の制御方法すなわち蒸発器の冷媒保有量の制御方法について説明する。
蒸発器3の2種類の冷媒保有量の差分を一時的に貯留する部分には、制御対象となる下位液面と上位液面の検出が可能な液面検出手段を設け、貯留部分の下流側には、流量制御手段を設け、貯留部分の液面を制御する。その制御対象となる上位液面と下位液面による差分が、蒸発器3の前記2種類の冷媒保有量の差分になるように、予め、設計および実験により上位液面位置および下位液面位置を定めておく。
i)貯留する部分:凝縮器2または エコノマイザ4または貯留容器である。
ii)液面検出手段:液面計、リミットスイッチ、フロートスイッチ等である。
iii)流量制御手段:電動弁または電動弁とオリフィスの組み合わせ等である。
蒸発器3の冷媒保有量を図3に示すA点のみで制御する場合は、以下のように制御する。
運転中の冷凍負荷率>A点の冷凍負荷率の場合には、貯留部分の下流側の流量制御手段により、貯留部分の液面が上位液面位置になるように、流量制御を行う。
運転中の冷凍負荷率≦A点の冷凍負荷率の場合には、貯留部分の下流側の流量制御手段により、貯留部分の液面が下位液面位置になるように、流量制御を行う。
なお、A点付近で連続負荷変動等により、制御対象液面が上位と下位との間で頻繁に切り替わる場合の対策として、下記の方法等が考えられる。
i)所定時間による制御方法:制御対象液面が切り替わってから一定の時間内では、制御対象液面の切替を行わない。
ii)不感帯による制御方法:A点の冷凍負荷率を中心に、上下に、不感帯を設けて制御する。
Next, a method for controlling refrigerant storage, that is, a method for controlling the amount of refrigerant retained in the evaporator will be described.
The part of the evaporator 3 that temporarily stores the difference between the two refrigerant holding amounts is provided with liquid level detection means capable of detecting the lower liquid level and the upper liquid level to be controlled, and downstream of the storage part. Is provided with a flow rate control means to control the liquid level of the storage portion. The upper liquid level position and the lower liquid level position are previously determined by design and experiment so that the difference between the upper liquid level and the lower liquid level to be controlled becomes the difference between the two kinds of refrigerant holding amounts of the evaporator 3. Set it up.
i) Part to be stored: condenser 2 or economizer 4 or storage container.
ii) Liquid level detection means: liquid level gauge, limit switch, float switch, etc.
iii) Flow rate control means: an electric valve or a combination of an electric valve and an orifice.
When controlling the refrigerant holding amount of the evaporator 3 only at the point A shown in FIG. 3, the control is performed as follows.
When the refrigeration load factor during operation> the refrigeration load factor at point A, the flow rate control is performed by the flow rate control means on the downstream side of the storage portion so that the liquid level of the storage portion becomes the upper liquid level position.
When the refrigeration load factor during operation is refrigeration load factor of point A, the flow rate control is performed by the flow rate control means on the downstream side of the storage portion so that the liquid level of the storage portion is at the lower liquid level position.
In addition, the following method etc. can be considered as a countermeasure when the liquid surface to be controlled is frequently switched between the upper level and the lower level due to a continuous load fluctuation or the like near point A.
i) Control method by a predetermined time: The control target liquid level is not switched within a certain time after the control target liquid level is switched.
ii) Control method by dead zone: Control is performed by providing a dead zone above and below the refrigeration load factor at point A.

上記冷媒貯留の制御方法すなわち蒸発器の冷媒保有量の制御方法を整理すると、以下のように定義できる。
第1流量制御手段および/または前記第2流量制御手段の上流側に設けられた冷媒液を貯留可能な空間に設けられた液面検出手段と、前記液面検出手段には、所定の上側液位及び下側液位が設定され、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値(図3に示すA点での冷凍負荷率)よりも大きい場合は、前記空間内の冷媒液の液面が前記上側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御し、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値よりも小さい場合は、前記空間内の冷媒液の液面が前記下側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御する。
When the control method of the refrigerant storage, that is, the control method of the refrigerant holding amount of the evaporator is arranged, it can be defined as follows.
The liquid level detection means provided in the space capable of storing the refrigerant liquid provided upstream of the first flow rate control means and / or the second flow rate control means, and the liquid level detection means include a predetermined upper liquid level. When the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means is larger than the refrigeration load factor setting value (refrigeration load factor at point A shown in FIG. 3), The refrigeration load factor calculation value calculated by the refrigeration load factor calculation means by controlling the first flow rate control means and / or the second flow rate control means so that the liquid level of the refrigerant liquid in the space becomes the upper liquid level. Is smaller than the set value of the refrigeration load factor, the first flow rate control means and / or the second flow rate control means are controlled so that the liquid level of the refrigerant liquid in the space becomes the lower liquid level.

次に、蒸発器の冷媒保有量の差分の全量又は差分の一部を貯留する貯留容器を設けた実施形態を図7乃至図10を参照して説明する。
図7は、前記蒸発器の冷媒保有量の差分の全量を貯留する貯留容器を設けた実施形態を示す模式図である。図7に示すように、エコノマイザ4と蒸発器3との間に第1貯留容器11が設置され、凝縮器2とエコノマイザ4との間に第2貯留容器12が設置されている。第1貯留容器11と蒸発器3とを接続する冷媒配管5には、第1流量制御手段を構成する制御弁6が設けられている。また、第2貯留容器12とエコノマイザ4とを接続する冷媒配管5には、第2流量制御手段を構成する制御弁7が設けられている。
Next, an embodiment in which a storage container that stores the entire difference in the refrigerant holding amount of the evaporator or a part of the difference is provided will be described with reference to FIGS.
FIG. 7 is a schematic diagram showing an embodiment in which a storage container for storing the entire difference in the refrigerant holding amount of the evaporator is provided. As shown in FIG. 7, the first storage container 11 is installed between the economizer 4 and the evaporator 3, and the second storage container 12 is installed between the condenser 2 and the economizer 4. The refrigerant pipe 5 that connects the first storage container 11 and the evaporator 3 is provided with a control valve 6 that constitutes a first flow rate control means. The refrigerant pipe 5 that connects the second storage container 12 and the economizer 4 is provided with a control valve 7 that constitutes a second flow rate control means.

第1貯留容器11には、第1貯留容器11内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段13が設けられている。また、第2貯留容器12には、第2貯留容器12内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段14が設けられている。制御弁6、制御弁7、液面検出手段13および液面検出手段14は、それぞれ制御装置10に接続されている。   The first storage container 11 is provided with a liquid level detection means 13 including a liquid level gauge, a limit switch, a float switch, or the like that detects the liquid level of the refrigerant liquid stored in the first storage container 11. Further, the second storage container 12 is provided with a liquid level detection means 14 including a liquid level gauge, a limit switch, a float switch, or the like that detects the liquid level of the refrigerant liquid stored in the second storage container 12. . The control valve 6, the control valve 7, the liquid level detection means 13 and the liquid level detection means 14 are each connected to the control device 10.

図7に示すように構成された圧縮式冷凍機によれば、第1貯留容器11と第2貯留容器12に蒸発器3の冷媒保有量の差分の全量を貯留することにより、エコノマイザ4と凝縮器2とをコンパクトにすることができる。なお、第1貯留容器11と第2貯留容器12に蒸発器3の冷媒保有量の差分の一部を貯留し、凝縮器2やエコノマイザ4に残部を貯留することもできる。   According to the compression refrigerator configured as shown in FIG. 7, the entire amount of the difference in the refrigerant holding amount of the evaporator 3 is stored in the first storage container 11 and the second storage container 12, thereby condensing with the economizer 4. The container 2 can be made compact. A part of the difference in the refrigerant holding amount of the evaporator 3 can be stored in the first storage container 11 and the second storage container 12, and the remainder can be stored in the condenser 2 or the economizer 4.

図8は、前記蒸発器の冷媒保有量の差分の一部を貯留する貯留容器を設けた実施形態を示す模式図である。図8に示すように、凝縮器2とエコノマイザ4との間に貯留容器15が設置されている。エコノマイザ4と蒸発器3とを接続する冷媒配管5には、第1流量制御手段を構成する制御弁6が設けられている。また、貯留容器15とエコノマイザ4とを接続する冷媒配管5には、第2流量制御手段を構成する制御弁7が設けられている。
貯留容器15には、貯留容器15内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段16が設けられている。制御弁6、制御弁7、液面検出手段16は、それぞれ制御装置10に接続されている。
FIG. 8 is a schematic view showing an embodiment in which a storage container for storing a part of the difference in the refrigerant holding amount of the evaporator is provided. As shown in FIG. 8, a storage container 15 is installed between the condenser 2 and the economizer 4. The refrigerant pipe 5 that connects the economizer 4 and the evaporator 3 is provided with a control valve 6 that constitutes a first flow rate control means. The refrigerant pipe 5 that connects the storage container 15 and the economizer 4 is provided with a control valve 7 that constitutes a second flow rate control means.
The storage container 15 is provided with a liquid level detection means 16 including a liquid level gauge, a limit switch, a float switch, or the like that detects the liquid level of the refrigerant liquid stored in the storage container 15. The control valve 6, the control valve 7, and the liquid level detection means 16 are each connected to the control device 10.

図8に示すように構成された圧縮式冷凍機によれば、蒸発器3の冷媒保有量の差分を貯留容器15とエコノマイザ4に分けて貯留することにより、凝縮器2をコンパクトにすることができる。この場合、エコノマイザ4の液面制御が必要となり、エコノマイザ4に液面検出手段(点線で図示)を設ける。また、図8に示す構成において、蒸発器3の冷媒保有量の差分を貯留容器15のみに貯留することもできる。その場合には、エコノマイザ4に液面検出手段を設けなくてもよい。   According to the compression type refrigerator configured as shown in FIG. 8, the condenser 2 can be made compact by dividing and storing the difference in the refrigerant holding amount of the evaporator 3 into the storage container 15 and the economizer 4. it can. In this case, the liquid level control of the economizer 4 is necessary, and the economizer 4 is provided with a liquid level detecting means (illustrated by a dotted line). Further, in the configuration shown in FIG. 8, the difference in the refrigerant holding amount of the evaporator 3 can be stored only in the storage container 15. In that case, the economizer 4 need not be provided with a liquid level detecting means.

図9は、前記蒸発器の冷媒保有量の差分の一部を貯留する貯留容器を設けた別の実施形態を示す模式図である。図9に示すように、エコノマイザ4と蒸発器3との間に貯留容器17が設置されている。貯留容器17と蒸発器3とを接続する冷媒配管5には、第1流量制御手段を構成する制御弁6が設けられている。また、凝縮器2とエコノマイザ4とを接続する冷媒配管5には、第2流量制御手段を構成する制御弁7が設けられている。
貯留容器17には、貯留容器17内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段18が設けられている。制御弁6、制御弁7、液面検出手段18は、それぞれ制御装置10に接続されている。
FIG. 9 is a schematic view showing another embodiment in which a storage container for storing a part of the difference in the refrigerant holding amount of the evaporator is provided. As shown in FIG. 9, a storage container 17 is installed between the economizer 4 and the evaporator 3. The refrigerant pipe 5 that connects the storage container 17 and the evaporator 3 is provided with a control valve 6 that constitutes a first flow rate control means. The refrigerant pipe 5 that connects the condenser 2 and the economizer 4 is provided with a control valve 7 that constitutes a second flow rate control means.
The storage container 17 is provided with a liquid level detection means 18 including a liquid level gauge, a limit switch, a float switch, or the like that detects the liquid level of the refrigerant liquid stored in the storage container 17. The control valve 6, the control valve 7, and the liquid level detection means 18 are each connected to the control device 10.

図9に示すように構成された圧縮式冷凍機によれば、蒸発器3の冷媒保有量の差分を貯留容器17と凝縮器2に分けて貯留することにより、エコノマイザ4をコンパクトにすることができる。この場合、凝縮器2の液面制御が必要となり、凝縮器2に液面検出手段(点線で図示)を設ける。また、図9に示す構成において、蒸発器3の冷媒保有量の差分を貯留容器17のみに貯留することもできる。その場合には、凝縮器2に液面検出手段を設けなくてもよい。   According to the compression refrigerator configured as shown in FIG. 9, the economizer 4 can be made compact by dividing and storing the difference in the refrigerant holding amount of the evaporator 3 between the storage container 17 and the condenser 2. it can. In this case, it is necessary to control the liquid level of the condenser 2, and the condenser 2 is provided with liquid level detection means (illustrated by a dotted line). Further, in the configuration shown in FIG. 9, the difference in the refrigerant holding amount of the evaporator 3 can be stored only in the storage container 17. In that case, the condenser 2 may not be provided with a liquid level detecting means.

図10は、エコノマイザを備えない圧縮式冷凍機において、前記蒸発器の冷媒保有量の差分を貯留する貯留容器を設けた別の実施形態を示す模式図である。図10に示すように、凝縮器2と蒸発器3との間に貯留容器20が設置されている。貯留容器20と蒸発器3とを接続する冷媒配管5には、第3流量制御手段を構成する制御弁21が設けられている。
貯留容器20には、貯留容器20内に貯留された冷媒液の液面を検出する液面計またはリミットスイッチまたはフロートスイッチ等からなる液面検出手段22が設けられている。制御弁21、液面検出手段22は、それぞれ制御装置10に接続されている。
FIG. 10 is a schematic diagram showing another embodiment in which a storage container for storing a difference in the amount of refrigerant stored in the evaporator is provided in a compression refrigerator that does not include an economizer. As shown in FIG. 10, a storage container 20 is installed between the condenser 2 and the evaporator 3. The refrigerant pipe 5 that connects the storage container 20 and the evaporator 3 is provided with a control valve 21 that constitutes a third flow rate control means.
The storage container 20 is provided with a liquid level detection means 22 including a liquid level gauge, a limit switch, a float switch, or the like that detects the liquid level of the refrigerant liquid stored in the storage container 20. The control valve 21 and the liquid level detection means 22 are each connected to the control device 10.

図10に示すように構成された圧縮式冷凍機によれば、蒸発器3の冷媒保有量の差分の全量を貯留容器20に貯留することにより、凝縮器2をコンパクトにすることができる。また、図10に示す構成から貯留容器20を削除し、蒸発器3の冷媒保有量の差分を凝縮器2のみに貯留することもできる。その場合には、凝縮器2に液面検出手段を設ける必要がある。
なお、本実施例では、エコノマイザを備えない圧縮式冷凍機において第3流量制御手段により蒸発器3の冷媒保有量を制御する方法について説明したが、上述したエコノマイザを備えた圧縮式冷凍機における他の実施例において、前記第1流量制御手段および/または前記第2流量制御手段による冷媒移送に時間を要する場合、第3流量制御手段によりエコノマイザを経由することなく冷媒を短時間で移送すること構成を用いる事も可能である。
According to the compression type refrigerator configured as shown in FIG. 10, the condenser 2 can be made compact by storing in the storage container 20 the entire difference in the refrigerant holding amount of the evaporator 3. Moreover, the storage container 20 can be deleted from the configuration shown in FIG. 10, and the difference in the refrigerant holding amount of the evaporator 3 can be stored only in the condenser 2. In that case, the condenser 2 needs to be provided with a liquid level detecting means.
In the present embodiment, the method of controlling the refrigerant holding amount of the evaporator 3 by the third flow rate control means in the compression refrigerator that does not include the economizer has been described. However, in the compression refrigerator that includes the economizer described above, In this embodiment, when it takes time to transfer the refrigerant by the first flow rate control means and / or the second flow rate control means, the third flow rate control means transfers the refrigerant in a short time without going through an economizer. It is also possible to use.

図1、図7乃至図10に示すように構成された各実施形態の圧縮式冷凍機における蒸発器3の冷媒保有量の制御方法を整理すると、以下の態様になる。
1)凝縮器2は、下部に蒸発器3の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、第2流量制御手段のみにより蒸発器3の冷媒保有量を制御する(図1に示す実施形態)。
2)エコノマイザ4は、下部に蒸発器3の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、第1流量制御手段のみにより蒸発器3の冷媒保有量を制御する(図1に示す実施形態)。
3)蒸発器3の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な貯留容器17を蒸発器3とエコノマイザ4を接続する配管に設け、第1流量制御手段により蒸発器3の冷媒保有量を制御するか(図9に示す実施形態)、または貯留容器15をエコノマイザ4と凝縮器2を接続する配管に設け、第2流量制御手段により蒸発器3の冷媒保有量を制御する(図8に示す実施形態)。
4)凝縮器2の下部に、蒸発器3の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能なサブクーラを備え、第2流量制御手段のみにより蒸発器3の冷媒保有量を制御する(図1に示す実施形態において、凝縮器2の下部にサブクーラを備えた実施形態(図示せず))。
5)凝縮器2、エコノマイザ4、および蒸発器3とエコノマイザ4を接続する配管に設けられた第1貯留容器11またはエコノマイザ4と凝縮器2を接続する配管に設けられた第2貯留容器12における複数の貯留空間の組み合わせを利用して蒸発器3の冷媒保有量を制御することが可能な所定量の冷媒液を貯留し、第1流量制御手段および/または第2流量制御手段により蒸発器3の冷媒保有量を制御する(図7に示す実施形態)。
6)凝縮器2または凝縮器2の下流側に別途設けられた貯留容器20に蒸発器3の冷媒保有量の差分の冷媒液を貯留し、凝縮器2および貯留容器20のいずれかの貯留部から蒸発器3に直接接続される配管に第3流量制御手段を設け、貯留液を蒸発器3に送る際には、第3流量制御手段により直接送る(図10に示す実施形態)。
The control method of the refrigerant holding amount of the evaporator 3 in the compression refrigerator of each embodiment configured as shown in FIGS. 1 and 7 to 10 is summarized as follows.
1) The condenser 2 has a space capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant retained in the evaporator 3 at the lower portion, and the refrigerant retained in the evaporator 3 only by the second flow rate control means. The amount is controlled (the embodiment shown in FIG. 1).
2) The economizer 4 has a space capable of storing a predetermined amount of refrigerant liquid capable of controlling the refrigerant holding amount of the evaporator 3 at the lower portion, and the refrigerant holding amount of the evaporator 3 only by the first flow rate control means. Is controlled (the embodiment shown in FIG. 1).
3) A storage container 17 capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant stored in the evaporator 3 is provided in a pipe connecting the evaporator 3 and the economizer 4, and the evaporator is controlled by the first flow rate control means. 3 is controlled (the embodiment shown in FIG. 9), or a storage container 15 is provided in a pipe connecting the economizer 4 and the condenser 2, and the refrigerant flow rate of the evaporator 3 is controlled by the second flow rate control means. Control (the embodiment shown in FIG. 8).
4) A subcooler capable of storing a predetermined amount of refrigerant liquid capable of controlling the refrigerant holding amount of the evaporator 3 is provided below the condenser 2, and the refrigerant holding amount of the evaporator 3 only by the second flow rate control means. (In the embodiment shown in FIG. 1, an embodiment (not shown) in which a subcooler is provided below the condenser 2).
5) In the condenser 2, the economizer 4, and the first storage container 11 provided in the pipe connecting the evaporator 3 and the economizer 4 or the second storage container 12 provided in the pipe connecting the economizer 4 and the condenser 2. A predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant retained in the evaporator 3 is stored using a combination of a plurality of storage spaces, and the evaporator 3 is stored by the first flow rate control means and / or the second flow rate control means. Is controlled (the embodiment shown in FIG. 7).
6) The refrigerant | coolant liquid of the difference of the refrigerant | coolant holding amount of the evaporator 3 is stored in the condenser 2 or the storage container 20 separately provided in the downstream of the condenser 2, and the storage part in any one of the condenser 2 and the storage container 20 The third flow rate control means is provided in the pipe directly connected to the evaporator 3, and when the stored liquid is sent to the evaporator 3, it is sent directly by the third flow rate control means (the embodiment shown in FIG. 10).

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 圧縮機
2 凝縮器
3 蒸発器
4 エコノマイザ
5 冷媒配管
6,7,21 制御弁
8,9,13,14,16,18,22 液面検出手段
10 制御装置
11 第1貯留容器
12 第2貯留容器
15,17,20 貯留容器
FE 流量センサ
T1,T2 温度センサ
W1 第1冷媒充填量
W2 第2冷媒充填量
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Evaporator 4 Economizer 5 Refrigerant piping 6, 7, 21 Control valve 8, 9, 13, 14, 16, 18, 22 Liquid level detection means 10 Control apparatus 11 1st storage container 12 2nd storage Container 15, 17, 20 Storage container FE Flow rate sensor T1, T2 Temperature sensor W1 First refrigerant filling amount W2 Second refrigerant filling amount

Claims (12)

蒸発器、圧縮機、凝縮器、エコノマイザを備えた圧縮式冷凍機において、
前記蒸発器と前記エコノマイザを接続する配管に設置された第1流量制御手段と、
前記エコノマイザと前記凝縮器を接続する配管に設置された第2流量制御手段と、
前記第1流量制御手段および/または前記第2流量制御手段の開閉制御を行う制御装置と、
前記圧縮式冷凍機の運転中の冷凍負荷率を算出する冷凍負荷率算出手段とを備え、
前記制御装置は、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値を予め設定された冷凍負荷率設定値と比較し、比較結果に基づいて前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする圧縮式冷凍機。
In a compression refrigerator equipped with an evaporator, compressor, condenser, and economizer,
First flow rate control means installed in a pipe connecting the evaporator and the economizer;
A second flow rate control means installed in a pipe connecting the economizer and the condenser;
A control device that controls opening and closing of the first flow rate control means and / or the second flow rate control means;
Refrigeration load factor calculating means for calculating a refrigeration load factor during operation of the compression refrigerator,
The control device compares the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means with a preset refrigeration load factor setting value, and based on the comparison result, the first flow rate control means and / or the second refrigeration load factor calculation value. A compression type refrigerator that controls the amount of refrigerant in the evaporator by means of flow rate control means.
所定の定格冷却水入口温度における前記圧縮式冷凍機に充填される冷媒充填量として、定格負荷率において蒸発器のLTDが最も小さくなる第1冷媒充填量と、所定の低負荷率において蒸発器の許容LTDを満たす第2冷媒充填量の2つを設定し、前記2つの冷媒充填量における、定格冷却水入口温度での冷凍負荷率とLTDとの関係を表わすグラフを求め、
前記冷凍負荷率設定値は、前記2つの冷媒充填量における、蒸発器の低負荷率から定格負荷率までの蒸発器のLTDのグラフの交点における冷凍負荷率であることを特徴とする請求項1記載の圧縮式冷凍機。
As the refrigerant charge amount that fills the compression refrigerator at a predetermined rated cooling water inlet temperature, the first refrigerant charge amount that minimizes the LTD of the evaporator at the rated load factor, and the evaporator charge amount at the predetermined low load factor. Two of the second refrigerant charge amounts satisfying the allowable LTD are set, and a graph representing the relationship between the refrigeration load factor and the LTD at the rated cooling water inlet temperature in the two refrigerant charge amounts is obtained.
2. The refrigeration load factor set value is a refrigeration load factor at an intersection of an evaporator LTD graph from a low load factor of an evaporator to a rated load factor in the two refrigerant charging amounts. The compression refrigerator as described.
所定の低冷却水入口温度において前記2つの冷媒充填量における、蒸発器の低負荷率から定格負荷率までのLTDのグラフの交点における冷凍負荷率、またはグラフが交差しない場合は、前記第2冷媒充填量における所定の定格冷凍負荷率(100%)を低温側冷凍負荷率として求め、
前記第2冷媒充填量における所定の定格冷却水入口温度と所定の低冷却水入口温度のそれぞれについて、冷凍負荷率と、蒸発器と凝縮器との差圧との関係を表わすグラフを求め、
前記定格冷却水入口温度について求められたグラフ上の前記冷凍負荷率設定値に対応する点Aを決定し、
前記低冷却水入口温度について求められたグラフ上の前記低温側冷凍負荷率に対応する点Bを決定し、
前記点Aと前記点Bとを結んだ直線または該直線に近似する近似曲線により仕切られる第1設定運転範囲と第2設定運転範囲を求め、前記冷凍負荷率算出値および前記蒸発器と前記凝縮器間の差圧により定まる運転点が前記第1設定運転範囲または前記第2設定運転範囲のいずれかにあるかに応じて、前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする請求項2記載の圧縮式冷凍機。
The refrigeration load factor at the intersection of the LTD graphs from the low load factor of the evaporator to the rated load factor at the two refrigerant charging amounts at a predetermined low cooling water inlet temperature, or when the graph does not intersect, the second refrigerant The predetermined rated refrigeration load factor (100%) in the filling amount is obtained as the low temperature side refrigeration load factor,
For each of the predetermined rated cooling water inlet temperature and the predetermined low cooling water inlet temperature in the second refrigerant charge amount, obtain a graph representing the relationship between the refrigeration load factor and the differential pressure between the evaporator and the condenser,
Determining a point A corresponding to the refrigeration load factor set value on the graph obtained for the rated cooling water inlet temperature;
Determining a point B corresponding to the low temperature side refrigeration load factor on the graph obtained for the low cooling water inlet temperature;
A first set operation range and a second set operation range that are partitioned by a straight line connecting the points A and B or an approximate curve that approximates the straight line are obtained, and the refrigeration load factor calculated value, the evaporator, and the condensation are obtained. The first flow rate control means and / or the second flow rate control means according to whether the operating point determined by the pressure difference between the vessels is in the first set operating range or the second set operating range. The compression type refrigerator according to claim 2, wherein the refrigerant holding amount of the evaporator is controlled.
前記点Aと前記点Bを結んだ直線または近似曲線を延長した線が、許容される全運転範囲と交差する点A’及び点B’を求め、該点A’及び点B’に基づいて前記第1設定運転範囲及び前記第2設定運転範囲を補正することを特徴とする請求項3記載の圧縮式冷凍機。   A point A ′ and a point B ′ where a straight line connecting the point A and the point B or a line obtained by extending an approximate curve intersects the entire allowable operating range are obtained, and based on the points A ′ and B ′. The compression refrigerator according to claim 3, wherein the first set operation range and the second set operation range are corrected. 前記第1流量制御手段および/または前記第2流量制御手段の上流側に設けられた冷媒液を貯留可能な空間に設けられた液面検出手段と、
前記液面検出手段には、所定の上側液位及び下側液位が設定され、
前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値よりも大きい場合は、前記空間内の冷媒液の液面が前記上側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御し、
前記冷凍負荷率算出手段で算出した冷凍負荷率算出値が前記冷凍負荷率設定値よりも小さい場合は、前記空間内の冷媒液の液面が前記下側液位となるよう前記第1流量制御手段および/または前記第2流量制御手段を制御することを特徴とする請求項1記載の圧縮式冷凍機。
A liquid level detection means provided in a space capable of storing a refrigerant liquid provided upstream of the first flow rate control means and / or the second flow rate control means;
In the liquid level detection means, a predetermined upper liquid level and a lower liquid level are set,
When the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means is larger than the refrigeration load factor setting value, the first flow rate control means so that the liquid level of the refrigerant liquid in the space becomes the upper liquid level. And / or controlling the second flow rate control means,
When the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means is smaller than the refrigeration load factor setting value, the first flow rate control is performed so that the liquid level of the refrigerant liquid in the space becomes the lower liquid level. 2. The compression refrigerator according to claim 1, wherein the compressor and / or the second flow rate control means are controlled.
前記凝縮器は、下部に前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、前記第2流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の圧縮式冷凍機。   The condenser has a space in a lower part capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant stored in the evaporator, and the amount of refrigerant stored in the evaporator only by the second flow rate control means. The compression type refrigerator according to any one of claims 1 to 4, wherein the compressor is controlled. 前記エコノマイザは、下部に前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な空間を有し、前記第1流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の圧縮式冷凍機。   The economizer has a space in the lower part capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant stored in the evaporator, and the amount of refrigerant stored in the evaporator can be reduced only by the first flow rate control means. It controls, The compression type refrigerator as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned. 前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能な貯留容器を前記蒸発器と前記エコノマイザを接続する配管に設け、前記第1流量制御手段により前記蒸発器の冷媒保有量を制御するか、または前記貯留容器を前記エコノマイザと前記凝縮器を接続する配管に設け、前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の圧縮式冷凍機。   A storage container capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant stored in the evaporator is provided in a pipe connecting the evaporator and the economizer, and the evaporator is controlled by the first flow rate control means. The refrigerant holding amount is controlled, or the storage container is provided in a pipe connecting the economizer and the condenser, and the refrigerant holding amount of the evaporator is controlled by the second flow rate control means. The compression type refrigerator as described in any one of 1 thru | or 4. 前記凝縮器の下部に、前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留可能なサブクーラを備え、前記第2流量制御手段のみにより前記蒸発器の冷媒保有量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の圧縮式冷凍機。   A subcooler capable of storing a predetermined amount of refrigerant liquid capable of controlling the amount of refrigerant retained in the evaporator is provided below the condenser, and the amount of refrigerant retained in the evaporator is reduced only by the second flow rate control means. It controls, The compression type refrigerator as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned. 前記凝縮器、前記エコノマイザ、および前記蒸発器と前記エコノマイザを接続する配管または前記エコノマイザと前記凝縮器を接続する配管に設けられた貯留容器における複数の貯留空間の組み合わせを利用して前記蒸発器の冷媒保有量を制御することが可能な所定量の冷媒液を貯留し、前記第1流量制御手段および/または前記第2流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の圧縮式冷凍機。   The condenser, the economizer, and a pipe connecting the evaporator and the economizer or a combination of a plurality of storage spaces in a storage container provided in the pipe connecting the economizer and the condenser A predetermined amount of refrigerant liquid capable of controlling the refrigerant holding amount is stored, and the refrigerant holding amount of the evaporator is controlled by the first flow rate control means and / or the second flow rate control means. The compression type refrigerator according to any one of claims 1 to 4. 蒸発器、圧縮機、凝縮器を備えた圧縮式冷凍機において、
前記蒸発器と前記凝縮器を接続する配管に設置された流量制御手段と、
前記流量制御手段の開閉制御を行う制御装置と、
前記圧縮式冷凍機の運転中の冷凍負荷率を算出する冷凍負荷率算出手段とを備え、
前記制御装置は、前記冷凍負荷率算出手段で算出した冷凍負荷率算出値を予め設定された冷凍負荷率設定値と比較し、比較結果に基づいて前記流量制御手段により前記蒸発器の冷媒保有量を制御することを特徴とする圧縮式冷凍機。
In a compression refrigerator equipped with an evaporator, a compressor and a condenser,
Flow rate control means installed in a pipe connecting the evaporator and the condenser;
A control device for controlling opening and closing of the flow rate control means;
Refrigeration load factor calculating means for calculating a refrigeration load factor during operation of the compression refrigerator,
The control device compares the refrigeration load factor calculation value calculated by the refrigeration load factor calculation means with a preset refrigeration load factor setting value, and the refrigerant control amount of the evaporator by the flow rate control means based on the comparison result Compressive refrigerator characterized by controlling.
前記蒸発器の水室を流れる冷水の入口温度と出口温度を測定する温度測定手段と、
前記冷水の流量を測定する流量測定手段とを備え、
前記冷凍負荷率算出手段は、前記温度測定手段と前記流量測定手段で得られた測定値に基づいて冷凍負荷率を算出することを特徴とする請求項1乃至11のいずれか一項に記載の圧縮式冷凍機。
Temperature measuring means for measuring an inlet temperature and an outlet temperature of cold water flowing through the water chamber of the evaporator;
Flow rate measuring means for measuring the flow rate of the cold water,
The said refrigeration load factor calculation means calculates a refrigeration load factor based on the measured value obtained by the said temperature measurement means and the said flow rate measurement means, The Claim 1 thru | or 11 characterized by the above-mentioned. Compression refrigerator.
JP2017136307A 2017-07-12 2017-07-12 Compressed refrigerator Active JP6826959B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017136307A JP6826959B2 (en) 2017-07-12 2017-07-12 Compressed refrigerator
CN201810698098.0A CN109253555B (en) 2017-07-12 2018-06-29 Compression type refrigerating machine
CN201821030568.8U CN208779744U (en) 2017-07-12 2018-06-29 Compression refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136307A JP6826959B2 (en) 2017-07-12 2017-07-12 Compressed refrigerator

Publications (2)

Publication Number Publication Date
JP2019019997A true JP2019019997A (en) 2019-02-07
JP6826959B2 JP6826959B2 (en) 2021-02-10

Family

ID=65050767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136307A Active JP6826959B2 (en) 2017-07-12 2017-07-12 Compressed refrigerator

Country Status (2)

Country Link
JP (1) JP6826959B2 (en)
CN (2) CN109253555B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183726A1 (en) * 2021-03-02 2022-09-09 广东美的暖通设备有限公司 Economizer opening temperature determination method and determination device, and air conditioning system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826959B2 (en) * 2017-07-12 2021-02-10 荏原冷熱システム株式会社 Compressed refrigerator
US11768014B2 (en) 2019-07-01 2023-09-26 Carrier Corporation Surge protection for a multistage compressor
KR102292394B1 (en) * 2020-02-25 2021-08-23 엘지전자 주식회사 Apparatus for compressor
CN111735239A (en) * 2020-07-27 2020-10-02 上海海立新能源技术有限公司 Device and method for calibrating refrigerant charge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212040A (en) * 2006-02-09 2007-08-23 Mitsubishi Heavy Ind Ltd Turbo refrigerator and its control method
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same
JP2013194999A (en) * 2012-03-21 2013-09-30 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator and method of controlling the same
US20150354873A1 (en) * 2012-12-21 2015-12-10 Trane International Inc. Refrigerant management in a hvac system
JP2016056966A (en) * 2014-09-05 2016-04-21 三菱重工業株式会社 Turbo refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912382B2 (en) * 2008-10-31 2012-04-11 三菱電機株式会社 Refrigeration air conditioner
JP2014085048A (en) * 2012-10-23 2014-05-12 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP6001997B2 (en) * 2012-10-23 2016-10-05 荏原冷熱システム株式会社 Turbo refrigerator
FR3020130B1 (en) * 2014-04-16 2019-03-22 Valeo Systemes Thermiques FRIGORIGENE FLUID CIRCUIT
WO2017006455A1 (en) * 2015-07-08 2017-01-12 栗田工業株式会社 Method for evaluating cleanliness of coolant line
JP6826959B2 (en) * 2017-07-12 2021-02-10 荏原冷熱システム株式会社 Compressed refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212040A (en) * 2006-02-09 2007-08-23 Mitsubishi Heavy Ind Ltd Turbo refrigerator and its control method
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same
JP2013194999A (en) * 2012-03-21 2013-09-30 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator and method of controlling the same
US20150354873A1 (en) * 2012-12-21 2015-12-10 Trane International Inc. Refrigerant management in a hvac system
JP2016056966A (en) * 2014-09-05 2016-04-21 三菱重工業株式会社 Turbo refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183726A1 (en) * 2021-03-02 2022-09-09 广东美的暖通设备有限公司 Economizer opening temperature determination method and determination device, and air conditioning system

Also Published As

Publication number Publication date
JP6826959B2 (en) 2021-02-10
CN208779744U (en) 2019-04-23
CN109253555A (en) 2019-01-22
CN109253555B (en) 2021-07-20

Similar Documents

Publication Publication Date Title
JP6826959B2 (en) Compressed refrigerator
CN105157266B (en) Operation of refrigerant vapor compression system
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US7526924B2 (en) Refrigerator and air conditioner
CN105102909B (en) System for refrigerant charge verification
US9797640B2 (en) Refrigerating apparatus and corresponding control device
JPWO2017042649A1 (en) Refrigeration cycle equipment
US9453670B2 (en) Control apparatus and method for parallel-type chiller, and computer-readable recording medium in which program for parallel-type chiller is stored
JP2006507471A (en) Expansion valve control
US20190017730A1 (en) Refrigerating machine and control method thereof
US3481151A (en) Refrigerant system employing liquid chilling evaporators
CN104321598A (en) Refrigerating device
CN105716312B (en) The operation method of ultra-low temperature refrigerating device and ultra-low temperature refrigerating device
EP2257749B1 (en) Refrigerating system and method for operating the same
KR19980013707A (en) A refrigerating machine
JP2012117735A (en) Refrigeration equipment
WO2023084127A1 (en) Refrigeration system and method of determining a state of charge of refrigerant therein
JPWO2015111222A1 (en) Refrigeration equipment
JP5789755B2 (en) Refrigeration equipment
JP6157182B2 (en) Refrigeration equipment
JP5756919B2 (en) Refrigeration equipment
US3200605A (en) Refrigeration system including charge checking means
US10228172B2 (en) Refrigerant level monitor for refrigeration system
JP2021529923A (en) Refrigerant vapor compression system
JP6140065B2 (en) Turbo refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250