JP2019018191A - Membrane filtration treatment apparatus and method therefor - Google Patents
Membrane filtration treatment apparatus and method therefor Download PDFInfo
- Publication number
- JP2019018191A JP2019018191A JP2017142114A JP2017142114A JP2019018191A JP 2019018191 A JP2019018191 A JP 2019018191A JP 2017142114 A JP2017142114 A JP 2017142114A JP 2017142114 A JP2017142114 A JP 2017142114A JP 2019018191 A JP2019018191 A JP 2019018191A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- permeation flux
- treated
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005374 membrane filtration Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000012528 membrane Substances 0.000 claims abstract description 138
- 230000004907 flux Effects 0.000 claims abstract description 132
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 127
- 238000000926 separation method Methods 0.000 claims abstract description 74
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims description 45
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 12
- 239000012466 permeate Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 2
- 238000013459 approach Methods 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 turbidity Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、膜ろ過処理装置及び膜ろ過処理方法に関する。 The present invention relates to a membrane filtration treatment apparatus and a membrane filtration treatment method.
膜ろ過処理装置の運転条件は、被処理水や使用する膜の性状等に応じて、膜閉塞が起こりにくくなるように経済性を考慮して設定されているが、従来の膜ろ過処理装置の運転条件は、予備試験やそれまでの経験によって決定されていることが多い。そのため、被処理水の性状が変動する場合には、当初の運転条件の設定値が、被処理水の性状変動後においても最適値であるとは限らず、性状変動に基づいて運転条件の設定値を制御することが困難である。 The operating conditions of the membrane filtration treatment device are set in consideration of economy so that the membrane clogging is less likely to occur depending on the properties of the water to be treated and the membrane to be used. Operating conditions are often determined by preliminary tests and previous experience. For this reason, when the properties of the water to be treated fluctuate, the initial operating condition setting values are not necessarily optimum values even after the properties of the water to be treated have changed, and the operating conditions are set based on the property fluctuations. It is difficult to control the value.
被処理水の性状変動に基づく運転条件の制御方法として例えば、特開2000−61466号公報(特許文献1)には、被処理水を膜モジュールに循環させてろ過処理する際に、被処理水中の汚泥濃度、つまり溶質濃度の大きさに応じて、膜モジュールを通過する被処理排水の膜面流速を変更することにより、膜の目詰まりの防止や透過流束を向上する方法が記載されている。 As a method for controlling operating conditions based on fluctuations in the properties of water to be treated, for example, Japanese Patent Laid-Open No. 2000-61466 (Patent Document 1) discloses that water to be treated is circulated through a membrane module and filtered. The method of preventing clogging of the membrane and improving the permeation flux is described by changing the membrane surface flow rate of the wastewater to be treated that passes through the membrane module according to the sludge concentration, that is, the size of the solute concentration. Yes.
しかしながら、特許文献1に記載された方法は、被処理排水中の汚泥濃度に対して最適な膜面流速を決定する根拠が明確でなく、膜ろ過処理装置の運転条件の設定方法として最適な手法であるとはいえない。 However, in the method described in Patent Document 1, the basis for determining the optimum membrane surface flow velocity with respect to the sludge concentration in the wastewater to be treated is not clear, and the optimum method for setting the operating conditions of the membrane filtration device It cannot be said.
例えば、特許文献1に記載された方法では、汚泥濃度値に対してあらかじめ設定された条件を満足するように、循環ポンプの出力及びバルブの開度が調整されることが記載されている。しかしながら、その制御方法は比較的単純であり、汚泥濃度が高くなるにつれて、膜面流速を大きくするような制御が記載されているだけである。 For example, in the method described in Patent Document 1, it is described that the output of the circulation pump and the opening of the valve are adjusted so as to satisfy the conditions set in advance for the sludge concentration value. However, the control method is relatively simple, and only control that increases the membrane surface flow rate as the sludge concentration increases is described.
膜処理において、透過流束の大きさを決定する因子は、被処理水の溶質濃度の大きさだけではない。そのため、特許文献1に記載された方法では、被処理水の溶質濃度以外の膜透過流束の決定因子が変動した場合に最適な膜面流速の条件を決定することが困難である。 In membrane treatment, the factor that determines the size of the permeation flux is not only the size of the solute concentration of the water to be treated. Therefore, in the method described in Patent Document 1, it is difficult to determine the optimum conditions for the membrane surface flow rate when the determinants of the membrane permeation flux other than the solute concentration of the water to be treated fluctuate.
上記課題を鑑み、本発明は、被処理水の性状変動が生じた場合に、その性状変動に追随して膜の透過流束をより適正な範囲に制御することができ、膜ろ過処理装置の運転条件を最適化することが可能な膜ろ過処理装置及び膜ろ過処理方法を提供する。 In view of the above problems, the present invention can control the permeation flux of the membrane to a more appropriate range following the property variation when the property variation of the water to be treated occurs. A membrane filtration apparatus and a membrane filtration method capable of optimizing operating conditions are provided.
上記目的を達成するために、本発明者が鋭意検討したところ、被処理水の性状変動因子となる複数の実測値の変動に基づいて分離膜の透過流束を予測し、その予測結果に基づいて運転条件を制御することが有効であるとの知見を得た。 In order to achieve the above-mentioned object, the present inventor has intensively studied, and predicts the permeation flux of the separation membrane based on fluctuations of a plurality of actually measured values that are the characteristics variation factors of the water to be treated, and based on the prediction results. It was found that it is effective to control the operating conditions.
以上の知見を基礎として完成した本発明は一側面において、分離膜を透過する被処理水の性状変動因子となる複数の実測値を用いて演算された分離膜の透過流束予測値に基づいて、分離膜の膜間差圧及び膜面流速の少なくとも一方を制御する制御手段を備える膜ろ過処理装置が提供される。 The present invention completed on the basis of the above knowledge is based on the permeation flux predicted value of the separation membrane calculated using a plurality of actual measurement values that are the property variation factors of the treated water that permeates the separation membrane. There is provided a membrane filtration apparatus comprising a control means for controlling at least one of a transmembrane differential pressure and a membrane surface flow velocity of a separation membrane.
本発明に係る膜ろ過処理装置は一実施態様において、複数の実測値が、被処理水の温度、溶質濃度、及び膜面流速の実測値を含む。 In one embodiment of the membrane filtration apparatus according to the present invention, the plurality of actual measured values include actual measured values of the temperature of the water to be treated, the solute concentration, and the membrane surface flow velocity.
本発明は別の一側面において、被処理水の供給を受けて膜透過水及び排出水を得る分離膜と、分離膜の被処理水の供給側に設けられたポンプと、分離膜の排出水を得る排出側に設けられたバルブと、分離膜を透過する前の被処理水、膜透過水及び排出水の圧力をそれぞれ検出する圧力検出手段と、分離膜を透過する前の被処理水、透過水の流速又は流量をそれぞれ検出する流速・流量検出手段と、分離膜を透過する前の被処理水の温度を検出する温度検出手段と、分離膜を透過する前の被処理水の溶質濃度を検出する濃度検出手段と、圧力検出手段、流速・流量検出手段、温度検出手段、濃度検出手段の検出結果から演算された分離膜の透過流束予測値に基づいて、分離膜の膜間差圧及び膜面流速の少なくとも一方を制御するように、ポンプの駆動及びバルブの開度の少なくとも一方の制御を行う制御手段とを備える膜ろ過処理装置が提供される。 In another aspect of the present invention, a separation membrane that receives supply of treated water to obtain membrane permeated water and discharged water, a pump provided on the treated water supply side of the separation membrane, and discharged water from the separation membrane A valve provided on the discharge side for obtaining water, pressure detection means for detecting the pressure of the water to be treated before permeating the separation membrane, the pressure of the membrane permeated water and the discharged water, and the water to be treated before permeating the separation membrane, Flow rate / flow rate detection means for detecting the flow rate or flow rate of the permeated water, temperature detection means for detecting the temperature of the water to be treated before permeating the separation membrane, and solute concentration of the water to be treated before permeating the separation membrane The concentration detection means for detecting the pressure difference, the pressure detection means, the flow velocity / flow rate detection means, the temperature detection means, and the permeation difference between the separation membranes based on the predicted permeation flux of the separation membrane calculated from the detection results of the concentration detection means Pump to control at least one of pressure and membrane surface flow velocity Driving and membrane filtration treatment apparatus and a control means for performing at least one control opening of the valve is provided.
本発明に係る膜ろ過処理装置は一実施態様において、透過流束予測値が、分離膜の限界透過流束である。 In one embodiment of the membrane filtration apparatus according to the present invention, the predicted permeation flux is the limiting permeation flux of the separation membrane.
本発明に係る膜ろ過処理装置は別の一実施態様において、制御手段が、透過流束予測値と分離膜の透過流束の実測値とを比較し、透過流束予測値が実測値よりも大きい場合には、膜間差圧を上げるように制御し、透過流束予測値が実測値と等しい場合には、膜間差圧を下げるように制御する。 In another embodiment of the membrane filtration apparatus according to the present invention, the control means compares the permeation flux predicted value with the actual measurement value of the permeation flux of the separation membrane, and the permeation flux predicted value is smaller than the actual measurement value. If it is larger, control is performed to increase the transmembrane pressure difference, and if the permeation flux predicted value is equal to the actual measurement value, control is performed to decrease the transmembrane pressure difference.
本発明に係る膜ろ過処理装置は更に別の一実施態様において、制御手段が、透過流束予測値と分離膜の透過流束の目標値とを比較し、透過流束予測値が目標値以上の場合には膜面流速を下げるように制御し、透過流束予測値が目標値より小さい場合には、膜面流速を上げるように制御する。 In yet another embodiment of the membrane filtration apparatus according to the present invention, the control means compares the permeation flux predicted value with the target value of the permeation flux of the separation membrane, and the permeation flux predicted value is equal to or greater than the target value. In this case, the membrane surface flow velocity is controlled to be lowered, and when the permeation flux prediction value is smaller than the target value, the membrane surface flow velocity is controlled to be increased.
本発明に係る膜ろ過処理装置は更に別の一実施態様において、制御手段が、分離膜の透過流束予測値を、以下の関係式(1)に基づいて演算する。
Jlim=Jlim0×ln(Cg/C)/ln(Cg/C0)×exp(E/T0)×exp(E/T)×(v/v0)n×exp(−Q/T)/exp(−Q/T0)・・・(1)
(ここでJlimは限界透過流束、Jlim0は基準点における分離膜の限界透過流束、Cgはゲル層の溶質濃度、Cは被処理水の溶質濃度の実測値、C0は基準点における被処理水の溶質濃度、E、Qは係数、T0は基準点における被処理水の温度、Tは被処理水の温度の実測値、vは膜面流速の実測値、v0は基準点における膜面流速の実測値を示す。)
In yet another embodiment of the membrane filtration apparatus according to the present invention, the control means calculates the permeation flux predicted value of the separation membrane based on the following relational expression (1).
J lim = J lim0 × ln ( C g / C) / ln (C g / C 0) × exp (E / T 0) × exp (E / T) × (v / v 0) n × exp (-Q / T) / exp (-Q / T 0 ) (1)
(Where J lim is the limit permeation flux, J lim0 is the limit permeation flux of the separation membrane at the reference point, C g is the solute concentration of the gel layer, C is the measured value of the solute concentration of the treated water, and C 0 is the reference The solute concentration of the water to be treated at the point, E and Q are coefficients, T 0 is the temperature of the water to be treated at the reference point, T is the measured value of the temperature of the treated water, v is the measured value of the membrane surface velocity, and v 0 is (The actual measured value of the flow velocity at the reference point is shown.)
本発明に係る膜ろ過処理装置は更に別の一実施態様において、被処理水が含油廃液を含む。 In yet another embodiment of the membrane filtration apparatus according to the present invention, the water to be treated contains an oil-containing waste liquid.
本発明は更に別の一側面において、分離膜を透過する被処理水の性状変動因子となる複数の実測値を用いて分離膜の透過流束予測値を演算し、透過流束予測値の演算結果に基づいて分離膜の膜間差圧及び膜面流速の少なくとも一方を制御することを含む膜ろ過処理方法が提供される。 In yet another aspect of the present invention, the permeation flux prediction value of the separation membrane is calculated using a plurality of actual measurement values that are the property variation factors of the water to be treated that permeates the separation membrane, and the permeation flux prediction value is calculated. There is provided a membrane filtration treatment method including controlling at least one of a transmembrane differential pressure and a membrane surface flow velocity of a separation membrane based on a result.
本発明によれば、被処理水の性状変動が生じた場合に、その性状変動に追随して膜の透過流束をより適正な範囲に制御することができ、膜ろ過処理装置の運転条件を最適化することが可能な膜ろ過処理装置及び膜ろ過処理方法が提供できる。 According to the present invention, when the property variation of the water to be treated occurs, the permeation flux of the membrane can be controlled to a more appropriate range following the property variation, and the operating conditions of the membrane filtration treatment device can be controlled. A membrane filtration apparatus and a membrane filtration method that can be optimized can be provided.
以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is to describe the structure, arrangement, etc. of components as follows. It is not something specific.
本発明の実施の形態に係る膜ろ過処理装置は、図1に示すように、被処理水を貯蔵する原水槽1と、被処理水を膜ろ過処理する分離膜を備える膜ろ過手段2と、原水槽1から膜ろ過手段2に被処理水を供給するポンプ3と、膜ろ過手段2の排出側に設けられ、ろ過手段2で得られる排出水を原水槽1へ循環させる循環ラインL3に設けられたバルブ4と、ポンプ3の駆動及びバルブ4の開度の少なくとも一方の制御が可能な制御手段5とを備える。 As shown in FIG. 1, a membrane filtration apparatus according to an embodiment of the present invention includes a raw water tank 1 for storing treated water, a membrane filtration means 2 including a separation membrane for membrane-treating treated water, A pump 3 for supplying treated water from the raw water tank 1 to the membrane filtration means 2 and a circulation line L3 provided on the discharge side of the membrane filtration means 2 for circulating the drain water obtained by the filtration means 2 to the raw water tank 1 And a control means 5 capable of controlling at least one of the driving of the pump 3 and the opening degree of the valve 4.
原水槽1に収容される被処理水の種類は特に限定されない。被処理水としては、溶解性有機物や濁質、油分などの汚染物を含む流体が用いられる。例えば、下水の二次処理水、水産加工業、自動車製造業、石油精製業、乳製品製造業、飲料製造業、金属加工業等に関する工場などから排出される含油廃液や、地下水、用水、海水、汽水、廃棄物の最終処分場から発生する浸出水などが、本実施形態に係る被処理水として利用可能である。 The kind of the to-be-processed water accommodated in the raw water tank 1 is not specifically limited. As the water to be treated, a fluid containing contaminants such as soluble organic matter, turbidity, and oil is used. For example, oil-containing wastewater discharged from factories related to secondary sewage treatment, marine products processing, automobile manufacturing, petroleum refining, dairy manufacturing, beverage manufacturing, metal processing, etc., groundwater, water, seawater The brackish water, leachate generated from the final disposal site for waste, and the like can be used as the water to be treated according to this embodiment.
膜ろ過手段2は、被処理水の供給を受けて膜透過水及び排出水を得る分離膜を備える。分離膜の種類は特に限定されず、限外ろ過膜、精密ろ過膜、ナノろ過膜等の種々の膜を用いることができる。膜ろ過手段2で得られた膜透過水は、膜ろ過手段2に接続された供給ラインL2を介して分離される。膜ろ過手段2で得られた排出水は、循環ラインL3を介して排出されるとともにその一部が原水槽1へ循環される。 The membrane filtration means 2 includes a separation membrane that receives membrane water to obtain membrane permeated water and discharged water. The type of the separation membrane is not particularly limited, and various membranes such as an ultrafiltration membrane, a microfiltration membrane, and a nanofiltration membrane can be used. The membrane permeated water obtained by the membrane filtration means 2 is separated through a supply line L2 connected to the membrane filtration means 2. The discharged water obtained by the membrane filtration means 2 is discharged through the circulation line L3 and a part thereof is circulated to the raw water tank 1.
ポンプ3は、膜ろ過手段2へ被処理水を供給する被処理水の供給側、即ち、原水槽1から膜ろ過手段2へ被処理水を供給する供給ラインL1に設けられている。供給ラインL1には、分離膜を透過する前の被処理水の溶質濃度を検出する濃度検出手段11と、分離膜を透過する前の被処理水の温度を検出する温度検出手段12と、分離膜を透過する前の被処理水の流速又流量をそれぞれ検出する流速・流量検出手段13と、分離膜を透過する前の被処理水の圧力を検出する圧力検出手段14が設けられている。 The pump 3 is provided on the supply side of the treated water for supplying the treated water to the membrane filtration means 2, that is, on the supply line L 1 for supplying the treated water from the raw water tank 1 to the membrane filtration means 2. The supply line L1 has a concentration detection means 11 for detecting the solute concentration of the water to be treated before permeating the separation membrane, a temperature detection means 12 for detecting the temperature of the water to be treated before permeating the separation membrane, and a separation. A flow rate / flow rate detection means 13 for detecting the flow rate or flow rate of the water to be treated before permeating the membrane and a pressure detection means 14 for detecting the pressure of the water to be treated before permeating the separation membrane are provided.
供給ラインL2には、膜透過水の流速又流量を検出する流速・流量検出手段23と、膜透過水の圧力を検出する圧力検出手段24とが設けられている。循環ラインL3には、排出水の圧力を検出する圧力検出手段34が設けられている。濃度検出手段11、温度検出手段12、流速・流量検出手段13、23、圧力検出手段14、24、34の検出結果は、膜ろ過処理装置の実測値として制御手段5へ出力される。 The supply line L2 is provided with a flow rate / flow rate detecting means 23 for detecting the flow rate or flow rate of the membrane permeated water and a pressure detecting means 24 for detecting the pressure of the membrane permeated water. The circulation line L3 is provided with pressure detecting means 34 for detecting the pressure of the discharged water. The detection results of the concentration detection means 11, the temperature detection means 12, the flow velocity / flow rate detection means 13, 23, and the pressure detection means 14, 24, 34 are output to the control means 5 as actual measured values of the membrane filtration apparatus.
制御手段5は、分離膜を透過する被処理水の性状変動因子となる複数の実測値、即ち、本実施形態では、被処理水の温度、溶質濃度、及び膜面流速の実測値を少なくとも用いて分離膜の透過流束予測値を演算し、透過流束予測値の演算結果に基づいて、分離膜の膜間差圧及び膜面流速の少なくとも一方を制御する。制御手段5としては、図示しない演算処理部と記憶装置を少なくとも備え、所定の制御アルゴリズムに基づいて所定の動作指令を送出する汎用又は専用の計算機が利用可能である。 The control means 5 uses at least a plurality of actually measured values that are characteristics variation factors of the treated water that permeates the separation membrane, that is, measured values of the temperature, solute concentration, and membrane surface flow velocity of the treated water in this embodiment. Then, the permeation flux predicted value of the separation membrane is calculated, and at least one of the transmembrane differential pressure and the membrane surface flow velocity of the separation membrane is controlled based on the calculation result of the permeation flux prediction value. As the control means 5, a general-purpose or dedicated computer that includes at least an arithmetic processing unit and a storage device (not shown) and sends a predetermined operation command based on a predetermined control algorithm can be used.
具体的には、制御手段5は、圧力検出手段14、24、34、流速・流量検出手段13、23、温度検出手段12、濃度検出手段11の検出結果から、分離膜の透過流束予測値を演算し、透過流束予測値の演算結果に基づいて、分離膜の膜間差圧及び膜面流速の少なくとも一方を制御するように、ポンプ3の駆動及びバルブ4の開度の少なくとも一方の制御を行う。 Specifically, the control means 5 determines the permeation flux predicted value of the separation membrane from the detection results of the pressure detection means 14, 24, 34, the flow velocity / flow rate detection means 13, 23, the temperature detection means 12, and the concentration detection means 11. And at least one of the driving of the pump 3 and the opening of the valve 4 so as to control at least one of the transmembrane differential pressure and the membrane surface flow velocity of the separation membrane based on the calculation result of the permeation flux prediction value. Take control.
膜ろ過処理では、図2に示すように、膜間差圧ΔPの上昇に比例して透過流束Jが徐々に増加していくが、ある程度以上に膜間差圧ΔPを上昇させると、透過流束Jがある一定値に収束していく。これは、図3に示すように、被処理水中の溶質が膜面近傍に溜まることで、膜表面に被処理水中の溶質濃度の数十〜数百倍程度となるゲル層が生じ、ゲル層の抵抗が膜間差圧ΔPに比例して増加するようになるためである。 In the membrane filtration process, as shown in FIG. 2, the permeation flux J gradually increases in proportion to the increase in the transmembrane pressure difference ΔP. The flux J converges to a certain value. This is because, as shown in FIG. 3, the solute in the water to be treated accumulates in the vicinity of the film surface, so that a gel layer having a concentration of several tens to several hundreds of the solute concentration in the water to be treated is generated on the film surface. This is because the resistance increases in proportion to the transmembrane pressure ΔP.
ゲル層における物質収支より、以下の式(2)が成り立つ。
J×C−D×dC/dx=JCp・・・(2)
(ここで、J:透過流束、C:被処理水の溶質濃度、D:溶質拡散係数、Cp:膜透過水の溶質濃度である。)
From the mass balance in the gel layer, the following equation (2) is established.
J * CD * dC / dx = JCp (2)
(Where J is the permeation flux, C is the solute concentration of the water to be treated, D is the solute diffusion coefficient, and Cp is the solute concentration of the permeated water.)
ゲル層の溶質濃度をCg、膜透過水の溶質濃度Cp=0とし、式(2)を積分すると、透過流束Jについて、式(3)が得られる。
J=k×ln(Cg/C)・・・(3)
(ここで、k:物質移動係数(=溶質拡散係数D/境膜厚さδ)である。)
When the solute concentration of the gel layer is Cg, the solute concentration of membrane permeated water Cp = 0, and the equation (2) is integrated, the equation (3) is obtained for the permeation flux J.
J = k × ln (Cg / C) (3)
(Where k is the mass transfer coefficient (= solute diffusion coefficient D / boundary film thickness δ))
つまり、上述の透過流束Jがある一定値に収束する現象が生じる際、式(3)が成り立ち、そのときの透過流束のことを「限界透過流束」と呼ぶことができる。限界透過流束となる膜間差圧(以下「限界膜間差圧」という)以下で、膜ろ過処理装置を運転することは、膜処理の経済性を考慮する上で重要である。 That is, when the phenomenon that the above-described permeation flux J converges to a certain value occurs, Equation (3) is established, and the permeation flux at that time can be referred to as “limit permeation flux”. Operating the membrane filtration apparatus below the transmembrane differential pressure (hereinafter referred to as “limit transmembrane differential pressure”), which is the critical permeation flux, is important in considering the economics of membrane treatment.
本実施形態によれば、制御手段5が、透過流束予測値として、分離膜の限界透過流束Jlimを演算する。制御手段5による限界透過流束Jlimの演算結果から、分離膜の透過流束Jが限界透過流束Jlimに近づくように被処理水の性状変動に応じてリアルタイムで運転条件を設定することができるため、膜ろ過手段2の運転条件を常に適正な範囲内に制御することができ、より効率の高い膜ろ過処理を実現することができる。 According to this embodiment, the control means 5 calculates the limiting permeation flux Jlim of the separation membrane as the permeation flux prediction value. Based on the calculation result of the limit permeation flux J lim by the control means 5, the operating conditions are set in real time according to the change in the properties of the treated water so that the permeation flux J of the separation membrane approaches the limit permeation flux J lim Therefore, the operating conditions of the membrane filtration means 2 can always be controlled within an appropriate range, and a more efficient membrane filtration process can be realized.
透過流束Jは、ダルシーの法則より式(4)のように表すことができる。
J=ΔP/μR・・・(4)
(ここで、ΔP:膜間差圧、μ:被処理水の粘度、R:膜ろ過抵抗である。)
The permeation flux J can be expressed as in Equation (4) from Darcy's law.
J = ΔP / μR (4)
(Here, ΔP: transmembrane pressure difference, μ: viscosity of water to be treated, R: membrane filtration resistance.)
アンドレードの式より、被処理水の粘度μは、被処理水の温度Tに依存し、式(5)の関係がある。
μ=A×exp(E/T)・・・(5)
(ここで、A、E:係数、T:被処理水の温度である。)
From the Andrade's equation, the viscosity μ of the water to be treated depends on the temperature T of the water to be treated and has the relationship of the equation (5).
μ = A × exp (E / T) (5)
(Here, A and E are coefficients, and T is the temperature of the water to be treated.)
一方、アレニウスの式より、式(2)の拡散係数Dは、被処理水の温度Tに依存し、式(6)の関係がある。
D=B×exp(−Q/T)・・・(6)
(ここで、B、Q:係数である。)
On the other hand, from the Arrhenius equation, the diffusion coefficient D in the equation (2) depends on the temperature T of the water to be treated and has the relationship of the equation (6).
D = B × exp (−Q / T) (6)
(Here, B and Q are coefficients.)
物質移動係数kは膜面流速vに依存し、流速変化法により、式(7)の関係がある。
k/k0=(v/v0)n・・・(7)
(ここで、v0:基準点における膜面流速、k0:v0における基準物質移動係数、n:係数である。)
The mass transfer coefficient k depends on the membrane surface flow velocity v, and has the relationship of equation (7) by the flow velocity change method.
k / k 0 = (v / v 0 ) n (7)
(Here, v 0: film surface velocity at the reference point, k 0: the reference mass transfer coefficient in the v 0, n: is a coefficient.)
限界透過流束Jlimは、膜間差圧ΔPに依存しないため、式(3)〜(7)により、膜ろ過処理における現時点での限界透過流束Jlimは、式(8)のように表現できる。
Jlim=Jlim0×R0/R×In(Cg/C)/ln(Cg/C0)×exp(E/T0)/exp(E/T)×(v/v0)n×exp(−Q/T)/exp(−Q/T0)・・・(8)
(ここで、C0は基準点における被処理水の溶質濃度、Cgはゲル層の溶質濃度、Cは現時点における被処理水の溶質濃度、T0は基準点における被処理水の温度、Jlim0は基準点における分離膜の限界透過流束をそれぞれ示すものであり、基準点とは過去のある任意の時点の実測値を適宜設定した値を示す。)
Critical flux J lim does not depend on the transmembrane pressure [Delta] P, by the equation (3) to (7), the limit flux J lim at present in the membrane filtration treatment, as in equation (8) Can express.
J lim = J lim0 × R 0 / R × In (C g / C) / ln (C g / C 0) × exp (E / T 0) / exp (E / T) × (v / v 0) n × exp (-Q / T) / exp (-Q / T 0) ··· (8)
(Where C 0 is the solute concentration of the treated water at the reference point, C g is the solute concentration of the gel layer, C is the solute concentration of the treated water at the present time, T 0 is the temperature of the treated water at the reference point, J lim0 indicates the limit permeation flux of the separation membrane at the reference point, and the reference point indicates a value obtained by appropriately setting an actual measurement value at a certain point in time in the past.
基準点、つまり測定の基準となる時から現時点、つまり測定時における膜閉塞が無視できると仮定すると、
R0/R≒1・・・(9)
となる。
Assuming that the membrane occlusion at the current point of time, i.e. the measurement, is negligible from the reference point, i.e.
R 0 / R≈1 (9)
It becomes.
式(9)を用いて式(8)を変形すると、分離膜の限界透過流束Jlimは、以下の関係式(1)に基づいて計算することができる。
Jlim=Jlim0×ln(Cg/C)/ln(Cg/C0)×exp(E/T0)×exp(E/T)×(v/v0)n×exp(−Q/T)/exp(−Q/T0)・・・(1)
(ここで、Jlimは限界透過流束、Jlim0は基準点における分離膜の限界透過流束、Cgはゲル層の溶質濃度、Cは被処理水の溶質濃度の実測値、C0は基準点における被処理水の溶質濃度、E、Qは係数、T0は基準点における被処理水の温度、Tは被処理水の温度の実測値、vは膜面流速の実測値、v0は基準点における膜面流速の実測値を示す。)なお、ゲル層の溶質濃度Cgは、図4に示すように、過去のデータ群についての透過流束を縦軸とし、溶質濃度の自然対数を横軸としたグラフにおける横軸の切片として求められる。
When Expression (8) is transformed using Expression (9), the limiting permeation flux J lim of the separation membrane can be calculated based on the following relational expression (1).
J lim = J lim0 × ln ( C g / C) / ln (C g / C 0) × exp (E / T 0) × exp (E / T) × (v / v 0) n × exp (-Q / T) / exp (-Q / T 0 ) (1)
(Where J lim is the critical permeation flux, J lim0 is the critical permeation flux of the separation membrane at the reference point, C g is the solute concentration of the gel layer, C is the measured value of the solute concentration of the treated water, and C 0 is The solute concentration of the water to be treated at the reference point, E and Q are coefficients, T 0 is the temperature of the water to be treated at the reference point, T is the measured value of the temperature of the treated water, v is the measured value of the membrane surface velocity, and v 0. Indicates the measured value of the membrane surface flow velocity at the reference point.) As shown in FIG. 4, the solute concentration C g of the gel layer is the natural flux of solute concentration with the permeation flux for the past data group as the vertical axis. It is obtained as the intercept of the horizontal axis in the graph with the logarithmic horizontal axis.
制御手段5は、上記の関係式(1)に基づいて分離膜の透過流束予測値として、測定時の限界透過流束Jlimを演算する。即ち、制御手段5は、基準点における被処理水の温度T0、溶質濃度C0、膜面流速v0、限界透過流束Jlim0の値と、圧力検出手段14、24、34、流速・流量検出手段13、23、温度検出手段12、濃度検出手段11が検出した被処理水の温度T、溶質濃度C、膜面流速vの値とを用いて、分離膜の透過流束予測値として、限界透過流束Jlimを演算する。 The control means 5 calculates the limit permeation flux J lim at the time of measurement as the permeation flux predicted value of the separation membrane based on the relational expression (1). That is, the control means 5 includes the temperature T 0 , the solute concentration C 0 , the membrane surface flow velocity v 0 , the limit permeation flux J lim0 , the pressure detection means 14, 24, 34, the flow velocity / Using the values of the temperature T, the solute concentration C, and the membrane surface flow velocity v detected by the flow rate detection means 13 and 23, the temperature detection means 12 and the concentration detection means 11 as the predicted permeation flux of the separation membrane. The critical permeation flux J lim is calculated.
更に制御手段5は、限界透過流束Jlimの演算結果(演算値)と、分離膜の透過流束の実測値Jとを比較する。比較の結果、限界透過流束Jlimが実測値Jよりも大きい場合には、その比較結果、即ち透過流束の差分に応じて、制御手段5は、限界透過流束Jlim=実測値Jとなるまで、膜間差圧ΔPを上昇させるようにポンプ3の駆動及びバルブ4の開度の少なくとも一方を制御する(図5参照)。 Furthermore, the control means 5 compares the calculation result (calculated value) of the limit permeation flux Jlim with the actual measurement value J of the permeation flux of the separation membrane. As a result of the comparison, if the critical permeation flux J lim is larger than the actual measurement value J, the control means 5 determines the critical permeation flux J lim = the actual measurement value J according to the comparison result, that is, the difference in permeation flux. Until at least one of the driving of the pump 3 and the opening of the valve 4 is controlled so as to increase the transmembrane pressure difference ΔP (see FIG. 5).
なお、限界透過流束Jlim=実測値Jである場合であっても、透過流束が所定の値に収束している場合がある(図6参照)。これは、被処理水中の溶質が膜面近傍に留まることで、膜表面にゲル層が生じ、ゲル層の抵抗が膜間差圧ΔPに比例して増加するためである。この場合、膜間差圧ΔPが余剰状態にあるといえる。そこで、制御手段5は、限界透過流束Jlim=実測値Jである場合、膜間差圧ΔPが低下するように、一旦、ポンプ3の駆動及びバルブの開度を調整する制御を行う。具体的には、限界透過流束Jlim=実測値Jである場合、限界透過流束Jlim>実測値Jとなるまで膜間差圧ΔPを一旦下げ、その後、限界透過流束Jlim=実測値Jとなるように膜間差圧ΔPを上昇させる。これにより、被処理水の性状変動に応じてより適切な運転条件に設定し、制御することが可能となる。 Even if the limit permeation flux J lim = actual value J, the permeation flux may converge to a predetermined value (see FIG. 6). This is because the solute in the water to be treated remains in the vicinity of the film surface, so that a gel layer is formed on the film surface, and the resistance of the gel layer increases in proportion to the transmembrane pressure difference ΔP. In this case, it can be said that the transmembrane pressure difference ΔP is in an excess state. Therefore, when the limiting permeation flux J lim = actual value J, the control means 5 performs control for once adjusting the driving of the pump 3 and the opening of the valve so that the transmembrane pressure difference ΔP decreases. Specifically, when the critical permeation flux J lim = actual value J, the transmembrane pressure difference ΔP is once lowered until the critical permeation flux J lim > the actual measurement value J, and then the critical permeation flux J lim = The transmembrane pressure difference ΔP is increased so that the measured value J is obtained. As a result, it is possible to set and control more appropriate operating conditions according to fluctuations in the properties of the water to be treated.
或いは、制御手段5は、限界透過流束Jlimと分離膜の透過流束の目標値JTとを比較するようにしてもよい。目標値JTは被処理水の性状及び分離膜の特性に応じて予め種々に設定することができる。比較の結果、限界透過流束Jlimが目標値JT以上の場合には、限界透過流束Jlim=目標値JTとするために、膜面流速vを下げるようにポンプ3の駆動及びバルブ4の開度の少なくとも一方を制御してもよい。限界透過流束Jlimが目標値JTより小さい場合には、制御手段5は、制御限界透過流束Jlim=目標値JTとなるように膜面流速vを上げるようにポンプ3の駆動及びバルブ4の開度の少なくとも一方を制御してもよい(図7参照)。 Alternatively, the control means 5 may be compared with the target value J T of flux limit flux J lim and the separation membrane. The target value J T can be set in advance in accordance with the properties of the water to be treated and the characteristics of the separation membrane. Result of the comparison, if the limit flux J lim is greater than the target value J T, in order to limit flux J lim = target value J T, the drive and the pump 3 to lower the film surface velocity v At least one of the opening degrees of the valve 4 may be controlled. When the limit permeation flux J lim is smaller than the target value J T , the control means 5 drives the pump 3 to increase the membrane surface flow velocity v so that the control limit permeation flux J lim = the target value J T. In addition, at least one of the opening degrees of the valve 4 may be controlled (see FIG. 7).
本発明の実施の形態に係る膜ろ過処理装置によれば、制御手段5により、関係式(1)を用いて分離膜の限界透過流束Jlimを予測することができ、限界透過流束Jlimに近づくようにポンプ3の駆動及びバルブ4の開度の少なくとも一方を調節することで、無駄な動力を軽減することができ、かつ常に高い透過流束を得ることができる。 According to the membrane filtration apparatus according to the embodiment of the present invention, the control unit 5 can predict the critical permeation flux J lim of the separation membrane using the relational expression (1), and the critical permeation flux J By adjusting at least one of the driving of the pump 3 and the opening degree of the valve 4 so as to approach lim , useless power can be reduced and a high permeation flux can always be obtained.
なお、図1に示す膜ろ過処理装置において、図示していない加温設備を、例えば被処理水の任意の流路や、原水槽1に別途、設けることで、加温された温度を制御手段5で検出するようにして、透過流束の実測値Jが限界透過流束Jlimに近づくように、或いは限界透過流束Jlimが目標値JTに近づくように、被処理水の温度を調節するよう制御することも可能である。これにより、被処理水の温度変動に追随して膜の透過流束をより適正な範囲に制御することができる。 In the membrane filtration apparatus shown in FIG. 1, a heating unit (not shown) is separately provided in, for example, an arbitrary flow path of the water to be treated or the raw water tank 1 to control the heated temperature. 5 so as to detect, as the actual measurement value J of flux approaches the limit flux J lim, or limit the permeation flux J lim is to approach the target value J T, the temperature of the water to be treated It is also possible to control to adjust. Thereby, the permeation flux of the membrane can be controlled in a more appropriate range following the temperature variation of the water to be treated.
更に、図1に示す膜ろ過処理装置においては制御手段5が限界透過流束Jlimを演算する例を示したが、制御手段5は別に、限界透過流束Jlimを演算するための独立した演算手段(図示せず)を配置してもよいことは勿論である。 Furthermore, in the membrane filtration apparatus shown in FIG. 1, the control unit 5 calculates the limit permeation flux J lim , but the control unit 5 is an independent unit for calculating the limit permeation flux J lim . Of course, a calculation means (not shown) may be arranged.
本発明の実施の形態に係る膜ろ過処理装置の運転方法の例を図8及び図9を用いて説明する。図8に示す例は、被処理水の変動に基づいて分離膜の膜間差圧ΔPを調整するフローの例を示し、図9に示す例は、被処理水の変動に基づいて分離膜の膜面流速vを調整するフローの例を示すものである。 An example of the operation method of the membrane filtration apparatus according to the embodiment of the present invention will be described with reference to FIGS. The example shown in FIG. 8 shows an example of a flow for adjusting the transmembrane pressure difference ΔP of the separation membrane based on the fluctuation of the treated water, and the example shown in FIG. 9 shows the separation membrane based on the fluctuation of the treated water. The example of the flow which adjusts the membrane surface flow velocity v is shown.
図8のステップS11において、図1の圧力検出手段14、24、34、流速・流量検出手段13、23、温度検出手段12、濃度検出手段11を用いて、被処理水の温度、溶質濃度、循環水の流量(膜面流速)、透過水の流量(透過流束)、循環水入口側圧力・出口側圧力及び透過水側圧力の実測値を検出する。ステップS12において、制御手段5が、ステップS11で測定された各実測値を用いて、透過流束予測値(演算値)として現時点での限界透過流束Jlimを演算する。 In step S11 of FIG. 8, the pressure detection means 14, 24, 34, flow velocity / flow rate detection means 13, 23, temperature detection means 12, and concentration detection means 11 of FIG. Measured values of circulating water flow rate (membrane flow velocity), permeated water flow rate (permeation flux), circulating water inlet side pressure / outlet side pressure and permeated water side pressure are detected. In step S12, the control means 5 calculates the current limit permeation flux J lim as a permeation flux predicted value (calculation value) using each actual measurement value measured in step S11.
ステップS13において、制御手段5が、ステップS11で測定された透過流束の実測値Jと、ステップS12で演算された現時点での限界透過流束Jlimを比較し、限界透過流束Jlim>実測値Jとなるか否かを判断する。限界透過流束Jlim>実測値Jとなる場合には、ステップS15に進む。限界透過流束Jlim>実測値Jとならない場合にはステップS14に進む。 In step S13, the control means 5 compares the measured value J of the permeation flux measured in step S11 with the current permeation flux J lim calculated in step S12, and the limit permeation flux J lim > It is determined whether or not the measured value J is obtained. If the limit permeation flux J lim > measured value J, the process proceeds to step S15. If the limit permeation flux J lim > measured value J is not satisfied, the process proceeds to step S14.
ステップS14において、制御手段5が、限界透過流束Jlim>実測値Jとなるまで、ポンプ3の出力を下げるか、バルブ4の開度を上げるか或いはポンプ3の出力及びバルブ4の開度の両方を調整し、ステップS15へ進む。 In step S14, the control means 5 decreases the output of the pump 3, increases the opening of the valve 4 or increases the output of the pump 3 and the opening of the valve 4 until the limit permeation flux J lim > the actual measurement value J. Both of these are adjusted, and the process proceeds to step S15.
ステップS15において、制御手段5が、限界透過流束Jlim=実測値Jとなるまで、分離膜の膜間差圧ΔPを上げるように、限界透過流束Jlimと実測値Jとの差分に応じて、ポンプ3の出力を上げるか、バルブ4の開度を下げるか或いはポンプ3の出力及びバルブ4の開度の両方を調整する。 In step S15, the control means 5 increases the difference between the limit permeation flux J lim and the actual measurement value J so as to increase the transmembrane pressure difference ΔP of the separation membrane until the limit permeation flux J lim = the actual measurement value J. Accordingly, the output of the pump 3 is increased, the opening of the valve 4 is decreased, or both the output of the pump 3 and the opening of the valve 4 are adjusted.
ステップS16において、制御手段5が、予め任意に設定された目標総透過水量もしくは目標濃縮倍率を達成しているか否かを判断する。目標総透過水量もしくは目標濃縮倍率を達成している場合には、運転を終了する。目標透過水量もしくは目標濃縮倍率を達成していない場合には、ステップS11へ戻り、ステップS12〜S16を繰り返す。 In step S16, the control means 5 determines whether or not a target total permeated water amount or a target concentration rate that is arbitrarily set in advance has been achieved. When the target total permeated water amount or the target concentration ratio is achieved, the operation is terminated. When the target permeated water amount or the target concentration ratio is not achieved, the process returns to step S11 and steps S12 to S16 are repeated.
分離膜の膜面流速を制御する場合には、図9のステップS21において、図1の圧力検出手段14、24、34、流速・流量検出手段13、23、温度検出手段12、濃度検出手段11を用いて、被処理水の温度、溶質濃度、循環水の流量(膜面流速)、透過水の流量(透過流束)、循環水入口側圧力・出口側圧力及び透過水側圧力の実測値を測定する。ステップS22において、制御手段5が、ステップS21で測定された各実測値を用いて、透過流束予測値として、現時点での限界透過流束Jlimを演算する。 When controlling the membrane surface flow velocity of the separation membrane, in step S21 of FIG. 9, the pressure detection means 14, 24, 34, flow velocity / flow rate detection means 13, 23, temperature detection means 12, concentration detection means 11 of FIG. Measured values of treated water temperature, solute concentration, circulating water flow rate (membrane flow velocity), permeated water flow rate (permeation flux), circulating water inlet side pressure / outlet side pressure and permeated water side pressure Measure. In step S22, the control means 5 calculates the current limit permeation flux J lim as the permeation flux prediction value using each actual measurement value measured in step S21.
ステップS23において、制御手段5が、予め定められた分離膜の透過流束Jの目標値JTと、ステップS22で演算された現時点での限界透過流束Jlimを比較し、限界透過流束Jlim<目標値JTとなるか否かを判断する。限界透過流束Jlim<目標値JTとなる場合には、ステップS25に進む。限界透過流束Jlim<目標値JTとならない場合にはステップS24に進む。 In step S23, the control unit 5 compares the target value J T of flux J of a predetermined separation membrane, the critical flux J lim at present, which is calculated in step S22, the limit flux It is determined whether or not J lim <target value J T. If the limit permeation flux J lim <the target value J T , the process proceeds to step S25. If the limit permeation flux J lim <target value J T is not satisfied, the process proceeds to step S24.
ステップS24において、制御手段5が、限界透過流束Jlim=目標値JTとなるまで、ポンプ3の出力を下げるか、バルブ4の開度を上げるか或いはポンプ3の出力及びバルブ4の開度の両方を調整し、ステップS25へ進む。 In step S24, the control means 5 decreases the output of the pump 3, increases the opening of the valve 4 or opens the output of the pump 3 and the valve 4 until the limit permeation flux J lim = the target value J T. Both degrees are adjusted, and the process proceeds to step S25.
ステップS25において、制御手段5が、限界透過流束Jlim=目標値JTとなるまで、分離膜の膜間差圧ΔPを上げるように、ポンプ3の出力を上げるか、バルブ4の開度を下げるか或いはポンプ3の出力及びバルブ4の開度の両方を調整する。 In step S25, the control means 5 increases the output of the pump 3 or increases the opening of the valve 4 so as to increase the transmembrane pressure difference ΔP of the separation membrane until the limit permeation flux J lim = target value J T. Or adjust both the output of the pump 3 and the opening of the valve 4.
ステップS26において、制御手段5が、目標透過水量もしくは目標濃縮倍率を達成しているか否かを判断し、目標透過水量もしくは目標濃縮倍率を達成している場合には、運転を終了する。目標透過水量もしくは目標濃縮倍率を達成していない場合には、ステップS21へ戻り、ステップS22〜S26を繰り返す。 In step S26, the control means 5 determines whether or not the target permeated water amount or the target concentration rate is achieved. If the target permeated water amount or the target concentration rate is achieved, the operation is terminated. When the target permeated water amount or the target concentration rate is not achieved, the process returns to step S21 and steps S22 to S26 are repeated.
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。 Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments and operational techniques will be apparent to those skilled in the art.
例えば、上記の実施の形態では、制御手段5の中に図示しない演算手段が包含され、図示しない演算手段により透過流束予測値を演算する例を示したが、制御手段5とは独立して設けられた演算手段(図示せず)によって演算処理を実行し、その演算結果に基づいて、制御手段5が所定の制御を行うこともまた本発明に包含される。このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであって、その要旨を逸脱しない範囲において当業者の技術常識に基づき変形し具体化し得るものである。 For example, in the above-described embodiment, the calculation means (not shown) is included in the control means 5, and the example of calculating the permeation flux predicted value by the calculation means (not shown) is shown. It is also included in the present invention that a calculation process is executed by a provided calculation means (not shown), and the control means 5 performs predetermined control based on the calculation result. As described above, the present invention is expressed by the invention specifying matters in the scope of claims appropriate from the above disclosure, and can be modified and embodied based on the common general technical knowledge of those skilled in the art without departing from the gist thereof. It is.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
工場から排出された水溶性切削油剤廃液を試験原水として、限外ろ過膜(分画分子量30万)を用いて濃縮処理した。濃縮液のノルマルヘキサン抽出物質濃度(=溶質濃度C)が16000、33000、54000mg/Lとなったとき、表1に示した濃縮液の温度Tと膜面流速vの条件の組み合わせにおける限界透過流束を測定した。 The water-soluble cutting fluid waste liquid discharged from the factory was used as test raw water and concentrated using an ultrafiltration membrane (fractionated molecular weight of 300,000). When the concentration of the normal hexane extractable substance (= solute concentration C) in the concentrate is 16000, 33000, 54000 mg / L, the limit permeation flow in the combination of the conditions of the temperature T of the concentrate and the membrane surface flow velocity v shown in Table 1 The bundle was measured.
各条件の限界透過流束Jlimは、上述の関係式(1)を用いて求めた。(1)式における各係数は、別途予備実験を実施して求めた。図10に限界透過流束の実測値と、関係式(1)を用いた計算値(予測値)の比較を示す。なお、各透過流束は、任意で定めた透過流束に対する比で示している。 The critical permeation flux J lim for each condition was determined using the above relational expression (1). Each coefficient in the equation (1) was obtained by conducting a separate preliminary experiment. FIG. 10 shows a comparison between the measured value of the critical permeation flux and the calculated value (predicted value) using the relational expression (1). In addition, each permeation flux is shown by the ratio with respect to the permeation flux defined arbitrarily.
図10に示すように、限界透過流束の実測値と、式(1)による計算値(予測値)はほぼ一致していることがわかる。 As shown in FIG. 10, it can be seen that the actually measured value of the critical permeation flux and the calculated value (predicted value) according to the equation (1) are almost the same.
1…原水槽
2…膜ろ過手段
3…ポンプ
4…バルブ
5…制御手段
11…濃度検出手段
12…温度検出手段
13、23…流速・流量検出手段
14、24、34…圧力検出手段
DESCRIPTION OF SYMBOLS 1 ... Raw water tank 2 ... Membrane filtration means 3 ... Pump 4 ... Valve 5 ... Control means 11 ... Concentration detection means 12 ... Temperature detection means 13, 23 ... Flow velocity / flow rate detection means 14, 24, 34 ... Pressure detection means
Claims (9)
前記分離膜の前記被処理水の供給側に設けられたポンプと、
前記分離膜の排出水を得る排出側に設けられたバルブと、
前記分離膜を透過する前の前記被処理水、前記膜透過水及び前記排出水の圧力をそれぞれ検出する圧力検出手段と、
前記分離膜を透過する前の前記被処理水、前記透過水の流速又は流量をそれぞれ検出する流速・流量検出手段と、
前記分離膜を透過する前の前記被処理水の温度を検出する温度検出手段と、
前記分離膜を透過する前の前記被処理水の溶質濃度を検出する濃度検出手段と、
前記圧力検出手段、前記流速・流量検出手段、前記温度検出手段、前記濃度検出手段の検出結果から演算された前記分離膜の透過流束予測値に基づいて、前記分離膜の膜間差圧及び膜面流速の少なくとも一方を制御するように、前記ポンプの駆動及び前記バルブの開度の少なくとも一方の制御を行う制御手段と
を備えることを特徴とする膜ろ過処理装置。 A separation membrane that receives supply of water to be treated to obtain permeated water and discharged water;
A pump provided on the supply side of the water to be treated of the separation membrane;
A valve provided on the discharge side for obtaining drain water of the separation membrane;
Pressure detecting means for detecting pressures of the water to be treated, the membrane permeated water and the discharged water before passing through the separation membrane;
A flow rate / flow rate detection means for detecting the water to be treated before passing through the separation membrane, the flow rate or flow rate of the permeate, respectively;
Temperature detecting means for detecting the temperature of the water to be treated before passing through the separation membrane;
Concentration detecting means for detecting the solute concentration of the water to be treated before passing through the separation membrane;
Based on the permeation flux predicted value of the separation membrane calculated from the detection results of the pressure detection means, the flow velocity / flow rate detection means, the temperature detection means, and the concentration detection means, the transmembrane differential pressure of the separation membrane and A membrane filtration apparatus comprising control means for controlling at least one of driving of the pump and opening of the valve so as to control at least one of the membrane surface flow velocity.
Jlim=Jlim0×ln(Cg/C)/ln(Cg/C0)×exp(E/T0)×exp(E/T)×(v/v0)n×exp(−Q/T)/exp(−Q/T0)・・・(1)
(ここでJlimは限界透過流束、Jlim0は基準点における分離膜の限界透過流束、Cgはゲル層の溶質濃度、Cは被処理水の溶質濃度の実測値、C0は基準点における被処理水の溶質濃度、E、Qは係数、T0は基準点における被処理水の温度、Tは被処理水の温度の実測値、vは膜面流速の実測値、v0は基準点における膜面流速の実測値を示す。) The membrane filtration apparatus according to any one of claims 1 to 6, wherein the control means calculates a permeation flux predicted value of the separation membrane based on the following relational expression (1). .
J lim = J lim0 × ln ( C g / C) / ln (C g / C 0) × exp (E / T 0) × exp (E / T) × (v / v 0) n × exp (-Q / T) / exp (-Q / T 0 ) (1)
(Where J lim is the limit permeation flux, J lim0 is the limit permeation flux of the separation membrane at the reference point, C g is the solute concentration of the gel layer, C is the measured value of the solute concentration of the treated water, and C 0 is the reference The solute concentration of the water to be treated at the point, E and Q are coefficients, T 0 is the temperature of the water to be treated at the reference point, T is the measured value of the temperature of the treated water, v is the measured value of the membrane surface velocity, and v 0 is (The actual measured value of the flow velocity at the reference point is shown.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142114A JP7137914B2 (en) | 2017-07-21 | 2017-07-21 | MEMBRANE FILTRATION APPARATUS AND MEMBRANE FILTRATION METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142114A JP7137914B2 (en) | 2017-07-21 | 2017-07-21 | MEMBRANE FILTRATION APPARATUS AND MEMBRANE FILTRATION METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019018191A true JP2019018191A (en) | 2019-02-07 |
JP7137914B2 JP7137914B2 (en) | 2022-09-15 |
Family
ID=65354584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017142114A Active JP7137914B2 (en) | 2017-07-21 | 2017-07-21 | MEMBRANE FILTRATION APPARATUS AND MEMBRANE FILTRATION METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7137914B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021045076A (en) * | 2019-09-18 | 2021-03-25 | 旭化成株式会社 | Calculation device, calculation method, method for producing soy sauce and program |
JP2021115496A (en) * | 2020-01-23 | 2021-08-10 | 東洋紡株式会社 | Concentration system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284323A (en) * | 1990-03-30 | 1991-12-16 | Railway Technical Res Inst | Method and apparatus for membrane separation |
JPH0929070A (en) * | 1995-07-24 | 1997-02-04 | Tohoku Electric Power Co Inc | Membrane separator for water treatment |
JP2001170458A (en) * | 1999-12-15 | 2001-06-26 | Meidensha Corp | Method of detecting membrane breaking and fouling in membrane cleaning |
JP2001327967A (en) * | 2000-05-19 | 2001-11-27 | Toray Ind Inc | Operating method and manufacturing method of membrane filtration plant |
JP2003251156A (en) * | 2002-03-04 | 2003-09-09 | Kurita Water Ind Ltd | Method and apparatus for membrane filtration |
JP2006305499A (en) * | 2005-04-28 | 2006-11-09 | Miura Co Ltd | Operating method of membrane filtration system |
JP2008237213A (en) * | 2007-02-26 | 2008-10-09 | Toray Ind Inc | Continuous fermentation apparatus |
WO2009054506A1 (en) * | 2007-10-25 | 2009-04-30 | Toray Industries, Inc. | Film filtration prediction method, prediction apparatus and film filtration prediction program |
JP2009279472A (en) * | 2008-05-19 | 2009-12-03 | Miura Co Ltd | Reverse osmosis membrane device |
WO2014204002A1 (en) * | 2013-06-21 | 2014-12-24 | 東レ株式会社 | Filter device, manufacturing device for chemical, and operation method for filter device |
JP2016150283A (en) * | 2015-02-16 | 2016-08-22 | 水ing株式会社 | Membrane treatment apparatus and method |
-
2017
- 2017-07-21 JP JP2017142114A patent/JP7137914B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284323A (en) * | 1990-03-30 | 1991-12-16 | Railway Technical Res Inst | Method and apparatus for membrane separation |
JPH0929070A (en) * | 1995-07-24 | 1997-02-04 | Tohoku Electric Power Co Inc | Membrane separator for water treatment |
JP2001170458A (en) * | 1999-12-15 | 2001-06-26 | Meidensha Corp | Method of detecting membrane breaking and fouling in membrane cleaning |
JP2001327967A (en) * | 2000-05-19 | 2001-11-27 | Toray Ind Inc | Operating method and manufacturing method of membrane filtration plant |
JP2003251156A (en) * | 2002-03-04 | 2003-09-09 | Kurita Water Ind Ltd | Method and apparatus for membrane filtration |
JP2006305499A (en) * | 2005-04-28 | 2006-11-09 | Miura Co Ltd | Operating method of membrane filtration system |
JP2008237213A (en) * | 2007-02-26 | 2008-10-09 | Toray Ind Inc | Continuous fermentation apparatus |
WO2009054506A1 (en) * | 2007-10-25 | 2009-04-30 | Toray Industries, Inc. | Film filtration prediction method, prediction apparatus and film filtration prediction program |
JP2009279472A (en) * | 2008-05-19 | 2009-12-03 | Miura Co Ltd | Reverse osmosis membrane device |
WO2014204002A1 (en) * | 2013-06-21 | 2014-12-24 | 東レ株式会社 | Filter device, manufacturing device for chemical, and operation method for filter device |
JP2016150283A (en) * | 2015-02-16 | 2016-08-22 | 水ing株式会社 | Membrane treatment apparatus and method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021045076A (en) * | 2019-09-18 | 2021-03-25 | 旭化成株式会社 | Calculation device, calculation method, method for producing soy sauce and program |
JP2021115496A (en) * | 2020-01-23 | 2021-08-10 | 東洋紡株式会社 | Concentration system |
Also Published As
Publication number | Publication date |
---|---|
JP7137914B2 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160102003A1 (en) | Advanced control system for wastewater treatment plants with membrane bioreactors | |
JP6978353B2 (en) | Water treatment management device and water quality monitoring method | |
JP6699554B2 (en) | Fresh water producing apparatus and method of operating fresh water producing apparatus | |
EP2959964A1 (en) | Method for operating reverse osmosis membrane device | |
JP2008188540A (en) | Operation method of membrane filter system | |
JP2010120015A (en) | Method of membrane filtration | |
Tiranuntakul et al. | Assessments of critical flux in a pilot-scale membrane bioreactor | |
Zupančič et al. | An evaluation of industrial ultrafiltration systems for surface water using fouling indices as a performance indicator | |
JP2019018191A (en) | Membrane filtration treatment apparatus and method therefor | |
JP2008126137A (en) | Membrane filter control system of water treatment equipment | |
KR20190112140A (en) | Membrane Separator and Membrane Separation Method | |
JP2010029757A (en) | Membrane filtration system, and operating method of membrane filtration system | |
US20180104652A1 (en) | Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus | |
JP5034381B2 (en) | Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same | |
JP5168923B2 (en) | Operation method of membrane filtration system | |
US10894725B1 (en) | Control process for wastewater treatment system | |
KR20150077086A (en) | Water treating apparatus including water quality detecting means | |
Akhondi et al. | Influence of dissolved air on the effectiveness of cyclic backwashing in submerged membrane systems | |
Monclús et al. | Knowledge-based control module for start-up of flat sheet MBRs | |
JP2020535961A (en) | Multivariate automatic cross-flow filtration control | |
JP2010058010A (en) | Pure water production apparatus | |
TW201838709A (en) | Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system | |
KR20120122928A (en) | Filtration System | |
KR101522254B1 (en) | Two stage membrane filtration system having flexible recovery ratio and operation method thereof | |
JP2007175603A (en) | Method for operating membrane filtration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220104 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7137914 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |