JP2019017387A - Uv ozone-plasma composite treatment method and treatment apparatus - Google Patents

Uv ozone-plasma composite treatment method and treatment apparatus Download PDF

Info

Publication number
JP2019017387A
JP2019017387A JP2018131485A JP2018131485A JP2019017387A JP 2019017387 A JP2019017387 A JP 2019017387A JP 2018131485 A JP2018131485 A JP 2018131485A JP 2018131485 A JP2018131485 A JP 2018131485A JP 2019017387 A JP2019017387 A JP 2019017387A
Authority
JP
Japan
Prior art keywords
cell
cells
plasma
supporting substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018131485A
Other languages
Japanese (ja)
Other versions
JP2019017387A5 (en
JP7198008B2 (en
Inventor
高橋 秀一
Shuichi Takahashi
秀一 高橋
大平 美智男
Michio Ohira
美智男 大平
英夫 中田
Hideo Nakada
英夫 中田
隼人 鈴木
Hayato Suzuki
隼人 鈴木
昌悟 宮田
Shogo Miyata
昌悟 宮田
周吾 遠山
Shugo Toyama
周吾 遠山
藤田 淳
Atsushi Fujita
藤田  淳
恵一 福田
Keiichi Fukuda
恵一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Ebara Jitsugyo Co Ltd
Original Assignee
Keio University
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Ebara Jitsugyo Co Ltd filed Critical Keio University
Publication of JP2019017387A publication Critical patent/JP2019017387A/en
Publication of JP2019017387A5 publication Critical patent/JP2019017387A5/ja
Application granted granted Critical
Publication of JP7198008B2 publication Critical patent/JP7198008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a surface modification method for culturing an adherent cell which is suitable for cell adhesion even more.SOLUTION: The present invention is a method for manufacturing a cell-carrying base material having a cell-carrying face which has non fluorine-based resin as a main component, in which the method includes: a UV irradiation process of irradiating a cell-carrying face of the base material with UV under humidifying environment in an oxygen and/or ozone feeding atmosphere; and a plasma irradiation process of irradiating the cell-carrying face of the base material with plasma, and a device to be used for the method is provided. The present invention provides a culture method for culturing a cell on the cell-carrying face of a cell-carrying base material which is obtained by the manufacturing method.SELECTED DRAWING: Figure 11

Description

本発明は,細胞の担持,接着,保存,培養,及び/又は増殖に適した表面を有する細胞担持用基材の製造方法,及び製造装置に関する。   The present invention relates to a method for manufacturing a cell-supporting substrate having a surface suitable for cell support, adhesion, storage, culture, and / or proliferation, and a manufacturing apparatus.

接着性細胞は,疎水性表面及び親水性が極めて高い表面に対してはほとんど接着しないのに対し,適切な親水性を有する表面には接着して進展した形態をとることが知られている。特に,水接触角40〜70°(非特許文献1)又は60〜80°(非特許文献2)の中程度の濡れ性を示す表面に細胞が良く接着することが知られている。よって,このような接着性細胞の接着性及び増殖性に優れる適度な親水性表面を得るための手段が開発されている。これまで,高分子材料表面を親水性とする手法として,コロナ放電処理(特許文献1)等の大気圧プラズマ処理(特許文献2),親水性骨格を含むポリマー鎖のグラフト(特許文献3),表面上にアミノプロピルエチレン無水マレイン酸を結合させて接触角を約10〜30°とした基体(特許文献4),及び,両親媒性物質の親水基を表面に提示させる方法(特許文献5)等の化合物修飾などが報告されている。また,表面の親水性の程度をコントロールする方法として,一度高い親水性とした表面を酸化処理及び/又は分解処理することにより,その親水性の程度を下げる方法や,親水性分子と表面とをリンカーを介して結合させ,リンカーの密度により親水性の程度を調節する方法が報告されている(特許文献6)。特にこれらの中でも,コロナ放電処理や大気圧プラズマ処理などの物理的方法は簡便であることから,親水性の細胞培養表面の改質において主要な方法となっている。   It is known that adherent cells hardly adhere to hydrophobic surfaces and surfaces having extremely high hydrophilicity, but take a form of adhering and developing on surfaces having appropriate hydrophilicity. In particular, it is known that cells adhere well to surfaces exhibiting moderate wettability with a water contact angle of 40 to 70 ° (Non-Patent Document 1) or 60 to 80 ° (Non-Patent Document 2). Therefore, means for obtaining an appropriate hydrophilic surface excellent in adhesion and proliferation of such adhesive cells has been developed. Until now, as a method for making the surface of a polymer material hydrophilic, atmospheric pressure plasma treatment (Patent Document 2) such as corona discharge treatment (Patent Document 1), grafting of a polymer chain containing a hydrophilic skeleton (Patent Document 3), A substrate having a contact angle of about 10 to 30 ° by binding aminopropylethylenemaleic anhydride on the surface (Patent Document 4) and a method of presenting hydrophilic groups of amphiphilic substances on the surface (Patent Document 5) Etc. have been reported. In addition, as a method of controlling the degree of hydrophilicity of the surface, a method of reducing the degree of hydrophilicity by oxidizing and / or decomposing the surface once made highly hydrophilic, A method of binding via a linker and adjusting the degree of hydrophilicity by the density of the linker has been reported (Patent Document 6). Of these, physical methods such as corona discharge treatment and atmospheric pressure plasma treatment are particularly simple, and have become major methods for modifying hydrophilic cell culture surfaces.

このような親水性表面においては,主に水酸基,カルボニル基,及びカルボキシ基などの酸素原子を有する基が親水性の発揮に寄与していると考えられている。しかし,コロナ放電により導入された酸素原子は急速に除去されるため,表面が劣化しやすいという問題があった。さらに,コロナ放電処理は,約20%の表面酸素しか基材上に提供できないと考えられており,親水性の付与に限界があった。また,プラズマ放電は,コロナ放電よりも高い酸素レベルを達成できるが,基材を真空で処理することが必要であり,処理工程が複雑であった。更に,プラズマ処理は表面を傷つけやすいという問題があった。   In such a hydrophilic surface, it is considered that groups having an oxygen atom such as a hydroxyl group, a carbonyl group, and a carboxy group mainly contribute to the display of hydrophilicity. However, oxygen atoms introduced by corona discharge are rapidly removed, and the surface is liable to deteriorate. Furthermore, it is considered that the corona discharge treatment can provide only about 20% of surface oxygen on the base material, and there is a limit to imparting hydrophilicity. In addition, plasma discharge can achieve higher oxygen levels than corona discharge, but the substrate needs to be processed in vacuum, and the processing process is complicated. Furthermore, the plasma treatment has a problem that the surface is easily damaged.

高分子材料表面を親水性とするための別のアプローチとして,フッ素樹脂基板等への紫外線レーザー照射(特許文献4)やオゾンを発生させる波長の紫外線を照射する方法(非特許文献3及び4)が報告されている。これらの報告においても,細胞増殖には表面酸素原子の割合が中程度であることが望ましいこと(非特許文献4)が報告されている。また,このようなオゾン/紫外線を用いた方法を改良すべく,オゾン・紫外線処理と生体材料とを組み合わせること(非特許文献5),超高分子ポリエチレンへ酸素原子を導入すること(非特許文献6)などが検討されている。   As another approach for making the surface of the polymer material hydrophilic, ultraviolet laser irradiation to a fluororesin substrate or the like (Patent Document 4), or a method of irradiating ultraviolet light having a wavelength that generates ozone (Non-Patent Documents 3 and 4) Has been reported. Also in these reports, it is reported that it is desirable that the ratio of surface oxygen atoms is medium for cell growth (Non-patent Document 4). In addition, in order to improve such a method using ozone / ultraviolet light, a combination of ozone / ultraviolet light treatment and a biomaterial (non-patent document 5), introduction of oxygen atoms into ultra-high molecular weight polyethylene (non-patent document) 6) etc. are being studied.

また,特に,親水性表面を未分化細胞培養用の基材として利用する場合,未分化細胞である幹細胞は培養が難しく,フィーダー細胞,LIFなどのサイトカイン,又は,マトリゲル(登録商標)やコラーゲン等の細胞外基質タンパク質によるコーティング等の特殊な環境を必要としていた。しかし,これらの技術はいずれも生体由来材料に依存することから安定性が低くロット差による結果の違いを生じること,潜在的なコンタミネーションが生じ得ること,貯蔵における寿命が短いこと等が問題となっていた。   In particular, when a hydrophilic surface is used as a substrate for undifferentiated cell culture, stem cells that are undifferentiated cells are difficult to culture, such as feeder cells, cytokines such as LIF, or Matrigel (registered trademark), collagen, etc. It required a special environment such as coating with extracellular matrix proteins. However, all of these technologies depend on biological materials, so they have low stability, resulting in lot-to-lot differences, potential contamination, and short storage life. It was.

そこで,未分化細胞である幹細胞を培養可能な細胞培養表面をより安定的に化学的改質で作製することが試みられている。例えば,細胞培養表面に膨潤性(メタ)アクリレート層を形成させることにより,これらの問題を解決することが提案されている(特許文献7)。   Thus, attempts have been made to more stably produce a cell culture surface capable of culturing stem cells, which are undifferentiated cells, by chemical modification. For example, it has been proposed to solve these problems by forming a swellable (meth) acrylate layer on the cell culture surface (Patent Document 7).

また,本発明者らは,加湿,酸素又はオゾン供給下でUV処理を行うことにより,ポリスチレン等の表面を接着細胞の培養に適した表面に加工できることを見出し,報告している(特許文献8)。   In addition, the present inventors have found and reported that the surface of polystyrene or the like can be processed into a surface suitable for cultivation of adherent cells by performing UV treatment under humidification, oxygen or ozone supply (Patent Document 8). ).

特開平6−98756号公報JP-A-6-98756 国際公開公報WO2012/144624号International Publication No. WO2012 / 144624 特開2009−17809号公報JP 2009-17809 A 特表2012−527896号公報JP 2012-527896 Gazette 特開2012−175983号公報JP 2012-175893 A 特表2011−510655号公報Special table 2011-510655 gazette 特開2010−68755号公報JP 2010-68755 A 国際公開公報WO2016/136251号International Publication No. WO2016 / 136251

酒井康行及び民谷栄一監修,「動物実験代替のためのバイオマテリアルデバイス」シーエムシー出版,2014年,133〜134頁Supervised by Yasuyuki Sakai and Eiichi Minutani, “Biomaterial Device for Animal Experiment Substitution”, CMC Publishing, 2014, 133-134 Yasushi Tamadaら,Journal of Biomedical Materials Research;28:783−789(1994)Yasushi Tamada et al., Journal of Biomedical Materials Research; 28: 783-789 (1994). D.O.H.Teareら,Kanbmuir;16:2818−2824(2000)D. O. H. Teare et al., Kanbmuir; 16: 2818-2824 (2000) S.A.Mitchellら,Biomaterials;25:4079−4086(2004)S. A. Mitchell et al., Biomaterials; 25: 4079-4086 (2004). Fabio Formosaら,Microvascular Research;75:330−342(2008)Fabio Formosa et al., Microvascular Research; 75: 330-342 (2008). Alexandra H.C.Poulssonら,Langmuir;25:3718−3727(2009)Alexandra H. et al. C. Poulsson et al., Langmuir; 25: 3718-3727 (2009).

しかし,既存の処理方法ではまだ十分な細胞を担持及び培養させるための表面修飾が得られていない。よって,本発明は選りすぐれた細胞を担持及び培養させるための表面修飾の方法を提供することを目的とする。   However, the existing treatment methods have not yet obtained surface modification for supporting and culturing sufficient cells. Therefore, an object of the present invention is to provide a surface modification method for supporting and culturing selected cells.

本発明者らは,種々の方法を用いて樹脂基材表面を処理して細胞増殖との関係を調べた結果,加湿環境下,酸素及び/又はオゾン雰囲気中のUV照射とプラズマ処理との両方の処理を行うことにより,細胞接着及び細胞増殖により適した表面が生成されることを見出し,本発明を完成させた。更に,本発明者らは,このような表面が,従来報告した加湿環境下,酸素及び/又はオゾン雰囲気中のUV照射より優れることを見出し,本発明を完成させた。   As a result of examining the relationship between cell growth and the surface of a resin substrate using various methods, the present inventors have found that both UV irradiation and plasma treatment in an oxygen and / or ozone atmosphere in a humidified environment. It was found that a surface more suitable for cell adhesion and cell growth was generated by performing the above-described treatment, and the present invention was completed. Furthermore, the present inventors have found that such a surface is superior to UV irradiation in an oxygen and / or ozone atmosphere in a humidified environment reported in the past, and completed the present invention.

よって,本発明は,以下の発明を含むものである:
(1) 細胞担持面を有する非フッ素系樹脂を主成分とする細胞担持用基材の製造方法であって,
加湿環境下,酸素及び/又はオゾン供給雰囲気中で,前記基材の細胞担持面にUVを照射するUV照射工程,及び
前記基材の細胞担持面にプラズマを照射するプラズマ照射工程
を含む方法。
(2) 前記非フッ素系樹脂が,ポリエチレン,アクリル樹脂,ABS樹脂,ポリエチレンテレフタレート,ポリプロピレン,ポリカーボネート,及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である,(1)に記載の細胞担持用基材の製造方法。
(3) UV照射工程の後にプラズマ照射工程を行うことを特徴とする,(1)又は(2)に記載の細胞担持用基材の製造方法。
(4) プラズマ照射工程の後にUV照射工程を行うことを特徴とする,(1)又は(2)に記載の細胞担持用基材の製造方法。
(5) UV照射工程とプラズマ照射工程を同時に行うことを特徴とする,(1)又は(2)に記載の細胞担持用基材の製造方法。
(6) 前記UV照射が,平均波長184.9nm及び253.7nmのUVを照射することにより行われることを特徴とする,(1)〜(5)のいずれか1項に記載の細胞担持用基材の製造方法。
(7) 前記UV照射が,前記非フッ素系樹脂表面の水接触角が40〜70°となるまでの間行われることを特徴とする,(1)〜(6)のいずれか1項に記載の細胞担持用基材の製造方法。
(8) さらに,UV照射工程の前に,該細胞担持面にアンモニア溶液を塗布する工程を備える,(1)〜(7)のいずれか1項に記載の製造方法。
(9) 接着細胞の培養方法であって,(1)〜(8)のいずれか1項に記載の製造方法により得られた細胞担持用基材の細胞担持面上で細胞を培養することを含む培養方法。
(10) 前記接着細胞が幹細胞である,(9)に記載の培養方法。
(11) 前記幹細胞が,マウスiPS細胞又はヒトiPS細胞である,(10)に記載の培養方法。
(12) フィーダー細胞の非存在下で培養することを特徴とする,(10)又は(11)に記載の培養方法。
(13) 細胞担持面を有する非フッ素系樹脂を主成分とする細胞担持用基材を格納するための格納部と,該格納部に格納された前記細胞担持用基材に対して紫外線を照射可能な紫外線照射手段と,該格納部に格納された細胞担持用基材に対して窒素プラズマを照射可能なプラズマ照射手段と,前記細胞担持用基材格納部内の湿度を制御可能な加湿手段と,前記細胞担持用基材格納部内のオゾン濃度を制御可能な酸素又はオゾン供給手段を有する細胞担持用基材表面改質装置。
(14) 更に,前記細胞担持用基材の細胞担持面に対してアンモニア溶液を塗布可能なアンモニア塗布手段を備える,(13)に記載の細胞担持用基材表面改質装置。
Accordingly, the present invention includes the following inventions:
(1) A method for producing a cell-supporting substrate mainly comprising a non-fluorinated resin having a cell-supporting surface,
A method comprising: a UV irradiation step of irradiating UV to a cell carrying surface of the substrate in a humidified environment and an atmosphere of oxygen and / or ozone supply; and a plasma irradiation step of irradiating plasma to the cell carrying surface of the substrate.
(2) The cell support according to (1), wherein the non-fluorine resin is at least one resin selected from the group consisting of polyethylene, acrylic resin, ABS resin, polyethylene terephthalate, polypropylene, polycarbonate, and polystyrene. Method for manufacturing a substrate.
(3) The method for producing a cell-supporting substrate according to (1) or (2), wherein a plasma irradiation step is performed after the UV irradiation step.
(4) The method for producing a cell-supporting substrate according to (1) or (2), wherein a UV irradiation step is performed after the plasma irradiation step.
(5) The method for producing a cell-supporting substrate according to (1) or (2), wherein the UV irradiation step and the plasma irradiation step are performed simultaneously.
(6) The cell support according to any one of (1) to (5), wherein the UV irradiation is performed by irradiating UV having an average wavelength of 184.9 nm and 253.7 nm. A method for producing a substrate.
(7) The UV irradiation is performed until the water contact angle on the surface of the non-fluorine resin reaches 40 to 70 °, according to any one of (1) to (6), A method for producing a cell-supporting substrate.
(8) The manufacturing method according to any one of (1) to (7), further including a step of applying an ammonia solution to the cell-carrying surface before the UV irradiation step.
(9) A method for culturing adherent cells, comprising culturing cells on a cell-carrying surface of a cell-carrying substrate obtained by the production method according to any one of (1) to (8). A culture method comprising.
(10) The culture method according to (9), wherein the adherent cells are stem cells.
(11) The culture method according to (10), wherein the stem cells are mouse iPS cells or human iPS cells.
(12) The culture method according to (10) or (11), wherein the culture is performed in the absence of feeder cells.
(13) A storage unit for storing a cell-supporting substrate mainly composed of a non-fluorine resin having a cell-supporting surface, and irradiating the cell-supporting substrate stored in the storage unit with ultraviolet rays Possible ultraviolet irradiation means, plasma irradiation means capable of irradiating nitrogen plasma to the cell support substrate stored in the storage unit, and humidification means capable of controlling the humidity in the cell support substrate storage unit; , A cell-supporting substrate surface reforming device having oxygen or ozone supply means capable of controlling the ozone concentration in the cell-supporting substrate storage section.
(14) The cell-supporting substrate surface modifying apparatus according to (13), further comprising ammonia application means capable of applying an ammonia solution to the cell-supporting surface of the cell-supporting substrate.

本明細書において「細胞担持用基材」とは,細胞を表面上に担持させて用いられる基材のことであり,細胞の担持,接着,保存,培養,及び/又は増殖を目的とする基材であってもよい。例えば,細胞担持用基材は,細胞培養用基材(例えば,細胞培養用容器),細胞保存用基材,又はインプラント用基材などを含む。本明細書における細胞担持用基材が担持する細胞は,接着細胞であれば特に制限されるものではなく,例えば,平滑筋細胞,内皮細胞,線維芽細胞,骨芽細胞,幹細胞などの哺乳類細胞を含み,好ましくは,幹細胞である。本明細書において,幹細胞とは,iPS細胞,ES細胞,間葉系幹細胞などを含み,マウス,ラット,ウサギ,イヌ,サル,及びヒトの細胞を含むが,好ましくは,マウスiPS細胞及びヒトiPS細胞である。また,本明細書における細胞担持用基材の形状は,その目的に応じて適宜選択することができ,例えば,プレート状,シート状,球状,ディッシュ状,チップ状,又は,所望の組織(例えば,人工骨又はその表面部分)の形状とすることができる。好ましくは,細胞担持用基材は,接着細胞培養用容器又は接着細胞保存用容器であり,より好ましくは,iPS細胞培養用容器又はiPS細胞保存用容器である。   In the present specification, the “cell-supporting substrate” refers to a substrate used by supporting cells on the surface, and is a substrate intended for supporting, adhering, storing, culturing, and / or proliferating cells. It may be a material. For example, the cell-supporting base material includes a cell culture base material (for example, a cell culture container), a cell storage base material, or an implant base material. The cells carried by the cell-carrying substrate in the present specification are not particularly limited as long as they are adherent cells. For example, mammalian cells such as smooth muscle cells, endothelial cells, fibroblasts, osteoblasts, stem cells, etc. Preferably, it is a stem cell. In the present specification, the stem cells include iPS cells, ES cells, mesenchymal stem cells, and the like, and include mouse, rat, rabbit, dog, monkey, and human cells, preferably mouse iPS cells and human iPS. It is a cell. In addition, the shape of the cell-supporting substrate in the present specification can be appropriately selected according to the purpose, and for example, a plate shape, a sheet shape, a spherical shape, a dish shape, a chip shape, or a desired tissue (for example, , Artificial bone or the surface portion thereof). Preferably, the cell-supporting substrate is an adherent cell culture container or an adherent cell storage container, more preferably an iPS cell culture container or an iPS cell storage container.

本明細書における細胞担持用基材は,主成分として非フッ素系樹脂を含有するが,必要に応じて「他の成分」を含有していても良い。例えば,必要に応じて,マトリゲル(登録商標),ラミニン,コラーゲン又はフィブロネクチンなどの他の細胞接着に寄与する物質を適宜含んでいても良い。例えば,本明細書における細胞担持用基材は,マトリゲルを20〜80μg/cm,30〜70μg/cm,又は40〜60μg/cm含有する。また,例えば,本明細書における細胞担持用基材は,0.1〜1μg/cm,0.3〜0.8μg/cm,又は0.5μg/cmの濃度で,ラミニンを含有していてもよい。 The cell-supporting substrate in the present specification contains a non-fluorine resin as a main component, but may contain “other components” as necessary. For example, other substances that contribute to cell adhesion, such as Matrigel (registered trademark), laminin, collagen, or fibronectin, may be included as necessary. For example, cells carrying a substrate herein, 20~80μg / cm 2 Matrigel, 30 to 70 / cm 2, or 40~60μg / cm 2 contains. Further, for example, cells carrying a substrate herein, 0.1~1μg / cm 2, 0.3~0.8μg / cm 2, or at a concentration of 0.5 [mu] g / cm 2, containing laminin It may be.

本明細書において,「非フッ素系樹脂」とは,フッ素を含有しない樹脂を意味し,例えば,ポリエチレン,超高分子ポリエチレン,ポリプロピレン,ポリスチレン,ポリ塩化ビニル,ポリビニルアルコール,アクリル樹脂,ポリエチレンテレフタレート,ポリアセタール,ポリカーボネート,ポリアミド,ポリイミド樹脂,フェノール樹脂,アミノ樹脂,エポキシ樹脂,ポリエステル,及びアクリロニトリル−ブタジエン−スチレン共重合合成樹脂(ABS樹脂)を挙げることができる。これらのうち,好ましくは,ポリスチレンである。ポリスチレンは立体規則性(タクティシティー,tacticity)を有し,イソタクチック(アイソタクチック)型,シンジオタクチック型,アタクチック型が存在するが,本発明におけるポリスチレンの型は限定されるものではなく,これらのいずれの型,又はこれらのうち2種類以上の型の混合物であってもよく,通常はアタクチック型が汎用される。またポリスチレンは高分子化合物であるため種々の重合度(平均分子量)の製品が供給されているが,本発明においては限定されない。例えば,重合度が10〜100,000,50〜10,000とすることができる。従って各社が供給するポリスチレン製培養用ディッシュには材質・物性上の差異が存在し得るが本発明においては限定されず,いずれの製造元の培養用ディッシュを使用することができる。一例として,IWAKI(登録商標)組織培養用ディッシュ(AGCテクノグラス株式会社)を挙げることができる。   In the present specification, “non-fluorine-based resin” means a resin that does not contain fluorine. For example, polyethylene, ultra high molecular weight polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinyl alcohol, acrylic resin, polyethylene terephthalate, polyacetal. , Polycarbonate, polyamide, polyimide resin, phenol resin, amino resin, epoxy resin, polyester, and acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS resin). Of these, polystyrene is preferable. Polystyrene has stereoregularity (tacticity), and there are isotactic (isotactic) type, syndiotactic type, and atactic type, but the type of polystyrene in the present invention is not limited, these Any of these types, or a mixture of two or more types among them may be used, and an atactic type is generally used. Since polystyrene is a high molecular compound, products with various degrees of polymerization (average molecular weight) are supplied, but the present invention is not limited thereto. For example, the degree of polymerization can be 10 to 100,000, 50 to 10,000. Accordingly, there may be differences in material and physical properties among polystyrene culture dishes supplied by various companies, but the invention is not limited and culture dishes from any manufacturer can be used. As an example, IWAKI (registered trademark) tissue culture dish (AGC Techno Glass Co., Ltd.) can be mentioned.

本発明の細胞担持用基材は少なくともその一部に細胞担持面を有する。本明細書において,「細胞担持面」とは,細胞を担持,接着,保存,培養,及び/又は増殖させることができる表面を意味し,必ずしも当該表面上で細胞を培養し又は増殖させることを必要とするものではない。また,細胞担持面は,平面,曲面,波状面,球体表面等,いかなる形状であっても良い。   The cell-carrying substrate of the present invention has a cell-carrying surface at least in part. In the present specification, the “cell-carrying surface” means a surface on which cells can be supported, adhered, stored, cultured, and / or proliferated, and the cells are not necessarily cultured or proliferated on the surface. It is not what you need. Further, the cell carrying surface may have any shape such as a flat surface, a curved surface, a wavy surface, and a spherical surface.

一態様において,本発明の細胞担持用基材の細胞担持面は,ケミカルシフトを生じたC−C結合及び/又はC−H結合を表面に有する。本明細書において「ケミカルシフトを生じたC−C結合及び/又はC−H結合」とは,ポリスチレンの分子構造に酸素原子が組み込まれたことによって結合状態が変化した構造であって,酸素原子を含まない構造である。即ち,ケミカルシフトを生じたC−C結合及び/又はC−H結合とは,ポリスチレンに含まれないC−C結合及び/又はC−Hを意味し,C−H,C−C及びC−Ph以外の構造を意味する。本発明の細胞担持面は,酸素原子の導入された基(OH,COOH,C=Oなど)が極めて少ないにもかかわらず,接触角が減少している。よって,この接触角の減少はケミカルシフトを生じたC−C結合及び/又はC−H結合によりもたらされたものと考えられる。   In one embodiment, the cell-carrying surface of the cell-carrying substrate of the present invention has a C—C bond and / or a C—H bond causing chemical shift on the surface. In the present specification, “C—C bond and / or C—H bond causing chemical shift” means a structure in which the bonding state is changed by incorporating an oxygen atom into the molecular structure of polystyrene. It is a structure that does not contain. That is, the C—C bond and / or C—H bond causing a chemical shift means a C—C bond and / or C—H not contained in polystyrene, and C—H, C—C and C— This means a structure other than Ph. The cell-carrying surface of the present invention has a reduced contact angle despite a very small number of oxygen atom-introduced groups (OH, COOH, C═O, etc.). Therefore, it is considered that this decrease in the contact angle is caused by a C—C bond and / or a C—H bond causing a chemical shift.

細胞培養表面上のカルボキシ基(COOH基)は細胞にとって良くない影響を及ぼすと考えられている。本発明の細胞担持用基材の細胞担持面は,非加湿下の同条件においてUV/オゾン処理された細胞担持用基材と比較して極めて少ない量のカルボキシ基しか有しない。よって,本発明の細胞担持用基材は,細胞担持面に実質的にカルボキシ基が存在しない。ここで,「実質的に存在しない」とは,全く存在しないことを意味するのではなく,細胞培養に影響を与える程度に存在しないことを意味し,好ましくは,非加湿下の同条件においてUV/オゾン処理された細胞担持用基材と比較して極めて少ないことを意味し,より好ましくは,C(1s)ナロースキャンXPSスペクトルにおいてほとんど検出されないか,又は検出されないことを意味してもよい。   Carboxy groups (COOH groups) on the cell culture surface are thought to have a negative effect on the cells. The cell-carrying surface of the cell-carrying substrate of the present invention has an extremely small amount of carboxy groups as compared with the cell-carrying substrate that has been treated with UV / ozone under the same conditions under non-humidification. Therefore, the cell-supporting substrate of the present invention is substantially free of carboxy groups on the cell-supporting surface. Here, “substantially non-existent” does not mean that it does not exist at all, but means that it does not exist to the extent that it affects cell culture. Preferably, UV is used under the same conditions under non-humidification. / Means very little compared to the ozone-treated cell-carrying substrate, and more preferably means little or no detection in the C (1s) narrow scan XPS spectrum.

本発明の細胞担持用基材は,細胞担持面の水接触角が中程度であり,例えば,30〜80°,30〜70°,30〜60°,40〜80°,40〜70°,40〜60°である。好ましくは,前記水接触角は,40〜60°である。好ましくは,本明細書における接触角は,自動接触角計にて試料に1μLの純水を滴下しθ/2法により測定される接触角である。また,本発明の細胞担持用基材は,細胞接着性表面の保存安定性に優れる。このため,本発明の細胞担持用基材は,好ましくは,UV照射から24時間後及び1週間密閉保管の表面の水接触角がいずれも,前記接触角の範囲内であり,好ましくは,UV照射から24時間後及び1ヶ月密閉保管の表面の水接触角がいずれも,前記接触角の範囲内である。即ち,本発明の細胞担持用基材は,好ましくは,UV照射から1週間密閉保管後又は1月密閉保管後においても,優れた細胞接着性を維持するものである。   The cell-supporting substrate of the present invention has a medium water contact angle on the cell-supporting surface, for example, 30 to 80 °, 30 to 70 °, 30 to 60 °, 40 to 80 °, 40 to 70 °, It is 40-60 degrees. Preferably, the water contact angle is 40 to 60 °. Preferably, the contact angle in the present specification is a contact angle measured by the θ / 2 method by dropping 1 μL of pure water onto a sample with an automatic contact angle meter. In addition, the cell-supporting substrate of the present invention is excellent in storage stability of the cell adhesive surface. For this reason, in the cell-supporting substrate of the present invention, preferably, the water contact angle on the surface of the sealed storage after 24 hours from UV irradiation and for 1 week is within the range of the contact angle. The water contact angle on the surface 24 hours after irradiation and for one month sealed storage is within the range of the contact angle. That is, the cell-supporting substrate of the present invention preferably maintains excellent cell adhesiveness even after one week of sealed storage or one month of sealed storage after UV irradiation.

一態様において,本発明の細胞担持用基材の細胞担持面は,フィーダー細胞(足場細胞)及び細胞外基質タンパク質コーティングの非存在下又はより低濃度の細胞外基質タンパク質コーティング存在下においても,幹細胞を未分化の状態で担持し又は増殖させることができる。例えば,本発明の細胞担持用基材の細胞担持面は,フィーダー細胞及び細胞外基質タンパク質コーティングがなくても,129/Ola系統由来マウス胚性幹細胞であるEB3細胞(Mol.Cell biol.(2002)22:1526−36;Genes to Cell(2004)9:471−7)が増殖することができる表面であってもよい。又は,前記細胞担持面は,表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度においても,幹細胞(例えば,ヒトiPS細胞又はマウスiPS細胞)が接着し又は増殖することができる表面であってもよい。あるいは,前記細胞担持面は,表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.5倍の濃度においても,幹細胞(例えば,ヒトiPS細胞又はマウスiPS細胞)が接着し又は増殖することができる表面であってもよい。   In one embodiment, the cell-carrying surface of the cell-carrying substrate of the present invention is a stem cell even in the absence of feeder cells (scaffold cells) and extracellular matrix protein coating or in the presence of a lower concentration of extracellular matrix protein coating. Can be carried or propagated in an undifferentiated state. For example, the cell-carrying surface of the cell-carrying substrate of the present invention can be applied to EB3 cells (Mol. Cell biol. (2002) which are mouse embryonic stem cells derived from the 129 / Ola lineage even without feeder cells and extracellular matrix protein coating. ) 22: 1526-36; Genes to Cell (2004) 9: 471-7) may be the surface on which it can grow. Alternatively, the cell-carrying surface may be 0.2 times the concentration of Matrigel (registered trademark) necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that has not been surface-treated, It may be a surface on which stem cells (eg, human iPS cells or mouse iPS cells) can adhere or grow. Alternatively, the cell-carrying surface may be a stem cell (e.g., at a concentration of 0.5 times the concentration of laminin necessary for adhering the stem cell on a base material mainly composed of the non-fluorinated resin whose surface is not treated). It may be a surface to which human iPS cells or mouse iPS cells) can adhere or grow.

具体的な態様において,本発明は,上記細胞担持用基材を備える,接着細胞用の細胞培養容器に関する。細胞培養容器としては,プレート状,シート状,球状,ディッシュ状,チップ状,繊維状,又はフラスコ状の培養容器を挙げることができる。   In a specific aspect, the present invention relates to a cell culture vessel for adherent cells, comprising the cell-supporting substrate. Examples of the cell culture vessel include plate-like, sheet-like, spherical, dish-like, chip-like, fiber-like, or flask-like culture vessels.

また,別の態様において,本発明は,前記方法を実現するための装置に関し,具体的には,細胞担持面を有する非フッ素系樹脂を主成分とする細胞担持用基材を格納するための格納部と,該格納部に格納された前記細胞担持用基材に対して紫外線を照射可能な紫外線照射手段と,該格納部に格納された細胞担持用基材に対して窒素プラズマを照射可能なプラズマ照射手段と,前記細胞担持用基材格納部内の湿度を制御可能な加湿手段と,前記細胞担持用基材格納部内のオゾン濃度を制御可能な酸素又はオゾン供給手段を有するように構成された細胞担持用基材表面改質装置に関する。このような構成において,紫外線照射手段は,紫外光(100〜400nmの範囲の電磁波)を発生可能な光源,例えば,水銀ランプ又はLEDを有する。好ましくは,紫外線照射手段は,本明細書に記載するUV照射工程を実施可能な光源を有する。プラズマ照射手段は,チャンバー内に窒素ガス圧力を一定の減圧状態に保つ減圧部,電極間に印加した直流電圧,高周波電圧,マイクロ波などによる電界によって電子を加速する電子加速部,加速された電子とガス分子との衝突による電離を利用してプラズマを生成させるプラズマ生成部を有する。加湿手段は,水保持部を有し,必要に応じて水保持部から供給された水を加温して水蒸気を発生させる加温部を有していてもよい。酸素又はオゾン供給手段は,酸素ガス又はオゾンガスを格納部内に供給するものである。オゾンガスは,まず酸素ガスを供給して前記紫外線供給手段により紫外線を照射して発生させてもよいし,酸素ガスを放電式オゾン発生器によりオゾンに変換してから格納部に供給してもよい。   In another aspect, the present invention relates to an apparatus for realizing the above method, specifically, for storing a cell-supporting base material mainly composed of a non-fluorinated resin having a cell-supporting surface. Storage unit, ultraviolet irradiation means capable of irradiating the cell-supporting substrate stored in the storage unit with ultraviolet rays, and nitrogen plasma can be applied to the cell-supporting substrate stored in the storage unit A plasma irradiating means, a humidifying means capable of controlling the humidity in the cell-supporting substrate storage section, and an oxygen or ozone supply means capable of controlling the ozone concentration in the cell-supporting substrate storage section. The present invention also relates to a cell-supporting substrate surface modifying apparatus. In such a configuration, the ultraviolet irradiation means has a light source capable of generating ultraviolet light (electromagnetic wave in the range of 100 to 400 nm), such as a mercury lamp or LED. Preferably, the ultraviolet irradiation means has a light source capable of performing the UV irradiation process described herein. The plasma irradiation means consists of a decompression part that keeps the nitrogen gas pressure in a constant decompression state in the chamber, an electron acceleration part that accelerates electrons by an electric field by a DC voltage, a high-frequency voltage, a microwave, etc. applied between the electrodes, And a plasma generation unit that generates plasma using ionization caused by collision of gas molecules. The humidifying means may include a water holding unit, and may include a heating unit that generates water vapor by heating water supplied from the water holding unit as necessary. The oxygen or ozone supply means supplies oxygen gas or ozone gas into the storage unit. The ozone gas may be generated by first supplying oxygen gas and irradiating ultraviolet rays with the ultraviolet ray supply means, or supplying oxygen gas to ozone after being converted into ozone by a discharge type ozone generator. .

本発明の細胞担持用基材の製造方法は,より簡便な方法で安定的に細胞接着に適した親水性を付与することができる。また,本発明の細胞担持用基材は,生体由来材料を用いる必要が無いか,従来より少ない量で幹細胞を含む接着細胞を培養することができることから安定性が高くロット差による結果の違いを生じにくい他,より安価に培養することができる。また,動物由来成分を使用せず,又は使用量を減らすことができ得ることから潜在的なコンタミネーションの問題を減少させることができる。   The method for producing a cell-supporting substrate of the present invention can stably impart hydrophilicity suitable for cell adhesion by a simpler method. In addition, the cell-supporting substrate of the present invention does not require the use of a biological material, or adherent cells containing stem cells can be cultured in a smaller amount than in the past, so that the stability is high and the difference in results due to lot differences is different. In addition to being less likely to occur, it can be cultured at lower cost. In addition, the problem of potential contamination can be reduced because animal-derived components can be used or the amount used can be reduced.

UV/オゾン表面改質装置の内部構造を示す図面である。It is drawing which shows the internal structure of a UV / ozone surface modification apparatus. 未処理ポリスチレンのワイドスキャンスペクトルを示すグラフである。縦軸は光電子強度を,横軸は結合エネルギー(eV)を表す(以下,図3〜図9においても同じ)。It is a graph which shows the wide scan spectrum of a non-processed polystyrene. The vertical axis represents photoelectron intensity, and the horizontal axis represents binding energy (eV) (hereinafter, the same applies to FIGS. 3 to 9). 未処理ポリスチレンのC1sのナロースキャンスペクトルを示すグラフである。It is a graph which shows the narrow scan spectrum of C1s of an untreated polystyrene. (A)UV1minのC1sのナロースキャンスペクトルを示すグラフである。(B)UV3minのC1sのナロースキャンスペクトルを示すグラフである。(C)UV10minのC1sのナロースキャンスペクトルを示すグラフである。(A) It is a graph which shows the narrow scan spectrum of C1s of UV1min. (B) It is a graph which shows the narrow scan spectrum of C1s of UV3min. (C) It is a graph which shows the narrow scan spectrum of C1s of UV10min. (A)Plasma5sのC1sのナロースキャンスペクトルを示すグラフである。(B)Plasma40sのC1sのナロースキャンスペクトルを示すグラフである。(C)Plasma160sのC1sのナロースキャンスペクトルを示すグラフである。(A) It is a graph which shows the narrow scan spectrum of C1s of Plasma5s. (B) It is a graph which shows the narrow scan spectrum of C1s of Plasma40s. (C) It is a graph which shows the narrow scan spectrum of C1s of Plasma160s. O1sのナロースキャンスペクトルを示すグラフである。It is a graph which shows the narrow scan spectrum of O1s. N1sのナロースキャンスペクトルを示すグラフである。It is a graph which shows the narrow scan spectrum of N1s. (A)UV/ozone3min→プラズマ40sのC1sのナロースキャンスペクトルを示すグラフである。(B)プラズマ40s→UV/ozone3minのC1sのナロースキャンスペクトルを表すグラフである。(A) It is a graph which shows the narrow scan spectrum of C1s of UV / zone3min-> plasma 40s. (B) It is a graph showing the narrow scan spectrum of C1s of plasma 40s-> UV / zone3min. (A)UV/ozone10min→プラズマ160sのC1sのナロースキャンスペクトルを表すグラフである。(B)プラズマ160s→UV/ozone10minのC1sのナロースキャンスペクトルを表すグラフである。(A) It is a graph showing the narrow scan spectrum of C1s of UV / zone10min-> plasma 160s. (B) It is a graph showing the narrow scan spectrum of C1s of plasma 160s-> UV / zone10min. 表面改質ポリスチレン製培養ディッシュ細胞上で培養したマウスES細胞(ES−D3株)の写真である。(a)未処理ディッシュ,(b)UV/ozone単独処理10min,(c)大気圧プラズマ10s,(d)大気圧プラズマ10s→UV/ozone 10min,(e)UV/ozone 10min→大気圧プラズマ10s。It is a photograph of mouse ES cells (ES-D3 strain) cultured on cultured dish cells made of surface-modified polystyrene. (A) Untreated dish, (b) UV / zone single treatment 10 min, (c) Atmospheric pressure plasma 10 s, (d) Atmospheric pressure plasma 10 s → UV / zone 10 min, (e) UV / zone 10 min → Atmospheric pressure plasma 10 s . 未処理,ゼラチンコート,UV/ozoneまたはプラズマ単独,UV/ozone・プラズマ複合改質基材上で培養したマウスES細胞(ES−B3株)の総DNA量を示すグラフである。It is a graph which shows the total amount of DNA of the mouse | mouth ES cell (ES-B3 strain | stump | stock) culture | cultivated on the un-processed, gelatin coat, UV / zone or a plasma independent, UV / zone * plasma composite modified base material. 表面改質ポリスチレン製培養ディッシュ細胞上で培養したマウスiPS細胞(APS0001株)の写真である。右側は蛍光顕微鏡によるGFP発現の観察像を示す。(a)フィーダー細胞上の通常培養,(b)UV/ozone 3min→大気圧プラズマ40s,(c)未処理ディッシュ。It is a photograph of mouse iPS cells (APS0001 strain) cultured on cultured dish cells made of surface-modified polystyrene. The right side shows an image of GFP expression observed with a fluorescence microscope. (A) Normal culture on feeder cells, (b) UV / zone 3 min → atmospheric pressure plasma 40 s, (c) untreated dish. 本発明にかかる細胞担持用基材表面改質装置の構成図である。It is a block diagram of the base material surface modification apparatus for cell support concerning this invention. マルチチャンバークラスターツールである細胞担持用基材表面改質装置の構成図である。It is a block diagram of the base material surface modification apparatus for a cell support | carrier which is a multi-chamber cluster tool. 図14のマルチチャンバーの紫外線処理部の構成図である。It is a block diagram of the ultraviolet treatment part of the multi-chamber of FIG. 図14のマルチチャンバーのプラズマ処理部の構成図である。It is a block diagram of the plasma processing part of the multi-chamber of FIG. アンモニア処理表面改質ポリスチレン製培養ディッシュ細胞上で培養したヒトiPS細胞(253G4株)の写真である。左から順に,推奨使用量(×1.0)マトリゲル添加群,推奨使用量の0.2倍(×0.2)のマトリゲル添加群,UV30s処理→大気圧プラズマ80s処理した×0.2マトリゲル添加群,アンモニウム塗布後にUV30s処理→大気圧プラズマ80s処理した×0.2マトリゲル添加群を表す。スケールバーは200μmを表す。It is a photograph of a human iPS cell (253G4 strain) cultured on an ammonia-treated surface modified polystyrene cultured dish cell. From left to right, recommended use amount (× 1.0) Matrigel addition group, 0.2 times (× 0.2) recommended use amount Matrigel addition group, UV30s treatment → atmospheric pressure plasma 80s treatment × 0.2 Matrigel An addition group, a group of × 0.2 matrigel added after UV treatment for 30 seconds after treatment with ammonium and then treated with atmospheric pressure plasma for 80 seconds. The scale bar represents 200 μm. 推奨使用量の0.2倍(×0.2)のマトリゲル添加群の細胞数をカウントしたグラフを表す。グラフは左から順に,表面改質なし,UV30s処理,UV30s処理→大気圧プラズマ80s処理,及びアンモニウム塗布後にUV30s処理→大気圧プラズマ80s処理したディッシュの結果を表す。縦軸は,推奨使用量(×1.0)マトリゲル添加ディッシュで培養された細胞数を1.0としたときの相対的な細胞数を表す。星印はp<0.05vs(表面改質なしの細胞数)を表す。The graph which counted the cell number of the Matrigel addition group of 0.2 times (x0.2) recommended use amount is represented. The graph shows, from the left, the results of dishing without surface modification, UV30s treatment, UV30s treatment → atmospheric pressure plasma 80s treatment, and after UV coating, UV30s treatment → atmospheric pressure plasma 80s treatment. The vertical axis represents the relative number of cells when the number of cells cultured in the recommended use amount (× 1.0) Matrigel-added dish is 1.0. The asterisk represents p <0.05 vs (number of cells without surface modification). アンモニア処理表面改質ポリスチレン製培養ディッシュ細胞上で培養したヒトiPS細胞(253G4株)の写真である。上段左から順に,推奨使用量(×1.0)ラミニン添加群,推奨使用量の0.3倍(×0.3)のラミニン添加群,UV30s処理した×0.3ラミニン添加群,下段左から順に,UV30s処理→大気圧プラズマ60s処理した×0.3ラミニン添加群,アンモニウム塗布後にUV30s処理→大気圧プラズマ60s処理した×0.3ラミニン添加群を表す。スケールバーは400μmを表す。It is a photograph of a human iPS cell (253G4 strain) cultured on an ammonia-treated surface modified polystyrene cultured dish cell. From the top left, the recommended use amount (× 1.0) laminin addition group, the recommended use amount 0.3 times (× 0.3) laminin addition group, UV30s treated × 0.3 laminin addition group, bottom left In this order, a group of x0.3 laminin added with UV30s treatment → atmospheric pressure plasma 60s treatment and a group of x0.3 laminin added with UV30s treatment → atmospheric pressure plasma 60s treatment after ammonium coating are shown. The scale bar represents 400 μm.

1.細胞担持用基材の製造方法
本発明の細胞担持用基材の製造方法は,UV照射工程及びプラズマ照射工程の両方を含むことを特徴とする。
1. Method for Producing Cell-Supporting Substrate The method for producing a cell-supporting substrate of the present invention includes both a UV irradiation step and a plasma irradiation step.

(1)UV照射工程
UV照射工程は,非フッ素系樹脂を主成分とする基材の周囲を加湿し,前記加湿中及び/又は加湿後,すなわち加湿環境化において,該基材を酸素及び/又はオゾン雰囲気中でUVを照射することにより行うことができる。
(1) UV irradiation process The UV irradiation process humidifies the periphery of a substrate mainly composed of a non-fluorine resin, and the substrate is subjected to oxygen and / or during the humidification and / or after humidification, that is, in a humidified environment. Or it can carry out by irradiating UV in ozone atmosphere.

(加湿)
加湿は,非フッ素系樹脂を主成分とする基材の周囲に水蒸気を提供することができる方法であれば,いかなる方法を用いて行われても良い。加湿は,UVを照射する基材表面が水蒸気に曝されるように行われる。すなわち,次のUV照射工程は加湿環境下で行われる。また,必ずしも基材の全ての面が水蒸気に曝されることを必要としない。例えば,加湿は,前記樹脂を内包する外界とは遮断された一定容積を有する容器又は装置内において,水を加熱することにより行うことができる。加湿後の湿度(例えば,UV照射時の湿度)としては,例えば,20〜60%RHとすることができ,好ましくは,30℃では40〜50%RH,40℃では20〜30%である。加湿は,UV照射時に基材の周囲に水蒸気が存在する環境,又は,UVが照射される基材表面が水蒸気に曝される環境とすることができればよく,UV照射前及び/又はUV照射中に行うことができるが,好ましくは,UV照射前及びUV照射中に行う。
(Humidification)
The humidification may be performed by any method as long as it is a method capable of providing water vapor around the base material mainly composed of a non-fluorinated resin. Humidification is performed so that the surface of the substrate irradiated with UV is exposed to water vapor. That is, the next UV irradiation process is performed in a humidified environment. Also, it is not necessary for all surfaces of the substrate to be exposed to water vapor. For example, humidification can be performed by heating water in a container or device having a certain volume that is blocked from the outside world containing the resin. The humidity after humidification (for example, the humidity during UV irradiation) can be, for example, 20 to 60% RH, preferably 40 to 50% RH at 30 ° C., and 20 to 30% at 40 ° C. . Humidification may be performed in an environment where water vapor exists around the substrate during UV irradiation, or in an environment where the surface of the substrate irradiated with UV is exposed to water vapor, before UV irradiation and / or during UV irradiation. However, it is preferably performed before and during UV irradiation.

(UV照射)
UV照射は,酸素及び/又はオゾン雰囲気中で前記基材に対してUVを照射することにより行う。照射するUVは平均波長が184.9nm及び253.7nmとすることができる。UVの波長は分光放射計を用いて測定することができる。UVは,例えば,UV照度として,2000〜5000μW/cm,2500〜4500μW/cm,3000〜4000μW/cm,3200〜3800μW/cm,又は3500μW/cmで行うことができる。UVランプから各プレートまでの距離は,2〜6cm,3〜5cm,3.5〜4.5cm,3.6〜4.4cm,3.7〜4.3cm,3.8〜4.2cm,3.9〜4.1cm,又は4cmとすることができる。UV照射時間は,非フッ素系樹脂表面の水接触角が,例えば,40〜90°,40〜80°,40〜70°,50〜90°,50〜80°,50〜70°,55〜65℃,60〜90°,60〜80°,60〜70°,70〜90°,又は70〜80°となるまでの間行うことができる。あるいは,UV照射時間は,1〜20分間,1〜15分間,1〜10分間,3〜20分間,3〜15分間,3〜10分間,5〜20分間,5〜15分間,又は5〜10分間とすることができる。
(UV irradiation)
The UV irradiation is performed by irradiating the substrate with UV in an oxygen and / or ozone atmosphere. The irradiation UV can have an average wavelength of 184.9 nm and 253.7 nm. The wavelength of UV can be measured using a spectroradiometer. UV, for example, as a UV illumination can be carried out in 2000~5000μW / cm 2, 2500~4500μW / cm 2, 3000~4000μW / cm 2, 3200~3800μW / cm 2, or 3500μW / cm 2. The distance from the UV lamp to each plate is 2-6 cm, 3-5 cm, 3.5-4.5 cm, 3.6-4.4 cm, 3.7-4.3 cm, 3.8-4.2 cm, It can be set to 3.9-4.1 cm or 4 cm. For the UV irradiation time, the water contact angle on the surface of the non-fluorinated resin is, for example, 40 to 90 °, 40 to 80 °, 40 to 70 °, 50 to 90 °, 50 to 80 °, 50 to 70 °, 55 to 55 °. It can be performed until the temperature reaches 65 ° C, 60 to 90 °, 60 to 80 °, 60 to 70 °, 70 to 90 °, or 70 to 80 °. Alternatively, the UV irradiation time is 1 to 20 minutes, 1 to 15 minutes, 1 to 10 minutes, 3 to 20 minutes, 3 to 15 minutes, 3 to 10 minutes, 5 to 20 minutes, 5 to 15 minutes, or 5 to 5 minutes. It can be 10 minutes.

酸素雰囲気とは,基材周辺の酸素濃度が80%以上(好ましくは90%以上)であることを意味する。酸素(例えば,99%酸素)(例えば,乾燥酸素)を一定時間(例えば,5分間)基材を保持する環境に供給することにより酸素雰囲気とすることができる。また,オゾン雰囲気とは,オゾン濃度が400ppm以上(好ましくは450ppm以上)であることを意味する。酸素を放電方式オゾン発生器に通気することにより,オゾンを発生させて基材を保持する環境に供給することにより,オゾン雰囲気とすることができる。酸素雰囲気中でもUV照射によりオゾンは発生するが,オゾン雰囲気中でUV照射することにより,基材表面上にケミカルシフトを生じたC−C結合及び/又はC−H結合が増加することから,好ましくは,オゾン雰囲気中(酸素及びオゾン雰囲気中を含む)でUVを照射する。   The oxygen atmosphere means that the oxygen concentration around the substrate is 80% or more (preferably 90% or more). An oxygen atmosphere can be obtained by supplying oxygen (for example, 99% oxygen) (for example, dry oxygen) to an environment in which the substrate is held for a certain time (for example, 5 minutes). The ozone atmosphere means that the ozone concentration is 400 ppm or more (preferably 450 ppm or more). By supplying oxygen to an environment in which oxygen is generated and supplied to an environment in which the substrate is held, oxygen atmosphere can be obtained. Although ozone is generated by UV irradiation even in an oxygen atmosphere, it is preferable because UV irradiation in an ozone atmosphere increases the C—C bond and / or C—H bond that causes a chemical shift on the substrate surface. Irradiates UV in an ozone atmosphere (including oxygen and ozone atmospheres).

UV照射工程は,基材表面にケミカルシフトを生じたC−C結合及び/又はC−H結合を導入することに加え,基材表面の水接触角を減少させて親水性を付与する。また,カルボキシ基は,基材表面を親水性にするものの反応性が高いことから細胞培養には適さないが,本発明のUV照射工程は基材表面にほとんどカルボキシ基を導入しないことから,細胞培養に適した親水性表面を提供する。   In the UV irradiation process, in addition to introducing a C—C bond and / or a C—H bond causing a chemical shift on the substrate surface, the water contact angle on the substrate surface is reduced to impart hydrophilicity. In addition, although the carboxy group renders the substrate surface hydrophilic but has high reactivity, it is not suitable for cell culture, but the UV irradiation step of the present invention introduces almost no carboxy group on the substrate surface. Provide a hydrophilic surface suitable for culturing.

(2)プラズマ照射工程
プラズマ照射工程に用いられるプラズマ発生源としては,特に限定されるものではないが,水素,ヘリウム,希ガス,酸素,窒素,ハロゲン,アンモニア,二酸化炭素,水蒸気,又はこれらの任意の2種類以上のガスの混合ガスを挙げることができる。プラズマ照射は,1又は複数回行うことができる。供給ガスの圧力は,0.001〜10MPa,0.01〜1MPa,0.05〜0.15MPa,又は0.1〜0.2MPaとすることができる。プラズマ照射1回当りの供給ガス流量は,任意の流量とすることができるが,例えば,安定的にプラズマを発生させるために,2〜30L/分,3〜20L/分,5〜15L/分,8〜12L/分,又は10L/分とすることができる。プラズマ照射口と基材表面との距離は,1〜30mm,3〜20mm,5〜15mm,8〜12mm,又は10mmとすることができる。また,プラズマ照射時間は,1〜500秒であってもよく,例えば,2〜300秒,3〜200秒,又は5〜160秒とすることができる。
(2) Plasma irradiation process The plasma generation source used in the plasma irradiation process is not particularly limited, but hydrogen, helium, rare gas, oxygen, nitrogen, halogen, ammonia, carbon dioxide, water vapor, or these A mixed gas of any two or more kinds of gases can be exemplified. Plasma irradiation can be performed one or more times. The pressure of the supply gas can be 0.001 to 10 MPa, 0.01 to 1 MPa, 0.05 to 0.15 MPa, or 0.1 to 0.2 MPa. The supply gas flow rate per plasma irradiation can be set to an arbitrary flow rate. For example, in order to stably generate plasma, 2 to 30 L / min, 3 to 20 L / min, and 5 to 15 L / min. , 8-12 L / min, or 10 L / min. The distance between the plasma irradiation port and the substrate surface can be 1 to 30 mm, 3 to 20 mm, 5 to 15 mm, 8 to 12 mm, or 10 mm. Further, the plasma irradiation time may be 1 to 500 seconds, and may be, for example, 2 to 300 seconds, 3 to 200 seconds, or 5 to 160 seconds.

(3)アンモニア溶液塗布工程
本発明の製造方法は,UV照射前にアンモニア溶液を塗布する工程を含んでいてもよい。アンモニア溶液の塗布は,基材の細胞担持面にアンモニア(NH)を含有する液体を接触させることにより行うことができる。アンモニアは水,PBS,培地などの液体に溶解させて,アンモニア溶液として塗布することができる。アンモニア溶液の濃度は特に限定されるものではないが,1〜50%,5〜40%,10〜30%とすることができる。アンモニアは揮発性であるため,アンモニア塗布の後,速やかにUV/プラズマ処理行うことが望ましい。
(3) Ammonia solution coating step The production method of the present invention may include a step of coating an ammonia solution before UV irradiation. The application of the ammonia solution can be performed by bringing a liquid containing ammonia (NH 3 ) into contact with the cell carrying surface of the substrate. Ammonia can be dissolved in a liquid such as water, PBS, or a medium and applied as an ammonia solution. The concentration of the ammonia solution is not particularly limited, but can be 1 to 50%, 5 to 40%, or 10 to 30%. Since ammonia is volatile, it is desirable to perform UV / plasma treatment immediately after application of ammonia.

2.細胞担持用基材を用いた細胞培養方法
一態様において,本発明は接着性細胞の培養方法であって,上述の細胞培養容器の細胞担持面上で細胞を培養することを含む培養方法に関する。細胞の培養は,通常,細胞培養容器に培地を添加すること,当該培地中に所望の細胞を播種すること,及び,当該培地と細胞との混合物をインキュベータ(通常は,5%CO,37℃)内で静置することにより行うことができる。培養は,細胞が接着するまでの期間又は細胞が所望の数まで分裂するまでの期間行うことができ,例えば,数時間〜数週間行うことができる。培養が長期間の場合,必要に応じて培地交換することが望ましい。
2. Cell Culture Method Using Cell-Supporting Substrate In one aspect, the present invention relates to a method for culturing adhesive cells, comprising culturing cells on the cell-supporting surface of the cell culture container described above. Cell culture is usually performed by adding a medium to a cell culture vessel, seeding desired cells in the medium, and incubating a mixture of the medium and cells with an incubator (usually 5% CO 2 , 37 (° C.). The culture can be performed for a period until the cells adhere or for a period until the cells divide to a desired number, for example, several hours to several weeks. When culturing is for a long time, it is desirable to change the medium as necessary.

本明細書における細胞の培養方法において,使用する「培地」は,当業者に知られた培地の中から使用する細胞の種類に応じて適宜選択することができる。例えば,幹細胞(例えば,iPS細胞)を培養する場合,間葉系細胞用DMEM,間葉系細胞用MSCBM,EC細胞用培地,間葉系細胞用培地,ES細胞用培地,iPS細胞用培地,幹細胞用の培地,iSTEM,Cellartis(登録商標) DEF−CS 500 Xeno−Free Culture Medium,GS2−M(登録商標),GS1−R(登録商標)(以上,タカラバイオ株式会社),Poweredby10,Plusoid−M,G031101,M061101,SODATT201(以上,株式会社グライコテクニカ),ReproFF2,ReproNaive,RCHEMD001,RCHEMD001A,RCHEMD001B,ReproStem,ReproXF,ReproFF2,ReproFF,NutriStem(以上,株式会社リプロセル),StemFit(登録商標)AK02N等のStem fit培地(AJINOMOTO)を使用することができる。   In the method for culturing cells in the present specification, the “medium” to be used can be appropriately selected from media known to those skilled in the art according to the type of cell used. For example, when culturing stem cells (for example, iPS cells), DMEM for mesenchymal cells, MSCBM for mesenchymal cells, medium for EC cells, medium for mesenchymal cells, medium for ES cells, medium for iPS cells, Medium for stem cells, iSTEM, Cellartis (registered trademark) DEF-CS 500 Xeno-Free Culture Medium, GS2-M (registered trademark), GS1-R (registered trademark) (above, Takara Bio Inc.), Poweredby 10, Plusoid- M, G031101, M06101, SODATT201 (Glyco Technica Co., Ltd.), ReproFF2, ReproNaive, RCHEMD001, RCHEMD001A, RCHEMD001B, ReproStem, ReproXF, ReproFF2, Rep A Stemfit medium (AJINOMOTO) such as roFF, NutriStem (above, Reprocell), StemFit (registered trademark) AK02N can be used.

本明細書における細胞の培養方法において,培養する接着性細胞は特に限定されるものではないが,好ましくは幹細胞(iPS細胞を含む)である。幹細胞は,本発明の培養方法を用いることにより,フィーダー細胞及び細胞外基質タンパク質コーティング(ラミニン,マトリゲル(登録商標)等)非存在下又は従来より低濃度の細胞外基質タンパク質コーティングにおいても培養することができることから,生体由来材料を用いることによる安定性の低下やロット差による結果の違い,又はコンタミネーションを生じにくい。また,本発明に細胞培養方法により幹細胞を培養する場合,幹細胞としての性質(分化能,及び自己増殖能)を維持することができる。よって,本発明の細胞培養方法は,生体由来材料を用いることなく,幹細胞を培養することができることから,より安定的に安全な再生医療材料を調製することができる。   In the cell culture method in the present specification, the adherent cells to be cultured are not particularly limited, but are preferably stem cells (including iPS cells). Stem cells can be cultured in the absence of feeder cells and extracellular matrix protein coatings (laminin, Matrigel (registered trademark), etc.) or even at a lower concentration of extracellular matrix protein coatings by using the culture method of the present invention. Therefore, it is difficult to cause a decrease in stability due to the use of a biological material, a difference in results due to a lot difference, or contamination. In addition, when stem cells are cultured by the cell culture method of the present invention, the properties (differentiation ability and self-proliferation ability) as stem cells can be maintained. Therefore, since the cell culture method of the present invention can cultivate stem cells without using a biological material, a more stable and safe regenerative medical material can be prepared.

例えば,本発明の培養方法は,上述の細胞培養容器の細胞担持面上で細胞を培養することを含む培養方法であって,フィーダー細胞の非存在下で培養することを特徴とする培養方法であってもよい。また,本発明の培養方法は,表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なマトリゲル(登録商標)の濃度の0.2倍以上1倍未満(例えば,0.2倍〜0.9倍,0.2倍〜0.8倍,0.2倍〜0.7倍,0.2倍〜0.6倍,0.2倍〜0.5倍,0.2倍〜0.4倍,0.2倍〜0.3倍,0.2倍,0.3倍〜0.9倍,0.3倍〜0.8倍,0.3倍〜0.7倍,0.3倍〜0.6倍,0.3倍〜0.5倍,0.3倍〜0.4倍,0.3倍,0.4倍〜0.9倍,0.4倍〜0.8倍,0.4倍〜0.7倍,0.4倍〜0.6倍,0.4倍〜0.5倍,0.4倍,0.5倍〜0.9倍,0.5倍〜0.8倍,0.5倍〜0.7倍,0.5倍〜0.6倍,又は0.5倍)の濃度のマトリゲル(登録商標)存在下で培養することを特徴とする,前記培養方法であってもよい。本明細書において,「表面未処理の前記非フッ素系樹脂を主成分とする基材」とは,表面が当該基材の主成分である前記非フッ素系樹脂のみからなる基材を意味する。また,本明細書において,表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なマトリゲル(登録商標)の濃度のマトリゲル(登録商標)(1倍)とは,マトリゲル(登録商標)Growth factor reduced(Corning)170μlに対してDMEM−F12培地(Life Technologies)10mlの割合でとかし,培養皿表面を常温1時間でコーティングしたものを意味する。   For example, the culturing method of the present invention is a culturing method including culturing cells on the cell-carrying surface of the above-described cell culturing vessel, and culturing in the absence of feeder cells. There may be. In addition, the culture method of the present invention is 0.2 to 1 times the concentration of Matrigel (Registered Trademark), which is usually necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that has not been surface-treated. Less than (e.g., 0.2 times to 0.9 times, 0.2 times to 0.8 times, 0.2 times to 0.7 times, 0.2 times to 0.6 times, 0.2 times to 0 times) .5 times, 0.2 times to 0.4 times, 0.2 times to 0.3 times, 0.2 times, 0.3 times to 0.9 times, 0.3 times to 0.8 times, 0 times .3 times to 0.7 times, 0.3 times to 0.6 times, 0.3 times to 0.5 times, 0.3 times to 0.4 times, 0.3 times, 0.4 times to 0 times .9 times, 0.4 times to 0.8 times, 0.4 times to 0.7 times, 0.4 times to 0.6 times, 0.4 times to 0.5 times, 0.4 times, 0 .5 times to 0.9 times, 0.5 times to 0.8 times, 0.5 times to 0.7 times, 0.5 times to 0.6 times, or 0.5 times) Characterized by culturing in the presence of Matrigel (TM), it may be the culture method. In the present specification, the “base material mainly composed of the non-fluorine resin with untreated surface” means a base material composed of only the non-fluorine resin whose surface is the main component of the base material. Further, in the present specification, Matrigel (registered trademark) having a concentration of Matrigel (registered trademark) usually required for adhering stem cells to a base material mainly composed of the non-fluorinated resin whose surface has not been treated is (1 time). The term "Matrigel (registered trademark) Growth factor reduced (Corning)" refers to a solution prepared by dissolving 10 ml of DMEM-F12 medium (Life Technologies) and coating the surface of the culture dish at room temperature for 1 hour.

更に,本発明の培養方法は,表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なラミニンの濃度の0.2倍以上1倍未満(例えば,0.2倍〜0.9倍,0.2倍〜0.8倍,0.2倍〜0.7倍,0.2倍〜0.6倍,0.2倍〜0.5倍,0.2倍〜0.4倍,0.2倍〜0.3倍,0.2倍,0.3倍〜0.9倍,0.3倍〜0.8倍,0.3倍〜0.7倍,0.3倍〜0.6倍,0.3倍〜0.5倍,0.3倍〜0.4倍,0.3倍,0.4倍〜0.9倍,0.4倍〜0.8倍,0.4倍〜0.7倍,0.4倍〜0.6倍,0.4倍〜0.5倍,0.4倍,0.5倍〜0.9倍,0.5倍〜0.8倍,0.5倍〜0.7倍,0.5倍〜0.6倍,又は0.5倍)の濃度のラミニン存在下で培養することを特徴とする,前記培養方法であってもよい。本明細書において表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なラミニンの濃度(1倍)とは,最終的に0.5μg/cmになるように,iMatrix(1μg/μl)をPBS希釈した後,37℃,5%COインキュベータで1時間インキュベートしコートしたものを意味する。また,本明細書において,ラミニンは,代表的にはラミニン511E8である。 Furthermore, the culture method of the present invention is not less than 0.2 times the concentration of laminin that is usually necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that is untreated on the surface (for example, 0.2 times to 0.9 times, 0.2 times to 0.8 times, 0.2 times to 0.7 times, 0.2 times to 0.6 times, 0.2 times to 0.5 times, 0.2 times to 0.4 times, 0.2 times to 0.3 times, 0.2 times, 0.3 times to 0.9 times, 0.3 times to 0.8 times, 0.3 times to 0.7 times, 0.3 times to 0.6 times, 0.3 times to 0.5 times, 0.3 times to 0.4 times, 0.3 times, 0.4 times to 0.9 times, 0.4 times to 0.8 times, 0.4 times to 0.7 times, 0.4 times to 0.6 times, 0.4 times to 0.5 times, 0.4 times, 0.5 times to 0.9 times, 0.5 times to 0.8 times, 0.5 times to 0.7 times, 0.5 times to 0.6 times, or 0.5 times the concentration of laminin In characterized by culturing, it may be the culture method. In the present specification, the laminin concentration (1 time) usually required for adhering stem cells to the base material mainly composed of the non-fluorine-based resin untreated on the surface is finally 0.5 μg / cm 2 . As shown, iMatrix (1 μg / μl) diluted with PBS, incubated at 37 ° C. in a 5% CO 2 incubator for 1 hour, and coated. In this specification, laminin is typically laminin 511E8.

本発明にかかる細胞担持用基材表面改質装置の一実施例を添付図面に基づいて説明する。図13は,一つの格納部8からなる本発明にかかる細胞担持用基材表面改質装置の構成図である。窒素ガス供給路1から供給された窒素ガスは,高周波電源4と接続した高周波コイル3を有するプラズマ発生部2によりプラズマに変換され,窒素プラズマとして細胞担持用基材9に照射される。一方,紫外線発生部6において発生した紫外線11は,直接又は放物面ミラー5により反射して細胞担持用基材9に照射される。細胞担持用基材表面改質装置は更に,細胞担持用基材9を出し入れするバルブ7,及び酸素又はオゾンガス注入口10を備える。また,図には示されていないが,本実施態様の細胞担持用基材表面改質装置は加湿手段を備える。バルブ7より挿入された細胞担持用基材は,プラズマ発生部2から照射されるプラズマ及び紫外線発生部6より照射される紫外線により表面が改質される。   One embodiment of a cell carrying substrate surface modifying apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 13 is a configuration diagram of a cell-supporting substrate surface modifying apparatus according to the present invention comprising a single storage unit 8. The nitrogen gas supplied from the nitrogen gas supply path 1 is converted into plasma by the plasma generator 2 having the high-frequency coil 3 connected to the high-frequency power source 4 and irradiated to the cell-supporting substrate 9 as nitrogen plasma. On the other hand, the ultraviolet rays 11 generated in the ultraviolet ray generator 6 are directly or reflected by the parabolic mirror 5 and applied to the cell-supporting substrate 9. The cell-supporting substrate surface modifying apparatus further includes a valve 7 for taking in and out the cell-supporting substrate 9 and an oxygen or ozone gas inlet 10. Although not shown in the drawing, the cell-supporting substrate surface modifying apparatus of this embodiment includes a humidifying means. The surface of the cell-supporting substrate inserted from the bulb 7 is modified by the plasma irradiated from the plasma generator 2 and the ultraviolet rays irradiated from the ultraviolet generator 6.

図14は,格納部14,格納部15,格納部16,及び格納部17の複数の格納部を有し,プラズマ処理及び紫外線処理がそれぞれ異なる格納部で行われる本発明にかかる細胞担持用基材表面改質装置の構成図である。細胞担持用基材設置部18に設置された細胞担持用基材9は,基材輸送機構12及び基材輸送機構13により,格納部14,格納部15,格納部16,格納部17に輸送される。格納部14,格納部15,格納部16,格納部17は,それぞれ,図15に記載の紫外線処理用の格納部,又は図16に記載のプラズマ処理用の格納部のいずれかの構成を有する。なお,格納部14,格納部15,格納部16,及び格納部17のうち,少なくとも1つは紫外線処理用の格納部であり,少なくとも一つはプラズマ処理用の格納部である。格納部14,格納部15,格納部16,格納部17に輸送された細胞担持用基材9は,各格納部に設置された紫外線発生部からの紫外線照射又はプラズマ照射部によるプラズマ照射により,その表面が改質される。     FIG. 14 shows a cell-supporting substrate according to the present invention having a plurality of storage units 14, a storage unit 15, a storage unit 16, and a storage unit 17, wherein plasma processing and ultraviolet processing are performed in different storage units. It is a block diagram of a material surface modification apparatus. The cell-supporting substrate 9 installed in the cell-supporting substrate setting unit 18 is transported to the storage unit 14, the storage unit 15, the storage unit 16, and the storage unit 17 by the substrate transport mechanism 12 and the substrate transport mechanism 13. Is done. Each of the storage unit 14, the storage unit 15, the storage unit 16, and the storage unit 17 has a configuration of either the ultraviolet processing storage unit illustrated in FIG. 15 or the plasma processing storage unit illustrated in FIG. . Of the storage unit 14, storage unit 15, storage unit 16, and storage unit 17, at least one is a storage unit for ultraviolet processing, and at least one is a storage unit for plasma processing. The cell-supporting substrate 9 transported to the storage unit 14, the storage unit 15, the storage unit 16, and the storage unit 17 is subjected to ultraviolet irradiation from an ultraviolet generation unit installed in each storage unit or plasma irradiation by a plasma irradiation unit. Its surface is modified.

図15は,図14に記載の細胞担持用基材表面改質装置における格納部のうち,紫外線処理用格納部19の構成図である。紫外線発生部6において発生した紫外線は,直接又は放物面ミラー5により反射して細胞担持用基材9に照射される。紫外線処理用格納部19は,細胞担持用基材9を出し入れするバルブ7,及び酸素又はオゾンガス注入口10を備える。また,図には示されていないが,紫外線処理用格納部19は加湿手段を備える。   FIG. 15 is a configuration diagram of the ultraviolet treatment storage unit 19 among the storage units in the cell-supporting substrate surface modifying apparatus shown in FIG. The ultraviolet rays generated in the ultraviolet ray generator 6 are directly or directly reflected by the parabolic mirror 5 and applied to the cell supporting substrate 9. The ultraviolet treatment storage unit 19 includes a valve 7 for taking in and out the cell-supporting base material 9 and an oxygen or ozone gas inlet 10. Although not shown in the figure, the ultraviolet ray processing storage unit 19 includes humidification means.

図16は,図14に記載の細胞担持用基材表面改質装置における格納部のうち,プラズマ処理用格納部20の構成図である。窒素ガス供給路1から供給された窒素ガスは,高周波電源4と接続した高周波コイル3を有するプラズマ発生部2によりプラズマに変換され,窒素プラズマとして細胞担持用基材9に照射される。一方,細胞担持用基材表面改質装置は更に,細胞担持用基材9を出し入れするバルブ7を備える。   FIG. 16 is a configuration diagram of the plasma processing storage unit 20 among the storage units in the cell-supporting substrate surface modifying apparatus illustrated in FIG. 14. The nitrogen gas supplied from the nitrogen gas supply path 1 is converted into plasma by the plasma generator 2 having the high-frequency coil 3 connected to the high-frequency power source 4 and irradiated to the cell-supporting substrate 9 as nitrogen plasma. On the other hand, the cell-supporting substrate surface modifying apparatus further includes a valve 7 for taking in and out the cell-supporting substrate 9.

以下,実施例を挙げて本発明を具体的に説明するが,本発明は下記実施例に限定されるものではない。なお,本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples. It should be noted that all documents cited throughout the present application are incorporated herein by reference as they are.

(実施例1)UV/ozone・大気圧プラズマ複合改質処理
(1)UV/ozone表面改質
UV/ozone表面改質は,ozone発生UV曝露装置(細胞アレイヤー,EKBIO−1100,荏原実業)を用いて実施した(図1)。装置内部には波長が185nm及び254nmの2種類のUVを照射できる低圧水銀ランプが2本設置されている。また,本装置には酸素ボンベから装置内に酸素を充填する酸素パージが可能であり,UVを照射する前に槽内の空気を除去して酸素で充たすことができる。酸素への紫外線の照射により,酸素分子が乖離し,培養基材表面にオゾン及び活性酸素が生成することで基材表面への酸素原子の導入が可能となる。本実施例では,酸素供給圧力0.1MPa,供給流量4L/min,パージ時間5minによる酸素パージを実施,槽内の雰囲気温度及び加湿槽の水温は共に25℃に設定している。また,UVの照射距離は40mmで一定とした。
(Example 1) UV / zone / atmospheric pressure plasma composite modification treatment (1) UV / zone surface modification UV / zone surface modification is performed using an ozone generation UV exposure device (Cell Array, EKBIO-1100, Sugawara Business). (Fig. 1). Two low-pressure mercury lamps that can irradiate two types of UV light having wavelengths of 185 nm and 254 nm are installed inside the apparatus. In addition, the apparatus can be purged with oxygen from an oxygen cylinder to fill the apparatus with oxygen, and can be filled with oxygen by removing the air in the tank before irradiating UV. Oxygen irradiation causes oxygen molecules to dissociate, and ozone and active oxygen are generated on the culture substrate surface, so that oxygen atoms can be introduced to the substrate surface. In this embodiment, oxygen purge is performed with an oxygen supply pressure of 0.1 MPa, a supply flow rate of 4 L / min, and a purge time of 5 min, and the atmospheric temperature in the tank and the water temperature of the humidifying tank are both set to 25 ° C. The UV irradiation distance was fixed at 40 mm.

(2)大気圧プラズマ表面処理
大気圧プラズマ表面処理は,ペン型大気圧プラズマ装置を用いて実施した。プラズマ発生源として窒素ガス(N)を用い,大気圧低温プラズマを生成することで処理対象物に対して熱,電荷ダメージを与えずに窒素原子を導入する表面改質を実施することができる。本実施例では,窒素ガス供給圧力0.1〜0.2MPa,供給流量10L/minとし,照射距離は10mmで一定とした。
(2) Atmospheric pressure plasma surface treatment Atmospheric pressure plasma surface treatment was performed using a pen-type atmospheric pressure plasma apparatus. By using nitrogen gas (N 2 ) as a plasma generation source and generating atmospheric pressure low temperature plasma, surface modification can be carried out by introducing nitrogen atoms without causing heat or charge damage to the object to be processed. . In this example, the nitrogen gas supply pressure was 0.1 to 0.2 MPa, the supply flow rate was 10 L / min, and the irradiation distance was constant at 10 mm.

(3)UV/ozone・大気圧プラズマ複合改質処理による培養基材の作製
本実施例では,直径60mmのポリスチレン製細胞用培養ディッシュ(430589,Corning)を用いた。表面改質はUV/ozone表面改質の単独改質処理ではUVを1分,3分,又は10分間照射した試料を用意した。また,大気圧プラズマ処理の単独改質処理ではプラズマを5秒,40秒,160秒間照射した試料を用意した。また,control群として表面改質を施していない未処理の試料も用意した。UV/ozone表面改質と大気圧プラズマ処理を複合プロセス化して施した試料として,上記のUV照射時間のUV/ozone表面改質とプラズマ照射時間の大気圧プラズマ処理を,UV/ozone表面改質と大気圧プラズマ処理の順番を前後で入れ替えて実施した。詳細な改質条件を表1に示す。
(3) Production of culture substrate by UV / zone / atmospheric pressure plasma combined modification treatment In this example, a culture dish made of polystyrene having a diameter of 60 mm (430589, Corning) was used. For surface modification, a sample irradiated with UV for 1 minute, 3 minutes, or 10 minutes was prepared in the single modification treatment of UV / zone surface modification. In addition, a sample irradiated with plasma for 5 seconds, 40 seconds, and 160 seconds was prepared for the single reforming treatment of the atmospheric pressure plasma treatment. In addition, an untreated sample not subjected to surface modification was also prepared as a control group. UV / zone surface modification and atmospheric pressure plasma treatment of the above UV irradiation time as a sample subjected to a combined process of UV / zone surface modification and atmospheric pressure plasma treatment, UV / zone surface modification The order of the atmospheric pressure plasma treatment was changed before and after. Detailed reforming conditions are shown in Table 1.

(実施例2)XPS分析
実施例1において作製した試料について,XPSによる表面分子構造の分析を実施して,本発明による表面改質が表面性状の改質に与える効果を検討した。各ディッシュから8mm各のプレートを切り出して,光電子分光装置(日本電子株式会社,JPS−9010)を用いて表面分析を行った。各試料を試料台に貼付し,試料台を準備室に入れて真空引きを行った後,試料台を測定室に挿入した。本分析で使用する試料はポリスチレン製であるため,構成元素は炭素及び酸素である(水素も構成元素ではあるが,水素は電子が1個しか存在しないので,XPSでは測定ができない)。従って,本分析では,ワイドスキャンは行わず,炭素の1s軌道の電子のナロースキャンスペクトルを取得した。X線はAlKa線(1486.6eV)を用い,炭素のナロースキャンの測定範囲は294.0〜280.0eVとした.また,ステップ幅は0.1eV,積算回数は10回とした。スペクトルを取得後,ステップ数5でスムージングによるスペクトルの平滑化を行った。非弾性散乱した電子やノイズが原因で発生するスペクトルのバックグラウンドの除去は,シャーリーバックグラウンド除去を利用して行った。スペクトルの波形分離は,成分波形をガウス−ローレンツ関数の正規分布型の関数で近似して行った。
(Example 2) XPS analysis The sample prepared in Example 1 was analyzed for surface molecular structure by XPS, and the effect of surface modification according to the present invention on modification of surface properties was examined. Each plate of 8 mm was cut out from each dish, and surface analysis was performed using a photoelectron spectrometer (JEOL Ltd., JPS-9010). Each sample was affixed to the sample stage, the sample stage was placed in the preparation room and evacuated, and then the sample stage was inserted into the measurement room. Since the sample used in this analysis is made of polystyrene, the constituent elements are carbon and oxygen (hydrogen is also a constituent element, but since hydrogen has only one electron, it cannot be measured by XPS). Therefore, in this analysis, the wide scan was not performed, and the narrow scan spectrum of the carbon 1s orbital electron was acquired. The X-ray was an AlKa line (1486.6 eV), and the carbon narrow scan measurement range was 294.0 to 280.0 eV. The step width was 0.1 eV and the number of integrations was 10. After obtaining the spectrum, the spectrum was smoothed by smoothing at step number 5. The background of the spectrum caused by inelastically scattered electrons and noise was removed using Shirley background removal. Spectral waveform separation was performed by approximating the component waveform with a Gauss-Lorentz function normally distributed function.

Control群の試料のワイドスキャンスペクトルを図2に,C(1s)のナロースキャンスペクトルを図3に示す。処理試料のC(1s)のナロースキャンスペクトル及び波形分離を図4〜図6に示す。各表面改質処理を単独で施した試料群の分析におけるO(1s)のナロースキャンスペクトルを図6に示す。また,大気圧プラズマ処理を単独で施した試料群の分析におけるN(1s)のナロースキャンスペクトルを図7に示す。さらに,図8にUV照射3minとプラズマ照射40sの複合処理を施した試料のC(1s)のナロースキャンスペクトルを,図9に,UV照射10minとプラズマ照射160sの複合処理を施した試料のC(1s)のナロースキャンスペクトルを示す。   FIG. 2 shows a wide scan spectrum of samples of the Control group, and FIG. 3 shows a narrow scan spectrum of C (1s). The narrow scan spectrum and waveform separation of C (1s) of the processed sample are shown in FIGS. FIG. 6 shows a narrow scan spectrum of O (1s) in the analysis of the sample group subjected to each surface modification treatment alone. Further, FIG. 7 shows a narrow scan spectrum of N (1s) in the analysis of the sample group subjected to the atmospheric pressure plasma treatment alone. Further, FIG. 8 shows the narrow scan spectrum of C (1 s) of the sample subjected to the combined treatment of UV irradiation 3 min and plasma irradiation 40 s, and FIG. 9 shows the C of the sample subjected to the combined treatment of UV irradiation 10 min and plasma irradiation 160 s. The narrow scan spectrum of (1s) is shown.

UV/ozone表面改質を施した試料ではUVの照射時間の増加に伴って酸素の発現量も増加した(図6)。また,UVの照射時間が短いときはカルボキシ基(COOH)のみが発現し,UVの照射時間が長いときはCOOHに加えて炭素と酸素の単結合(C−O)が発現することが分かった(図4)。以上の結果より,UV/ozone表面改質では,UV照射時間の増加に伴ってCOOH,C−Oの順で官能基が導入されることが示された。   In the sample subjected to UV / zone surface modification, the amount of expressed oxygen increased as the UV irradiation time increased (FIG. 6). It was also found that when the UV irradiation time is short, only the carboxy group (COOH) is expressed, and when the UV irradiation time is long, a single bond of carbon and oxygen (CO) is expressed in addition to COOH. (FIG. 4). From the above results, it was shown that in the UV / zone surface modification, functional groups are introduced in the order of COOH and CO with increasing UV irradiation time.

次に,大気圧プラズマ処理を施した試料ではcontrol群と比較して酸素の発現量が増加し,プラズマ照射時間の増加に伴い酸素の発現量の増加が認められた(図6)。また,プラズマ照射時間が増加すると窒素の発現量の増加も認められた(図7)。一方,プラズマ照射時間5sの試料からはポリスチレン由来の結合以外の結合状態は観測されなかったが,照射時間40sの試料からは炭素と窒素の単結合(C−N)が,照射時間160sの試料からはC−N結合とカルボキシ基が観測された(図5C)。さらに,プラズマ照射時間の増加に伴ってC−N結合の発現量の増加が認められた(図5)。以上の結果より,大気圧プラズマ処理ではプラズマ照射時間が増加するとC−N結合の発現量が増加し,照射時間が長くなるとカルボキシ基が導入されることが示唆された。   Next, in the sample subjected to the atmospheric pressure plasma treatment, the amount of oxygen increased as compared with the control group, and an increase in the amount of oxygen expressed was observed as the plasma irradiation time increased (FIG. 6). In addition, an increase in the amount of nitrogen was observed as the plasma irradiation time increased (FIG. 7). On the other hand, no bonding state other than the polystyrene-derived bond was observed from the sample with the plasma irradiation time of 5 s, but from the sample with the irradiation time of 40 s, the carbon and nitrogen single bond (CN) was the sample with the irradiation time of 160 s. From FIG. 5, a CN bond and a carboxy group were observed (FIG. 5C). Furthermore, an increase in the amount of CN bonds was observed as the plasma irradiation time increased (FIG. 5). From the above results, it was suggested that in the atmospheric pressure plasma treatment, the amount of CN bonds increased as the plasma irradiation time increased, and the carboxy group was introduced as the irradiation time increased.

最後に,UV/ozone表面改質と大気圧プラズマ処理を複合プロセス化して施した試料群では,全ての処理条件で酸素を含む官能基として−COOHが認められた(図8及び図9)。一方,窒素を含む官能基については,UV/ozone表面改質を先に施した試料からはイミノ基(C=N)が,大気圧プラズマ処理を先に施した試料からはアミド結合(NH−C=O)が認められた(図8,図9)。また,大気圧プラズマ処理を先に施した試料の方がUV/ozone表面改質を先に施した試料よりも窒素を含む官能基の発現量が多く,大気圧プラズマ処理を先に施した試料からはC=NとNH−C=Oの両方が,UV/ozone表面改質を先に施した試料からはC=Nのみが認められた(図8,図9)。以上の結果より,UV/ozone表面改質と大気圧プラズマ処理の複合処理において,UV照射を先に行った場合はC=Nが形成されやすく,プラズマ照射を先に行った場合はNH−C=Oが形成されやすいことが示唆された。なお,イミド基,アミド基はUV/ozone単独,プラズマ単独では形成し得ず,本発明の実施によって初めて培養基材上に生成可能であった。   Finally, in the sample group subjected to UV / zone surface modification and atmospheric pressure plasma treatment as a combined process, —COOH was recognized as a functional group containing oxygen under all treatment conditions (FIGS. 8 and 9). On the other hand, for functional groups containing nitrogen, imino groups (C = N) are obtained from samples that have been subjected to UV / zone surface modification first, and amide bonds (NH--) from samples that have been previously subjected to atmospheric pressure plasma treatment. C = O) was observed (FIGS. 8 and 9). In addition, the sample subjected to the atmospheric pressure plasma treatment has a higher expression amount of functional groups containing nitrogen than the sample subjected to the UV / zone surface modification earlier, and the sample subjected to the atmospheric pressure plasma treatment first. From the sample, both C = N and NH-C = O were observed, and only C = N was observed from the sample that had been subjected to UV / zone surface modification first (FIGS. 8 and 9). From the above results, in the combined treatment of UV / zone surface modification and atmospheric pressure plasma treatment, C = N is easily formed when UV irradiation is performed first, and NH—C when plasma irradiation is performed first. It was suggested that ═O is easily formed. The imide group and amide group could not be formed by UV / zone alone or plasma alone, and could only be generated on the culture substrate by carrying out the present invention.

(実施例3)細胞培養
(1)細胞
細胞はマウスES細胞株2種,マウスiPS細胞株1種で実施した。マウスES細胞はES−B3株とES−D3株を用いた。ES−B3株は,培養にフィーダー細胞を必要としない株化細胞である。ES−B3株は,未分化状態を示すマーカーであるOct3/4遺伝子の片方がires−blasticidin S耐性遺伝子と置換されているため,Oct3/4遺伝子の転写活性によってblasticidin S耐性遺伝子を発現する。このため,ヌクレオシド系抗生物質であるBlasticidin S存在下で培養することで分化した細胞はBlasticidin Sにより死滅し,未分化形態のES細胞のみを純化培養することが可能となる。ES−D3株は研究実施例が多く,多能性が分化誘導試験で十分に担保されているES細胞株である。ES−D3株は,培養にフィーダー細胞が必要である。多能性幹細胞としてマウスiPS細胞株での培養試験も実施するため,理研セルバンク提供のAPS0001株を用いた。本細胞株は未分化マーカーであるNanogのプロモーターの制御下にGFP遺伝子が導入されており,未分化形態の細胞を蛍光顕微鏡で識別可能である。
(Example 3) Cell culture (1) Cells Cells were used in two mouse ES cell lines and one mouse iPS cell line. As mouse ES cells, ES-B3 strain and ES-D3 strain were used. The ES-B3 strain is a cell line that does not require feeder cells for culture. The ES-B3 strain expresses the blasticinin S resistant gene by the transcriptional activity of the Oct3 / 4 gene because one of the Oct3 / 4 gene, which is a marker indicating an undifferentiated state, has been replaced with the ires-blasticin S resistant gene. Therefore, cells differentiated by culturing in the presence of Blasticidin S, which is a nucleoside antibiotic, are killed by Blasticidin S, and only undifferentiated ES cells can be purified and cultured. The ES-D3 strain is an ES cell strain in which there are many research examples and pluripotency is sufficiently secured by a differentiation induction test. The ES-D3 strain requires feeder cells for culture. The APS0001 strain provided by Riken Cell Bank was used in order to conduct a culture test using a mouse iPS cell line as a pluripotent stem cell. In this cell line, a GFP gene is introduced under the control of the promoter of Nanog, which is an undifferentiation marker, and cells in an undifferentiated form can be identified with a fluorescence microscope.

(2)培養方法
マウスES細胞はB3株およびD3株を用いた。ES−B3株はグラスゴー最少必須培地(Glasgow Modified Minimum Essential Medium,GMEM)に,濃度10%仔ウシ胎児血清(Fetal bovine Serum,FBS),1%抗菌−抗生物質(Antibiotic−Antimycotic),0.1mM必須アミノ酸(Non Essential Amino Acid,NEAA),1mMピルビン酸ナトリウム(Sodium pyruvate),,0.1mMメルカプトエタノール(2−mercaptoethanol,2ME)を添加した溶液を基礎培養液として,1000μg/ml blasticidin S,1000U/ml白血病抑制因子(Leukemia Inhibitory Factor,LIF)を添加した培地にて培養を行った。ES−D3株はダルベッコ変法イーグル培地(高グルコース)(Dulbecco’s Modified Eagle Medium high−glucose:DMEM high−glucose)に,濃度15%仔ウシ胎児血清(Fetal Bovine Serum:FBS),1%抗菌−抗生物質(Antibiotic−Antimycotic),0.1mM必須アミノ酸(Non Essential Amino Acid:NEAA),0.1mMメルカプトエタノール(2−mercaptoethanol:2ME)を添加した溶液を基礎培養液として,1000μg/ml blasticidin S,1000U/ml白血病抑制因子(Leukemia Inhibitory Factor,LIF)を添加した培地にて培養を行った。マウスiPS細胞はiPS−MEF−Ng−20D−17株(APS0001理研セルバンク)を用い,ダルベッコ変法イーグル培地(高グルコース)(Dulbecco’s Modified Eagle Medium high−glucose:DMEM high−glucose)に,濃度15%仔ウシ胎児血清(Fetal Bovine Serum:FBS),1%抗菌−抗生物質(Antibiotic−Antimycotic),0.1mM 必須アミノ酸(Non Essential Amino Acid:NEAA),0.1mMメルカプトエタノール(2−mercaptoethanol:2ME)を添加した溶液を基礎培養液として,1000μg/ml blasticidin S,1000U/ml白血病抑制因子(Leukemia Inhibitory Factor,LIF)を添加した培地にて培養を行った.培養基材は,ES−B3株では未処理のポリスチレン製培養ディッシュ(control),UV/ozone単独10min,プラズマ単独10s,40s,それぞれの改質処理を前後に順を変えて連続的に実施する複合プロセス処理を施したポリスチレン製培養ディッシュを用いた。ES−D3株では未処理の基材(control),UV/ozone単独10min,プラズマ単独10s,それぞれの改質処理を前後に順を変えて連続的に実施する複合プロセス処理を施したポリスチレン製培養ディッシュを用いた。
(2) Culture method B3 strain and D3 strain were used for mouse ES cells. The ES-B3 strain is composed of Glasgow Modified Minimum Essential Medium (GMEM), 10% fetal bovine serum (FBS), 1% antibacterial-antibiotic (antibiotic), 0.1% A solution containing essential amino acids (Non Essential Amino Acid, NEAA), 1 mM sodium pyruvate, and 0.1 mM mercaptoethanol (2-mercaptoethanol, 2ME) as a basic culture, 1000 μg / ml blasticidin S, 1000 / Ml Leukemia Inhibitory Factor (LIF) added The culture was performed in the prepared medium. The ES-D3 strain is in Dulbecco's Modified Eagle Medium high-glucose (DMEM high-glucose), 15% fetal bovine serum (FBS), antibacterial serum (FBS). -1000 μg / ml blasticinSin as a basic culture solution containing antibiotics (antibiotic-anticotic), 0.1 mM essential amino acid (Non Essential Amino Acid: NEAA), 0.1 mM mercaptoethanol (2-MEcaptoethanol: 2ME) , 1000 U / ml leukemia inhibitory factor (LIF) And culture was performed. Mouse iPS cells were obtained by using the iPS-MEF-Ng-20D-17 strain (APS0001 RIKEN Cell Bank) at a concentration of Dulbecco's Modified Eagle Medium (high glucose) (DMEM high-glucose). 15% fetal bovine serum (FBS), 1% antibacterial-antibiotic, 0.1 mM essential amino acid (NEAA), 0.1 mM mercaptoethanol (2-mercaptoethanol) 2ME) as a basic culture solution, 1000 μg / ml blasticin S, 1000 U / ml leukemia inhibitory factor Culturing was performed in a medium supplemented with pups (Leukemia Inhibitory Factor, LIF). In the ES-B3 strain, the culture substrate is an untreated polystyrene culture dish (control), UV / zone alone 10 min, plasma alone 10 s, 40 s, and the respective reforming treatments are sequentially performed in order. A polystyrene culture dish subjected to a combined process treatment was used. In ES-D3 strain, untreated substrate (control), UV / zone alone 10 min, plasma alone 10 s, and polystyrene-treated culture that has been subjected to a combined process treatment in which the respective reforming treatments are sequentially performed before and after. A dish was used.

マウスiPS細胞の培養ではフィーダー細胞を播種したポリスチレン製培養ディッシュ,UV/ozone 3m処理した後にプラズマ14sを施したポリスチレン製培養ディッシュ,未処理のポリスチレン製培養ディッシュを用いた。培養期間は細胞播種後72時間として,細胞の接着および増殖性の評価は倒立型位相差顕微鏡(CKX41,オリンパス社)に備え付けた顕微鏡用デジタルカメラ(DP73,オリンパス社)にて倍率100倍で顕微鏡像を撮像することで行った。マウスiPS細胞の培養ではNanogマーカーの発現を落射蛍光管を備えた倒立型位相差顕微鏡(CKX41,オリンパス社)でB励起の下で緑色蛍光を確認することで行った。また,細胞数は細胞播種72時間後に接着細胞のすべてを0.25%トリプシンではく離回収して,総DNA量を定量することで行った。総DNA量は細胞数と比例の関係があることから細胞数の定量評価が可能となる。回収した細胞懸濁液は,蛍光分光光度計(Qubit(登録商標)2.0 Fluorometer,Life Technologies 社)および付属のQubit Buffer,Qubit Reagentを用いて,試料内に含有される総DNA量を定量した。   For the culture of mouse iPS cells, a polystyrene culture dish seeded with feeder cells, a polystyrene culture dish treated with UV / zone 3 m and then plasma 14 s, and an untreated polystyrene culture dish were used. The culture period was 72 hours after cell seeding, and cell adhesion and proliferation were evaluated with a digital camera for microscope (DP73, Olympus) equipped with an inverted phase contrast microscope (CKX41, Olympus) at a magnification of 100 times. This was done by taking an image. In mouse iPS cell culture, Nanog marker expression was performed by confirming green fluorescence under B excitation with an inverted phase contrast microscope (CKX41, Olympus) equipped with an epifluorescence tube. The number of cells was determined by separating and recovering all adherent cells with 0.25% trypsin 72 hours after cell seeding and quantifying the total amount of DNA. Since the total amount of DNA has a proportional relationship with the number of cells, the number of cells can be quantitatively evaluated. The collected cell suspension was quantified using a fluorescence spectrophotometer (Qubit (registered trademark) 2.0 Fluorometer, Life Technologies) and the attached Qubit Buffer, Quit Reagent. did.

(3)結果
ES−D3株の培養ではcontrolおよび単独処理群と比較して,複合プロセスを施した群で高い細胞接着性を示した。特にUV/ozone改質を施した直後に窒素プラズマ処理を施す複合プロセスにおいて良好な細胞接着性を示した(図10)。ES−D3株の培養では,プラズマ単独(10s,40s),UV単独改質処理基材上での培養と比較して,UV/ozone改質を施した直後に窒素プラズマ処理を施す複合プロセスで,他の処理群と比較して良好な細胞接着性を示した。また,基材上の細胞数を示す指標である総DNA含有量もUV/ozone改質を施した直後に窒素プラズマ処理を施した試料群が有意に細胞数が多いことが認められた(図11)。マウスiPS細胞の培養においても,良好な複合プロセスにより細胞接着性が向上し,さらに未分化マーカーであるNanogをプロモーターとしてGFP発現が蛍光顕微鏡観察により認められた(図12)ことから,本発明による改質処理が多能性幹細胞の多能性を維持することも示された。
(3) Results In the culture of the ES-D3 strain, compared to the control and single treatment groups, the group subjected to the complex process showed higher cell adhesion. In particular, a good cell adhesion was shown in a composite process in which nitrogen plasma treatment was performed immediately after UV / zone modification (FIG. 10). In the culture of ES-D3 strain, compared with culture on plasma alone (10 s, 40 s), UV alone modified substrate, it is a complex process in which nitrogen plasma treatment is performed immediately after UV / zone modification is performed. , Cell adhesion was better than other treatment groups. In addition, the total DNA content, which is an index indicating the number of cells on the substrate, was also found to be significantly higher in the sample group subjected to nitrogen plasma treatment immediately after the UV / zone modification (Fig. 11). Also in mouse iPS cell culture, cell adhesion was improved by a good complex process, and GFP expression was observed by fluorescence microscopy using Nanog as an undifferentiated marker as a promoter (FIG. 12). It has also been shown that the modification treatment maintains the pluripotency of pluripotent stem cells.

(実施例4)複合表面改質アンモニウム処理
(1)表面改質処理
直径35mmのポリスチレン製組織培養用ディッシュ(#3000−035,AGCテクノグラス)を用いた。まず,培養機材を表面改質装置内に設置した後,28%アンモニア水(#02511−05,ナカライテスク)180μlを基材中心に滴下した。次に,装置の扉を素早く閉め,直ちにUVランプとプラズマ発生装置の電源を入れ,表面改質を開始した。改質開始30秒後にUVランプの電源を切り,改質開始60秒後にプラズマ装置の電源を切って,表面改質を終了した。
(Example 4) Composite surface-modified ammonium treatment (1) Surface modification treatment A polystyrene tissue culture dish (# 3000-035, AGC Techno Glass) having a diameter of 35 mm was used. First, after the culture equipment was installed in the surface reforming apparatus, 180 μl of 28% ammonia water (# 02511-05, Nacalai Tesque) was dropped on the center of the substrate. Next, the device door was quickly closed, and the UV lamp and plasma generator were immediately turned on to start surface modification. The UV lamp was turned off 30 seconds after the start of the modification, and the plasma apparatus was turned off 60 seconds after the start of the modification to finish the surface modification.

(2)ヒトiPS細胞253G4株(Nakagawa Mら,Nat Biotechnol.26(1):101−6(2008))を(1)で調製したポリスチレンディッシュ中の,推奨使用量の0.2倍のマトリゲル又は推奨使用量の0.3倍のラミニンを添加したStem fit培地(AJINOMOTO)(Scientific Reports 4, Article number: 3594 (2014)doi:10.1038/srep03594)(Y27364含有)に7.0×10細胞/ディッシュで播種した。37℃,5%CO,湿度100%の条件下で,3日間培養した。コントロールとして,それぞれ,推奨使用量のマトリゲル又はラミニンを用いて表面改質していないディッシュで同様に培養を行った。培養後,非接着細胞を除去し,ViCellにより細胞数をカウントすることにより接着細胞数を評価した。 (2) Matrigel 0.2 times the recommended amount in the polystyrene dish prepared in (1) from human iPS cell 253G4 strain (Nakagawa M et al., Nat Biotechnol. 26 (1): 101-6 (2008)) Alternatively, a Stem fit medium (AJINOMOTO) (Scientific Reports 4, Artistic number: 3594 (2014) doi: 10.1038 / srep03594) (containing Y27364) supplemented with 0.3 times the recommended amount of laminin is contained. Seeded at 4 cells / dish. The cells were cultured for 3 days under conditions of 37 ° C., 5% CO 2 , and humidity of 100%. As a control, the cells were cultured in the same manner in dishes that were not surface-modified using the recommended amounts of matrigel or laminin, respectively. After culture, non-adherent cells were removed, and the number of adherent cells was evaluated by counting the number of cells with ViCell.

(3)結果
結果を図17〜19に示す。UV/プラズマ表面処理前にアンモニア水を塗布することにより,推奨量の0.3倍のラミニン使用で,推奨量のラミニン濃度添加群と同等の細胞増殖が確認された。また,UV/プラズマ表面処理前にアンモニア水を塗布することにより,推奨量の0.2倍のマトリゲル濃度でも,推奨量のマトリゲル濃度添加群を超える細胞増殖が見られた。このアンモニア水塗布群の細胞増殖は,同量のラミニン/マトリゲルを添加したUV/プラズマ表面処理群よりも更に亢進していた。これらの結果から,UV/プラズマ表面処理前のアンモニア水塗布は,UV/プラズマ表面によるiPS細胞増殖能の向上を更に高めることが示された。
(3) Results The results are shown in FIGS. By applying ammonia water before UV / plasma surface treatment, cell growth equivalent to the recommended amount of laminin concentration added group was confirmed by using 0.3 times the recommended amount of laminin. In addition, by applying aqueous ammonia before the UV / plasma surface treatment, cell growth exceeding the recommended amount of Matrigel concentration was observed even at a Matrigel concentration of 0.2 times the recommended amount. The cell proliferation of this ammonia water application group was further enhanced than the UV / plasma surface treatment group to which the same amount of laminin / matrigel was added. From these results, it was shown that application of aqueous ammonia before UV / plasma surface treatment further enhances the improvement of iPS cell proliferation ability by the UV / plasma surface.

1 窒素ガス供給路
2 プラズマ発生部
3 高周波コイル
4 高周波電源
5 放物面ミラー
6 紫外線発生部
7 バルブ
8 格納部
9 細胞担持用基材
10 オゾンガス注入口
11 紫外線
12 基材輸送機構
13 基材輸送機構
14〜17 格納部
18 細胞担持用基材設置部
19 紫外線処理用格納部
20 プラズマ処理用格納部
DESCRIPTION OF SYMBOLS 1 Nitrogen gas supply path 2 Plasma generating part 3 High frequency coil 4 High frequency power supply 5 Parabolic mirror 6 Ultraviolet generating part 7 Valve 8 Storage part 9 Cell-supporting base material 10 Ozone gas inlet 11 Ultraviolet light 12 Base material transport mechanism 13 Base material transport Mechanisms 14 to 17 Storage unit 18 Cell-supporting substrate installation unit 19 Ultraviolet processing storage unit 20 Plasma processing storage unit

Claims (14)

細胞担持面を有する非フッ素系樹脂を主成分とする細胞担持用基材の製造方法であって,
加湿環境下,酸素及び/又はオゾン供給雰囲気中で,前記基材の細胞担持面にUVを照射するUV照射工程,及び
前記基材の細胞担持面にプラズマを照射するプラズマ照射工程
を含む方法。
A method for producing a cell-supporting substrate mainly comprising a non-fluorinated resin having a cell-supporting surface,
A method comprising: a UV irradiation step of irradiating UV to a cell carrying surface of the substrate in a humidified environment and an atmosphere of oxygen and / or ozone supply; and a plasma irradiation step of irradiating plasma to the cell carrying surface of the substrate.
前記非フッ素系樹脂が,ポリエチレン,アクリル樹脂,ABS樹脂,ポリエチレンテレフタレート,ポリプロピレン,ポリカーボネート,及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である,請求項1に記載の細胞担持用基材の製造方法。   The cell-supporting substrate according to claim 1, wherein the non-fluorine-based resin is at least one resin selected from the group consisting of polyethylene, acrylic resin, ABS resin, polyethylene terephthalate, polypropylene, polycarbonate, and polystyrene. Manufacturing method. UV照射工程の後にプラズマ照射工程を行うことを特徴とする,請求項1又は請求項2に記載の細胞担持用基材の製造方法。   The method for producing a cell-supporting substrate according to claim 1 or 2, wherein a plasma irradiation step is performed after the UV irradiation step. プラズマ照射工程の後にUV照射工程を行うことを特徴とする,請求項1又は請求項2に記載の細胞担持用基材の製造方法。   The method for producing a cell-supporting substrate according to claim 1 or 2, wherein a UV irradiation step is performed after the plasma irradiation step. UV照射工程とプラズマ照射工程を同時に行うことを特徴とする,請求項1又は請求項2に記載の細胞担持用基材の製造方法。   The method for producing a cell-supporting substrate according to claim 1 or 2, wherein the UV irradiation step and the plasma irradiation step are performed simultaneously. 前記UV照射が,平均波長184.9nm及び253.7nmのUVを照射することにより行われることを特徴とする,請求項1〜請求項5のいずれか1項に記載の細胞担持用基材の製造方法。   The said UV irradiation is performed by irradiating UV with an average wavelength of 184.9 nm and 253.7 nm, The base material for cell carrying | support of any one of Claims 1-5 characterized by the above-mentioned. Production method. 前記UV照射が,前記非フッ素系樹脂表面の水接触角が40〜70°となるまでの間行われることを特徴とする,請求項1〜請求項6のいずれか1項に記載の細胞担持用基材の製造方法。   The cell carrying according to any one of claims 1 to 6, wherein the UV irradiation is performed until a water contact angle on the surface of the non-fluorinated resin reaches 40 to 70 °. Method for manufacturing a substrate. さらに,UV照射工程の前に,該細胞担持面にアンモニア溶液を塗布する工程を備える,請求項1〜請求項7のいずれか1項に記載の製造方法。   Furthermore, the manufacturing method of any one of Claims 1-7 provided with the process of apply | coating ammonia solution to this cell support surface before UV irradiation process. 接着細胞の培養方法であって,請求項1〜請求項8のいずれか1項に記載の製造方法により得られた細胞担持用基材の細胞担持面上で細胞を培養することを含む培養方法。   A method for culturing adherent cells, comprising culturing cells on a cell-supporting surface of a cell-supporting substrate obtained by the production method according to any one of claims 1 to 8. . 前記接着細胞が幹細胞である,請求項9に記載の培養方法。   The culture method according to claim 9, wherein the adherent cells are stem cells. 前記幹細胞が,マウスiPS細胞又はヒトiPS細胞である,請求項10に記載の培養方法。   The culture method according to claim 10, wherein the stem cells are mouse iPS cells or human iPS cells. フィーダー細胞の非存在下で培養することを特徴とする,請求項10又は請求項11に記載の培養方法。   The culture method according to claim 10 or 11, wherein the culture is performed in the absence of feeder cells. 細胞担持面を有する非フッ素系樹脂を主成分とする細胞担持用基材を格納するための格納部と,該格納部に格納された前記細胞担持用基材に対して紫外線を照射可能な紫外線照射手段と,該格納部に格納された細胞担持用基材に対して窒素プラズマを照射可能なプラズマ照射手段と,前記細胞担持用基材格納部内の湿度を制御可能な加湿手段と,前記細胞担持用基材格納部内のオゾン濃度を制御可能な酸素又はオゾン供給手段を有する細胞担持用基材表面改質装置。   A storage unit for storing a cell-supporting substrate mainly composed of a non-fluorine resin having a cell-supporting surface, and an ultraviolet ray capable of irradiating the cell-supporting substrate stored in the storage unit with ultraviolet rays Irradiation means, plasma irradiation means capable of irradiating nitrogen plasma to the cell support substrate stored in the storage unit, humidification means capable of controlling humidity in the cell support substrate storage unit, and the cells A cell-supporting substrate surface modifying apparatus having oxygen or ozone supply means capable of controlling the ozone concentration in the supporting substrate storage section. 更に,前記細胞担持用基材の細胞担持面に対してアンモニア溶液を塗布可能なアンモニア溶液塗布手段を備える,請求項13に記載の細胞担持用基材表面改質装置。   14. The cell-supporting substrate surface modifying apparatus according to claim 13, further comprising an ammonia solution coating means capable of coating an ammonia solution on a cell-supporting surface of the cell-supporting substrate.
JP2018131485A 2017-07-11 2018-07-11 UV ozone-plasma composite treatment method and treatment apparatus Active JP7198008B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017135535 2017-07-11
JP2017135535 2017-07-11
JP2017141966 2017-07-21
JP2017141966 2017-07-21

Publications (3)

Publication Number Publication Date
JP2019017387A true JP2019017387A (en) 2019-02-07
JP2019017387A5 JP2019017387A5 (en) 2021-09-02
JP7198008B2 JP7198008B2 (en) 2022-12-28

Family

ID=65352818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131485A Active JP7198008B2 (en) 2017-07-11 2018-07-11 UV ozone-plasma composite treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP7198008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030179A (en) * 2019-08-28 2021-03-01 公立大学法人大阪 Modification method and modification apparatus of porous body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198976A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Base material for cultivating cell
WO2016136251A1 (en) * 2015-02-25 2016-09-01 荏原実業株式会社 Substrate for carrying cells and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198976A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Base material for cultivating cell
WO2016136251A1 (en) * 2015-02-25 2016-09-01 荏原実業株式会社 Substrate for carrying cells and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030179A (en) * 2019-08-28 2021-03-01 公立大学法人大阪 Modification method and modification apparatus of porous body
JP7335595B2 (en) 2019-08-28 2023-08-30 公立大学法人大阪 Porous material reforming method and reforming apparatus

Also Published As

Publication number Publication date
JP7198008B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
Hori et al. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
Bisson et al. Acrylic acid grafting and collagen immobilization on poly (ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells
Wei et al. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability
Higuchi et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
JP4163617B2 (en) Method for forming a cell growth surface on a polymeric substrate
Mikulikova et al. Cell microarrays on photochemically modified polytetrafluoroethylene
Wang et al. Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation
Bauer et al. Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells
Tutak et al. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response
JP6200621B2 (en) Cell carrying substrate and method for producing the same
Tunma et al. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma
Liang et al. Silk fibroin immobilization on poly (ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture
Kearns et al. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration
Yoshida et al. Influence of nanometer smoothness and fibronectin immobilization of titanium surface on MC3T3‐E1 cell behavior
Myung et al. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface
De et al. Plasma treatment of polyurethane coating for improving endothelial cell growth and adhesion
Bergemann et al. Ammonia plasma functionalized polycarbonate surfaces improve cell migration inside an artificial 3D cell culture module
Jiang et al. Laminin-521 promotes rat bone marrow mesenchymal stem cell sheet formation on light-induced cell sheet technology
Hosoya et al. Simultaneous process of surface modification and sterilization for polystyrene dish
Xia et al. Multivalent Polyanionic 2d Nanosheets Functionalized Nanofibrous Stem Cell‐Based Neural Scaffolds
JP7198008B2 (en) UV ozone-plasma composite treatment method and treatment apparatus
Kawase et al. An atmospheric‐pressure plasma‐treated titanium surface potentially supports initial cell adhesion, growth, and differentiation of cultured human prenatal‐derived osteoblastic cells
Kimura et al. Feeder-free culture for mouse induced pluripotent stem cells by using UV/ozone surface-modified substrates
EP1910835A1 (en) Support having nanostructured titanium dioxide film and uses thereof
JP2008220205A (en) Container for forming neural stem cell aggregate, method for producing the same and method for preparing neural stem cell aggregate

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7198008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150