JP2019016832A - Error detector and error detection method - Google Patents
Error detector and error detection method Download PDFInfo
- Publication number
- JP2019016832A JP2019016832A JP2017130512A JP2017130512A JP2019016832A JP 2019016832 A JP2019016832 A JP 2019016832A JP 2017130512 A JP2017130512 A JP 2017130512A JP 2017130512 A JP2017130512 A JP 2017130512A JP 2019016832 A JP2019016832 A JP 2019016832A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- error rate
- voltage threshold
- voltage range
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 32
- 238000005259 measurement Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000004080 punching Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Images
Landscapes
- Dc Digital Transmission (AREA)
Abstract
Description
本発明は、振幅をシンボルごとに4種類に分けた4値パルス振幅変調方式(以下、PAM4方式)によるPAM4信号の誤り率を検出する誤り検出装置および誤り検出方法に関する。 The present invention relates to an error detection apparatus and an error detection method for detecting an error rate of a PAM4 signal by a quaternary pulse amplitude modulation method (hereinafter referred to as PAM4 method) in which the amplitude is divided into four types for each symbol.
各種のディジタル通信装置は、利用者数の増加やマルチメディア通信の普及に伴い、より大容量の伝送能力が求められている。また、これらのディジタル通信装置におけるディジタル信号の品質評価の指標の一つとしては、受信データのうち符号誤りが発生した数と受信データの総数との比較として定義されるビット誤り率が知られている。 Various digital communication apparatuses are required to have a larger capacity transmission capability as the number of users increases and multimedia communication spreads. Also, as one of the indexes for evaluating the quality of digital signals in these digital communication apparatuses, a bit error rate defined as a comparison between the number of received code errors and the total number of received data is known. Yes.
そして、上述したディジタル通信装置において、試験対象となる光電変換部品等の被試験デバイスに対して固定データを含むテスト信号を送信し、被試験デバイスを介して入力される被測定信号と基準となる参照信号とをビット単位で比較して、被測定信号の誤り率を測定する誤り率測定装置として、例えば下記特許文献1に開示されるビット誤り測定装置が知られている。
In the digital communication apparatus described above, a test signal including fixed data is transmitted to a device under test such as a photoelectric conversion component to be tested, and becomes a reference to the signal under measurement input via the device under test. As an error rate measurement device that compares the reference signal with a bit unit and measures the error rate of the signal under measurement, for example, a bit error measurement device disclosed in
下記特許文献1に開示されるビット誤り測定装置は、測定対象から受信した入力データと測定対象から受信されるべき既知のデータとを比較して誤りビットを測定するものである。この特許文献1のビット誤り測定装置は、誤りビットが発生する要因を容易に解析できるようにするため、複数のブロックを有する比較データ記憶部と、受信した入力データと既知のデータとを比較し、所定の検出条件で検出される1または複数の検出ビットを含むビット列の比較データを、検出されることに応じて複数のブロックへ順次格納する比較部と、複数のブロックそれぞれに格納された比較データから得られるそれぞれのビット列を、所定の配置条件に従った位置を基準にして並べて表示機器に表示する表示制御部とを備えて構成される。
A bit error measurement device disclosed in
ところで、情報信号の振幅をパルス信号の系列で符号化したパルス振幅変調信号として、「0(低レベル電圧)」と「1(高レベル電圧)」からなるビット列を、4つの電圧レベルのパルス信号として変調して伝送するPAM4方式が知られている。このPAM4方式によるPAM4信号は、振幅がシンボルごとに4種類に分けられ、図6に示すように、4つの異なる振幅の電圧レベルV1,V2,V3,V4を有し、全体の振幅電圧範囲Hが電圧レベルの高い方から高電圧範囲H1、中電圧範囲H2、低電圧範囲H3に分けられ、3つのアイパターン開口部による連続した範囲からなる。 By the way, a bit string consisting of “0 (low level voltage)” and “1 (high level voltage)” is converted into a pulse signal of four voltage levels as a pulse amplitude modulation signal in which the amplitude of the information signal is encoded by a series of pulse signals. The PAM4 system that modulates and transmits is known. The PAM4 signal in this PAM4 system is divided into four types of amplitudes for each symbol, and has four different voltage levels V1, V2, V3, V4 as shown in FIG. Is divided into a high voltage range H1, a medium voltage range H2, and a low voltage range H3 from the higher voltage level, and consists of a continuous range of three eye pattern openings.
そして、この種のPAM4信号を誤り率測定装置でリアルタイム誤り率測定を行うには、PAM4信号用のデコーダが必要となる。また、3つのアイパターン開口部からなるPAM4信号を正しくデコードするためには、アイパターン開口部毎にそれぞれ3つの電圧閾値を決定する必要がある。さらに、デコーダにてデコードされた信号の誤り率を測定するためには、誤り率測定装置の入力信号(デコード信号)の打ち抜きタイミング(位相、電圧閾値)の調整を行う必要があった。 Then, in order to perform real-time error rate measurement of this type of PAM4 signal with an error rate measuring device, a decoder for the PAM4 signal is required. In order to correctly decode the PAM4 signal composed of three eye pattern openings, it is necessary to determine three voltage thresholds for each eye pattern opening. Furthermore, in order to measure the error rate of the signal decoded by the decoder, it is necessary to adjust the punching timing (phase, voltage threshold) of the input signal (decoded signal) of the error rate measuring device.
しかしながら、上述したパラメータの調整を行うには、誤り率測定装置で誤り率を確認しながら個々のパラメータを調整する必要があるが、すべてのパラメータが誤り率測定の結果に影響するため、適切な順番で調整を行う必要があった。 However, in order to adjust the parameters described above, it is necessary to adjust individual parameters while checking the error rate with an error rate measuring device. However, since all parameters affect the error rate measurement results, It was necessary to make adjustments in order.
このため、上述した調整は一部の経験豊富な技術者によってのみ行われていた。しかも、誤り率測定装置とデコーダ以外に、オシロスコープを用いてデコーダから出力される波形を確認しながら調整を行っており、一般的なユーザーが上述した調整を行うことは難しかった。 For this reason, the adjustments described above have been made only by some experienced engineers. In addition to the error rate measurement device and the decoder, adjustment is performed while confirming the waveform output from the decoder using an oscilloscope, and it is difficult for a general user to perform the above-described adjustment.
そこで、本発明は上記問題点に鑑みてなされたものであって、一般的なユーザが複雑な調整手順を意識することなく個々のパラメータを自動的に調整することができる誤り検出装置および誤り検出方法を提供することを目的としている。 Therefore, the present invention has been made in view of the above-described problems, and an error detection apparatus and error detection capable of automatically adjusting individual parameters without a general user being aware of complicated adjustment procedures. It aims to provide a method.
上記目的を達成するため、本発明の請求項1に記載された誤り検出装置は、全体の振幅電圧範囲Hが電圧レベルの高い方から高電圧範囲H1、中電圧範囲H2、低電圧範囲H3に分けられ、3つのアイパターン開口部による連続した範囲からなるPAM4信号をデコーダ2にてデコードし、該デコードされた信号から誤り率を検出する誤り検出装置1であって、
前記高電圧範囲の電圧閾値Vth1、前記中電圧範囲の電圧閾値Vth2、前記低電圧範囲の電圧閾値Vth3を所定ステップで変更したときの誤り率を測定する誤り率測定部12と、
前記中電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記中電圧範囲の電圧閾値として算出し、前記高電圧範囲の電圧閾値と前記低電圧範囲の電圧閾値を所定電圧範囲内で変更しながら前記誤り率測定部にて誤り率の測定が可能な電圧を検出し、該検出した誤り率の測定が可能な電圧において、前記高電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記高電圧範囲の電圧閾値として算出するとともに、前記低電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記低電圧範囲の電圧閾値として算出する電圧閾値算出部13と、
前記電圧閾値算出部にて算出された前記高電圧範囲の電圧閾値、前記中電圧範囲の電圧閾値、前記低電圧範囲の電圧閾値を前記デコーダに設定するデコーダ設定部11とを備えたことを特徴とする。
In order to achieve the above object, in the error detection device according to
An error
When the voltage threshold value in the medium voltage range is changed in a predetermined step, the voltage at which the error rate measured by the error rate measurement unit is lowest is calculated as the adjusted voltage threshold value in the medium voltage range, and the high voltage The error rate measuring unit detects a voltage capable of measuring the error rate while changing the voltage threshold of the range and the voltage threshold of the low voltage range within a predetermined voltage range, and the detected error rate can be measured In voltage, when the voltage threshold of the high voltage range is changed in a predetermined step, the voltage at which the error rate measured by the error rate measuring unit is lowest is calculated as the adjusted voltage threshold of the high voltage range The voltage threshold calculation for calculating the voltage at which the error rate measured by the error rate measurement unit is lowest when the voltage threshold of the low voltage range is changed in a predetermined step as the adjusted voltage threshold of the low voltage range And
And a
請求項2に記載された誤り検出装置は、請求項1の誤り検出装置において、
位相および電圧を変更して最も誤り率が低くなる位置を前記誤り率測定部12に入力する信号の打ち抜きタイミングとして設定するパラメータ設定部14を備えたことを特徴とする。
The error detection device according to
A
請求項3に記載された誤り検出方法は、全体の振幅電圧範囲Hが電圧レベルの高い方から高電圧範囲H1、中電圧範囲H2、低電圧範囲H3に分けられ、3つのアイパターン開口部による連続した範囲からなるPAM4信号をデコーダ2にてデコードし、該デコードされた信号から誤り率を検出する誤り検出方法であって、
前記中電圧範囲の電圧閾値Vth2を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記中電圧範囲の電圧閾値に設定するステップと、
前記高電圧範囲の電圧閾値Vth1と前記低電圧範囲の電圧閾値Vth3を所定電圧範囲内で変更しながら誤り率を測定し、誤り率の測定が可能な電圧を検出するステップと、
前記誤り率の測定が可能な電圧において、前記高電圧範囲の電圧閾値を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記高電圧範囲の電圧閾値に設定するステップと、
前記誤り率の測定が可能な電圧において、前記低電圧範囲の電圧閾値を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記低電圧範囲の電圧閾値に設定するステップとを含むことを特徴とする。
In the error detection method according to claim 3, the entire amplitude voltage range H is divided into a high voltage range H1, a medium voltage range H2, and a low voltage range H3 from the higher voltage level to three eye pattern openings. An error detection method for decoding a PAM4 signal having a continuous range by a
Measuring the error rate while changing the voltage threshold Vth2 of the intermediate voltage range in a predetermined step, and setting the voltage at which the error rate is lowest to the adjusted voltage threshold of the intermediate voltage range;
Measuring an error rate while changing the voltage threshold Vth1 of the high voltage range and the voltage threshold Vth3 of the low voltage range within a predetermined voltage range, and detecting a voltage capable of measuring the error rate;
In the voltage where the error rate can be measured, the error rate is measured while changing the voltage threshold of the high voltage range in a predetermined step, and the voltage with the lowest error rate is adjusted to the adjusted voltage threshold of the high voltage range. Steps to set,
In the voltage where the error rate can be measured, the error rate is measured while changing the voltage threshold of the low voltage range in a predetermined step, and the voltage with the lowest error rate is adjusted to the adjusted voltage threshold of the low voltage range. And a setting step.
請求項4に記載された誤り検出方法は、請求項3の誤り検出方法において、
位相および電圧を変更して最も誤り率が低くなる位置を入力信号の打ち抜きタイミングとして設定するステップを含むことを特徴とする。
The error detection method according to claim 4 is the error detection method according to claim 3,
It includes a step of setting a position where the error rate is lowest by changing the phase and voltage as the punching timing of the input signal.
本発明によれば、PAM4信号の誤り率を検出するにあたって、一般的なユーザーが複雑な調整手順を意識することなく個々のパラメータを自動調整してデコーダを使用することができる。また、これまでの手動調整と比較しても調整時間を短縮することができ、誤り率の測定結果のみによって個々のパラメータの自動調整を行うので、オシロスコープなどの計測器を使用する必要がない。 According to the present invention, when detecting an error rate of a PAM4 signal, a general user can automatically adjust individual parameters and use a decoder without being aware of complicated adjustment procedures. In addition, the adjustment time can be shortened compared with conventional manual adjustments, and individual parameters are automatically adjusted based only on the error rate measurement results, so there is no need to use a measuring instrument such as an oscilloscope.
以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
[誤り検出装置の構成について]
図1に示すように、本実施の形態の誤り検出装置1は、デコーダ2と誤り検出器3とを備えて概略構成される。誤り検出装置1は、図6に示すように、振幅がシンボルごとに4種類に分けられ、4つの異なる振幅の電圧レベルV1,V2,V3,V4を有し、全体の振幅電圧範囲Hが電圧レベルの高い方から高電圧範囲H1、中電圧範囲H2、低電圧範囲H3に分けられ、3つのアイパターン開口部による連続した範囲からなるPAM4信号の誤り率を検出する。
[Configuration of error detection device]
As shown in FIG. 1, the
デコーダ2は、入力されるPAM4信号を例えばNRZ信号にデコードし、このデコードした信号(デコード信号)を誤り検出器3に出力する。なお、PAM4信号は、不図示のパターン発生部(誤り検出装置1に設けられるPAM信号発生部、又は別体に構成されるPAM信号発生部)が発生して被測定物(DUT)を折り返して入力されるか、送信機能を有する被測定物(DUT)自身からの送信によって入力される。
The
誤り検出器3は、デコーダ2から入力されるデコード信号の誤り率を検出するもので、デコーダ設定部11、誤り率測定部12、電圧閾値算出部13、パラメータ設定部14を含んで構成される。
The error detector 3 detects an error rate of the decoded signal input from the
デコーダ設定部11は、PAM4信号を正しくデコードするために必要なパラメータ(電圧閾値、位相)を設定するもので、電圧閾値可変部11a、電圧閾値設定部11bを備える。
The
電圧閾値可変部11aは、後述する自動調整方法により、PAM4信号の中電圧範囲H2の電圧閾値Vth2を自動調整して設定するときに、中電圧範囲H2の電圧閾値Vth2を所定ステップで変更してデコーダ2に設定する。
When the voltage
また、電圧閾値可変部11aは、後述する自動調整方法により、PAM4信号の高電圧範囲H1の電圧閾値Vth1および低電圧範囲H3の電圧閾値Vth3を自動調整して設定するときに、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3を誤り率BERの測定毎に所定ステップで変更してデコーダ2に設定する。
The voltage
さらに、電圧閾値可変部11aは、後述する自動調整方法により、誤り測定部12の入力信号の打ち抜きタイミングとして電圧閾値を自動調整して設定するときに、振幅軸方向の所定ステップで変更してデコーダ2に設定する。
Furthermore, the voltage
電圧閾値設定部11bは、後述する自動調整方法により、電圧閾値算出部12で算出されるPAM4信号の高電圧範囲H1の電圧閾値Vth1、中電圧範囲H2の電圧閾値Vth2、低電圧範囲H3の電圧閾値Vth3を、自動調整された電圧閾値としてデコーダ2に設定する。
The voltage
誤り率測定部12は、後述する自動調整方法により、デコーダ設定部11にてPAM4信号の各電圧範囲H1,H2,H3の電圧閾値Vth1,Vth2,Vth3を自動調整してデコーダ2に設定する際に、デコーダ2から入力されるデコード信号の誤り率を測定する。
The error
また、誤り率測定部12は、後述する自動調整方法を終えた後の実際の測定において、後述する自動調整方法によりパラメータ設定部14にて設定された打ち抜きタイミング(位相、電圧閾値)でデコーダ2から入力されるデコード信号の誤り率を測定する。
Further, the error
電圧閾値算出部13は、後述する自動調整方法により、誤り率測定部12が測定した誤り率の測定結果に基づいてPAM4信号の高電圧範囲H1の電圧閾値Vth1、中電圧範囲H2の電圧閾値Vth2、低電圧範囲H3の電圧閾値Vth3をそれぞれ算出する。
Based on the error rate measurement result measured by the error
パラメータ設定部14は、後述する自動調整方法にて自動調整された打ち抜きタイミング(位相、電圧閾値)を誤り率測定部12に設定する。
The
すなわち、パラメータ設定部14は、後述する自動調整方法により、誤り測定部12の入力信号の打ち抜きタイミングとして位相を自動調整して設定するときに、時間軸方向の位相を所定ステップ(例えば10mUI)で変更して誤り測定部12に設定する。また、パラメータ設定部14は、後述する自動調整方法により、誤り測定部12の入力信号の打ち抜きタイミングとして電圧閾値を自動調整して設定するときに、電圧閾値を所定ステップで変更して誤り測定部12に設定する。
That is, the
[誤り検出装置の動作について]
次に、上記のように構成される誤り検出装置1の動作として、各パラメータ(PAM4信号の各電圧範囲H1,H2,H3の電圧閾値Vth1,Vth2,Vth3、入力信号の打ち抜きタイミング)の自動調整方法について図2〜図5を参照しながら説明する。なお、自動調整前における各パラメータは、予め決められた初期値、又はユーザが任意に設定した値に設定されているものとする。
[Operation of error detection device]
Next, as an operation of the
自動調整を行うための開始ボタンが押下されると、デコーダ2の中電圧範囲H2の電圧閾値Vth2を0に設定し、中電圧範囲H2の電圧閾値Vth2の自動調整を開始する(ST1)。
When the start button for performing automatic adjustment is pressed, the voltage threshold value Vth2 of the intermediate voltage range H2 of the
この電圧閾値Vth2の自動調整では、中電圧範囲H2の電圧閾値Vth2を所定ステップ(例えば1mV)で変更しながら誤り率BERを測定する(ST2)。そして、図2に示すように、中電圧範囲H2の電圧閾値Vth2対誤り率BER(10-5〜10-10 )から逆誤差関数Erfc-1対中電圧範囲H2の電圧閾値Vth2のデータを計算する(ST3)。続いて、逆誤差関数Erfc-1平面に対して最小二乗法による直線近似を行って2直線の交点を算出する(ST4)。そして、2直線の交点において最も誤り率が低くなる中電圧範囲H2の電圧閾値Vth2を、自動調整後の中電圧範囲H2の電圧閾値Vth2としてデコーダ2に設定する(ST5)。
In this automatic adjustment of the voltage threshold Vth2, the error rate BER is measured while changing the voltage threshold Vth2 of the intermediate voltage range H2 in a predetermined step (for example, 1 mV) (ST2). Then, as shown in FIG. 2, the inverse error function Erfc −1 vs. the voltage threshold Vth2 of the medium voltage range H2 is calculated from the voltage threshold Vth2 of the medium voltage range H2 vs. the error rate BER (10 −5 to 10 −10 ). (ST3). Subsequently, a straight line approximation by the least square method is performed on the inverse error function Erfc −1 plane to calculate an intersection of two straight lines (ST4). Then, the voltage threshold value Vth2 of the intermediate voltage range H2 in which the error rate is lowest at the intersection of the two straight lines is set in the
なお、逆誤差関数Erfc-1は、下記式(1)に誤り率BERを代入して得られる値である。 The inverse error function Erfc −1 is a value obtained by substituting the error rate BER into the following equation (1).
次に、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の粗調整を開始する(ST6)。この粗調整では、最も誤り率BERが低い点を調整結果とする。 Next, coarse adjustment of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3 is started (ST6). In this rough adjustment, the point with the lowest error rate BER is taken as the adjustment result.
但し、高電圧範囲H1の電圧閾値Vth1および低電圧範囲H3の電圧閾値Vth3の全ての電圧閾値を実際に設定して誤り率BERを測定し、最も誤り率BERが低い点を測定結果とするのが理想的である。 However, the error rate BER is measured by actually setting all the voltage thresholds of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3, and the measurement result is the point where the error rate BER is the lowest. Is ideal.
しかしながら、実際には測定にかかる時間が膨大であるため、現実的ではない。そのため、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の自動調整では、始めの調整を粗調整、2回目の調整を本調整として、調整を2段階に分けて行っている。 However, since the time required for the measurement is actually enormous, it is not realistic. Therefore, in the automatic adjustment of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3, the first adjustment is a rough adjustment, and the second adjustment is a main adjustment, and the adjustment is performed in two stages. .
ここで、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の調整は誤り率の測定結果に影響を与えるため、両方の電圧閾値Vth1,Vth3を最適値に調整する必要がある。しかし、どちらか一方の電圧閾値が上下アイパターン開口部の中心電圧に対して大きな差がある場合、誤り率が非常に大きい値となり、もう一方の電圧閾値がアイパターン開口部の中心電圧に近づける調整が不可能になってしまう。このため、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3を粗い間隔で設定してそれぞれの誤り率を測定し、電圧閾値Vth1,Vth3の調整が行える設定値を探す必要がある。 Here, since adjustment of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3 affects the measurement result of the error rate, both voltage thresholds Vth1 and Vth3 must be adjusted to optimum values. . However, if one of the voltage thresholds has a large difference from the center voltage of the upper and lower eye pattern openings, the error rate becomes a very large value, and the other voltage threshold approaches the center voltage of the eye pattern opening. Adjustment becomes impossible. For this reason, it is necessary to set the voltage threshold value Vth1 of the high voltage range H1 and the voltage threshold value Vth3 of the low voltage range H3 at rough intervals, measure the respective error rates, and find a setting value that can adjust the voltage threshold values Vth1 and Vth3. is there.
また、最下位ビットLSBは高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の両方がアイパターン開口部の中心付近に設定されて始めて誤り率BERの測定が可能となる。 The least significant bit LSB can measure the error rate BER only when both the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3 are set near the center of the eye pattern opening.
そこで、粗調整では、本調整のステップ(例えば1mV)よりも粗いステップ(例えば20mV)で高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3を所定電圧範囲内で変更しながら誤り率BERを測定する(ST7)。そして、誤り率BERの測定結果から、誤り率BERの測定が可能な領域となる高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の組合せを検出する(ST8)。 Therefore, in the coarse adjustment, an error occurs while changing the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3 within a predetermined voltage range in a coarser step (eg, 20 mV) than the step of actual adjustment (eg, 1 mV). The rate BER is measured (ST7). Then, a combination of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3, which is a region where the error rate BER can be measured, is detected from the measurement result of the error rate BER (ST8).
例えば図3に示すように、低電圧範囲H3の電圧閾値Vth3をAmVに固定して高電圧範囲H1の電圧閾値Vth1をAmVから所定電圧範囲内を例えば20mVステップで変更しながら誤り率BERを測定する。続いて、低電圧範囲H3の電圧閾値Vth3をA+20mVに固定して高電圧範囲H1の電圧閾値Vth1をAmVから所定電圧範囲内を20mVステップで変更しながら誤り率BERを測定するといったように、図3の0,1,2,…,n,n+1,…の順番で測定を行う。図3の例では、太線で囲まれる電圧閾値Vth1,Vth3の組合せが誤り率BERの測定が可能(エラーカウント可能)な電圧の領域となる。 For example, as shown in FIG. 3, the error threshold BER is measured while the voltage threshold Vth3 of the low voltage range H3 is fixed to AmV and the voltage threshold Vth1 of the high voltage range H1 is changed from AmV within a predetermined voltage range, for example, in 20 mV steps. To do. Subsequently, the voltage threshold Vth3 of the low voltage range H3 is fixed to A + 20 mV, and the error rate BER is measured while changing the voltage threshold Vth1 of the high voltage range H1 from AmV within a predetermined voltage range in 20 mV steps. 3. Measure in the order of 0, 1, 2,..., N, n + 1,. In the example of FIG. 3, a combination of voltage thresholds Vth1 and Vth3 surrounded by a thick line is a voltage region in which the error rate BER can be measured (error count is possible).
次に、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3の本調整を開始する(ST9)。この本調整は、前述した中電圧範囲H2の電圧閾値Vth2の自動調整と同様の手法により行う。すなわち、電圧閾値Vth1の本調整では、高電圧範囲H1の電圧閾値Vth1を所定ステップ(例えば1mV)で変更しながら誤り率BERを測定する。そして、高電圧範囲H1の電圧閾値Vth1対誤り率BER(10-5〜10-10 )から逆誤差関数Erfc-1対高電圧範囲H1の電圧閾値Vth1のデータを計算する。続いて、逆誤差関数Erfc-1平面に対して最小二乗法による直線近似を行って2直線の交点を算出する。そして、2直線の交点において最も誤り率が低くなる高電圧範囲H1の電圧閾値Vth1を、自動調整後の高電圧範囲H1の電圧閾値Vth1としてデコーダ2に設定する。
Next, the main adjustment of the voltage threshold Vth1 of the high voltage range H1 and the voltage threshold Vth3 of the low voltage range H3 is started (ST9). This adjustment is performed by the same method as the automatic adjustment of the voltage threshold Vth2 in the medium voltage range H2 described above. That is, in this adjustment of the voltage threshold Vth1, the error rate BER is measured while changing the voltage threshold Vth1 of the high voltage range H1 in a predetermined step (for example, 1 mV). Then, from the voltage threshold Vth1 of the high voltage range H1 versus the error rate BER (10 −5 to 10 −10 ), data of the inverse error function Erfc −1 vs. the voltage threshold Vth1 of the high voltage range H1 is calculated. Subsequently, a straight line approximation by the least square method is performed on the inverse error function Erfc −1 plane to calculate an intersection of two straight lines. Then, the voltage threshold value Vth1 of the high voltage range H1 with the lowest error rate at the intersection of the two straight lines is set in the
また、電圧閾値Vth3の本調整では、低電圧範囲H3の電圧閾値Vth3を所定ステップ(例えば1mV)で変更しながら誤り率BERを測定する。そして、低電圧範囲H3の電圧閾値Vth3対誤り率BER(10-5〜10-10 )から逆誤差関数Erfc-1対低電圧範囲H3の電圧閾値Vth3のデータを計算する。続いて、逆誤差関数Erfc-1平面に対して最小二乗法による直線近似を行って2直線の交点を算出する。そして、2直線の交点において最も誤り率が低くなる低電圧範囲H3の電圧閾値Vth3を、自動調整後の低電圧範囲H3の電圧閾値Vth3としてデコーダ2に設定する。
In the main adjustment of the voltage threshold Vth3, the error rate BER is measured while changing the voltage threshold Vth3 of the low voltage range H3 in a predetermined step (for example, 1 mV). Then, from the voltage threshold Vth3 of the low voltage range H3 versus the error rate BER (10 −5 to 10 −10 ), data of the inverse error function Erfc −1 vs. the voltage threshold Vth3 of the low voltage range H3 is calculated. Subsequently, a straight line approximation by the least square method is performed on the inverse error function Erfc −1 plane to calculate an intersection of two straight lines. Then, the voltage threshold Vth3 of the low voltage range H3 in which the error rate is lowest at the intersection of the two straight lines is set in the
このように、高電圧範囲H1の電圧閾値Vth1と低電圧範囲H3の電圧閾値Vth3を調整するにあたっては、粗調整で誤り率BERの測定が可能な領域を求め、続いて粗調整よりも細かいステップで電圧閾値を変更しながら誤り率BERの測定を行う。これにより、効率的に最も誤り率BERが低い点を探すことができる。 As described above, in adjusting the voltage threshold value Vth1 of the high voltage range H1 and the voltage threshold value Vth3 of the low voltage range H3, an area in which the error rate BER can be measured by coarse adjustment is obtained, and then finer steps than the coarse adjustment are performed. The error rate BER is measured while changing the voltage threshold. As a result, a point with the lowest error rate BER can be searched efficiently.
次に、従来より周知の方法にて誤り検出器3における入力信号の打ち抜きタイミング(位相、電圧閾値)を設定する(ST10)。この入力信号の打ち抜きタイミングは、位相および電圧を所定ステップで変更したときに、最も誤り率BERが低くなる位置に設定される。具体的には、図4の横軸(時間軸)方向において、位相を所定ステップ(例えば10mUI)で変更し、最も誤り率BERが低い点を最適点として検出する。また、この誤り率BERの最適点の振幅方向(図4の縦軸方向)において、電圧を所定ステップで変更し、最も誤り率BERが低い点を最適点として検出する。そして、検出した最適点の位置の位相および電圧を打ち抜きタイミング(位相、電圧閾値)として設定する。 Next, the punching timing (phase, voltage threshold) of the input signal in the error detector 3 is set by a conventionally known method (ST10). The punching timing of the input signal is set to a position where the error rate BER is lowest when the phase and voltage are changed in predetermined steps. Specifically, in the horizontal axis (time axis) direction of FIG. 4, the phase is changed by a predetermined step (for example, 10 mUI), and the point with the lowest error rate BER is detected as the optimum point. Further, in the amplitude direction (vertical axis direction in FIG. 4) of the optimum point of the error rate BER, the voltage is changed in a predetermined step, and the point with the lowest error rate BER is detected as the optimum point. Then, the phase and voltage at the position of the detected optimum point are set as the punching timing (phase and voltage threshold).
なお、1秒測定でエラーフリーとなる領域がある場合、最適点が一意に決まらなくなってしまう。この場合は、誤り率BERが測定可能なタイミングでの測定結果から前述した逆誤差関数Erfc-1平面での最小二乗法を用いた近似計算を行って最適点を求める。 If there is an error-free area in 1 second measurement, the optimum point cannot be uniquely determined. In this case, the optimum point is obtained by performing the approximate calculation using the least square method on the inverse error function Erfc −1 plane described above from the measurement result at the timing at which the error rate BER can be measured.
このように、本実施の形態によれば、PAM4信号の誤り率を検出するにあたって、一般的なユーザーが複雑な調整手順を意識することなく個々のパラメータ(各電圧範囲H1,H2,H3の電圧閾値Vth1,Vth2,Vth3、入力信号の打ち抜きタイミング)を自動調整してデコーダを使用することができる。また、これまでの手動調整と比較しても調整時間を短縮することができる。さらに、誤り率の測定結果のみによって個々のパラメータを自動調整することができ、オシロスコープなどの計測器を使用する必要がない。 As described above, according to the present embodiment, when detecting the error rate of the PAM4 signal, a general user is not aware of the complicated adjustment procedure, and the individual parameters (the voltages in the voltage ranges H1, H2, and H3). The decoder can be used by automatically adjusting the threshold values Vth1, Vth2, Vth3, and the input signal punching timing. In addition, the adjustment time can be shortened as compared with the conventional manual adjustment. Furthermore, individual parameters can be automatically adjusted based only on error rate measurement results, and there is no need to use a measuring instrument such as an oscilloscope.
ところで、上述した実施の形態(図1)では、デコーダ2と誤り検出器3とが別体に構成される場合を例にとって説明したが、デコーダ2を誤り検出器3の本体に組み込んで一体に構成される誤り検出装置1としてもよい。また、被測定物(DUT)にテスト信号として入力されるPAM4信号を発生するパターン発生部を誤り検出器3に実装した構成とすることもできる。
In the above-described embodiment (FIG. 1), the case where the
以上、本発明に係る誤り検出装置および誤り検出方法の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。 The best mode of the error detection apparatus and the error detection method according to the present invention has been described above, but the present invention is not limited by the description and drawings according to this mode. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.
1 誤り検出装置
2 デコーダ
3 誤り検出器
11 デコーダ設定部
11a 電圧閾値可変部
11b 電圧閾値設定部
12 誤り率測定部
13 電圧閾値算出部
14 パラメータ設定部
H 振幅電圧範囲
H1 高電圧範囲
H2 中電圧範囲
H3 低電圧範囲
V1,V2,V3,V4 電圧レベル
Vth1,Vth2,Vth3 電圧閾値
DESCRIPTION OF
Claims (4)
前記高電圧範囲の電圧閾値(Vth1)、前記中電圧範囲の電圧閾値(Vth2)、前記低電圧範囲の電圧閾値(Vth3)を所定ステップで変更したときの誤り率を測定する誤り率測定部(12)と、
前記中電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記中電圧範囲の電圧閾値として算出し、前記高電圧範囲の電圧閾値と前記低電圧範囲の電圧閾値を所定電圧範囲内で変更しながら前記誤り率測定部にて誤り率の測定が可能な電圧を検出し、該検出した誤り率の測定が可能な電圧において、前記高電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記高電圧範囲の電圧閾値として算出するとともに、前記低電圧範囲の電圧閾値を所定ステップで変更したときに前記誤り率測定部にて測定される誤り率が最も低くなる電圧を調整後の前記低電圧範囲の電圧閾値として算出する電圧閾値算出部(13)と、
前記電圧閾値算出部にて算出された前記高電圧範囲の電圧閾値、前記中電圧範囲の電圧閾値、前記低電圧範囲の電圧閾値を前記デコーダに設定するデコーダ設定部(11)とを備えたことを特徴とする誤り検出装置。 The entire amplitude voltage range (H) is divided into a high voltage range (H1), a medium voltage range (H2), and a low voltage range (H3) from the higher voltage level, and from a continuous range by three eye pattern openings. An error detection device (1) that decodes a PAM4 signal that is decoded by a decoder (2) and detects an error rate from the decoded signal,
An error rate measuring unit that measures an error rate when the voltage threshold (Vth1) of the high voltage range, the voltage threshold (Vth2) of the medium voltage range, and the voltage threshold (Vth3) of the low voltage range are changed in a predetermined step ( 12)
When the voltage threshold value in the medium voltage range is changed in a predetermined step, the voltage at which the error rate measured by the error rate measurement unit is lowest is calculated as the adjusted voltage threshold value in the medium voltage range, and the high voltage The error rate measuring unit detects a voltage capable of measuring the error rate while changing the voltage threshold of the range and the voltage threshold of the low voltage range within a predetermined voltage range, and the detected error rate can be measured In voltage, when the voltage threshold of the high voltage range is changed in a predetermined step, the voltage at which the error rate measured by the error rate measuring unit is lowest is calculated as the adjusted voltage threshold of the high voltage range The voltage threshold calculation for calculating the voltage at which the error rate measured by the error rate measurement unit is lowest when the voltage threshold of the low voltage range is changed in a predetermined step as the adjusted voltage threshold of the low voltage range Part (13),
A decoder setting unit (11) for setting the voltage threshold value of the high voltage range, the voltage threshold value of the medium voltage range, and the voltage threshold value of the low voltage range calculated by the voltage threshold value calculation unit in the decoder; An error detection device characterized by the above.
前記中電圧範囲の電圧閾値(Vth2)を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記中電圧範囲の電圧閾値に設定するステップと、
前記高電圧範囲の電圧閾値(Vth1)と前記低電圧範囲の電圧閾値(Vth3)を所定電圧範囲内で変更しながら誤り率を測定し、誤り率の測定が可能な電圧を検出するステップと、
前記誤り率の測定が可能な電圧において、前記高電圧範囲の電圧閾値を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記高電圧範囲の電圧閾値に設定するステップと、
前記誤り率の測定が可能な電圧において、前記低電圧範囲の電圧閾値を所定ステップで変更しながら誤り率を測定し、最も誤り率が低くなる電圧を調整後の前記低電圧範囲の電圧閾値に設定するステップとを含むことを特徴とする誤り検出方法。 The entire amplitude voltage range (H) is divided into a high voltage range (H1), a medium voltage range (H2), and a low voltage range (H3) from the higher voltage level, and from a continuous range by three eye pattern openings. The PAM4 signal is decoded by a decoder (2), and an error detection method for detecting an error rate from the decoded signal,
Measuring the error rate while changing the voltage threshold (Vth2) of the medium voltage range in a predetermined step, and setting the voltage at which the error rate is lowest to the adjusted voltage threshold of the medium voltage range;
Measuring an error rate while changing the voltage threshold (Vth1) of the high voltage range and the voltage threshold (Vth3) of the low voltage range within a predetermined voltage range, and detecting a voltage capable of measuring the error rate;
In the voltage where the error rate can be measured, the error rate is measured while changing the voltage threshold of the high voltage range in a predetermined step, and the voltage with the lowest error rate is adjusted to the adjusted voltage threshold of the high voltage range. Steps to set,
In the voltage where the error rate can be measured, the error rate is measured while changing the voltage threshold of the low voltage range in a predetermined step, and the voltage with the lowest error rate is adjusted to the adjusted voltage threshold of the low voltage range. And an error detecting method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017130512A JP6625095B2 (en) | 2017-07-03 | 2017-07-03 | Error detection device and error detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017130512A JP6625095B2 (en) | 2017-07-03 | 2017-07-03 | Error detection device and error detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019016832A true JP2019016832A (en) | 2019-01-31 |
JP6625095B2 JP6625095B2 (en) | 2019-12-25 |
Family
ID=65356955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017130512A Active JP6625095B2 (en) | 2017-07-03 | 2017-07-03 | Error detection device and error detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6625095B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11588453B2 (en) | 2020-04-03 | 2023-02-21 | Samsung Electronics Co., Ltd. | Signal receiver and operation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0454043A (en) * | 1990-06-22 | 1992-02-21 | Fujitsu Ltd | Reception data identification circuit |
JPH09186726A (en) * | 1995-10-30 | 1997-07-15 | Casio Comput Co Ltd | Multi-valued signal demodulator and multi-valued signal demodulating method |
JP2004320104A (en) * | 2003-04-11 | 2004-11-11 | Yokogawa Electric Corp | Device and method of measuring bit error rate |
JP2005328110A (en) * | 2004-05-12 | 2005-11-24 | Yokogawa Electric Corp | Code error rate measurement apparatus and code error rate measurement method |
JP2016146535A (en) * | 2015-02-06 | 2016-08-12 | アンリツ株式会社 | Error rate measuring apparatus and error rate measuring method |
JP2016201736A (en) * | 2015-04-13 | 2016-12-01 | 富士通株式会社 | Signal identification circuit, optical receiver using the same, and signal identification method |
JP2017220757A (en) * | 2016-06-06 | 2017-12-14 | アンリツ株式会社 | Error rate measurement device and error rate measurement method |
JP2017220756A (en) * | 2016-06-06 | 2017-12-14 | アンリツ株式会社 | Error rate measurement device and error rate measurement method |
-
2017
- 2017-07-03 JP JP2017130512A patent/JP6625095B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0454043A (en) * | 1990-06-22 | 1992-02-21 | Fujitsu Ltd | Reception data identification circuit |
JPH09186726A (en) * | 1995-10-30 | 1997-07-15 | Casio Comput Co Ltd | Multi-valued signal demodulator and multi-valued signal demodulating method |
JP2004320104A (en) * | 2003-04-11 | 2004-11-11 | Yokogawa Electric Corp | Device and method of measuring bit error rate |
JP2005328110A (en) * | 2004-05-12 | 2005-11-24 | Yokogawa Electric Corp | Code error rate measurement apparatus and code error rate measurement method |
JP2016146535A (en) * | 2015-02-06 | 2016-08-12 | アンリツ株式会社 | Error rate measuring apparatus and error rate measuring method |
JP2016201736A (en) * | 2015-04-13 | 2016-12-01 | 富士通株式会社 | Signal identification circuit, optical receiver using the same, and signal identification method |
JP2017220757A (en) * | 2016-06-06 | 2017-12-14 | アンリツ株式会社 | Error rate measurement device and error rate measurement method |
JP2017220756A (en) * | 2016-06-06 | 2017-12-14 | アンリツ株式会社 | Error rate measurement device and error rate measurement method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11588453B2 (en) | 2020-04-03 | 2023-02-21 | Samsung Electronics Co., Ltd. | Signal receiver and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6625095B2 (en) | 2019-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8386857B2 (en) | Method and apparatus for measuring symbol and bit error rates independent of disparity errors | |
US8374227B2 (en) | Digital signal analysis with evaluation of selected signal bits | |
JP6250737B2 (en) | Error rate measuring apparatus and error rate measuring method | |
US7310389B2 (en) | Method and apparatus for determining the errors of a multi-valued data signal that are outside the limits of an eye mask | |
JP4665559B2 (en) | Pre-emphasis adjustment method, receiver, transmitter, and signal transmission system | |
US9148235B1 (en) | Eye diagram measuring circuit and measuring method thereof | |
JPH07154378A (en) | Optical transmission characteristic measuring instrument | |
US20220373597A1 (en) | Bit error ratio estimation using machine learning | |
US6701269B1 (en) | Jitter measurement extrapolation and calibration for bit error ratio detection | |
JP6625095B2 (en) | Error detection device and error detection method | |
US7069488B2 (en) | Signal sampling with sampling and reference paths | |
JP2016146535A (en) | Error rate measuring apparatus and error rate measuring method | |
JP2020136707A (en) | Error rate measurement device and error rate measurement method | |
US8140290B2 (en) | Transmission characteristics measurement apparatus, transmission characteristics measurement method, and electronic device | |
US8175141B2 (en) | Method and apparatus for calibrating equalizers without knowledge of the data pattern being received | |
US11624781B2 (en) | Noise-compensated jitter measurement instrument and methods | |
JP2004289388A (en) | Method for deciding error of multi-valued data signal existing out of range of eye mask and its device | |
JP2004524783A (en) | Equipment error rate test method | |
US7638997B2 (en) | Phase measurement apparatus | |
US7610520B2 (en) | Digital data signal testing using arbitrary test signal | |
JP2004320104A (en) | Device and method of measuring bit error rate | |
JP6381452B2 (en) | Jitter separator | |
CN111103467A (en) | Method and measuring system for detecting the noise figure of a device under test | |
JP7200273B2 (en) | ERROR DETECTION DEVICE AND ERROR DETECTION METHOD | |
JP7132993B2 (en) | ERROR RATE MEASUREMENT DEVICE AND ERROR RATE MEASUREMENT METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6625095 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |