JP2019015930A - Electro-optic light deflector - Google Patents

Electro-optic light deflector Download PDF

Info

Publication number
JP2019015930A
JP2019015930A JP2017135029A JP2017135029A JP2019015930A JP 2019015930 A JP2019015930 A JP 2019015930A JP 2017135029 A JP2017135029 A JP 2017135029A JP 2017135029 A JP2017135029 A JP 2017135029A JP 2019015930 A JP2019015930 A JP 2019015930A
Authority
JP
Japan
Prior art keywords
electro
optic
optic crystal
crystal
exit surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017135029A
Other languages
Japanese (ja)
Inventor
明晨 陳
Mingchen Chen
明晨 陳
豊田 誠治
Seiji Toyoda
誠治 豊田
雄三 佐々木
Yuzo Sasaki
雄三 佐々木
山口 城治
Joji Yamaguchi
城治 山口
匡 阪本
Tadashi Sakamoto
匡 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017135029A priority Critical patent/JP2019015930A/en
Publication of JP2019015930A publication Critical patent/JP2019015930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To provide an electro-optic light deflector which gives a straight trajectory of deflection of a beam exiting therefrom.SOLUTION: An electro-optic light deflector 300 is constituted by an electro-optic crystal 302 and two antireflection films 303, two high reflection films 304 and an electrode 305 for applying an electric field. The direction of electric field application is set to be parallel to an X axis direction. An entrance surface and an exit surface of the electro-optic crystal 302 are parallel to each other, and beams to be incident to the entrance surface and the exit surface are each controlled to be incident perpendicular respectively to the entrance surface and to the exit surface in a YZ plane. That is, the beam incident to at least the exit surface is perpendicular to the line of intersection between the exit surface and the YZ plane. Surfaces of the electro-optic crystal 302 opposing to each other where the high reflection films 304 are disposed are angled with respect to the entrance surface and the exit surface and are made parallel to each other, by a cutting process or the like on the electro-optic crystal 302.SELECTED DRAWING: Figure 3

Description

本発明は、光の伝搬方向を変化させる電気光学光偏向器に関する。   The present invention relates to an electro-optic light deflector that changes the propagation direction of light.

光偏向器とは、光の伝搬方向を変化させるデバイスである。大きく分けて反射型と透過型がある。代表的な反射型光偏向器として、ガルバノミラーやポリゴンミラーなどの傾きが変化する反射鏡を利用したデバイスが挙げられる。   An optical deflector is a device that changes the propagation direction of light. There are broadly divided into a reflection type and a transmission type. As a typical reflection type optical deflector, there is a device using a reflecting mirror whose inclination changes, such as a galvano mirror or a polygon mirror.

一方、透過型光偏向器は、回折型と屈折率分布型とに二分できる。回折型は、音響波によってできる屈折率変調が回折格子となって光を回折することでその伝搬方向が変化する。この音響波による光の回折現象は音響光学効果と呼ばれるため、この音響光学効果を利用した光偏向器を、ここでは音響光学光偏向器と呼ぶ。   On the other hand, the transmission type optical deflector can be divided into a diffraction type and a refractive index distribution type. In the diffractive type, the refractive index modulation generated by an acoustic wave becomes a diffraction grating and diffracts light to change its propagation direction. Since the light diffraction phenomenon due to the acoustic wave is called an acoustooptic effect, an optical deflector using the acoustooptic effect is called an acoustooptic deflector here.

また屈折率分布型は、偏向器内部の屈折率が特定の方向に単調変化し、それによって伝搬光の波面が傾斜することで伝搬方向が変化する。この屈折率変化は一般的に電気光学効果によって引き起こされるため、この電気光学効果を利用した光偏向器を、ここでは電気光学光偏向器と呼ぶ。   In the refractive index distribution type, the refractive index inside the deflector changes monotonously in a specific direction, and the wavefront of the propagating light tilts, thereby changing the propagation direction. Since this refractive index change is generally caused by an electro-optic effect, an optical deflector using this electro-optic effect is referred to herein as an electro-optic light deflector.

電気光学効果とは、電界の強さに依存して物質の屈折率が変化する現象を指し、電気光学効果を有する結晶は電気光学結晶と呼ばれる。何らかの方法により電気光学結晶の中に電子などの電荷を注入し、電荷が注入された電気光学結晶に対して電界を加えた場合、その内部では静電遮蔽により不均一な電界分布が形成される。この不均一な電界分布と電気光学効果の複合効果により、結晶の内部では電界分布に依存した屈折率分布が形成される。この屈折率分布を利用することで光の伝搬方向を結晶内部で変えることができる。   The electro-optic effect refers to a phenomenon in which the refractive index of a substance changes depending on the strength of an electric field, and a crystal having an electro-optic effect is called an electro-optic crystal. When electric charge such as electrons is injected into the electro-optic crystal by some method and an electric field is applied to the electro-optic crystal into which the charge has been injected, a non-uniform electric field distribution is formed inside by electrostatic shielding. . Due to the combined effect of the non-uniform electric field distribution and the electro-optic effect, a refractive index distribution depending on the electric field distribution is formed inside the crystal. By utilizing this refractive index distribution, the light propagation direction can be changed inside the crystal.

代表的な電気光学光偏向器に、タンタル酸ニオブ酸カリウム(KTN)を用いた光偏向器が挙げられる(特許文献1参照)。KTNは反転対称性を有するペロブスカイト型の単結晶であり、電気光学特性として2次の電気光学効果であるカー効果を示す。またKTNは特定の結晶温度において結晶構造が変化する構造相転移を示し、この際に結晶の誘電率はキュリーワイズの法則に従って著しく上昇するため、大きな電気光学効果を得ることができる。   As a typical electro-optic light deflector, an optical deflector using potassium tantalate niobate (KTN) can be cited (see Patent Document 1). KTN is a perovskite single crystal having inversion symmetry and exhibits a Kerr effect as a secondary electro-optic effect as electro-optic characteristics. KTN exhibits a structural phase transition in which the crystal structure changes at a specific crystal temperature. At this time, the dielectric constant of the crystal significantly increases in accordance with Curie-Wise's law, so that a large electro-optic effect can be obtained.

光コヒーレンストモグラフィ(OCT)に用いられる波長掃引光源やラインセンサーなどの応用には、広い偏向角を持つ光偏向器が求められる。電気光学光偏向器の偏向角の大きさは、電界分布に依存した屈折率分布の中を光が伝搬する距離に比例するため、結晶内をより長い距離伝搬させることが広角化には重要である。このことは、結晶表面に反射膜を取り付け、結晶内部でビームを折り返すことで結晶を複数回通過させるマルチパス構成が広角化に対して有効であることがこれまでに実証されていることからも明らかである。このマルチパス構成を用いることにより、パス数倍の伝搬距離が得られ、広い偏向角を得ることができる。   Optical deflectors having a wide deflection angle are required for applications such as a wavelength swept light source and a line sensor used in optical coherence tomography (OCT). The size of the deflection angle of an electro-optic light deflector is proportional to the distance that light propagates through the refractive index distribution that depends on the electric field distribution. is there. This is because a multi-pass configuration in which a reflective film is attached to the crystal surface and the beam is folded inside the crystal to pass the crystal multiple times is effective for widening the angle. it is obvious. By using this multipath configuration, a propagation distance that is times the number of paths can be obtained, and a wide deflection angle can be obtained.

また非特許文献1には、OCTに用いられる波長掃引光源が示されている。この光源は半導体光増幅器とKTN光偏向器と回折格子およびその他光学素子から成る。非特許文献1には光源性能が光偏向器の偏向角に依存することが示されており、広い偏向角を得るためにマルチパス構成が採用されている。   Non-Patent Document 1 discloses a wavelength swept light source used for OCT. This light source comprises a semiconductor optical amplifier, a KTN optical deflector, a diffraction grating and other optical elements. Non-Patent Document 1 shows that the light source performance depends on the deflection angle of the optical deflector, and a multi-path configuration is adopted to obtain a wide deflection angle.

特許第4751389号公報Japanese Patent No. 4751389

上野 雅浩、豊田 誠治、坂本 尊、佐々木 雄三 小林 潤也、「KTN光偏向器の広角化による200kHz波長掃引光源のコヒーレンス長伸長」、電子情報通信エレクトロニクスソサイエティ大会、2014年、C−3−26Masahiro Ueno, Seiji Toyoda, Takashi Sakamoto, Yuzo Sasaki, Junya Kobayashi, “Coherence length extension of 200 kHz wavelength swept light source by widening KTN optical deflector”, Electronics, Information and Communication Electronics Society, 2014, C-3-26

しかしながら、従来のマルチパス構成の電気光学光偏向器では、偏向されたビームのスキャンの軌跡が直線から湾曲した曲線になるという課題がある。これはスキャン方向と直交する面上で結晶の境界面での光屈折を考えた場合、結晶の出射端面に対してビームが垂直に入射せず、斜入射するためである。   However, the conventional multi-path electro-optic light deflector has a problem that the trajectory of the deflected beam scan becomes a curved curve from a straight line. This is because when the light refraction at the boundary surface of the crystal is considered on the plane orthogonal to the scanning direction, the beam is not incident on the exit end surface of the crystal but is incident obliquely.

図1(a)に、従来の3パス型マルチパス構成の電気光学光偏向器の電界印加方向に垂直な断面図を示し、(b)に(a)のY軸方向から電気光学光偏向器を見た図を示す。電気光学光偏向器100の入射端面に対して入射するビームを傾けて斜入射し、結晶端面に設置した高反射膜103おいて反射させて結晶内でビームを折り返すことでマルチパス構成を実現している。また、電界印加用の電極104に電圧を印加することによりX軸方向に電界を印加する構成としている。   FIG. 1 (a) shows a cross-sectional view perpendicular to the electric field application direction of a conventional electro-optic light deflector having a three-pass multi-path configuration, and FIG. 1 (b) shows the electro-optic light deflector from the Y-axis direction of FIG. The figure which saw is shown. The multi-path configuration is realized by tilting the incident beam with respect to the incident end face of the electro-optic light deflector 100, obliquely incident it, and reflecting it on the highly reflective film 103 installed on the crystal end face and turning the beam back within the crystal. ing. Further, an electric field is applied in the X-axis direction by applying a voltage to the electrode 104 for applying an electric field.

点線101はビームの軌跡を表しており、ベクトルD’は結晶に入射する入射ビームの方向ベクトル、ベクトルSは結晶の入射面の法線ベクトル、ベクトルIは結晶出射面に入射するビームの方向ベクトル、ベクトルDは結晶から出射される出射ビームの方向ベクトルを表す。それぞれのベクトルは単位ベクトルである。   A dotted line 101 represents a beam trajectory, a vector D ′ is a direction vector of the incident beam incident on the crystal, a vector S is a normal vector of the incident surface of the crystal, and a vector I is a direction vector of the beam incident on the crystal exit surface. , Vector D represents the direction vector of the outgoing beam emitted from the crystal. Each vector is a unit vector.

結晶の入射面と出射面は平行であり、ベクトルIのY成分は0であってXZ平面内にあり、ベクトルD’のX成分は0であってYZ平面内にある。尚、X軸は図面に垂直となるようにとり、Z軸はベクトルIと平行となるようにとる。Y軸と結晶の入射面、出射面とのなす角はθとする。   The entrance and exit surfaces of the crystal are parallel, the Y component of vector I is 0 and in the XZ plane, and the X component of vector D 'is 0 and in the YZ plane. The X axis is perpendicular to the drawing, and the Z axis is parallel to the vector I. The angle formed by the Y axis and the crystal entrance plane and exit plane is θ.

この電気光学光偏向器100の電界印加方向、すなわち偏向方向はX軸方向であり、結晶内を伝搬するビームの方向ベクトルのX成分はX方向の屈折率分布dn/dXと結晶内の伝搬長Lの積によって決まり、偏向角、すなわちベクトルIとZ軸のなす角をφとする。以上の条件から各方向ベクトルは以下のように表される。   The electric field application direction of the electro-optic light deflector 100, that is, the deflection direction is the X-axis direction, and the X component of the direction vector of the beam propagating in the crystal is the refractive index distribution dn / dX in the X direction and the propagation length in the crystal. The deflection angle, that is, the angle formed by the vector I and the Z axis is defined as φ. From the above conditions, each direction vector is expressed as follows.

Figure 2019015930
Figure 2019015930

電気光学結晶を取り囲む空間の屈折率をn1とし、結晶の平均屈折率をn2とする。出射面において、これらのベクトルはスネルの法則により、以下の関係を満たす。 The refractive index of the space surrounding the electro-optic crystal is n1, and the average refractive index of the crystal is n2. On the exit surface, these vectors satisfy the following relationship according to Snell's law.

Figure 2019015930

従って、
Figure 2019015930

Therefore,

Figure 2019015930
Figure 2019015930

となる。この結果より、 It becomes. From this result,

Figure 2019015930
Figure 2019015930

となる。ただしN=n2/n1、A=cosθ/sinθである。ベクトルDは単位ベクトルであるため、 It becomes. However, N = n2 / n1, and A = cos θ / sin θ. Since vector D is a unit vector,

Figure 2019015930
Figure 2019015930

の関係を満たす。式(6)、(7)、(8)から、 Satisfy the relationship. From equations (6), (7), (8),

Figure 2019015930
Figure 2019015930

が得られる。この式はDyについての2次方程式であるため、解の公式を使って解くと以下が得られる。 Is obtained. Since this equation is a quadratic equation for Dy, the following can be obtained by solving using the solution formula.

Figure 2019015930
Figure 2019015930

Dyは屈折光の伝搬方向ベクトルDのY成分であるため、Y軸とDのなす角θyはY軸の単位ベクトルとの内積を取ることで、 Since Dy is the Y component of the propagation direction vector D of the refracted light, the angle θy formed by the Y axis and D takes the inner product of the unit vector of the Y axis,

Figure 2019015930
Figure 2019015930

と表される。式(11)は式(10)から明らかなようにcosφを含むため、光偏向は本来のX軸方向の角度変化のみならず、Y軸方向の角度変化を伴うことを表す。この結果、従来のマルチパス構成の電気光学偏向器では、ビームスキャンの軌跡は直線ではなく湾曲した曲線となるという課題がある。 It is expressed. Since the expression (11) includes cos φ as is clear from the expression (10), it indicates that the optical deflection is accompanied by not only the original angle change in the X-axis direction but also the angle change in the Y-axis direction. As a result, the conventional multi-pass electro-optic deflector has a problem that the trajectory of the beam scan is not a straight line but a curved curve.

図2は、従来の電気光学光偏向器のθyの偏向角依存性の計算例を示している。計算に用いた数値例はθ=5.2°、n1=1、n2=2.2である。相対角度変化量とは偏向角φ=0のときのθyを基準とし、そこからの角度変化量を表している。この角度変化は本来意図していない方向への光偏向であるため、光偏向器にとって問題となる。   FIG. 2 shows a calculation example of the deflection angle dependence of θy of a conventional electro-optic light deflector. Numerical examples used in the calculation are θ = 5.2 °, n1 = 1, and n2 = 2.2. The relative angle change amount represents an angle change amount based on θy when the deflection angle φ = 0. This change in angle is a light deflection in a direction that is not originally intended, and therefore becomes a problem for the optical deflector.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、出射されるビームの偏向の軌跡が直線となる電気光学光偏向器を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide an electro-optic light deflector in which the locus of deflection of the emitted beam is a straight line.

上記の課題を解決するために、本発明は、電気光学光偏向器であって、電界印加により屈折率が変化する電気光学結晶と、前記電気光学結晶に電界を印加するための電極と、を備え、前記電気光学結晶内から前記電気光学結晶の出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記出射面との交線に対して垂直となるように前記電気光学結晶が配置されることを特徴とする。   In order to solve the above-described problems, the present invention provides an electro-optic light deflector comprising: an electro-optic crystal whose refractive index changes when an electric field is applied; and an electrode for applying an electric field to the electro-optic crystal. The light incident on the exit surface of the electro-optic crystal from within the electro-optic crystal is perpendicular to the line of intersection between the surface perpendicular to the electric field application direction of the electro-optic crystal and the exit surface. An electro-optic crystal is arranged.

請求項2に記載の発明は、請求項1に記載の電気光学光偏向器において、前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする。   According to a second aspect of the present invention, in the electro-optic light deflector according to the first aspect, a multi-path structure that reflects light propagating in the electro-optic crystal and returns a propagation optical path in the electro-optic crystal. It is characterized by having.

請求項3に記載の発明は、請求項2に記載の電気光学光偏向器において、前記マルチパス構造は、前記電気光学結晶の互いに平行な2面を反射面とすることを特徴とする。   According to a third aspect of the present invention, in the electro-optic light deflector according to the second aspect, the multipath structure has two parallel surfaces of the electro-optic crystal as reflection surfaces.

請求項4に記載の発明は、請求項3に記載の電気光学光偏向器において、前記電気光学結晶の入射面は、前記出射面と平行であり、前記入射面および前記出射面は前記反射面と非平行であることを特徴とする。   According to a fourth aspect of the present invention, in the electro-optic light deflector according to the third aspect, the incident surface of the electro-optic crystal is parallel to the emission surface, and the incidence surface and the emission surface are the reflection surface. And non-parallel.

請求項5に記載の発明は、電気光学光偏向器であって、電界印加により屈折率が変化する電気光学結晶と、前記電気光学結晶に電界を印加するための電極と、前記電気光学結晶の入射面および出射面のそれぞれに接合された、前記電気光学結晶と同じ屈折率を有する2つのプリズムと、を備え、前記プリズム内から前記プリズムの出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記プリズムの出射面との交線に対して垂直となるように前記電気光学結晶および前記プリズムが配置されることを特徴とする。   The invention according to claim 5 is an electro-optic light deflector, wherein an electro-optic crystal whose refractive index changes by application of an electric field, an electrode for applying an electric field to the electro-optic crystal, and the electro-optic crystal Two prisms having the same refractive index as that of the electro-optic crystal, which are bonded to the entrance surface and the exit surface, respectively, and light incident on the exit surface of the prism from within the prism is The electro-optic crystal and the prism are arranged so as to be perpendicular to an intersection line between a surface perpendicular to an electric field application direction and an exit surface of the prism.

請求項6に記載の発明は、請求項5に記載の電気光学光偏向器において、前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする。   According to a sixth aspect of the present invention, in the electro-optic light deflector according to the fifth aspect, a multi-path structure that reflects light propagating in the electro-optic crystal and folds a propagation optical path in the electro-optic crystal is provided. It is characterized by having.

請求項7に記載の発明は、請求項6に記載の電気光学光偏向器において、前記マルチパス構造は、前記電気光学結晶の平行な2面を反射面とすることを特徴とする。   According to a seventh aspect of the present invention, in the electro-optic light deflector according to the sixth aspect, the multipath structure has two parallel surfaces of the electro-optic crystal as reflection surfaces.

請求項8に記載の発明は、請求項7に記載の電気光学光偏向器において、前記プリズムの入射面は、前記プリズムの出射面と平行であり、前記プリズムの入射面および前記プリズムの出射面は前記反射面と非平行であることを特徴とする。   The invention according to claim 8 is the electro-optic light deflector according to claim 7, wherein the incident surface of the prism is parallel to the exit surface of the prism, and the entrance surface of the prism and the exit surface of the prism Is not parallel to the reflecting surface.

本発明の構成を取ることで、電気光学光偏向器から出射されるビームの偏向の軌跡を直線にすることが可能である。   By adopting the configuration of the present invention, it is possible to make the locus of deflection of the beam emitted from the electro-optic light deflector straight.

(a)は、従来の3パス型マルチパス構成の電気光学光偏向器の電界印加方向に垂直な断面図であり、(b)は(a)のY軸方向から電気光学光偏向器を見た図である。(A) is a cross-sectional view perpendicular to the electric field application direction of a conventional electro-optic optical deflector having a three-pass multipath configuration, and (b) is a view of the electro-optic optical deflector from the Y-axis direction of (a). It is a figure. 従来の電気光学光偏向器のθyの偏向角依存性の計算例を示す図である。It is a figure which shows the example of calculation of the deflection angle dependence of (theta) y of the conventional electro-optic light deflector. 本発明の実施形態1に係る電気光学光偏向器の電界印加方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the electric field application direction of the electro-optic light deflector which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る電気光学光偏向器の斜視図である。1 is a perspective view of an electro-optic light deflector according to Embodiment 1 of the present invention. 本発明の実施形態2に係る電気光学光偏向器のX軸に対して垂直な断面図である。It is sectional drawing perpendicular | vertical with respect to the X-axis of the electro-optic light deflector which concerns on Embodiment 2 of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施形態1)
図3に本発明の実施形態1に係る電気光学光偏向器の電界印加方向に対して垂直な断面図を示し、図4にその斜視図を示す。
(Embodiment 1)
FIG. 3 is a cross-sectional view perpendicular to the electric field application direction of the electro-optic light deflector according to Embodiment 1 of the present invention, and FIG. 4 is a perspective view thereof.

電気光学光偏向器300は、電気光学結晶302、2枚の反射防止膜303、2枚の高反射膜304、および電界印加用の電極305によって構成される。電界印加方向は、X軸方向に平行とする。   The electro-optic light deflector 300 includes an electro-optic crystal 302, two antireflection films 303, two high reflection films 304, and an electric field application electrode 305. The electric field application direction is parallel to the X-axis direction.

ビームは軌跡301を通り、電気光学結晶302に入射する際に一方の反射防止膜303を通過する。2枚の高反射膜304の間でビーム301は複数回、ここでは2回反射され、他方の反射防止膜303を通過して電気光学結晶302から出射される。   The beam passes through the trajectory 301 and passes through one antireflection film 303 when entering the electro-optic crystal 302. The beam 301 is reflected a plurality of times, in this case, twice between the two high reflection films 304, passes through the other antireflection film 303, and is emitted from the electro-optic crystal 302.

電気光学結晶302の入射面および出射面は、互いに平行であり、入射面、出射面に入射する各ビームが、入射面および出射面のそれぞれに対してYZ平面において垂直に入射するようにする。すなわち、少なくとも出射面に入射するビームは、出射面とYZ平面との交線に対して垂直となる。また電気光学結晶302の高反射膜304が設置された対向する面は、電気光学結晶302を切削加工等により入射面および出射面に対して角度がつけられ、互いに平行とする。この場合、出射面の法線ベクトルSは、   The entrance surface and the exit surface of the electro-optic crystal 302 are parallel to each other so that the beams incident on the entrance surface and the exit surface are incident perpendicularly on the YZ plane with respect to the entrance surface and the exit surface, respectively. That is, at least the beam incident on the exit surface is perpendicular to the intersection line between the exit surface and the YZ plane. Further, the opposing surfaces of the electro-optic crystal 302 on which the highly reflective film 304 is disposed are angled with respect to the incident surface and the exit surface by cutting the electro-optic crystal 302 or the like, and are parallel to each other. In this case, the normal vector S of the exit surface is

Figure 2019015930
Figure 2019015930

となり、ベクトルIと同様にY軸に対しても垂直になる。式(2)、(3)は本実施形態においても成り立つため、式(12)、(2)〜(4)から、 As with the vector I, it is also perpendicular to the Y axis. Since the expressions (2) and (3) are also established in this embodiment, from the expressions (12) and (2) to (4),

Figure 2019015930
Figure 2019015930

が得られる。これより、Dy=0であることが示される。つまりY軸方向に対してはスネルの法則の影響を受けないことから、電界分布に依存した屈折率分布によりY軸方向には偏向されず、X軸方向にのみ偏向されるためビームスキャンの軌跡は直線となる。 Is obtained. This indicates that Dy = 0. In other words, since the Y-axis direction is not affected by Snell's law, the beam scan locus is not deflected in the Y-axis direction but only in the X-axis direction by the refractive index distribution depending on the electric field distribution. Becomes a straight line.

電気光学結晶302はタンタル酸ニオブ酸カリウム(KTN)などの高誘電率な結晶が好ましい。また反射防止膜303と高反射膜304は誘電体多層膜が好ましい。   The electro-optic crystal 302 is preferably a high dielectric constant crystal such as potassium tantalate niobate (KTN). The antireflection film 303 and the high reflection film 304 are preferably dielectric multilayer films.

電気光学結晶302内での反射回数は、本実施形態の2回に限定されることなく、2回以上とすることが可能であり、3パス以上のマルチパス構造を採用することも可能である。   The number of reflections in the electro-optic crystal 302 is not limited to two in the present embodiment, but can be two or more, and a multi-pass structure of three or more passes can be adopted. .

(実施形態2)
図5に、本発明の実施形態2に係る電気光学光偏向器400の断面図を示す。図5は、図3と同様にX軸に対して垂直な断面を示すものである。電界印加方向は、実施形態1と同様に、X軸方向に平行とする。
(Embodiment 2)
FIG. 5 shows a cross-sectional view of an electro-optic light deflector 400 according to Embodiment 2 of the present invention. FIG. 5 shows a cross section perpendicular to the X-axis as in FIG. The electric field application direction is parallel to the X-axis direction, as in the first embodiment.

電気光学光偏向器400は、電気光学結晶402と三角プリズム405とが組み合わされ、X軸方向の厚みが薄い立方体の形状をしている。電気光学結晶402のYZ平面に垂直で対向する平行な2面にそれぞれ反射防止膜403および高反射膜404が設置されており、反射防止膜403および高反射膜404に接するように、電気光学結晶402と同じ屈折率を有する三角プリズム405−1、405−2が固定されている。三角プリズム405−1、405−2の反射防止膜403および高反射膜404と接している面と対向する面には、反射防止膜403がそれぞれ設置され、それらは互いに平行である。   The electro-optic light deflector 400 has a cube shape in which the electro-optic crystal 402 and the triangular prism 405 are combined and the thickness in the X-axis direction is thin. An anti-reflection film 403 and a high-reflection film 404 are provided on two parallel surfaces that are perpendicular to the YZ plane of the electro-optic crystal 402 and face each other, and the electro-optic crystal is in contact with the anti-reflection film 403 and the high-reflection film 404. Triangular prisms 405-1 and 405-2 having the same refractive index as 402 are fixed. Antireflection films 403 are respectively provided on the surfaces of the triangular prisms 405-1 and 405-2 that face the surfaces that are in contact with the antireflection film 403 and the high reflection film 404, and are parallel to each other.

ビーム401は、三角プリズム405−1の反射防止膜403が設置された面に垂直に入射させる。電気光学結晶402と三角プリズム405とは屈折率が同じなので、三角プリズム405−1から電気光学結晶402に入射したビーム401は屈折せずに直進する。電気光学結晶402から三角プリズム405−2に入射するビームも同様に屈折せずに直進する。そのため、屈折の生じる入射面および出射面は、三角プリズム405−1、405−2の反射防止膜403が設置された面となり、入射面、出射面に入射する各ビームは、入射面および出射面のそれぞれに対し、YZ平面において垂直に入射する。すなわち、少なくとも出射面に入射するビームは、出射面とYZ平面との交線に対して垂直となる。   The beam 401 is perpendicularly incident on the surface of the triangular prism 405-1 on which the antireflection film 403 is installed. Since the electro-optic crystal 402 and the triangular prism 405 have the same refractive index, the beam 401 incident on the electro-optic crystal 402 from the triangular prism 405-1 goes straight without being refracted. Similarly, the beam incident on the triangular prism 405-2 from the electro-optic crystal 402 goes straight without being refracted. Therefore, the incident surface and the exit surface where refraction occurs are surfaces on which the antireflection films 403 of the triangular prisms 405-1 and 405-2 are installed, and each beam incident on the entrance surface and the exit surface is the entrance surface and the exit surface. Are perpendicularly incident on the YZ plane. That is, at least the beam incident on the exit surface is perpendicular to the intersection line between the exit surface and the YZ plane.

このようなことから実施形態2に係る電気光学光偏向器400でも、実施形態1と同様に、ビーム401は入射面および出射面のそれぞれに対し、YZ平面において垂直に入射するため式(13)が成り立つ。そのため、実施形態2に係る電気光学光偏向器400においても電界分布に依存した屈折率分布によりY軸方向には偏向されず、X軸方向にのみ偏向されるためビームスキャンの軌跡は直線となる。   For this reason, also in the electro-optic light deflector 400 according to the second embodiment, as in the first embodiment, the beam 401 is incident on the incidence surface and the emission surface perpendicularly in the YZ plane, so that the equation (13) Holds. For this reason, the electro-optic light deflector 400 according to the second embodiment is not deflected in the Y-axis direction but is deflected only in the X-axis direction due to the refractive index distribution depending on the electric field distribution, and the beam scan locus becomes a straight line. .

尚、実施形態1、2においては、入射面と出射面とを平行とし、2つの高反射膜を平行とする構成としたが、重要なのは出射面に対して伝搬するビームが垂直に入射することであり、出射面に対して伝搬するビームが垂直に入射していれば、入射面と出射面とを平行とし、2つの高反射膜を平行とする必要はない。   In the first and second embodiments, the entrance surface and the exit surface are made parallel and the two highly reflective films are made parallel, but what is important is that the propagating beam is incident on the exit surface vertically. If the propagating beam is incident on the exit surface perpendicularly, the entrance surface and the exit surface need not be parallel and the two highly reflective films do not need to be parallel.

100、300、400 電気光学光偏向器
102、302、402 電気光学結晶
103、304、404 高反射膜
303、403 反射防止膜
104、305 電極
405 三角プリズム
100, 300, 400 Electro-optic light deflector 102, 302, 402 Electro-optic crystal 103, 304, 404 High reflection film 303, 403 Anti-reflection film 104, 305 Electrode 405 Triangular prism

Claims (8)

電界印加により屈折率が変化する電気光学結晶と、
前記電気光学結晶に電界を印加するための電極と、
を備え、前記電気光学結晶内から前記電気光学結晶の出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記出射面との交線に対して垂直となるように前記電気光学結晶が配置されることを特徴とする電気光学光偏向器。
An electro-optic crystal whose refractive index changes when an electric field is applied;
An electrode for applying an electric field to the electro-optic crystal;
So that light incident on the exit surface of the electro-optic crystal from within the electro-optic crystal is perpendicular to the line of intersection between the surface perpendicular to the electric field application direction of the electro-optic crystal and the exit surface. An electro-optic light deflector, wherein the electro-optic crystal is disposed.
前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする請求項1に記載の電気光学光偏向器。   2. The electro-optic light deflector according to claim 1, wherein the electro-optic light deflector has a multipath structure that reflects light propagating in the electro-optic crystal and turns a propagation light path in the electro-optic crystal. 前記マルチパス構造は、前記電気光学結晶の互いに平行な2面を反射面とすることを特徴とする請求項2に記載の電気光学光偏向器。   3. The electro-optic light deflector according to claim 2, wherein the multipath structure has two parallel surfaces of the electro-optic crystal as reflection surfaces. 前記電気光学結晶の入射面は、前記出射面と平行であり、前記入射面および前記出射面は前記反射面と非平行であることを特徴とする請求項3に記載の電気光学光偏向器。   4. The electro-optic light deflector according to claim 3, wherein an incident surface of the electro-optic crystal is parallel to the exit surface, and the entrance surface and the exit surface are non-parallel to the reflection surface. 電界印加により屈折率が変化する電気光学結晶と、
前記電気光学結晶に電界を印加するための電極と、
前記電気光学結晶の入射面および出射面のそれぞれに接合された、前記電気光学結晶と同じ屈折率を有する2つのプリズムと、
を備え、前記プリズム内から前記プリズムの出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記プリズムの出射面との交線に対して垂直となるように前記電気光学結晶および前記プリズムが配置されることを特徴とする電気光学光偏向器。
An electro-optic crystal whose refractive index changes when an electric field is applied;
An electrode for applying an electric field to the electro-optic crystal;
Two prisms having the same refractive index as that of the electro-optic crystal, which are bonded to the entrance surface and the exit surface of the electro-optic crystal,
And the light incident on the exit surface of the prism from within the prism is perpendicular to the line of intersection of the surface perpendicular to the electric field application direction of the electro-optic crystal and the exit surface of the prism. An electro-optic light deflector comprising an optical crystal and the prism.
前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする請求項5に記載の電気光学光偏向器。   6. The electro-optic light deflector according to claim 5, wherein the electro-optic light deflector has a multipath structure that reflects light propagating in the electro-optic crystal and turns a propagation light path in the electro-optic crystal. 前記マルチパス構造は、前記電気光学結晶の平行な2面を反射面とすることを特徴とする請求項6に記載の電気光学光偏向器。   The electro-optic light deflector according to claim 6, wherein the multi-pass structure has two parallel surfaces of the electro-optic crystal as reflection surfaces. 前記プリズムの入射面は、前記プリズムの出射面と平行であり、前記プリズムの入射面および前記プリズムの出射面は前記反射面と非平行であることを特徴とする請求項7に記載の電気光学光偏向器。   8. The electro-optic according to claim 7, wherein an incident surface of the prism is parallel to an output surface of the prism, and an incident surface of the prism and an output surface of the prism are non-parallel to the reflecting surface. Optical deflector.
JP2017135029A 2017-07-10 2017-07-10 Electro-optic light deflector Pending JP2019015930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135029A JP2019015930A (en) 2017-07-10 2017-07-10 Electro-optic light deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135029A JP2019015930A (en) 2017-07-10 2017-07-10 Electro-optic light deflector

Publications (1)

Publication Number Publication Date
JP2019015930A true JP2019015930A (en) 2019-01-31

Family

ID=65359026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135029A Pending JP2019015930A (en) 2017-07-10 2017-07-10 Electro-optic light deflector

Country Status (1)

Country Link
JP (1) JP2019015930A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611750A (en) * 1991-12-30 1994-01-21 Philips Electron Nv Optical device and optical scanning device
JP2008107546A (en) * 2006-10-25 2008-05-08 Seiko Epson Corp Scanning type optical equipment
US20110149380A1 (en) * 2009-12-18 2011-06-23 Microvision, Inc. Electro-Optical Deflection/Modulation
JP2016038465A (en) * 2014-08-07 2016-03-22 日本電信電話株式会社 Electrooptic device
JP2016045400A (en) * 2014-08-25 2016-04-04 日本電信電話株式会社 Electrooptic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611750A (en) * 1991-12-30 1994-01-21 Philips Electron Nv Optical device and optical scanning device
JP2008107546A (en) * 2006-10-25 2008-05-08 Seiko Epson Corp Scanning type optical equipment
US20110149380A1 (en) * 2009-12-18 2011-06-23 Microvision, Inc. Electro-Optical Deflection/Modulation
JP2016038465A (en) * 2014-08-07 2016-03-22 日本電信電話株式会社 Electrooptic device
JP2016045400A (en) * 2014-08-25 2016-04-04 日本電信電話株式会社 Electrooptic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO, T. ET AL.: "350 kHz large-angle scanning of laser light using KTa1-xNbxO3 optical deflector", ELECTRONICS LETTERS, vol. 50, no. 25, JPN6020027228, 4 December 2014 (2014-12-04), US, pages 1965 - 1966, XP006050306, ISSN: 0004314573, DOI: 10.1049/el.2014.1797 *

Similar Documents

Publication Publication Date Title
JP4068566B2 (en) Retroreflective devices especially for tunable lasers
JP7122659B2 (en) Optical scanning device, optical receiving device, and optical detection system
JP2021512357A (en) Diffractive display element with lattice mirror
JP7336746B2 (en) Optical device and photodetection system
JP3070016B2 (en) Optical waveguide device
JP7162268B2 (en) Optical scanning device, optical receiving device, and optical detection system
CN109212733B (en) Optical path folding device
JP2018128663A (en) Optical scan device, optical receiver device, and optical detection system
JP2004515825A (en) Optical resonant frequency converter
US5377291A (en) Wavelength converting optical device
JP5285008B2 (en) Internal reflection type optical deflector
JP6223650B1 (en) Laser oscillator
JP3488776B2 (en) Tapered waveguide and optical waveguide device using the same
JP2019015930A (en) Electro-optic light deflector
US5684812A (en) Laser mode control using external inverse cavity
WO2014122896A1 (en) Optical deflection element and optical deflection device
US3478277A (en) Optical mode selector
JP3569777B1 (en) Optical frequency linear chirp variable device
JP2016142996A (en) Optical element and terahertz wave generation optical device
JP2013149850A (en) Variable wavelength light source
JP5742331B2 (en) Laser light scanner
US10908355B2 (en) Wave plate and divided prism member
JP3666779B2 (en) Phased array spatial light filter
US3502391A (en) Optical beam deflector using diverging or converging beams
JP2011059342A (en) Light deflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302