JP2019015743A - Radiation detector - Google Patents
Radiation detector Download PDFInfo
- Publication number
- JP2019015743A JP2019015743A JP2018205207A JP2018205207A JP2019015743A JP 2019015743 A JP2019015743 A JP 2019015743A JP 2018205207 A JP2018205207 A JP 2018205207A JP 2018205207 A JP2018205207 A JP 2018205207A JP 2019015743 A JP2019015743 A JP 2019015743A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- metal
- radiation detector
- alloy layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 68
- 229910052751 metal Inorganic materials 0.000 claims abstract description 115
- 239000002184 metal Substances 0.000 claims abstract description 111
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 78
- 239000000956 alloy Substances 0.000 claims abstract description 78
- 239000013078 crystal Substances 0.000 claims abstract description 55
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 claims abstract description 55
- 229920005989 resin Polymers 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 9
- 229910001007 Tl alloy Inorganic materials 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 229910052716 thallium Inorganic materials 0.000 claims description 13
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 10
- 239000010931 gold Substances 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 104
- 238000007740 vapor deposition Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- -1 thallium halide Chemical class 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910020174 Pb-In Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 1
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
本発明は、放射線検出器に関するものである。 The present invention relates to a radiation detector.
放射線検出器は、X線やガンマ線等の放射線を検出するものであって、PET(Positron Emission Tomography)装置、SPECT(Single Photon Emission Computed Tomography)装置、ガンマカメラ、コンプトンカメラおよびイメージングスペクトロメータ等において用いられ得る。 The radiation detector detects radiation such as X-rays and gamma rays, and is used in a PET (Positron Emission Tomography) apparatus, a SPECT (Single Photon Emission Computed Tomography) apparatus, a gamma camera, a Compton camera, an imaging spectrometer, and the like. Can be.
放射線検出器として、ハロゲン化タリウム結晶(例えば、臭化タリウム、ヨウ化タリウム、塩化タリウム、及びそれらの混晶)を用いたものが知られており、一例として第1電極と第2電極との間に臭化タリウム(TlBr)結晶が設けられた平行平板状の構成のものが知られている(特許文献1,2を参照)。第1電極および第2電極のうち一方はアノード電極として用いられ、他方はカソード電極として用いられる。TlBr結晶を用いた放射線検出器は、安価かつ容易に製造することができ、感度が高いという利点を有する。尚、第1電極と第2電極との間に、電解を制御するため又は電界を静電遮蔽するために更に一つ以上の電極が設けられる場合もある。 As a radiation detector, one using a thallium halide crystal (for example, thallium bromide, thallium iodide, thallium chloride, and a mixed crystal thereof) is known. As an example, a first electrode and a second electrode are used. The thing of the parallel plate-shaped structure by which the thallium bromide (TlBr) crystal | crystallization was provided in between is known (refer patent document 1, 2). One of the first electrode and the second electrode is used as an anode electrode, and the other is used as a cathode electrode. A radiation detector using a TlBr crystal can be manufactured inexpensively and easily, and has an advantage of high sensitivity. One or more electrodes may be further provided between the first electrode and the second electrode in order to control electrolysis or to electrostatically shield the electric field.
特許文献1,2に記載された放射線検出器は、第1電極および第2電極としてタリウム(Tl)金属のみからなるタリウム電極を用いている。タリウム電極を用いることで、TlBr結晶の分極化を抑制することができて、放射線検出器の長期安定動作が可能であるとされている。 The radiation detectors described in Patent Documents 1 and 2 use thallium electrodes made of only thallium (Tl) metal as the first electrode and the second electrode. By using a thallium electrode, polarization of the TlBr crystal can be suppressed and long-term stable operation of the radiation detector is possible.
TlBr結晶を用いた放射線検出器において第1電極および第2電極としてタリウム電極を用いると、そのタリウム電極が大気中において急速に腐食して劣化し、放射線検出器の特性が劣化してしまう。これは、タリウム電極上に例えば金等の金属層を蒸着形成した場合にも生じてしまう。この劣化を抑制するには、放射線検出器を作製した後にタリウム電極を樹脂等で封止して、耐湿性を向上させるとともに、酸化や大気雰囲気との反応を防止する必要がある。 When a thallium electrode is used as the first electrode and the second electrode in a radiation detector using a TlBr crystal, the thallium electrode rapidly corrodes and deteriorates in the atmosphere, and the characteristics of the radiation detector deteriorate. This also occurs when a metal layer such as gold is deposited on the thallium electrode. In order to suppress this deterioration, it is necessary to seal the thallium electrode with a resin or the like after manufacturing the radiation detector to improve moisture resistance and prevent oxidation and reaction with the air atmosphere.
しかし、例えば放射線検出器を2次元検出器として読出回路基板上に実装する場合には、樹脂による封止により、放射線検出器の電極と読出回路基板のパッドとの間の電気的導通が得られなくなる。このことが、TlBr結晶を用いた放射線検出器の実用化の妨げとなっている。 However, for example, when the radiation detector is mounted on the readout circuit board as a two-dimensional detector, electrical conduction between the electrode of the radiation detector and the pad of the readout circuit board is obtained by sealing with resin. Disappear. This hinders practical application of a radiation detector using a TlBr crystal.
本発明は、上記問題点を解消する為になされたものであり、TlBr結晶の分極化による検出器特性の劣化を抑制することができるとともに大気中における電極の腐食を抑制することができる放射線検出器を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and radiation detection capable of suppressing deterioration of detector characteristics due to polarization of TlBr crystal and suppressing corrosion of electrodes in the atmosphere. The purpose is to provide a vessel.
本発明の放射線検出器は、第1電極と、第2電極と、これら第1電極と第2電極との間に設けられる臭化タリウム結晶とを備え、第1電極が、タリウム金属と他の金属元素との合金からなる合金層を有し、第2電極と読出回路基板上のパッドとが電気的に互いに接続されて、読出回路基板上に実装されており、第2電極が樹脂で封止されている。第2電極は、タリウム金属と他の金属元素との合金からなる合金層を有していてもよいし、タリウム金属からなるものであってもよい。 A radiation detector according to the present invention includes a first electrode, a second electrode, and a thallium bromide crystal provided between the first electrode and the second electrode. It has an alloy layer made of an alloy with a metal element, the second electrode and the pad on the readout circuit board are electrically connected to each other and mounted on the readout circuit board, and the second electrode is sealed with resin. It has been stopped. The second electrode may have an alloy layer made of an alloy of thallium metal and another metal element, or may be made of thallium metal.
本発明において、合金層が、前記他の金属元素として、鉛、銀、ビスマスおよびインジウムのうちの何れか1種以上の金属元素を含むのが好適である。合金層の表面に、合金層より低抵抗の金属からなる低抵抗金属層が設けられているのが好適である。この低抵抗金属層が金からなるのが好適である。 In the present invention, it is preferable that the alloy layer contains one or more metal elements of lead, silver, bismuth, and indium as the other metal elements. It is preferable that a low resistance metal layer made of a metal having a lower resistance than the alloy layer is provided on the surface of the alloy layer. The low resistance metal layer is preferably made of gold.
本発明において、合金層と低抵抗金属層との間に、合金層と低抵抗金属層との付着力を高める導電性の中間層が設けられているのが好適である。この中間層が、クロム、ニッケルおよびチタンのうちの何れかの金属からなるのが好適である。 In the present invention, it is preferable that a conductive intermediate layer for enhancing the adhesion between the alloy layer and the low resistance metal layer is provided between the alloy layer and the low resistance metal layer. The intermediate layer is preferably made of any one of chromium, nickel and titanium.
本発明において、臭化タリウム結晶と合金層との間に、臭化タリウム結晶と合金層との付着力を高める導電性の下地層が設けられているのが好適である。この下地層が、クロム、ニッケルおよびチタンのうちの何れかの金属からなるのが好適である。 In the present invention, it is preferable that a conductive underlayer for enhancing the adhesion between the thallium bromide crystal and the alloy layer is provided between the thallium bromide crystal and the alloy layer. The underlayer is preferably made of any one of chromium, nickel and titanium.
本発明の放射線検出器は、TlBr結晶の分極化による検出器特性の劣化を抑制することができるとともに、大気中における電極の腐食を抑制することができる。 The radiation detector of the present invention can suppress deterioration of detector characteristics due to polarization of the TlBr crystal and suppress corrosion of electrodes in the atmosphere.
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
図1は、第1実施形態の放射線検出器1Aの断面構成を示す図である。放射線検出器1Aは、第1電極10Aと、第2電極20Aと、これら第1電極10Aと第2電極20Aとの間に設けられる臭化タリウム(TlBr)結晶30とを備える平板形状の検出器である。TlBr結晶30の互いに平行な2つの面のうち、一方の面に第1電極10Aが例えば蒸着により形成されており、他方の面に第2電極20Aが例えば蒸着により形成されている。
FIG. 1 is a diagram illustrating a cross-sectional configuration of a
第1電極10Aは合金層12を有する。第2電極20Aは合金層22を有する。合金層12,22の厚みは例えば数十nm〜数百nmである。合金層12,22は、タリウム(Tl)金属と他の金属元素との合金からなる。Tl金属とともに合金に含まれる他の金属元素は、任意でよいが、好適には鉛(Pb)、銀(Ag)、ビスマス(Bi)およびインジウム(In)のうちから選ばれる1種以上の元素である。
The
合金層12,22は、例えば、Tl-Pb、Tl-Ag、Tl-Bi、Tl-In、Tl-Pb-Bi、Tl-Pb-In等の合金からなる。合金層12,22は、Tlを金属として含むものであって、Tlを化合物(例えば、酸化Tl、フッ化Tl、硝酸Tl等)としてのみ含むものではない。合金層12,22におけるTl金属の含有比は、蛍光X線分析(XRF)法による分析によりTl金属が検出されるレベルである。なお、合金層12,22の表面は空気に触れて酸化する場合があるが、合金層12,22の内部は酸化しない。
The
第1電極10Aおよび第2電極20Aのうち一方はアノード電極として用いられ、他方はカソード電極として用いられる。ハロゲン化タリウム結晶はイオン伝導性を示すので、TlBr結晶30に電圧が印加されると、Tl+イオンがカソード電極下へ蓄積し、Br−イオンがアノード電極下へ蓄積する。放射線検出器1Aは、入射放射線によって生成される電子正孔対が印加電圧によって移動することにより両電極の間に流れる電流により放射線入射を検出することができる。
One of the
アノード電極下に蓄積したBr−イオンは、そのアノード電極に含まれるTl金属と結合してTlBrとなり、そのときに電子が放出される。カソード電極下に蓄積したTl+イオンは、その放出された電子と結合してTl金属となる。これらの反応により生成されるTl金属およびTlBrは、イオンではなく、電荷を持たない。したがって、TlBr結晶30の分極化を抑制することができる。
Br − ions accumulated under the anode electrode combine with Tl metal contained in the anode electrode to form TlBr, and electrons are emitted at that time. Tl + ions accumulated under the cathode electrode combine with the emitted electrons to become Tl metal. Tl metal and TlBr produced by these reactions are not ions and have no charge. Therefore, polarization of the
第1電極10Aおよび第2電極20Aは、Tl金属のみからなる電極ではなく、Tl金属と他の金属元素との合金からなる電極であるので、大気中における腐食が抑制され、樹脂等で封止する必要がない。したがって、放射線検出器1Aを読出回路基板上に実装することが可能となる。
Since the
Tl金属と他の金属元素との合金からなる第1電極10Aおよび第2電極20Aは、Tl金属のみからなる電極と比べて、TlBr結晶30との付着力が強く、高温時にTlBr結晶30から剥がれることが抑制される。例えば、放射線検出器1Aを読出回路基板上に実装する際に放射線検出器1Aが高温となっても、放射線検出器1Aの信頼性が確保され得る。
The
また、Tl金属のみからなる電極を有する放射線検出器は、特性が安定化するのに、エージング(電圧の極性を換えて交互に電極間に印加する操作)を行う必要がある。これに対して、Tl金属と他の金属元素との合金からなる電極を有する放射線検出器は、このようなエージングを行う必要がなく、最初から良好なエネルギー分解能を有する。 In addition, a radiation detector having an electrode made of only Tl metal needs to be subjected to aging (an operation in which voltage polarity is changed and applied alternately between electrodes) in order to stabilize the characteristics. On the other hand, a radiation detector having an electrode made of an alloy of a Tl metal and another metal element does not need to perform such aging and has a good energy resolution from the beginning.
図2は、第2実施形態の放射線検出器1Bの断面構成を示す図である。放射線検出器1Bは、第1電極10Bと、第2電極20Bと、これら第1電極10Bと第2電極20Bとの間に設けられる臭化タリウム(TlBr)結晶30とを備える。図1に示された第1実施形態の構成と比較すると、図2に示される第2実施形態の構成では、第1電極10Bにおいて合金層12の表面に低抵抗金属層14が例えば蒸着により形成されている点で相違し、第2電極20Bにおいて合金層22の表面に低抵抗金属層24が例えば蒸着により形成されている点で相違する。
FIG. 2 is a diagram illustrating a cross-sectional configuration of the
低抵抗金属層14は合金層12より低抵抗の金属からなる。低抵抗金属層24は合金層22より低抵抗の金属からなる。低抵抗金属層14,24は、単一層であってもよいし、複数層であってもよい。低抵抗金属層14,24の厚みは例えば数十nm〜数百nmである。低抵抗金属層14,24の金属は、任意でよいが、好適には金(Au)が用いられる。合金層の表面に低抵抗の金属からなる低抵抗金属層が設けられることで、合金層の表面の酸化が抑制されるとともに、例えば読出回路基板上のパッドと電極との間の抵抗を低減することができる。
The low
図3は、第3実施形態の放射線検出器1Cの断面構成を示す図である。放射線検出器1Cは、第1電極10Cと、第2電極20Cと、これら第1電極10Cと第2電極20Cとの間に設けられる臭化タリウム(TlBr)結晶30とを備える。図2に示された第2実施形態の構成と比較すると、図3に示される第3実施形態の構成では、第1電極10Cにおいて合金層12と低抵抗金属層14との間に中間層13が例えば蒸着により形成されている点で相違し、第2電極20Cにおいて合金層22と低抵抗金属層24との間に中間層23が例えば蒸着により形成されている点で相違する。
FIG. 3 is a diagram illustrating a cross-sectional configuration of a
中間層13は、合金層12と低抵抗金属層14との付着力を高めるために挿入される。中間層23は、合金層22と低抵抗金属層24との付着力を高めるために挿入される。中間層13,23は導電性を有する。中間層13,23の厚みは例えば数nm〜数百nmである。中間層13,23の材料は、任意でよいが、好適にはクロム(Cr)、ニッケル(Ni)およびチタン(Ti)のうちの何れかの金属からなる。
The
図4は、第4実施形態の放射線検出器1Dの断面構成を示す図である。放射線検出器1Dは、第1電極10Dと、第2電極20Dと、これら第1電極10Dと第2電極20Dとの間に設けられる臭化タリウム(TlBr)結晶30とを備える。図1に示された第1実施形態の構成と比較すると、図4に示される第4実施形態の構成では、第1電極10DにおいてTlBr結晶30と合金層12との間に島状構造の薄膜である下地層11が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第1電極10Dが形成されている点で相違する。また、第2電極20DにおいてTlBr結晶30と合金層22との間に島状構造の薄膜である下地層21が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第2電極20Dが形成されている点で相違する。
FIG. 4 is a diagram showing a cross-sectional configuration of the
図5は、第5実施形態の放射線検出器1Eの断面構成を示す図である。放射線検出器1Eは、第1電極10Eと、第2電極20Eと、これら第1電極10Eと第2電極20Eとの間に設けられる臭化タリウム(TlBr)結晶30とを備える。図2に示された第2実施形態の構成と比較すると、図5に示される第5実施形態の構成では、第1電極10EにおいてTlBr結晶30と合金層12との間に島状構造の薄膜である下地層11が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第1電極10Eが形成されている点で相違する。また、第2電極20EにおいてTlBr結晶30と合金層22との間に島状構造の薄膜である下地層21が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第2電極20Eが形成されている点で相違する。
FIG. 5 is a diagram illustrating a cross-sectional configuration of a
図6は、第6実施形態の放射線検出器1Fの断面構成を示す図である。放射線検出器1Fは、第1電極10Fと、第2電極20Fと、これら第1電極10Fと第2電極20Fとの間に設けられる臭化タリウム(TlBr)結晶30とを備える。図3に示された第3実施形態の構成と比較すると、図6に示される第6実施形態の構成では、第1電極10FにおいてTlBr結晶30と合金層12との間に島状構造の薄膜である下地層11が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第1電極10Fが形成されている点で相違する。また、第2電極20FにおいてTlBr結晶30と合金層22との間に島状構造の薄膜である下地層21が例えば蒸着(抵抗加熱法)により形成され、島状構造の隙間に第2電極20Fが形成されている点で相違する。
FIG. 6 is a diagram showing a cross-sectional configuration of the
第4〜第6の実施形態において、下地層11は、TlBr結晶30と合金層12との付着力を高めるために挿入される。下地層21は、TlBr結晶30と合金層22との付着力を高めるために挿入される。下地層11,21は導電性を有する。下地層11,21の厚みは例えば数nm〜数十nmである。下地層11,21の材料は、任意でよいが、好適にはクロム(Cr)、ニッケル(Ni)およびチタン(Ti)のうちの何れかの金属からなる。
In the fourth to sixth embodiments, the
次に、第6実施形態の放射線検出器1Fを製造する方法の一例について説明する。Tl金属とともに合金に含まれる他の金属元素を鉛(Pb)として説明する。
Next, an example of a method for manufacturing the
先ず、TlBr結晶のウェハを適当なサイズ(例えば一辺の長さが10〜20mm程度の長方形)に切断してTlBr結晶30とし、このTlBr結晶30の表面を研磨する。ウェハを研磨した後に切断してもよい。また、原材料としてTl金属およびPb元素を適当な重量比でタングステン製ボートに入れ、10−3Pa以下まで減圧した真空槽内で、このボートを加熱してTl金属およびPb元素を合金化させる。
First, a TlBr crystal wafer is cut into an appropriate size (for example, a rectangle having a side length of about 10 to 20 mm) to form a
Cr,NiおよびTiのうちの何れかの金属を蒸発源として用いて、TlBr結晶30の研磨された表面に蒸着により下地層11を薄く形成する。その後、ボート内の合金化した金属を蒸発源として用いて、下地層11上に蒸着により合金層12を形成する。下地層11を設けることで、TlBr結晶30と合金層12との付着力を高めることができる。
The
合金層12まで形成されたTlBr結晶30を冷却した後に、Cr,NiおよびTiのうちの何れかの金属を蒸発源として用いて、合金層12上に蒸着により中間層13を薄く形成する。その後、金(Au)を蒸発源として用いて、中間層13上に蒸着により低抵抗金属層14を形成する。中間層13を設けることで、合金層12と低抵抗金属層14との付着力を高めることができる。以上でTlBr結晶30の一方の面に第1電極10Fを形成する。
After the
第1電極10Fが形成されたTlBr結晶30を十分に冷却した後に、第1電極10Fが形成された面に対向するTlBr結晶30の他の研磨された表面に、同様にして、下地層21、合金層22、中間層23および低抵抗金属層24を順次に蒸着により形成して、第2電極20Fを形成する。以上のようにして放射線検出器1Fを製造することができる。
After sufficiently cooling the
尚、合金層12を蒸着する前後または蒸着中の段階においてTlBr結晶30を加熱することで、合金層12の付着力や電気的安定性を向上させることができる。又、TlBr結晶30上に先にPb金属を蒸着によって付着させた後に続いてTl金属を蒸着によって付着させる方法、または、TlBr結晶30上に先にTl金属を蒸着によって付着させた後に続いてPb金属を蒸着によって形成させる方法によって、合金層12を形成することもできる。
In addition, the adhesive force and electrical stability of the
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、第1電極をタリウム金属と他の金属元素との合金からなる合金層を有する電極とし、第2電極をタリウム金属のみからなる電極としてもよい。この場合、例えば、第1電極を露出したまま読出回路基板のパッドに接続し、第2電極を読出回路基板のパッドに直接に接続して第2電極を樹脂等で封止すればよい。封止樹脂としては、例えばエポキシ樹脂を使用してもよい。この場合に第2電極とTlBr結晶との間に下地層を設けることにより、合金層の場合と同様にTlBr結晶とタリウム金属との付着力を向上させることができる。第1電極をタリウム金属と他の金属元素との合金からなる合金層を有する電極とし、第2電極を金からなる電極としてもよい。 The present invention is not limited to the above embodiment, and various modifications can be made. For example, the first electrode may be an electrode having an alloy layer made of an alloy of thallium metal and another metal element, and the second electrode may be an electrode made of only thallium metal. In this case, for example, the first electrode may be exposed and connected to the pad of the readout circuit board, the second electrode may be directly connected to the pad of the readout circuit board, and the second electrode may be sealed with resin or the like. For example, an epoxy resin may be used as the sealing resin. In this case, by providing a base layer between the second electrode and the TlBr crystal, adhesion between the TlBr crystal and thallium metal can be improved as in the case of the alloy layer. The first electrode may be an electrode having an alloy layer made of an alloy of thallium metal and another metal element, and the second electrode may be an electrode made of gold.
図7は、合金化前の原材料としてのPb金属およびTl金属の重量比を各値とした場合の合金層におけるPb金属およびTl金属それぞれの含有重量比を示すグラフである。合金化前のPb金属およびTl金属の重量比を、(a) 80:20、(b) 60:40、(c)40:60、(d) 20:80 とした。 FIG. 7 is a graph showing the content weight ratios of the Pb metal and the Tl metal in the alloy layer when the weight ratio of the Pb metal and the Tl metal as raw materials before alloying is set to various values. The weight ratios of Pb metal and Tl metal before alloying were (a) 80:20, (b) 60:40, (c) 40:60, and (d) 20:80.
図8は、合金化前の原材料としてのBi金属およびTl金属の重量比を各値とした場合の合金層におけるBi金属およびTl金属それぞれの含有重量比を示すグラフである。合金化前のBi金属およびTl金属の重量比を、(a) 80:20、(b) 60:40、(c)40:60、(d) 20:80 とした。 FIG. 8 is a graph showing the content weight ratios of Bi metal and Tl metal in the alloy layer when the weight ratios of Bi metal and Tl metal as raw materials before alloying are various values. The weight ratios of Bi metal and Tl metal before alloying were (a) 80:20, (b) 60:40, (c) 40:60, and (d) 20:80.
図7および図8に示された合金層における各金属の含有重量比は、株式会社リガク製の蛍光X線分析装置(ZSX Primus)を用いて測定された。図7および図8に示されるように、合金層における各金属の含有重量比は、合金化前の原材料としての各金属の重量比と必ずしも一致しない。したがって、合金層における各金属の含有重量比を所望値にするには、その所望値に応じた各金属の重量比で合金化前の原材料を混合し合金化することが好ましい。 The weight ratio of each metal in the alloy layer shown in FIGS. 7 and 8 was measured using a fluorescent X-ray analyzer (ZSX Primus) manufactured by Rigaku Corporation. As shown in FIGS. 7 and 8, the weight ratio of each metal in the alloy layer does not necessarily match the weight ratio of each metal as a raw material before alloying. Therefore, in order to make the content weight ratio of each metal in the alloy layer a desired value, it is preferable to mix and alloy the raw materials before alloying at the weight ratio of each metal according to the desired value.
図9は、実施例の放射線検出器を用いて得られた137Csガンマ線のスペクトルを示す図である。図9(a)は動作開始から5分経過時のスペクトルを示し、図9(b)は動作開始から6時間経過時のスペクトルを示す。ここで用いた放射線検出器は第1実施形態の構成のものであり、合金層はTl金属とPb金属とを重量比60:40で含み厚さ100nmであった。スペクトル測定に用いた装置は、プリアンプ(クリアパルス580HP)、シェーピングアンプ(ORTEC673)およびマルチチャネルアナライザ(ラボラトリイクイップメント2100C/MCA)であった。この図に示されるように、本実施形態の放射線検出器は、電極を樹脂で封止しなくても6時間連続動作できることが確認された。なお、Tl金属のみからなる電極を有する比較例の放射線検出器は、動作開始から1時間も経過しないうちに電極が腐食して黒色化し、特性が劣化した。このように、本実施形態の放射線検出器は、大気中における電極の腐食を抑制することができる。 FIG. 9 is a diagram showing a spectrum of 137Cs gamma rays obtained using the radiation detector of the example. FIG. 9A shows a spectrum when 5 minutes have elapsed since the start of operation, and FIG. 9B shows a spectrum when 6 hours have elapsed since the start of operation. The radiation detector used here has the structure of the first embodiment, and the alloy layer includes Tl metal and Pb metal at a weight ratio of 60:40 and has a thickness of 100 nm. The apparatus used for the spectrum measurement was a preamplifier (clear pulse 580 HP), a shaping amplifier (ORTEC 673), and a multi-channel analyzer (laboratory equipment 2100C / MCA). As shown in this figure, it was confirmed that the radiation detector of this embodiment can be operated continuously for 6 hours without sealing the electrodes with resin. In addition, the radiation detector of the comparative example having an electrode made of only Tl metal was corroded and blackened within 1 hour from the start of operation, and the characteristics deteriorated. Thus, the radiation detector of this embodiment can suppress the corrosion of the electrode in the atmosphere.
また、放射線検出器におけるTlBr結晶に対する電極の付着力を調べた。実施例の電極は、第2実施形態の構成のものであり、Tl金属とPb金属とを重量比60:40で含む厚さ100nmの合金層の上に、金からなる厚さ100nmの低抵抗金属層を設けたものである。比較例の電極は、Tl金属のみからなる厚さ100nmの層の上に、金からなる厚さ100nmの低抵抗金属層を設けたものである。150℃、175℃および200℃の各温度の雰囲気に1分間に亘り放射線検出器をおいて、TlBr結晶に対する電極の剥がれの有無を調べた。比較例では温度150℃で電極が剥がれたのに対して、実施例では温度200℃でも電極が剥がれることはなかった。このように、本実施形態の放射線検出器は、高温時にTlBr結晶から電極が剥がれることが抑制され、信頼性が確保され得る。 Further, the adhesion force of the electrode to the TlBr crystal in the radiation detector was examined. The electrode of the example has the configuration of the second embodiment, and has a low resistance of 100 nm thickness made of gold on an alloy layer of 100 nm thickness containing Tl metal and Pb metal at a weight ratio of 60:40. A metal layer is provided. The electrode of the comparative example is obtained by providing a 100 nm thick low resistance metal layer made of gold on a 100 nm thick layer made of only Tl metal. A radiation detector was placed in an atmosphere at each temperature of 150 ° C., 175 ° C., and 200 ° C. for 1 minute to examine whether the electrode peeled off from the TlBr crystal. In the comparative example, the electrode was peeled off at a temperature of 150 ° C., whereas in the example, the electrode was not peeled off even at a temperature of 200 ° C. Thus, the radiation detector of this embodiment can suppress the peeling of the electrode from the TlBr crystal at a high temperature, and can ensure reliability.
1A〜1F…放射線検出器、10A〜10F…第1電極、11…下地層、12…合金層、13…中間層、14…低抵抗金属層、20A〜20F…第2電極、21…下地層、22…合金層、23…中間層、24…低抵抗金属層、30…臭化タリウム結晶。
DESCRIPTION OF
Claims (10)
前記第1電極が、タリウム金属と他の金属元素との合金からなる合金層を有し、
前記第2電極と読出回路基板上のパッドとが電気的に互いに接続されて、前記読出回路基板上に実装されており、前記第2電極が樹脂で封止されている、
放射線検出器。 A first electrode, a second electrode, and a thallium bromide crystal provided between the first electrode and the second electrode,
The first electrode has an alloy layer made of an alloy of thallium metal and another metal element,
The second electrode and a pad on the readout circuit board are electrically connected to each other and mounted on the readout circuit board, and the second electrode is sealed with a resin,
Radiation detector.
請求項1に記載の放射線検出器。 The second electrode has an alloy layer made of an alloy of thallium metal and another metal element;
The radiation detector according to claim 1.
請求項1に記載の放射線検出器。 The second electrode is made of thallium metal;
The radiation detector according to claim 1.
請求項1〜3の何れか1項に記載の放射線検出器。 The alloy layer contains one or more metal elements of lead, silver, bismuth, and indium as the other metal elements,
The radiation detector of any one of Claims 1-3.
請求項1〜4の何れか1項に記載の放射線検出器。 A low resistance metal layer made of a metal having a lower resistance than the alloy layer is provided on the surface of the alloy layer.
The radiation detector of any one of Claims 1-4.
請求項5に記載の放射線検出器。 The low-resistance metal layer is made of gold;
The radiation detector according to claim 5.
請求項5または6に記載の放射線検出器。 Between the alloy layer and the low-resistance metal layer, a conductive intermediate layer that increases the adhesion between the alloy layer and the low-resistance metal layer is provided,
The radiation detector according to claim 5 or 6.
請求項7に記載の放射線検出器。 The intermediate layer is made of any one of chromium, nickel and titanium;
The radiation detector according to claim 7.
請求項1〜8の何れか1項に記載の放射線検出器。 Between the thallium bromide crystal and the alloy layer, a conductive underlayer is provided to increase the adhesion between the thallium bromide crystal and the alloy layer.
The radiation detector of any one of Claims 1-8.
請求項9に記載の放射線検出器。 The underlayer is made of any one of chromium, nickel and titanium.
The radiation detector according to claim 9.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018205207A JP6784739B2 (en) | 2018-10-31 | 2018-10-31 | Radiation detector |
JP2020177956A JP6970801B2 (en) | 2018-10-31 | 2020-10-23 | Radiation detector manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018205207A JP6784739B2 (en) | 2018-10-31 | 2018-10-31 | Radiation detector |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017215648A Division JP6430610B2 (en) | 2017-11-08 | 2017-11-08 | Radiation detector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020177956A Division JP6970801B2 (en) | 2018-10-31 | 2020-10-23 | Radiation detector manufacturing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019015743A true JP2019015743A (en) | 2019-01-31 |
JP2019015743A5 JP2019015743A5 (en) | 2019-08-15 |
JP6784739B2 JP6784739B2 (en) | 2020-11-11 |
Family
ID=65357503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018205207A Active JP6784739B2 (en) | 2018-10-31 | 2018-10-31 | Radiation detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6784739B2 (en) |
-
2018
- 2018-10-31 JP JP2018205207A patent/JP6784739B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6784739B2 (en) | 2020-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11555934B2 (en) | Radiation detector | |
JP2008089352A (en) | Semiconductor radiation detector and radiation detection apparatus | |
JP6430610B2 (en) | Radiation detector | |
JP6970801B2 (en) | Radiation detector manufacturing method | |
JP6784739B2 (en) | Radiation detector | |
JP2016149443A (en) | Radiation detection element, radiation detector and nuclear medicine diagnostic apparatus and method of manufacturing radiation detection element | |
WO2022130748A1 (en) | Radiation detector, detector module, and radiation detector production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190701 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6784739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |