JP2019015433A - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
JP2019015433A
JP2019015433A JP2017131860A JP2017131860A JP2019015433A JP 2019015433 A JP2019015433 A JP 2019015433A JP 2017131860 A JP2017131860 A JP 2017131860A JP 2017131860 A JP2017131860 A JP 2017131860A JP 2019015433 A JP2019015433 A JP 2019015433A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer fluid
flow
vortex flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017131860A
Other languages
Japanese (ja)
Inventor
洋輔 肥塚
Yosuke Hizuka
洋輔 肥塚
朋生 久保
Tomoo Kubo
朋生 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017131860A priority Critical patent/JP2019015433A/en
Publication of JP2019015433A publication Critical patent/JP2019015433A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a heat transfer device which greatly changes heat transfer performance according to a flow rate of a heat transfer fluid.SOLUTION: A heat transfer device of the invention includes a heat transfer fluid and a passage of the heat transfer fluid. The passage has a vortex flow generation part in at least one part of its inner surface. In the vortex flow generation part, multiple recessed parts extending in a direction intersecting with a heat transfer fluid circulation direction are arranged at predetermined intervals. A contact angle of a surface of the vortex flow generation part and the heat transfer fluid is 110° or larger. Heat transfer is facilitated when the flow rate of the heat transfer fluid is high, and the heat transfer is inhibited when the flow rate of the heat transfer fluid is low.SELECTED DRAWING: Figure 1

Description

本発明は、伝熱装置に係り、更に詳細には、伝熱流体に渦流れを生成させる伝熱装置に関する。   The present invention relates to a heat transfer device, and more particularly to a heat transfer device that generates a vortex flow in a heat transfer fluid.

冷却媒体を流して電子部品等の発熱体の冷却を行う冷却装置が知られており、特許文献1には、電子部品に対し離反する方向に延長される複数の放熱部材を備え、この各放熱部材相互間を冷却用流体が通過することで、上記発熱体の冷却を行う冷却装置が記載されている。   A cooling device that cools a heating element such as an electronic component by flowing a cooling medium is known. Patent Document 1 includes a plurality of heat radiating members that extend in a direction away from the electronic component. A cooling device that cools the heating element by passing a cooling fluid between members is described.

上記複数の放熱部材の長さは、上記電子部品の発熱による熱伝導温度が低くなるに従って短くなるように形成されており、小型化しても冷却用流体の圧力損失を抑えて冷却性能を維持することができる。   The length of the plurality of heat dissipating members is formed to be shorter as the heat conduction temperature due to heat generation of the electronic component is lower, and even if the size is reduced, the pressure loss of the cooling fluid is suppressed and the cooling performance is maintained. be able to.

特開2003−8264号公報JP 2003-8264 A

しかしながら、冷却媒体と流路構成材との接触面積を増やして冷却性能を向上させた冷却装置にあっては、暖機時等、伝熱用流体の流量を低減し、放熱を抑えて所望の温度まで温度を上昇させたい場合であっても、冷却性能が高いために過度な放熱が行われて冷却損失が大きくなる。   However, in a cooling device that improves the cooling performance by increasing the contact area between the cooling medium and the flow path component, the flow rate of the heat transfer fluid is reduced during warm-up, etc. Even when it is desired to raise the temperature up to the temperature, the cooling performance is high, so that excessive heat dissipation is performed and the cooling loss increases.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、伝熱用流体の流量により伝熱性能が大きく変化する伝熱装置を提供することにある。   This invention is made | formed in view of the subject which such a prior art has, The place made into the objective is to provide the heat-transfer apparatus from which the heat-transfer performance changes a lot with the flow volume of the fluid for heat-transfer. is there.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、伝熱用流体の流路内面に、凹部を設けてその内部に渦流れを生じさせ、上記凹部表面と伝熱用流体との接触角を一定以上にすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor provided a recess on the inner surface of the flow path of the heat transfer fluid to generate a vortex flow therein, and the surface of the recess, the heat transfer fluid, It has been found that the above-mentioned object can be achieved by setting the contact angle to a certain level or more, and the present invention has been completed.

すなわち、本発明の伝熱装置は、伝熱用流体と、該伝熱用流体の流路と、を備え、上記流路が、その内面の少なくとも一部に渦流れ生成部を有する。
そして、上記渦流れ生成部が、上記伝熱用流体の流通方向と交差する方向に延びた複数の凹部を所定の間隔で配列したものであり、かつ、その表面と上記伝熱用流体との接触角が110°以上であることを特徴とする。
That is, the heat transfer device of the present invention includes a heat transfer fluid and a flow path for the heat transfer fluid, and the flow path has a vortex flow generation portion on at least a part of its inner surface.
And the said eddy flow production | generation part has arrange | positioned the several recessed part extended in the direction which cross | intersects the distribution direction of the said heat transfer fluid at predetermined intervals, and the surface and the said heat transfer fluid The contact angle is 110 ° or more.

本発明によれば、渦流れ生成部の凹部内に渦流れを生じさせると共に、上記渦流れ生成部の表面と伝熱用流体との接触角を110°以上にすることとしたため、伝熱用流体の流速が速いときには伝熱が促進され、流速が遅いときには伝熱が抑制される伝熱装置を提供することができる。   According to the present invention, the vortex flow is generated in the recess of the vortex flow generation section, and the contact angle between the surface of the vortex flow generation section and the heat transfer fluid is set to 110 ° or more. It is possible to provide a heat transfer device that promotes heat transfer when the flow rate of fluid is high and suppresses heat transfer when the flow rate is slow.

本発明の伝熱装置を伝熱用流体の流通方向に切ったときの概略断面図である。It is a schematic sectional drawing when the heat transfer apparatus of this invention is cut | disconnected in the distribution direction of the fluid for heat transfer. 渦流れ生成部を流路内から見たときの一例を示す概略平面図である。It is a schematic plan view which shows an example when a vortex | eddy_current production | generation part is seen from the inside of a flow path. 渦流れ生成部の一例を示す拡大断面図である。It is an expanded sectional view showing an example of a vortex flow generation part. 他の渦流れ生成部の拡大断面図である。It is an expanded sectional view of another vortex flow generation part. 他の渦流れ生成部を流路内から見たときの概略平面図である。It is a schematic plan view when another vortex flow production | generation part is seen from the inside of a flow path. さらに他の渦流れ生成部を流路内から見たときの概略平面図である。It is a schematic plan view when another vortex flow production | generation part is seen from the inside of a flow path. さらに他の渦流れ生成部を流路内から見たときの概略平面図である。It is a schematic plan view when another vortex flow production | generation part is seen from the inside of a flow path. さらに他の渦流れ生成部を流路内から見たときの概略平面図である。It is a schematic plan view when another vortex flow production | generation part is seen from the inside of a flow path. 図1中A−A’で示す箇所の流路 断面図である。FIG. 2 is a cross-sectional view of a flow path at a location indicated by A-A ′ in FIG. 1. 層流底層の厚さ(δs)との熱伝達率との関係を示すグラフである。It is a graph which shows the relationship with the heat transfer rate with the thickness ((delta) s) of a laminar bottom layer. 伝熱装置とエンジン・変速機との間に伝熱用流体を循環させる循環路の一例を示す図である。It is a figure which shows an example of the circulation path which circulates the fluid for heat transfer between a heat-transfer apparatus and an engine and a transmission. 伝熱装置とエンジン・変速機との間に伝熱用流体を循環させる循環路の他の例を示す図である。It is a figure which shows the other example of the circulation path which circulates the fluid for heat transfer between a heat-transfer apparatus and an engine and a transmission. 伝熱装置とエンジン・変速機との間に伝熱用流体を循環させる循環路のさらに他の例を示す図である。It is a figure which shows the further another example of the circulation path which circulates the fluid for heat transfer between a heat-transfer apparatus and an engine and a transmission. 実施例及び比較例の伝熱用流体の流速に対する熱伝達率を示すグラフである。It is a graph which shows the heat transfer rate with respect to the flow velocity of the fluid for heat transfer of an Example and a comparative example. 流速が0.5m/sと3.3m/sの場合の実施例及び比較例の熱伝達率を示すグラフである。It is a graph which shows the heat transfer rate of the Example in case a flow velocity is 0.5 m / s and 3.3 m / s, and a comparative example.

本発明の伝熱装置について詳細に説明する。
上記伝熱装置は、伝熱用流体と、該伝熱用流体が流れる流路と、を備えるものであり、必要に応じて、上記流路構成材の外側に当接して設けられたフィンや、上記伝熱用流体の流速の制御を行う流速制御装置等を有して成る。
そして、上記流路の内面の少なくとも一部に渦流れ生成部を有し、上記流路を流れる伝熱用流体の流れにより、上記渦流れ生成部の凹部内に渦流れを生じさせて伝熱用流体と流路構成材との間で熱交換を行い、伝熱用流体の冷却又は加熱を行うものである。
The heat transfer device of the present invention will be described in detail.
The heat transfer device includes a heat transfer fluid and a flow path through which the heat transfer fluid flows. If necessary, fins provided in contact with the outside of the flow path constituent material, And a flow rate control device for controlling the flow rate of the heat transfer fluid.
Further, at least a part of the inner surface of the flow path has a vortex flow generation section, and the flow of heat transfer fluid flowing through the flow path causes a vortex flow to be generated in the recess of the vortex flow generation section. Heat is exchanged between the working fluid and the flow path component, and the heat transfer fluid is cooled or heated.

図1は、本発明の伝熱装置を伝熱用流体の流通方向に切ったときの概略断面図であり、図2は、伝熱装置の流路に設けられた渦流れ生成部の概略平面図であり、図3は、図1中○で囲んだ渦流れ生成部の拡大断面図である。
なお、上記伝熱用流体は、図1、図2、図3中、矢印で示す方向に流れる。
FIG. 1 is a schematic cross-sectional view of the heat transfer device according to the present invention when cut in the flow direction of the heat transfer fluid, and FIG. 2 is a schematic plan view of a vortex flow generating section provided in the flow path of the heat transfer device. FIG. 3 is an enlarged cross-sectional view of the vortex flow generator surrounded by a circle in FIG.
The heat transfer fluid flows in the direction indicated by the arrow in FIGS. 1, 2, and 3.

上記渦流れ生成部は、伝熱用流体の流通方向と交差する方向に延びた細長い凹部、すなわち溝が所定の間隔で複数配列したものである。そして、上記流路内を流れる伝熱用流体の流通速度に応じて上記凹部内に渦流れを生じさせ、上記凹部内の伝熱用流体を凹部の外に排出して、伝熱の促進を図るものである。   The vortex flow generating section is formed by arranging a plurality of elongated recesses, that is, grooves, extending in a direction intersecting with the flow direction of the heat transfer fluid at predetermined intervals. Then, a vortex flow is generated in the recess according to the flow rate of the heat transfer fluid flowing in the flow path, and the heat transfer fluid in the recess is discharged out of the recess to promote heat transfer. It is intended.

そして、上記渦流れ生成部の表面と上記伝熱用流体との接触角が110°以上であることにより、伝熱用流体の流速が速いときには伝熱が促進され、流速が遅いときには伝熱が抑制される。
なお、本発明において、渦流れ生成部の表面と伝熱用流体との接触角は、渦流れ生成部を平坦にしたときの表面と伝熱用流体との接触角をいう。
The contact angle between the surface of the vortex flow generating portion and the heat transfer fluid is 110 ° or more, so that heat transfer is promoted when the flow rate of the heat transfer fluid is high, and heat transfer is performed when the flow rate is low. It is suppressed.
In the present invention, the contact angle between the surface of the vortex flow generator and the heat transfer fluid refers to the contact angle between the surface and the heat transfer fluid when the vortex flow generator is flattened.

伝熱用流体の流速により伝熱性能が大きく変化する理由は、明らかにされているわけではないが以下のように推察される。   The reason why the heat transfer performance largely changes depending on the flow velocity of the heat transfer fluid is not clarified, but is presumed as follows.

本発明の渦流れ生成部表面は伝熱用流体に対する撥液性が高いため、流速が遅いときには渦流れ生成部表面と伝熱用流体との摩擦抵抗が小さく、伝熱用流体が渦流れ生成部表面に引き摺られることなくスムーズに流れる。したがって、凹部内の渦流れが小さくなって、凹部内の伝熱用流体は凹部の外に排出されずに凹部内を循環するため、渦流れ生成部の凹部内と凹部外との間での伝熱が抑制される。
一方、流速が速いときには、伝熱用流体の運動エネルギーが渦流れ生成部表面の撥液性に勝り、凹部内の渦流れが大きくなって、凹部内の伝熱用流体が凹部の外に排出され、渦流れ生成部の凹部内と凹部外との間での伝熱が促進されるためであると考えられる。
Since the surface of the vortex flow generating portion of the present invention has high liquid repellency with respect to the heat transfer fluid, the frictional resistance between the vortex flow generation portion surface and the heat transfer fluid is small when the flow velocity is low, and the heat transfer fluid generates the vortex flow. It flows smoothly without being dragged to the surface of the part. Therefore, the vortex flow in the recess is reduced, and the heat transfer fluid in the recess circulates in the recess without being discharged out of the recess. Heat transfer is suppressed.
On the other hand, when the flow velocity is high, the kinetic energy of the heat transfer fluid is superior to the liquid repellency of the surface of the vortex flow generating section, the vortex flow in the recess is increased, and the heat transfer fluid in the recess is discharged out of the recess. This is considered to be because heat transfer is promoted between the inside and outside of the recessed portion of the vortex flow generating portion.

上記渦流れ生成部の溝形状としては、その凹部内に渦流れを生じさせることができれば特に制限はなく、断面が三角形、四角形等の多角形の他、半円形等の円弧を描いた溝を挙げることができるが、断面が円弧を描いていることが好ましい。   The groove shape of the vortex flow generating section is not particularly limited as long as vortex flow can be generated in the recess, and the groove has a polygonal shape such as a triangle or a quadrangle, or a groove depicting an arc such as a semicircle. Although it can mention, it is preferable that the cross section draws the circular arc.

図3に示すように、溝の断面が円弧を描いていると、伝熱促進時には凹部の内壁に沿った大きな渦流れが生じるため、断面が多角形場合の角部に伝熱用流体が滞留することが防止される。   As shown in FIG. 3, when the cross section of the groove draws an arc, a large vortex flow is generated along the inner wall of the recess when heat transfer is promoted, so that the heat transfer fluid stays at the corner when the cross section is polygonal. Is prevented.

上記溝の配列は、隣り合う溝と溝とを隙間なくぴったりと並べても、溝と溝との間に間隔を設けて並べてもよい。また、溝と溝との間は、図4に示すように、角を設けずに、溝の内壁を変曲させて隣り合う溝どうしを滑らかな曲線で繋ぐことが好ましい。   As for the arrangement of the grooves, adjacent grooves may be arranged closely without gaps, or may be arranged with a gap between the grooves. Also, as shown in FIG. 4, it is preferable to connect the adjacent grooves with a smooth curve by bending the inner walls of the grooves without providing corners.

隣接する溝どうしを滑らかな曲面で繋げ、その間の頂部を曲面で形成することにより、エロージョンによる摩耗を抑制できるとともに、渦流れ生成部の加工を容易に行うことができる。
また、成形型の割れや欠けの発生を抑制でき、角部がないので、表面に撥液層を形成する場合に、平均膜厚の管理を容易に行うことができる。
By connecting adjacent grooves with a smooth curved surface and forming a top portion between them with a curved surface, it is possible to suppress wear due to erosion and to easily process the vortex flow generating portion.
In addition, since the generation of cracks and chips in the mold can be suppressed and there are no corners, the average film thickness can be easily managed when a liquid repellent layer is formed on the surface.

また、伝熱用流体の流通方向と交差する溝は、図5示す渦流れ生成部の平面図のように、流路の幅よりも短い溝を複数並べて設けてもよいが、連続した溝が流路の幅方向の全体に設けられていることが好ましい。
流路の幅全体に連続した溝を設けることにより、流路の流通方向と交差する方向全域において渦流れを形成することができ伝熱が促進される。
In addition, the grooves intersecting with the flow direction of the heat transfer fluid may be provided by arranging a plurality of grooves shorter than the width of the flow path as shown in the plan view of the vortex flow generating section shown in FIG. It is preferable to be provided in the entire width direction of the flow path.
By providing a continuous groove over the entire width of the flow path, a vortex flow can be formed throughout the direction intersecting the flow direction of the flow path, and heat transfer is promoted.

また、上記溝は、伝熱用流体の流通方向と交差すればよく、図6〜図8に示す渦流れ生成部の平面図のように、直線状の溝の他、矩形状や曲線状の曲がった溝が、伝熱用流体の流通方向と角度をもって並んでいてもよいが、図2に示す渦流れ生成部の平面図のように、伝熱用流体の流通方向と直交する直線状の溝が平行に並んでいることが好ましい。   Moreover, the said groove | channel should just cross | intersect the distribution direction of the heat-transfer fluid, and as shown in the plan view of the vortex flow generating part shown in FIGS. The bent grooves may be arranged at an angle with the flow direction of the heat transfer fluid. However, as shown in the plan view of the vortex flow generator shown in FIG. It is preferable that the grooves are arranged in parallel.

また、 上記凹部の最大深さ(H)と、下記式(1)で表される層流底層(粘性底層)の厚さ(δs)との関係は、伝熱促進時が、(H)>(δs)であり、伝熱抑制時が(H)≦(δs)であることが好ましい。
層流底層の厚さ(δs)=63.5/(Re7/8)×d ・・・式(1)
但し、式(1)中、Reはud/vで計算されるレイノルズ数を表し、
dは代表長さ、uは流速、vは伝熱量流体の動粘度を表わす。
Further, the relationship between the maximum depth (H) of the recess and the thickness (δs) of the laminar bottom layer (viscous bottom layer) represented by the following formula (1) is (H)> It is preferable that (δs) and (H) ≦ (δs) when heat transfer is suppressed.
Laminar bottom layer thickness (δs) = 63.5 / (Re7 / 8) × d Formula (1)
However, in Formula (1), Re represents the Reynolds number calculated by ud / v,
d is the representative length, u is the flow velocity, and v is the kinematic viscosity of the heat transfer fluid.

なお、代表長さdは、伝熱用流体の流通方向に直交する流路断面の最小流路断面積Aと、最大ぬれぶち長さLとから計算することができ、d=4A/Lで求められる。   The representative length d can be calculated from the minimum channel cross-sectional area A of the channel cross-section orthogonal to the flow direction of the heat transfer fluid and the maximum wetting slip length L, and d = 4 A / L. Desired.

図9は、流路を伝熱用流体の流通方向から見たときの図1中A−A’で示す箇所の 断面図である。
上記最小流路断面積Aは、渦流れ生成部を除いた流路の断面積であり、図9中、渦流れ生成部の頂部Tと流路の内面の輪郭線で囲まれた斜線部分の面積である。
上記ぬれぶち長さLとは、渦流れ生成部を含んだ流路断面の全周の長さであり、図9中、渦流れ生成部の底部Vまで含んだ流路全体の内周の長さである。
FIG. 9 is a cross-sectional view of a portion indicated by AA ′ in FIG. 1 when the flow path is viewed from the flow direction of the heat transfer fluid.
The minimum flow path cross-sectional area A is a cross-sectional area of the flow path excluding the vortex flow generation section. In FIG. 9, the hatched portion surrounded by the outline T of the vortex flow generation section and the inner surface of the flow path. It is an area.
The wet wetting length L is the length of the entire circumference of the cross section of the flow path including the vortex flow generation section. In FIG. 9, the length of the inner circumference of the entire flow path including the bottom V of the vortex flow generation section. That's it.

層流底層(粘性底層)は、流路壁面の近傍に形成される伝熱用流体の粘性の影響を強く受けた領域であり、この領域では流れが層流に近い状態となるため、伝熱用流体が撹拌されず、伝熱が温度勾配による熱伝導によって行われるため伝熱速度が遅くなる領域である。   The laminar bottom layer (viscous bottom layer) is a region that is strongly influenced by the viscosity of the heat transfer fluid formed in the vicinity of the channel wall surface. In this region, the flow is close to the laminar flow. This is a region where the heat transfer rate is slow because the working fluid is not agitated and heat transfer is performed by heat conduction due to the temperature gradient.

上記凹部の最大深さ(H)が層流底層の厚さ(δs)がよりも大きいことで、渦流れ生成部によって層流底層が途切れると共に、凹部内に渦流れが生じて伝熱用流体が撹拌されるため伝熱性能が向上する。   When the maximum depth (H) of the recess is larger than the thickness (δs) of the laminar bottom layer, the laminar bottom layer is interrupted by the vortex flow generation unit, and a vortex flow is generated in the recess to cause heat transfer Heat transfer performance is improved because of stirring.

また、上記凹部の最大深さ(H)は、凹部の内壁の円弧を描く円の直径よりも小さいことが好ましい。凹部の深さが円弧を描く円の直径よりも小さいことで、渦流れにより凹部内が撹拌されると共に、渦流れが凹部の内から凹部の外に流れ、伝熱性能が向上する。   Moreover, it is preferable that the maximum depth (H) of the said recessed part is smaller than the diameter of the circle | round | yen which draws the circular arc of the inner wall of a recessed part. When the depth of the recess is smaller than the diameter of the circle that draws the arc, the inside of the recess is agitated by the vortex flow, and the vortex flow flows from the inside of the recess to the outside of the recess, thereby improving the heat transfer performance.

図10に、溝の深さ(H)を変えた図3に示す形状の3種類の渦流れ生成部について、それぞれ流速を変えて層流底層の厚さを変化させたときの、層流底層の厚さ(δs)との熱伝達率との関係を示す。
図10より、上記凹部の最大深さ(H)が層流底層の厚さ(δs)がよりも大きいときに、伝熱性能が向上することがわかる。
FIG. 10 shows the laminar bottom layer when the thickness of the laminar bottom layer is changed by changing the flow velocity of the three types of vortex flow generating portions having the shape shown in FIG. 3 with the groove depth (H) changed. The relationship between the thickness (δs) and the heat transfer coefficient is shown.
FIG. 10 shows that the heat transfer performance is improved when the maximum depth (H) of the recess is larger than the thickness (δs) of the laminar bottom layer.

また、上記凹部の開口径W、すなわち、溝の幅は、伝熱用流体の流速や、流路の断面形状等にもよるが、0.2mm〜5mmであることが好ましい。上記範囲であることで、実用的な流速の範囲内で、伝熱性能を大きく変化させることができる。
なお、隣接する溝どうしを滑らかな曲面で繋げた場合の開口径Wは、図4に示すように隣り合う頂部T間の間隔をいう。
The opening diameter W of the recess, that is, the width of the groove is preferably 0.2 mm to 5 mm, although it depends on the flow rate of the heat transfer fluid, the cross-sectional shape of the flow path, and the like. By being in the above range, the heat transfer performance can be greatly changed within a practical flow rate range.
In addition, the opening diameter W at the time of connecting adjacent grooves with a smooth curved surface means the space | interval between the adjacent top parts T, as shown in FIG.

上記渦流れ生成部は、プレス加工、切削加工、鋳造等により、金属材料に所望の溝を形成した後、伝熱用流体を撥く樹脂を塗布、乾燥することで形成できる。   The vortex flow generating part can be formed by forming a desired groove in a metal material by pressing, cutting, casting, or the like, and then applying and drying a resin that repels the heat transfer fluid.

上記金属材料としては、特に制限はないが、アルミニウム、銅又はこれらの金属を含む合金は熱伝導性が高く好ましく使用できる。   Although there is no restriction | limiting in particular as said metal material, Aluminum, copper, or the alloy containing these metals has high heat conductivity, and can be used preferably.

また、伝熱用流体を撥く樹脂としては、例えば、シリコーン系樹脂やフッ素系樹脂を挙げることができる。
上記樹脂の膜厚は、熱伝導性と耐久性とのバランスから5nm〜50μmであることが好ましく、5nm〜20μmであることがより好ましい。
上記樹脂は金属材料に比して熱伝導率が小さいため、伝熱性向上の観点からは薄いことが好ましいが、あまり薄すぎると所望の耐久性を得難くなることがある。
Examples of the resin that repels the heat transfer fluid include silicone resins and fluorine resins.
The film thickness of the resin is preferably 5 nm to 50 μm and more preferably 5 nm to 20 μm from the balance between thermal conductivity and durability.
Since the resin has a lower thermal conductivity than that of a metal material, it is preferably thin from the viewpoint of improving heat transfer properties. However, if the resin is too thin, it may be difficult to obtain desired durability.

上記伝熱用流体としては、水、エチレングリコール、またはこれらの混合液の他、潤滑油等を使用することができ、必要に応じて、防錆剤、消泡剤等の添加剤を含んでいてもよい。   As the heat transfer fluid, water, ethylene glycol, or a mixture thereof, as well as a lubricating oil can be used, and if necessary, an additive such as a rust inhibitor and an antifoaming agent is included. May be.

上記伝熱用流体の流速は、流路に設けた流速制御装置で伝熱用流体の流量を調節することで制御することができる。
上記流速制御装置としては、例えば、ポンプ、流量調整バルブ、伝熱用流体を迂回流路に流す流量分配弁等を挙げることができる
The flow rate of the heat transfer fluid can be controlled by adjusting the flow rate of the heat transfer fluid with a flow rate control device provided in the flow path.
Examples of the flow rate control device include a pump, a flow rate adjustment valve, and a flow rate distribution valve that allows a heat transfer fluid to flow in a bypass flow path.

本発明の伝熱装置は、内燃機関の冷却や変速機の冷却・加熱等に好適に使用することができる。具体的には、本発明の伝熱装置は、図11〜図13に示すように、内燃機関又は変速機と伝熱装置との間に伝熱用流体を循環させ、流速制御装置によって伝熱用流体の流速を調整することで、所望の伝熱性能を得ることができる。   The heat transfer device of the present invention can be suitably used for cooling an internal combustion engine, cooling and heating a transmission, and the like. Specifically, as shown in FIGS. 11 to 13, the heat transfer device of the present invention circulates a heat transfer fluid between an internal combustion engine or a transmission and a heat transfer device, and heat transfer is performed by a flow rate control device. By adjusting the flow rate of the working fluid, the desired heat transfer performance can be obtained.

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.

[実施例1]
アルミニウム板にプレス成形により、最大深さ(H)が0.5mm、開口径が1mmである断面が半円形の溝が並んだ図3に示す形状の渦流れ生成部を形成し、フッ素系樹脂を塗工して流路を作製した。
[Example 1]
The aluminum plate is press-molded to form a vortex flow generating portion having the shape shown in FIG. 3 in which grooves having a semi-circular cross section with a maximum depth (H) of 0.5 mm and an opening diameter of 1 mm are arranged. Was applied to prepare a flow path.

[比較例1]
フッ素系樹脂を塗工しない他は、実施例1と同様にして流路を形成した。
[Comparative Example 1]
A flow path was formed in the same manner as in Example 1 except that the fluororesin was not applied.

[比較例2]
平坦なアルミニウム板に渦流れ生成部を形成せずに、フッ素系樹脂を塗工して流路を作製した。
[Comparative Example 2]
Without forming a vortex flow generating part on a flat aluminum plate, a fluororesin was applied to produce a flow path.

[比較例3]
フッ素系樹脂を塗工しない他は、比較例2と同様にして流路を形成した。
[Comparative Example 3]
A flow path was formed in the same manner as in Comparative Example 2 except that the fluororesin was not applied.

<接触角の測定>
比較例2と比較例3の流路表面と伝熱用流体との接触角を以下の方法で測定した。
Contact Angle System OCA−20(データフィジックス社製)を使用し、平坦な流路構成材上に、ディスペンサーで伝熱用流体(水)の液滴を5個形成し、それぞれの接触角を測定し、その平均値を算出した。
比較例2の流路の接触角は95°であり、比較例3の流路の接触角は135°であった。
<Measurement of contact angle>
The contact angle between the flow path surfaces of Comparative Example 2 and Comparative Example 3 and the heat transfer fluid was measured by the following method.
Using Contact Angle System OCA-20 (manufactured by Data Physics Co., Ltd.), 5 droplets of heat transfer fluid (water) were formed with a dispenser on a flat flow path component, and each contact angle was measured. The average value was calculated.
The contact angle of the flow path of Comparative Example 2 was 95 °, and the contact angle of the flow path of Comparative Example 3 was 135 °.

<伝熱特性の測定>
伝熱用流体の流速を変え、それぞれの流速に対する熱伝達率を測定した。測定結果を図14に示す。また、流速が0.5m/sと3.3m/sの場合の熱伝達率を図15に示す。
<Measurement of heat transfer characteristics>
The flow rate of the heat transfer fluid was changed, and the heat transfer coefficient for each flow rate was measured. The measurement results are shown in FIG. FIG. 15 shows the heat transfer coefficient when the flow velocity is 0.5 m / s and 3.3 m / s.

図14より、渦流れ生成部を有する実施例1及び比較例1の伝熱装置は、流速を速くすることで、平坦な流路の比較例2、3の伝熱装置よりも伝熱が促進されることがわかる。
また、渦流れ生成部の表面に撥液膜を形成した実施例1は、撥液膜を有さない比較例1に比して、流速を遅くすることで伝熱が抑制されており、流速の変化により熱伝達率が大きく変化していることがわかる。
From FIG. 14, the heat transfer devices of Example 1 and Comparative Example 1 having the vortex flow generation unit promote heat transfer more than the heat transfer devices of Comparative Examples 2 and 3 having a flat flow path by increasing the flow velocity. You can see that
Further, in Example 1 in which the liquid repellent film is formed on the surface of the vortex flow generating portion, heat transfer is suppressed by slowing the flow rate as compared with Comparative Example 1 having no liquid repellent film. It can be seen that the heat transfer coefficient greatly changes due to the change of.

図15より、流速が速い場合は、撥液膜の有無により熱伝達率は変わらないが、流速が遅い場合においては、渦流れ生成部を有さない平坦なものは撥液膜を設けることで伝熱が促進されるのに対し、渦流れ生成部を有するものは撥液膜を設けることで伝熱が抑制され、熱伝達率が逆転していることがわかる。
また、接触角が110°以上で、低流速時における熱伝達率が逆転しており、低流速時に伝達が抑制されることがわかる。
From FIG. 15, when the flow rate is high, the heat transfer coefficient does not change depending on the presence or absence of the liquid repellent film, but when the flow rate is low, a flat one that does not have the vortex flow generation unit is provided with a liquid repellent film. It can be seen that, while heat transfer is promoted, those having a vortex flow generation part are suppressed by providing a liquid repellent film, and the heat transfer rate is reversed.
It can also be seen that the contact angle is 110 ° or more and the heat transfer coefficient at the low flow rate is reversed, and the transfer is suppressed at the low flow rate.

1 伝熱装置
1A 伝熱装置(ラジエター)
1B 伝熱装置(冷却ジャケット)
2 流路
21 渦流れ生成部
3 伝熱用流体
4 フィン
5 ポンプ
6 流量調節バルブ
7 迂回流路
8 流量分配弁
9 エンジン
10 変速機
101 オイルパン
102 オイルウォーマー
V 底部
T 頂部
H 深さ
W 開口径(溝幅)
1 Heat Transfer Device 1A Heat Transfer Device (Radiator)
1B Heat transfer device (cooling jacket)
2 flow path 21 vortex flow generation section 3 heat transfer fluid 4 fin 5 pump 6 flow rate control valve 7 detour flow path 8 flow distribution valve 9 engine 10 transmission 101 oil pan 102 oil warmer V bottom T top H depth W opening diameter (Groove width)

Claims (2)

伝熱用流体と、流路と、を備える伝熱装置であって、
上記流路が、その内面の少なくとも一部に渦流れ生成部を有し、
上記渦流れ生成部が、上記伝熱用流体の流通方向と交差する方向に延びた複数の凹部を所定の間隔で配列したものであり、かつ、その表面と上記伝熱用流体との接触角が110°以上であることを特徴とする伝熱装置。
A heat transfer device comprising a heat transfer fluid and a flow path,
The flow path has a vortex flow generation part on at least a part of its inner surface,
The vortex flow generator is formed by arranging a plurality of recesses extending in a direction intersecting with the flow direction of the heat transfer fluid at a predetermined interval, and a contact angle between the surface and the heat transfer fluid Is a heat transfer device characterized by being 110 ° or more.
上記凹部の最大深さ(H)と、下記式(1)で表される層流底層の厚さ(δs)との関係が、
伝熱促進時に(H)>(δs)を満たすことを特徴とする請求項1に記載の伝熱装置。
層流底層の厚さ(δs)=63.5/(Re7/8)×d ・・・式(1)
但し、式(1)中、Reはud/vで計算されるレイノルズ数を表し、
dは代表長さ、uは流速、vは伝熱量流体の動粘度を表わす。
The relationship between the maximum depth (H) of the recess and the thickness (δs) of the laminar bottom layer represented by the following formula (1) is:
The heat transfer device according to claim 1, wherein (H)> (δs) is satisfied when heat transfer is promoted.
Laminar bottom layer thickness (δs) = 63.5 / (Re7 / 8) × d Formula (1)
However, in Formula (1), Re represents the Reynolds number calculated by ud / v,
d is the representative length, u is the flow velocity, and v is the kinematic viscosity of the heat transfer fluid.
JP2017131860A 2017-07-05 2017-07-05 Heat transfer device Pending JP2019015433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131860A JP2019015433A (en) 2017-07-05 2017-07-05 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131860A JP2019015433A (en) 2017-07-05 2017-07-05 Heat transfer device

Publications (1)

Publication Number Publication Date
JP2019015433A true JP2019015433A (en) 2019-01-31

Family

ID=65358320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131860A Pending JP2019015433A (en) 2017-07-05 2017-07-05 Heat transfer device

Country Status (1)

Country Link
JP (1) JP2019015433A (en)

Similar Documents

Publication Publication Date Title
Leong et al. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)
US7203064B2 (en) Heat exchanger with cooling channels having varying geometry
WO2016194158A1 (en) Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
Sahoo Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid
Afzal et al. Heat transfer analysis of plain and dimpled tubes with different spacings
JP2015179862A (en) Cold plate with pins
El-Genk et al. Effects of inclination angle and liquid subcooling on nucleate boiling on dimpled copper surfaces
JP4027353B2 (en) Cooling structure
Bhogare et al. Performance investigation of automobile radiator operated with Al2O3 based nanofluid
US20080041559A1 (en) Heat exchanger for vehicle
JP6138197B2 (en) Liquid-cooled cooler and method of manufacturing radiating fin in liquid-cooled cooler
Yuan et al. Pool boiling enhancement through a guidance structure mounted above heating surface
JP2008288330A (en) Semiconductor device
JP2015197229A (en) Heat exchanger and air conditioner
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
Koukoravas et al. Wettability-confined liquid-film convective cooling: Parameter study
Khoshvaght-Aliabadi et al. Effects of delta winglets on performance of wavy plate-fin in PFHEs: nanofluid as heat transfer media
JP2019015433A (en) Heat transfer device
Yuki et al. Immersion cooling of electronics utilizing lotus-type porous copper
JP2017069522A (en) Cold plate
Tripathi et al. Performance investigation of automobile radiator operated with ZnFe2O4 nano fluid based coolant
JP5839386B2 (en) heatsink
Suseel Jai Krishnan et al. Convective performance and particle effect analysis on aqua-antifreeze based oxomagnesium nanofluids while flowing through a micro-fin tube with twisted tapes
CN106369661A (en) Oil-filled heater
US20130014921A1 (en) Air flow guiding structure