JP2019013862A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2019013862A
JP2019013862A JP2017130576A JP2017130576A JP2019013862A JP 2019013862 A JP2019013862 A JP 2019013862A JP 2017130576 A JP2017130576 A JP 2017130576A JP 2017130576 A JP2017130576 A JP 2017130576A JP 2019013862 A JP2019013862 A JP 2019013862A
Authority
JP
Japan
Prior art keywords
water
treated
hypochlorite
activated carbon
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017130576A
Other languages
Japanese (ja)
Other versions
JP6872442B2 (en
Inventor
裕久 久保田
Hirohisa Kubota
裕久 久保田
有之 竹田
Ariyuki Takeda
有之 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2017130576A priority Critical patent/JP6872442B2/en
Publication of JP2019013862A publication Critical patent/JP2019013862A/en
Application granted granted Critical
Publication of JP6872442B2 publication Critical patent/JP6872442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

To provide a water treatment method and a water treatment device possible to remove haloacetic acid produced in the treatment of water to be treated, even if organic substances and ammonia in the water to be treated are not removed by pretreatment.SOLUTION: There are provided a water treatment method and a water treatment device 1 for removing haloacetic acid by bringing water to be treated containing the haloacetic acid produced by adding hypochlorite into contact with an anion exchanger. The water treatment method includes: an adding step of adding hypochlorite to the water to be treated; and an ion exchange treatment step of bringing water to be treated to which hypochlorite has been added into contact with an anion exchanger. The water treatment device 1 includes: adding means 30 for adding the hypochlorite to the water to be treated; and ion exchange treatment means 50 for bringing the water to be treated to which hypochlorite has been added into contact with an anion exchanger.SELECTED DRAWING: Figure 1

Description

本発明は、水処理方法および水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus.

地下水や井水などの被処理水を飲用化するには、被処理水に含まれる鉄やマンガン等の無機イオン類、アンモニア、フミン酸やフルボ酸を主体とする有機物などを除去する必要がある。
被処理水の処理は、通常、被処理水に次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩を添加して行われる。
To drink treated water such as groundwater and well water, it is necessary to remove inorganic ions such as iron and manganese, organic substances mainly composed of ammonia, humic acid and fulvic acid contained in the treated water. .
Treatment of water to be treated is usually performed by adding hypochlorite such as sodium hypochlorite (NaClO) to the water to be treated.

しかし、被処理水に次亜塩素酸塩を添加すると、被処理水中の有機物と次亜塩素酸塩との反応によりハロ酢酸やトリハロメタン等の消毒副生成物が生成することが知られている(例えば、非特許文献1参照)。特に、被処理水中のアンモニア濃度が高いと、鉄、マンガン、アンモニアの酸化や有機物の分解以外に、過剰の次亜塩素酸塩と有機物との反応により、上述の消毒副生成物が生成する。この直接的な理由は、アンモニアの窒素への分解のため約10当量以上の次亜塩素酸塩を添加する必要があるためである。そのため、次亜塩素酸塩の添加量が増え、消毒副生成物の生成量も増える。その結果、消毒副生成物が生成すると飲料水としては不向きとなる場合があるため、被処理水から消毒副生成物を除去するのが望ましい。   However, it is known that when hypochlorite is added to the water to be treated, disinfection by-products such as haloacetic acid and trihalomethane are generated by the reaction between organic substances in the water to be treated and hypochlorite ( For example, refer nonpatent literature 1). In particular, when the ammonia concentration in the water to be treated is high, the above-mentioned disinfection by-product is generated by the reaction of excess hypochlorite and organic matter in addition to oxidation of iron, manganese and ammonia and decomposition of organic matter. The direct reason is that about 10 equivalents or more of hypochlorite must be added for the decomposition of ammonia into nitrogen. Therefore, the amount of hypochlorite added increases and the amount of disinfection by-products increases. As a result, when the disinfection by-product is generated, it may be unsuitable as drinking water, so it is desirable to remove the disinfection by-product from the water to be treated.

被処理水中のトリハロメタンを除去する浄水器として、繊維状活性炭と粉末状活性炭と、繊維状バインダーとからなる混合物を成型した活性炭成型体からなるカートリッジをハウジングに充填した浄水器が提案されている(例えば、特許文献1参照)。   As a water purifier for removing trihalomethane in water to be treated, a water purifier has been proposed in which a cartridge made of an activated carbon molded body obtained by molding a mixture of fibrous activated carbon, powdered activated carbon, and fibrous binder is filled in a housing ( For example, see Patent Document 1).

杉野、他3名、“水中フミン質の塩素処理におけるクロロ酢酸類及び抱水クロラールの生成”、水質汚濁研究、1986年、第9巻、第7号、p.437−444Sugino, et al., “Formation of chloroacetic acid and chloral hydrate in chlorination of humic substances in water”, Water Pollution Research, 1986, Vol. 9, No. 7, p. 437-444

特開2005−13883号公報JP 2005-13883 A

特許文献1に記載のように、トリハロメタンは活性炭に吸着しやすく、被処理水から容易に除去される。
しかしながら、ハロ酢酸は親水性分子であるため活性炭に吸着されにくく、被処理水から除去することが困難であった。また、ハロ酢酸の吸着量を増やすには活性炭の使用量を増やすことも考えられるが、その場合は過剰な活性炭を収容する装置が必要となる。
As described in Patent Document 1, trihalomethane is easily adsorbed on activated carbon and is easily removed from water to be treated.
However, since haloacetic acid is a hydrophilic molecule, it is difficult to be adsorbed on activated carbon and difficult to remove from the water to be treated. In order to increase the adsorption amount of haloacetic acid, it is conceivable to increase the amount of activated carbon used, but in that case, an apparatus for accommodating excess activated carbon is required.

これまで、被処理水からハロ酢酸を除去する有用な手段は少なかった。
そのため、次亜塩素酸塩を添加する前に、前処理としてポリ塩化アルミニウム、硫酸アルミニウム等の凝集剤の添加や活性炭処理により被処理水中の有機物を除去したり、排水経費を犠牲にして逆浸透(RO)設備で脱塩したり、生物処理により被処理水中のアンモニアを分解して次亜塩素酸塩の添加量を低減したりして、消毒副生成物の生成量を抑制していた。
Until now, there were few useful means for removing haloacetic acid from water to be treated.
Therefore, before adding hypochlorite, as a pretreatment, flocculants such as polyaluminum chloride and aluminum sulfate are added and activated carbon treatment removes organic matter in the water to be treated, or reverse osmosis at the expense of drainage costs. The amount of disinfection by-products was suppressed by desalting with (RO) equipment or decomposing ammonia in the water to be treated by biological treatment to reduce the amount of hypochlorite added.

本発明は上記事情に鑑みてなされたもので、前処理により被処理水中の有機物やアンモニアを除去しておかなくても、被処理水の処理において生成するハロ酢酸を除去できる水処理方法および水処理装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and a water treatment method and water capable of removing haloacetic acid generated in the treatment of water to be treated without removing organic matter and ammonia in the water to be treated by pretreatment. It is an object to provide a processing apparatus.

本発明は以下の態様を有する。
[1] 次亜塩素酸塩の添加により生成したハロ酢酸を含む被処理水を陰イオン交換体に接触させてハロ酢酸を除去する、水処理方法。
[2] 被処理水に次亜塩素酸塩を添加する添加工程と、次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させるイオン交換処理工程と、を有する、[1]に記載の水処理方法。
[3] 前記次亜塩素酸塩を添加した被処理水と活性炭とを接触させる活性炭処理工程をさらに有し、前記イオン交換処理工程および前記活性炭処理工程を同時に行う、または前記イオン交換処理工程を前記活性炭処理工程の後に行う、[2]に記載の水処理方法。
[4] 前記被処理水が地下水または井水である、[1]〜[3]のいずれか1つに記載の水処理方法。
[5] 全有機体炭素(TOC)が1ppm以上であり、次亜塩素酸塩を10ppm以上添加した被処理水を陰イオン交換体と接触させる、[1]〜[4]のいずれか1つに記載の水処理方法。
The present invention has the following aspects.
[1] A water treatment method in which water to be treated containing haloacetic acid produced by addition of hypochlorite is brought into contact with an anion exchanger to remove haloacetic acid.
[2] An addition step of adding hypochlorite to the water to be treated, and an ion exchange treatment step of bringing the water to be treated to which hypochlorite has been added into contact with the anion exchanger, [1] ] The water treatment method as described in.
[3] The method further includes an activated carbon treatment step in which activated water is brought into contact with water to be treated to which the hypochlorite is added, and the ion exchange treatment step and the activated carbon treatment step are performed simultaneously, or the ion exchange treatment step is performed. The water treatment method according to [2], which is performed after the activated carbon treatment step.
[4] The water treatment method according to any one of [1] to [3], wherein the treated water is groundwater or well water.
[5] Any one of [1] to [4], wherein the total organic carbon (TOC) is 1 ppm or more and the water to be treated to which 10 ppm or more of hypochlorite is added is brought into contact with the anion exchanger. The water treatment method as described in any one of.

[6] 被処理水に次亜塩素酸塩を添加して水処理するに際して生成するハロ酢酸を除去する水処理装置であって、被処理水に次亜塩素酸塩を添加する添加手段と、次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させるイオン交換処理手段と、を備える、水処理装置。
[7] 前記次亜塩素酸塩を添加した被処理水と活性炭とを接触させる活性炭処理手段をさらに備え、前記イオン交換処理手段および前記活性炭処理手段が1つの処理手段として構成されている、または前記イオン交換処理手段が前記活性炭処理手段の下流に設けられている、[6]に記載の水処理装置。
[8] 前記被処理水が地下水または井水である、[6]または[7]に記載の水処理装置。
[6] A water treatment apparatus for removing haloacetic acid produced when water treatment is performed by adding hypochlorite to water to be treated, the addition means for adding hypochlorite to water to be treated; A water treatment apparatus comprising: ion-exchange treatment means for bringing water to be treated added with hypochlorite into contact with an anion exchanger.
[7] The apparatus further includes activated carbon treatment means for bringing the water to be treated to which the hypochlorite is added into contact with activated carbon, and the ion exchange treatment means and the activated carbon treatment means are configured as one treatment means, or The water treatment apparatus according to [6], wherein the ion exchange treatment means is provided downstream of the activated carbon treatment means.
[8] The water treatment apparatus according to [6] or [7], wherein the treated water is groundwater or well water.

本発明の水処理方法および水処理装置によれば、前処理により被処理水中の有機物やアンモニアを除去しておかなくても、被処理水の処理において生成するハロ酢酸を除去できる。   According to the water treatment method and the water treatment apparatus of the present invention, haloacetic acid generated in the treatment of water to be treated can be removed without removing organic matter and ammonia in the water to be treated by pretreatment.

本発明の水処理装置の一例を示す概略図である。It is the schematic which shows an example of the water treatment apparatus of this invention.

以下、図面を参照して本発明を詳しく説明する。
なお、以下の図面においては、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the following drawings, the scale of each member is appropriately changed to make each member a recognizable size.

本発明の除去の対象となるハロ酢酸としては、クロロ酢酸、ブロモ酢酸等のモノハロ酢酸およびその塩;ジクロロ酢酸、ジブロモ酢酸、ブロモクロロ酢酸等のジハロ酢酸およびその塩;トリクロロ酢酸、トリブロモ酢酸、ブロモジクロロ酢酸、ジブロモクロロ酢酸等のトリハロ酢酸およびその塩などのポリハロゲノ酢酸が挙げられる。塩としては、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられる。
なお、ハロ酢酸は、被処理水への次亜塩素酸塩の添加量と、被処理水中の有機物の含有量の積に比例して増加する傾向が見られる。有機物の中でも、とりわけフェノール骨格を有するフミン質の含有率が高い場合、消毒副生成物が増加する傾向があるが、ハロ酢酸の生成機構は明確にされていない。
Examples of the haloacetic acid to be removed in the present invention include monohaloacetic acid such as chloroacetic acid and bromoacetic acid and salts thereof; dihaloacetic acid such as dichloroacetic acid, dibromoacetic acid and bromochloroacetic acid and salts thereof; trichloroacetic acid, tribromoacetic acid and bromodichloro And polyhalogenoacetic acid such as acetic acid, trihaloacetic acid such as dibromochloroacetic acid and salts thereof. Examples of the salt include sodium salt, calcium salt, magnesium salt and the like.
Haloacetic acid tends to increase in proportion to the product of the amount of hypochlorite added to the water to be treated and the content of organic matter in the water to be treated. Among organic substances, particularly when the content of humic substances having a phenol skeleton is high, disinfection by-products tend to increase, but the haloacetic acid generation mechanism is not clarified.

本発明の処理の対象となる被処理水としては、地下水、井水、浸出水、河川水、湖沼水などが挙げられる。特に、地下水や井水を水処理する場合、河川水を水処理する場合に比べて次亜塩素酸塩の添加量が多いことから、ハロ酢酸等の消毒副生成物が生成しやすい傾向がある。よって、本発明は、被処理水が地下水、井水、湖沼水の場合に特に好適である。
以下の実施形態は、被処理水が地下水の場合である。
Examples of water to be treated according to the present invention include groundwater, well water, leachate, river water, lake water, and the like. In particular, when groundwater or well water is treated, the amount of hypochlorite added is larger than when treating river water, so disinfection by-products such as haloacetic acid tend to be generated. . Therefore, the present invention is particularly suitable when the water to be treated is groundwater, well water, or lake water.
The following embodiment is a case where treated water is groundwater.

「水処理装置」
図1に本発明の水処理装置の一例を示す。
図1に示す水処理装置1は、上流側から順に、井戸Aから被処理水として地下水Wを汲み上げる揚水手段10と、井戸Aから汲み上げた地下水Wを一旦、貯留する貯留槽20と、地下水Wに次亜塩素酸塩を添加する添加手段30と、次亜塩素酸塩を添加した地下水Wと活性炭とを接触させる活性炭処理手段40と、次亜塩素酸塩を添加した地下水Wと陰イオン交換体とを接触させるイオン交換処理手段50と、処理された地下水(以下、「処理水」ともいう。)を貯留する処理水槽60と、処理水に再度、次亜塩素酸塩を添加する添加手段70とを具備する。
なお、本発明において、陰イオン交換体と接触する前の地下水に次亜塩素酸塩を添加する添加手段30を「第1の添加手段30」ともいい、陰イオン交換体により処理された地下水(処理水)に次亜塩素酸塩を添加する添加手段70を「第2の添加手段70」ともいう。
"Water treatment equipment"
FIG. 1 shows an example of the water treatment apparatus of the present invention.
A water treatment apparatus 1 shown in FIG. 1 includes, in order from the upstream side, a pumping means 10 that pumps up groundwater W as treated water from a well A, a storage tank 20 that temporarily stores groundwater W pumped up from a well A, and groundwater W An addition means 30 for adding hypochlorite, an activated carbon treatment means 40 for bringing the groundwater W added with hypochlorite into contact with the activated carbon, an anion exchange with the groundwater W added with hypochlorite An ion exchange treatment means 50 for contacting the body, a treated water tank 60 for storing treated ground water (hereinafter also referred to as “treated water”), and an adding means for adding hypochlorite to the treated water again. 70.
In the present invention, the addition means 30 for adding hypochlorite to the groundwater before contacting with the anion exchanger is also referred to as “first addition means 30”, and the groundwater treated with the anion exchanger ( The addition means 70 for adding hypochlorite to the treated water) is also referred to as “second addition means 70”.

揚水手段10は、井戸Aから被処理水として地下水Wを汲み上げるものであり、地下水Wを汲み上げる揚水ポンプ11と、揚水管12とを備える。
この例の揚水管12の一端は揚水ポンプ11に接続され、他端は貯留槽20に接続されている。
The pumping means 10 is for pumping up groundwater W as treated water from the well A, and includes a pumping pump 11 for pumping up the groundwater W and a pumping pipe 12.
One end of the pumping pipe 12 in this example is connected to the pumping pump 11, and the other end is connected to the storage tank 20.

貯留槽20は、井戸Aから汲み上げた地下水Wを一旦、貯留するものである。井戸Aから汲み上げた地下水Wは、揚水管12を通過して貯留槽20に貯留される。
貯留槽20に貯留された地下水Wは、第1の通水管21を通過して活性炭処理手段40へ供給される。
The storage tank 20 temporarily stores the groundwater W pumped from the well A. The groundwater W pumped up from the well A passes through the pumping pipe 12 and is stored in the storage tank 20.
The groundwater W stored in the storage tank 20 passes through the first water pipe 21 and is supplied to the activated carbon treatment means 40.

第1の通水管21には、地下水Wに次亜塩素酸塩を添加する添加手段30(第1の添加手段30)が接続されている。
第1の添加手段30は、次亜塩素酸塩を収容する第1の収容タンク31と、次亜塩素酸塩を第1の通水管21に供給する第1の供給管32とを備える。本実施形態においては、第1の供給管32は第1の通水管21の途中で合流しており、第1の通水管21中で地下水Wに次亜塩素酸塩が供給されるようになっている。
次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどが挙げられる。これらの中でも、コスト、反応速度、非金属酸化剤、流通性の観点から、次亜塩素酸ナトリウムが好ましい。
An addition means 30 (first addition means 30) for adding hypochlorite to the ground water W is connected to the first water pipe 21.
The first addition means 30 includes a first storage tank 31 that stores hypochlorite and a first supply pipe 32 that supplies hypochlorite to the first water pipe 21. In the present embodiment, the first supply pipe 32 joins in the middle of the first water pipe 21, and hypochlorite is supplied to the groundwater W in the first water pipe 21. ing.
Examples of hypochlorite include sodium hypochlorite and calcium hypochlorite. Among these, sodium hypochlorite is preferable from the viewpoints of cost, reaction rate, non-metal oxidant, and flowability.

活性炭処理手段40は、次亜塩素酸塩を添加した地下水Wと活性炭とを接触させるものである。
本実施形態の活性炭処理手段40は、活性炭が充填された活性炭吸着塔41を備える。
活性炭吸着塔41の上部には第1の通水管21が接続されている。
The activated carbon treatment means 40 is for bringing the groundwater W to which hypochlorite is added into contact with the activated carbon.
The activated carbon treatment means 40 of this embodiment includes an activated carbon adsorption tower 41 filled with activated carbon.
A first water pipe 21 is connected to the upper part of the activated carbon adsorption tower 41.

イオン交換処理手段50は、次亜塩素酸塩を添加した地下水Wと陰イオン交換体とを接触させるものである。
本実施形態のイオン交換処理手段50は、陰イオン交換体が充填されたイオン交換体塔51を備える。イオン交換体塔51には、陰イオン交換体の流出を防止するフィルター52が設置されている。
活性炭処理手段40を通過した地下水Wは、活性炭吸着塔41の下端から排出され、第2の通水管42を通過してイオン交換処理手段50に供給される。第2の通水管42の一端は活性炭吸着塔41の下部に接続され、他端はイオン交換体塔51の上部に接続されている。
The ion exchange treatment means 50 makes the ground water W added with hypochlorite and the anion exchanger come into contact with each other.
The ion exchange processing means 50 of this embodiment includes an ion exchanger column 51 filled with an anion exchanger. The ion exchanger tower 51 is provided with a filter 52 that prevents the anion exchanger from flowing out.
The groundwater W that has passed through the activated carbon treatment means 40 is discharged from the lower end of the activated carbon adsorption tower 41, passes through the second water conduit 42, and is supplied to the ion exchange treatment means 50. One end of the second water pipe 42 is connected to the lower part of the activated carbon adsorption tower 41, and the other end is connected to the upper part of the ion exchanger tower 51.

イオン交換体塔51には、陰イオン交換体が固定床または流動床を形成するように充填されている。
陰イオン交換体は、骨格ポリマー(樹脂母体)の表面および内部に、骨格ポリマーに化学結合されたイオン交換基(固定イオン)を有する。このイオン交換基により地下水W中のハロ酢酸や有機物が吸着され、地下水Wからハロ酢酸や有機物を除去することができる。
骨格ポリマーとしては、スチレン系、(メタ)アクリル系、(メタ)アクリルアミド系、セルロース系などのポリマーが挙げられる。これらの中でも、耐有機汚染性の観点から、親水性ポリマーである(メタ)アクリル系、(メタ)アクリルアミド系ポリマーが好ましく、コスト面からスチレン系ポリマーが好ましい。
The ion exchanger column 51 is packed with an anion exchanger so as to form a fixed bed or a fluidized bed.
The anion exchanger has ion exchange groups (fixed ions) chemically bonded to the backbone polymer on the surface and inside of the backbone polymer (resin matrix). By this ion exchange group, haloacetic acid and organic matter in the groundwater W are adsorbed, and the haloacetic acid and organic matter can be removed from the groundwater W.
Examples of the skeleton polymer include polymers such as styrene, (meth) acrylic, (meth) acrylamide, and cellulose. Among these, from the viewpoint of organic contamination resistance, (meth) acrylic and (meth) acrylamide polymers that are hydrophilic polymers are preferable, and styrene polymers are preferable from the viewpoint of cost.

陰イオン交換体は弱塩基性でも強塩基性でもよいが、ハロ酢酸や有機物が吸着されやすい点で強塩基性陰イオン交換体が好ましい。
ここで、「強塩基性陰イオン交換体」とは、イオン交換基としてアルカリ性でも解離状態にある四級アンモニウム基を有する陰イオン交換体のことである。
The anion exchanger may be weakly basic or strong basic, but a strong basic anion exchanger is preferred in that haloacetic acid and organic substances are easily adsorbed.
Here, the “strongly basic anion exchanger” is an anion exchanger having a quaternary ammonium group that is alkaline but in a dissociated state as an ion exchange group.

強塩基性陰イオン交換体として種々のイオン交換基を有するものが挙げられる。イオン交換基としては、例えば、トリメチルアンモニウム基、トリエチルアンモニウム基、トリプロピルアンモニウム基、トリブチルアンモニウム基、ヒドロキシエチルジメチルアンモニウム基、ジヒドロキシエチルメチルアンモニウム基等が挙げられる。これらの中でも、静的交換容量の最大化、イオン交換基の熱的安定性に劣ることによる溶出に伴う有機物量の増加やイオン交換基に由来する臭気の発生、長期間の使用によるイオン交換基の脱落やイオン交換基の分解に伴うホルムアルデヒドの発生の観点から、イオン交換基としてはトリメチルアンモニウム基が好ましい。   Examples of the strongly basic anion exchanger include those having various ion exchange groups. Examples of the ion exchange group include a trimethylammonium group, a triethylammonium group, a tripropylammonium group, a tributylammonium group, a hydroxyethyldimethylammonium group, a dihydroxyethylmethylammonium group, and the like. Among these, maximization of static exchange capacity, increase in the amount of organic substances accompanying elution due to poor thermal stability of ion exchange groups, generation of odors derived from ion exchange groups, ion exchange groups due to long-term use From the standpoint of the generation of formaldehyde accompanying the removal of the ion exchange group and the decomposition of the ion exchange group, the ion exchange group is preferably a trimethylammonium group.

陰イオン交換体としては、陰イオン交換樹脂、陰イオン交換繊維などが挙げられる。
陰イオン交換樹脂の粒子径は、樹脂の圧力損失の上昇を抑制する観点から大きい方が好ましい。陰イオン交換樹脂の平均粒子径は、100μm以上が好ましく、より好ましくは200μm以上であり、さらに好ましくは300μm以上である。
一方、吸着帯長を最小化し貫流交換容量を最大化する観点から、陰イオン交換樹脂の粒子径は小さい方が好ましい。陰イオン交換樹脂の平均粒子径は、800μm以下が好ましく、より好ましくは700μm以下であり、さらに好ましくは600μm以下であり、特に好ましくは500μm以下である。
陰イオン交換樹脂は、粒度分布を有する樹脂でも、粒子径が揃っている均一粒子径の樹脂でもよい。
陰イオン交換樹脂として強塩基性陰イオン交換樹脂を用いる場合、強塩基性陰イオン交換樹脂はI型でもII型でもよい。
Examples of the anion exchanger include anion exchange resins and anion exchange fibers.
A larger particle size of the anion exchange resin is preferable from the viewpoint of suppressing an increase in the pressure loss of the resin. The average particle diameter of the anion exchange resin is preferably 100 μm or more, more preferably 200 μm or more, and further preferably 300 μm or more.
On the other hand, from the viewpoint of minimizing the adsorption zone length and maximizing the flow-through exchange capacity, it is preferable that the particle diameter of the anion exchange resin is small. The average particle diameter of the anion exchange resin is preferably 800 μm or less, more preferably 700 μm or less, still more preferably 600 μm or less, and particularly preferably 500 μm or less.
The anion exchange resin may be a resin having a particle size distribution or a resin having a uniform particle size with a uniform particle size.
When a strongly basic anion exchange resin is used as the anion exchange resin, the strong base anion exchange resin may be of type I or type II.

陰イオン交換樹脂は市販品を用いることができ、例えばザ・ダウ・ケミカル・カンパニー製のアンバーライト「IRA402」、「IRA901」、「XT5007」、「IRA958」、「IRA938」、「IRA458」や、ダウエックスマラソン「A」、「SBR」、「MSA」、「MSA−1」、「C」、「C−1」;ランクセス社製のレバチット「MP500」、「M500」、「MP504」、「A8071」;イオン・エクスチェンジ・インディア社製の「インディオンA930」;杭州争光樹脂有限公司製の「争光ZGD730」;三菱ケミカル株式会社製のダイヤイオン「SA10A」、「SA12A」、「PA308」や、リライト「JA800」、「JA810」などが好適である。   Commercially available anion exchange resins can be used, such as Amberlite “IRA402”, “IRA901”, “XT5007”, “IRA958”, “IRA938”, “IRA458” manufactured by The Dow Chemical Company, Dowex Marathon “A”, “SBR”, “MSA”, “MSA-1”, “C”, “C-1”; Lebatit “MP500”, “M500”, “MP504”, “A8071” manufactured by LANXESS "Indion A930" manufactured by AEON EXCHANGE INDIA, Inc. "Vankou ZGD730" manufactured by Hangzhou Conflict Resin Co., Ltd .; Diaion "SA10A", "SA12A", "PA308" manufactured by Mitsubishi Chemical Corporation, and Rewrite “JA800”, “JA810” and the like are preferable.

陰イオン交換繊維を構成する繊維としては、短繊維でも長繊維でもよい。陰イオン交換繊維はグラフト重合タイプであってもよい。
陰イオン交換繊維の平均繊維径は、1μm以上が好ましく、より好ましくは10μm以上である。また、陰イオン交換繊維の平均繊維径は、1mm以下が好ましく、より好ましくは500μm以下であり、さらに好ましくは100μm以下であり、特に好ましくは50μm以下である。
陰イオン交換繊維は市販品を用いることができ、例えば株式会社ニチビ製の「IEF−SA」などが好適である。
The fiber constituting the anion exchange fiber may be a short fiber or a long fiber. The anion exchange fiber may be a graft polymerization type.
The average fiber diameter of the anion exchange fiber is preferably 1 μm or more, more preferably 10 μm or more. The average fiber diameter of the anion exchange fiber is preferably 1 mm or less, more preferably 500 μm or less, still more preferably 100 μm or less, and particularly preferably 50 μm or less.
A commercially available product can be used as the anion exchange fiber, and for example, “IEF-SA” manufactured by Nichibi Corporation is suitable.

イオン交換処理手段50を通過した地下水W(処理水)は、イオン交換体塔51の下端から排出され、第3の通水管53を通過して処理水槽60に貯留される。第3の通水管53の一端はイオン交換体塔51の下部に接続され、他端は処理水槽60に接続されている。
処理水槽60には、受水槽(図示略)へ供給する処理水供給管61が接続されている。
Groundwater W (treated water) that has passed through the ion exchange treatment means 50 is discharged from the lower end of the ion exchanger tower 51, passes through the third water conduit 53, and is stored in the treated water tank 60. One end of the third water pipe 53 is connected to the lower part of the ion exchanger tower 51, and the other end is connected to the treated water tank 60.
The treated water tank 60 is connected to a treated water supply pipe 61 for supplying to a water receiving tank (not shown).

第3の通水管53には、イオン交換処理手段50を通過した地下水W(処理水)に再度、次亜塩素酸塩を添加する添加手段70(第2の添加手段70)が接続されている。
第2の添加手段70は、次亜塩素酸塩を収容する第2の収容タンク71と、次亜塩素酸塩を第3の通水管53に供給する第2の供給管72とを備える。本実施形態においては、第2の供給管72は第3の通水管53の途中で合流しており、第3の通水管53中で処理水に次亜塩素酸塩が供給されるようになっている。
第1の収容タンク31と第2の収容タンク71は共用しても構わない。
An addition means 70 (second addition means 70) for adding hypochlorite to the ground water W (treated water) that has passed through the ion exchange treatment means 50 is connected to the third water pipe 53. .
The second addition means 70 includes a second storage tank 71 that stores hypochlorite, and a second supply pipe 72 that supplies hypochlorite to the third water pipe 53. In the present embodiment, the second supply pipe 72 joins in the middle of the third water pipe 53, and hypochlorite is supplied to the treated water in the third water pipe 53. ing.
The first storage tank 31 and the second storage tank 71 may be shared.

なお、地下水Wに鉄やマンガンが含まれている場合、活性炭処理手段40の上流にろ過砂、ろ過砂利、マンガン砂、二酸化マンガン粒等の砂が充填された砂ろ過塔(図示略)を設置するのが望ましい。   In addition, when groundwater W contains iron or manganese, a sand filtration tower (not shown) filled with sand such as filtration sand, filtration gravel, manganese sand, manganese dioxide particles is installed upstream of the activated carbon treatment means 40. It is desirable to do.

「水処理方法」
以下、図1に示す水処理装置1を用いた地下水の水処理方法の一例について説明する。
まず、揚水ポンプ11を作動させて井戸Aから地下水Wを汲み上げる。汲み上げられた地下水Wは揚水管12を通って貯留槽20に供給され、一旦貯留される。
"Water treatment method"
Hereinafter, an example of the water treatment method of groundwater using the water treatment apparatus 1 shown in FIG. 1 will be described.
First, the pumping pump 11 is operated to draw up the ground water W from the well A. The groundwater W pumped up is supplied to the storage tank 20 through the pumping pipe 12 and temporarily stored.

貯留槽20に貯留された地下水Wは、第1の通水管21を通って活性炭処理手段40に供給される。地下水Wが第1の通水管21を通過する際に、第1の通水管21と第1の供給管32との合流点において、地下水Wに次亜塩素酸塩が添加される(添加工程)。なお、地下水Wに鉄やマンガンが含まれている場合、活性炭処理手段40の上流に砂ろ過塔(図示略)を設置しておけば、次亜塩素酸塩で酸化され析出した鉄がろ過される。さらに、砂ろ過塔にマンガン砂を充填しておけば、マンガン砂による接触酸化でマンガンが除去される。
次亜塩素酸塩の必要添加量は、地下水Wの鉄、マンガン、アンモニア、および有機物の濃度に依存する。特にアンモニア濃度の影響が大きく、アンモニアを窒素に酸化するには10当量以上の次亜塩素酸塩を添加することが好ましい。ただし、次亜塩素酸塩の添加量は、ハロ酢酸の副生や経済性の観点からできる限り少なくすることが好ましい。
地下水Wの全有機体炭素(TOC)が1ppm以上であり、かつ次亜塩素酸塩の添加量が地下水Wの1Lに対して10ppm以上である場合に、ハロ酢酸やトリハロメタンが生成しやすい傾向があり、全有機炭素が1.5ppm以上であり、かつ次亜塩素酸塩の添加量が20ppm以上である場合は、その傾向は顕著である。
ハロ酢酸の生成機構は明確にされていないが、フミン酸やフルボ酸中のフェノール骨格成分が塩素ラジカル酸化され、ハロ酢酸が生成する。さらに脱炭酸反応が進みトリハロメタンが生成すると考えられている。ただし、被処理水の分析結果に基づきハロ酢酸の生成能を推測することは困難である。
The groundwater W stored in the storage tank 20 is supplied to the activated carbon treatment means 40 through the first water pipe 21. When the groundwater W passes through the first water pipe 21, hypochlorite is added to the groundwater W at the junction of the first water pipe 21 and the first supply pipe 32 (addition process). . In addition, when iron and manganese are contained in the groundwater W, if a sand filtration tower (not shown) is installed upstream of the activated carbon treatment means 40, the iron precipitated by oxidation with hypochlorite is filtered. The Furthermore, if the sand filtration tower is filled with manganese sand, manganese is removed by catalytic oxidation with manganese sand.
The required amount of hypochlorite depends on the concentration of iron, manganese, ammonia, and organic matter in the groundwater W. In particular, the influence of ammonia concentration is great, and it is preferable to add 10 equivalents or more of hypochlorite to oxidize ammonia to nitrogen. However, the amount of hypochlorite added is preferably as small as possible from the viewpoints of by-production of haloacetic acid and economy.
When total organic carbon (TOC) in groundwater W is 1 ppm or more and the amount of hypochlorite added is 10 ppm or more with respect to 1 liter of groundwater W, there is a tendency that haloacetic acid and trihalomethane are likely to be generated. In addition, when the total organic carbon is 1.5 ppm or more and the amount of hypochlorite added is 20 ppm or more, the tendency is remarkable.
Although the formation mechanism of haloacetic acid is not clarified, the phenol skeleton components in humic acid and fulvic acid are oxidized by chlorine radicals to produce haloacetic acid. It is thought that further decarboxylation proceeds and trihalomethane is produced. However, it is difficult to estimate the ability to produce haloacetic acid based on the analysis result of the water to be treated.

次亜塩素酸塩が添加された地下水Wは、下向流にて活性炭処理手段40の活性炭吸着塔41を通過し、この間に活性炭と接触する(活性炭処理工程)。
地下水Wに次亜塩素酸塩を添加すると、ハロ酢酸に加えてトリハロメタンが生成する場合がある。地下水Wが活性炭と接触することで、地下水W中に生成したトリハロメタンが活性炭に吸着され、地下水Wから除去される。また、地下水W中の未反応の有機物や次亜塩素酸塩も地下水Wから除去される。
The groundwater W to which hypochlorite is added passes through the activated carbon adsorption tower 41 of the activated carbon treatment means 40 in a downward flow, and contacts the activated carbon during this time (activated carbon treatment step).
When hypochlorite is added to groundwater W, trihalomethane may be generated in addition to haloacetic acid. When the groundwater W comes into contact with the activated carbon, the trihalomethane generated in the groundwater W is adsorbed by the activated carbon and removed from the groundwater W. Further, unreacted organic matter and hypochlorite in the groundwater W are also removed from the groundwater W.

活性炭処理手段40を通過した地下水Wは、第2の通水管42を通ってイオン交換処理手段50に供給される。地下水Wは下向流にてイオン交換処理手段50のイオン交換体塔51を通過し、この間に陰イオン交換体と接触する(イオン交換処理工程)。
地下水Wが陰イオン交換体と接触することで、次亜塩素酸塩の添加により生成したハロ酢酸が陰イオン交換体に吸着され、地下水Wから除去される。また、活性炭処理手段40で除去しきれなかった有機物も除去される。
The groundwater W that has passed through the activated carbon treatment means 40 is supplied to the ion exchange treatment means 50 through the second water pipe 42. The groundwater W passes through the ion exchanger tower 51 of the ion exchange treatment means 50 in a downward flow, and contacts the anion exchanger during this time (ion exchange treatment step).
When the groundwater W comes into contact with the anion exchanger, the haloacetic acid generated by the addition of hypochlorite is adsorbed on the anion exchanger and removed from the groundwater W. Further, organic substances that could not be removed by the activated carbon treatment means 40 are also removed.

イオン交換体塔51に通水される地下水Wの通液速度は水質によって異なるが、通液速度は、空間速度(SV)で200hr−1以下が好ましく、より好ましくは100hr−1以下であり、さらに好ましくは70hr−1以下である。また、通液速度は、空間速度(SV)で1hr−1以上が好ましく、より好ましくは5hr−1以上であり、さらに好ましくは10hr−1以上であり、特に好ましくは20hr−1以上である。
また、例えばイオン交換体塔51への陰イオン交換体の充填量が100L以下である場合は、地下水Wの通液速度は空間速度(SV)で20〜200hr−1が好ましく、このときに使用する陰イオン交換体としては強塩基性の陰イオン交換体が好適である。特に、陰イオン交換体が陰イオン交換繊維の場合は、空間速度(SV)で50〜1,000hr−1が好ましく、陰イオン交換樹脂の場合は、空間速度(SV)で20〜100hr−1が好ましい。
Liquid permeation speed of the ground water W is passed through the ion exchanger column 51 varies depending water, but liquid permeation rate is preferably 200 hr -1 or less at a space velocity (SV), more preferably 100 hr -1 or less, More preferably, it is 70 hr −1 or less. Furthermore, liquid passing rate, 1hr -1 or preferably at a space velocity (SV), more preferably 5 hr -1 or more, more preferably 10 hr -1 or more, particularly preferably 20 hr -1 or more.
For example, when the amount of the anion exchanger filled in the ion exchanger tower 51 is 100 L or less, the flow rate of the groundwater W is preferably 20 to 200 hr −1 in terms of space velocity (SV). As the anion exchanger, a strongly basic anion exchanger is suitable. In particular, when the anion exchanger is an anion exchange fiber, the space velocity (SV) is preferably 50 to 1,000 hr −1, and when the anion exchanger is an anion exchange resin, the space velocity (SV) is 20 to 100 hr −1. Is preferred.

イオン交換処理手段50を通過した地下水W(処理水)は、第3の通水管53を通って処理水槽60に供給され、一旦貯留される。そして、処理水供給管61を通って受水槽(図示略)へ供給される。処理水が第3の通水管53を通過する際に、第3の通水管53と第2の供給管72との合流点において、処理水に次亜塩素酸塩が添加される。   The groundwater W (treated water) that has passed through the ion exchange processing means 50 is supplied to the treated water tank 60 through the third water pipe 53 and temporarily stored. Then, the water is supplied to a water receiving tank (not shown) through the treated water supply pipe 61. When the treated water passes through the third water pipe 53, hypochlorite is added to the treated water at the junction of the third water pipe 53 and the second supply pipe 72.

地下水Wを連続的に処理するに際して、イオン交換体塔51に充填された陰イオン交換体を定期的に再生することが好ましい。
陰イオン交換体をその場で再生する場合、揚水ポンプ11を停止し、次いで、再生水をイオン交換体塔51に供給すればよい。
また、イオン交換体塔51を新品の陰イオン交換体が充填されたものに交換し、使用済みのイオン交換体塔51を別の場所に移動させた後に、陰イオン交換体の再生処理を行ってもよい。
When continuously treating the groundwater W, it is preferable to periodically regenerate the anion exchanger packed in the ion exchanger tower 51.
When the anion exchanger is regenerated on the spot, the pumping pump 11 is stopped, and then the regenerated water may be supplied to the ion exchanger tower 51.
Further, the ion exchanger column 51 is replaced with a new one filled with an anion exchanger, and the used ion exchanger column 51 is moved to another place, and then the anion exchanger is regenerated. May be.

再生水としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸アンモニウム、水酸化ナトリウム、臭化ナトリウム、硫酸、塩酸、海水等の再生剤の水溶液が挙げられる。これらの中でも、1段再生で陰イオン交換体の対イオンが塩化物イオンとなることから、塩化ナトリウム水溶液、塩化カリウム水溶液が好適である。再生水として硫酸ナトリウム、水酸化ナトリウム、臭化ナトリウム、硫酸アンモニウム等の再生剤の水溶液を用いた場合、陰イオン交換体の対イオンが硫酸イオン、水酸化物イオンまたは臭化物イオンとなるため、塩化物イオン形に変換するために、塩化ナトリウム水溶液や塩化カリウム水溶液を用いて2段再生してもよい。
再生水中の再生剤の濃度は、再生水の総質量に対して2〜25質量%が好ましく、2〜20質量%がより好ましく、4〜20質量%がさらに好ましく、4〜15質量%が特に好ましい。
イオン交換体塔51への再生水の通水量は、イオン交換体塔51に充填された陰イオン交換体1Lに対して、再生剤の投入量は50〜1000gとなる範囲が好ましい。例えば、陰イオン交換体1Lに対して濃度10質量%の塩化ナトリウム水溶液500mLをイオン交換体塔51に通液した場合、再生剤の投入量は50g/L−樹脂となり、再生剤の再生レベル50gと呼ばれている。
Examples of the reclaimed water include aqueous solutions of regenerants such as sodium chloride, potassium chloride, sodium sulfate, ammonium sulfate, sodium hydroxide, sodium bromide, sulfuric acid, hydrochloric acid, and seawater. Among these, a sodium chloride aqueous solution and a potassium chloride aqueous solution are preferable because the counter ion of the anion exchanger becomes a chloride ion in one-stage regeneration. When an aqueous solution of a regenerant such as sodium sulfate, sodium hydroxide, sodium bromide or ammonium sulfate is used as the regenerated water, the counter ion of the anion exchanger is sulfate ion, hydroxide ion or bromide ion, so chloride ion In order to convert into a shape, two-stage regeneration may be performed using an aqueous sodium chloride solution or an aqueous potassium chloride solution.
The concentration of the regenerant in the reclaimed water is preferably 2 to 25% by mass, more preferably 2 to 20% by mass, still more preferably 4 to 20% by mass, and particularly preferably 4 to 15% by mass with respect to the total mass of the reclaimed water. .
The amount of regenerated water that flows into the ion exchanger column 51 is preferably in the range where the amount of the regenerant is 50 to 1000 g relative to 1 L of the anion exchanger packed in the ion exchanger column 51. For example, when 500 mL of a 10% strength by weight sodium chloride aqueous solution is passed through the ion exchanger column 51 with respect to 1 L of the anion exchanger, the input amount of the regenerant is 50 g / L-resin, and the regeneration level of the regenerant is 50 g. is called.

なお、陰イオン交換体に有機物が吸着している場合には、再生剤としてメタノール、エタノール等の水溶性アルコール類、またはその水溶液もしくはその電解質溶液を用いてもよい。
回生操作を行っても陰イオン交換体の機能が回復しない場合は、陰イオン交換体を入れ替える。
In the case where an organic substance is adsorbed on the anion exchanger, a water-soluble alcohol such as methanol or ethanol, an aqueous solution thereof, or an electrolyte solution thereof may be used as a regenerant.
If the function of the anion exchanger does not recover even after regenerative operation, replace the anion exchanger.

「作用効果」
以上説明した本実施形態の水処理装置、および該水処理装置を用いた水処理方法によれば、次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させることにより、次亜塩素酸塩の添加により生成したハロ酢酸が陰イオン交換体に吸着し、被処理水からハロ酢酸を除去できる。
酢酸は弱酸であるため、陰イオン交換体に対する選択性が低く、吸着能に劣っていることから、陰イオン交換体は酢酸の除去には適していないとされている。そのため、陰イオン交換体はハロ酢酸の除去にも適していないと考えるのが技術常識の観点から通常である。
しかし、本発明者らは鋭意検討した結果、驚くべきことに、陰イオン交換体によってハロ酢酸を除去できることを見出した。陰イオン交換体によってハロ酢酸を除去できる理由としては定かではないが、ハロ酢酸に含まれるハロゲノ基の電子吸引性により、ハロ酢酸の酸性度が高くなる(すなわち、pKaが小さくなる)ため、陰イオン交換体に吸着しやすくなり、被処理水からハロ酢酸を除去できると考えられる。
"Effect"
According to the water treatment device of the present embodiment described above and the water treatment method using the water treatment device, the water to be treated to which hypochlorite is added and the anion exchanger are brought into contact with each other. The haloacetic acid produced by the addition of chlorite is adsorbed on the anion exchanger and can be removed from the water to be treated.
Since acetic acid is a weak acid, its selectivity to an anion exchanger is low and its adsorption ability is poor, so that an anion exchanger is not suitable for removing acetic acid. For this reason, it is usual from the viewpoint of common general knowledge that an anion exchanger is not suitable for removing haloacetic acid.
However, as a result of intensive studies, the present inventors have surprisingly found that haloacetic acid can be removed by an anion exchanger. The reason why haloacetic acid can be removed by an anion exchanger is not clear, but the acidity of haloacetic acid increases (ie, pKa decreases) due to the electron-withdrawing property of the halogeno group contained in haloacetic acid. It is considered that the haloacetic acid can be easily removed from the water to be treated by being easily adsorbed on the ion exchanger.

よって、従来は、次亜塩素酸塩を添加する前に、前処理により被処理水中の有機物を除去したり、生物処理により被処理水中のアンモニアを分解したりしていたが、本発明の水処理方法および水処理装置によれば、前処理により被処理水中の有機物やアンモニアを除去しておかなくても、被処理水の処理において生成するハロ酢酸を除去できる。   Therefore, conventionally, before adding hypochlorite, organic substances in the water to be treated were removed by pretreatment or ammonia in the water to be treated was decomposed by biological treatment. According to the treatment method and the water treatment apparatus, the haloacetic acid generated in the treatment of the water to be treated can be removed without removing the organic matter and ammonia in the water to be treated by the pretreatment.

また、本実施形態では、次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させる前に、被処理水と活性炭とを接触させている。陰イオン交換体は次亜塩素酸塩により劣化しやすい傾向があるが、次亜塩素酸塩を添加した被処理水を陰イオン交換体と接触させる前に活性炭と接触させておくことで、活性炭により被処理水中の次亜塩素酸塩が除去される。よって、次亜塩素酸塩による陰イオン交換体の劣化を抑制できる。しかも、次亜塩素酸塩の添加によりハロ酢酸に加えてトリハロメタンが生成しても、活性炭によりトリハロメタンを除去できる。   Moreover, in this embodiment, before making the to-be-processed water and the anion exchanger which added hypochlorite contact, to-be-treated water and activated carbon are made to contact. Anion exchangers tend to be deteriorated by hypochlorite, but the activated water can be treated by bringing the water to be treated with hypochlorite into contact with activated carbon before contacting with the anion exchanger. As a result, hypochlorite in the water to be treated is removed. Therefore, deterioration of the anion exchanger due to hypochlorite can be suppressed. Moreover, even if trihalomethane is generated in addition to haloacetic acid by addition of hypochlorite, the trihalomethane can be removed by activated carbon.

「他の形態」
図示例の水処理装置1ではイオン交換処理手段50が活性炭処理手段40の下流に設けられているが、イオン交換処理手段50および活性炭処理手段40が1つの処理手段として構成されていてもよい。すなわち、陰イオン交換体および活性炭が1つの塔に充填されていてもよい。具体的には、図1において、陰イオン交換体が活性炭吸着塔41に充填されていても、活性炭がイオン交換体塔51に充填されていてもよい。このような状態を混床ともいう。これに対して、図1に示すように、陰イオン交換体と活性炭とが別々の塔に充填されている状態をそれぞれ単床ともいう。陰イオン交換体と活性炭との混床状態の場合、イオン交換処理工程と活性炭処理工程が同時に行われる。
"Other forms"
In the water treatment apparatus 1 of the illustrated example, the ion exchange treatment means 50 is provided downstream of the activated carbon treatment means 40, but the ion exchange treatment means 50 and the activated carbon treatment means 40 may be configured as one treatment means. That is, an anion exchanger and activated carbon may be packed in one column. Specifically, in FIG. 1, the anion exchanger may be packed in the activated carbon adsorption tower 41 or the activated carbon may be packed in the ion exchanger tower 51. Such a state is also called a mixed floor. On the other hand, as shown in FIG. 1, the state in which the anion exchanger and the activated carbon are packed in separate towers is also referred to as a single bed. In the case of a mixed bed state of an anion exchanger and activated carbon, the ion exchange treatment step and the activated carbon treatment step are performed simultaneously.

また、次亜塩素酸塩の添加量が少ない等の場合には、活性炭処理手段40は必ずしも設置する必要はない。ただし、次亜塩素酸塩の添加によりトリハロメタンが生成したり、次亜塩素酸塩により陰イオン交換体が劣化したりする場合には、活性炭処理手段40をイオン交換処理手段50の上流に設置するか、イオン交換処理手段50および活性炭処理手段40とで1つの処理手段を構成して、活性炭により次亜塩素酸塩やトリハロメタンを除去するのが好ましい。   Further, when the amount of hypochlorite added is small, the activated carbon treatment means 40 is not necessarily installed. However, when trihalomethane is produced by addition of hypochlorite or the anion exchanger is deteriorated by hypochlorite, the activated carbon treatment means 40 is installed upstream of the ion exchange treatment means 50. Alternatively, it is preferable that the ion exchange treatment means 50 and the activated carbon treatment means 40 constitute one treatment means to remove hypochlorite and trihalomethane with activated carbon.

図示例の水処理装置1は連続式であるが、バッチ式でもよい。また、陰イオン交換体はイオン交換体塔51に充填されているが、例えばカートリッジタイプの容器やFRPボンベに陰イオン交換体を充填してもよい。
さらに、図示例の水処理装置1では、第2の通水管42の他端がイオン交換体塔51の上部に接続され、第3の通水管53の一端はイオン交換体塔51の下部に接続されている。この場合、地下水Wは下向流にてイオン交換体塔51を通過するが、地下水Wを上向流でイオン交換体塔51に通過させてもよい。地下水Wを上向流で通過させるためには、例えば第2の通水管42の他端をイオン交換体塔51の下部に接続し、かつ第3の通水管53の一端をイオン交換体塔51の上部に接続すればよい。また、イオン交換体塔51を横向きに設置し、地下水Wを横向流で通水してもよい。ただし、地下水Wの縦拡散による吸着帯長の増加、その結果による処理量の低下、プロセスの簡素化の観点から、地下水Wを下向流でイオン交換体塔51に通水させるのが好ましい。
The water treatment apparatus 1 in the illustrated example is a continuous type, but may be a batch type. Moreover, although the anion exchanger is filled in the ion exchanger column 51, for example, a cartridge type container or an FRP cylinder may be filled with the anion exchanger.
Further, in the illustrated water treatment apparatus 1, the other end of the second water conduit 42 is connected to the upper portion of the ion exchanger tower 51, and one end of the third water conduit 53 is connected to the lower portion of the ion exchanger tower 51. Has been. In this case, the groundwater W passes through the ion exchanger tower 51 in a downward flow, but the groundwater W may pass through the ion exchanger tower 51 in an upward flow. In order to pass the groundwater W in an upward flow, for example, the other end of the second water pipe 42 is connected to the lower part of the ion exchanger tower 51 and one end of the third water pipe 53 is connected to the ion exchanger tower 51. Connect to the top of the. Alternatively, the ion exchanger tower 51 may be installed sideways, and the groundwater W may be passed in a sideways flow. However, it is preferable to allow the groundwater W to flow through the ion exchanger tower 51 in a downward flow from the viewpoint of an increase in the adsorption zone length due to the vertical diffusion of the groundwater W, a reduction in the processing amount as a result, and simplification of the process.

また、上述したように活性炭処理手段40の上流に砂ろ過塔(図示略)を設置する場合であって、被処理水の有機物濃度が高い場合には、被処理水にポリ塩化アルミニウム(PAC)、硫酸アルミニウム(硫酸バンド)、有機高分子凝集剤、有機凝結剤等の凝集剤を砂ろ過塔の上流にて添加しておくことが好ましい。
なお、被処理水中に鉄が多く含まれている場合には、砂ろ過塔で被処理水を処理する前に、被処理水に空気をバブリングまたは圧入して鉄(II)イオンを空気酸化してもよい。
Further, as described above, when a sand filtration tower (not shown) is installed upstream of the activated carbon treatment means 40 and the organic matter concentration of the water to be treated is high, polyaluminum chloride (PAC) is added to the water to be treated. It is preferable to add a flocculant such as aluminum sulfate (sulfuric acid band), organic polymer flocculant, and organic flocculant upstream of the sand filtration tower.
If the water to be treated contains a large amount of iron, before treating the water to be treated in the sand filtration tower, air is bubbled or injected into the water to be treated to oxidize iron (II) ions. May be.

また、イオン交換処理手段50と処理水槽60との間に膜分離手段(図示略)を設置してもよい。被処理水に細菌、微生物や懸濁物質が含まれている場合、膜分離手段により細菌および懸濁物質が除去される。
膜分離手段としては特に制限されないが、公知の分離膜(ろ過膜)を備えた公知の膜モジュールが挙げられる。分離膜の種類としては、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)が好ましい。
Further, a membrane separation means (not shown) may be installed between the ion exchange treatment means 50 and the treated water tank 60. When bacteria, microorganisms or suspended substances are contained in the water to be treated, the bacteria and suspended substances are removed by the membrane separation means.
Although it does not restrict | limit especially as a membrane separation means, The well-known membrane module provided with the well-known separation membrane (filtration membrane) is mentioned. As a kind of separation membrane, a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), and a reverse osmosis membrane (RO membrane) are preferable.

さらに、図示例の水処理装置1では、井戸Aから汲み上げた地下水Wを一旦、貯留槽20に貯留しているが、地下水Wを直接、活性炭処理手段40に供給してもよい。この場合、揚水管12が第1の通水管21を兼ねるため、揚水管12に第1の添加手段30が接続される。
また、図示例のように井戸Aから汲み上げた地下水Wを一旦、貯留槽20に貯留する場合、次亜塩素酸塩は貯留槽20に添加してもよい。
Furthermore, in the illustrated water treatment apparatus 1, the groundwater W pumped from the well A is once stored in the storage tank 20, but the groundwater W may be directly supplied to the activated carbon treatment means 40. In this case, since the pumping pipe 12 also serves as the first water pipe 21, the first addition means 30 is connected to the pumping pipe 12.
Moreover, when the groundwater W pumped from the well A is temporarily stored in the storage tank 20 as shown in the illustrated example, hypochlorite may be added to the storage tank 20.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

「実施例1」
地下水として、表1に示す水質のものを用いた。なお、全有機体炭素(TOC)は燃焼酸化法により測定し、pHはpH計を用いて地下水温度(一般的には17℃前後)にて測定し、色度は透過光測定法により測定した。
被処理水として、地下水にトリクロロ酢酸(東京化成工業株式会社製)を濃度が10ppmとなるように添加したものを用いた。この被処理水は次亜塩素酸塩を添加した状態を再現したものである。
"Example 1"
As the groundwater, the water quality shown in Table 1 was used. Total organic carbon (TOC) was measured by a combustion oxidation method, pH was measured at a groundwater temperature (generally around 17 ° C.) using a pH meter, and chromaticity was measured by a transmitted light measurement method. .
As water to be treated, groundwater added with trichloroacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) so as to have a concentration of 10 ppm was used. This to-be-treated water reproduces the state which added hypochlorite.

Figure 2019013862
Figure 2019013862

陰イオン交換体として、強塩基性陰イオン交換樹脂(三菱ケミカル株式会社製、「リライト JA810」、ポーラス様樹脂)50mLをカラムに充填し、地下水を空間速度がSV20hr−1の条件で1時間通水し、陰イオン交換体を洗浄した。
洗浄後の陰イオン交換体10mLを10mLのメスシリンダーで秤量し、遠心分離機で脱水した後、500mLの三角フラスコに投入した。さらに被処理水100mLを添加し、室温(25℃)で30分間振盪して被処理水を処理した後、上澄み液を採取した。
採取した上澄み液について、以下の測定条件によりガスクロマトグラフ(GC)分析し、上澄み液中のトリクロロ酢酸の濃度を測定した。結果を表2に示す。なお、検出下限は1ppmであった。
As an anion exchanger, 50 mL of a strongly basic anion exchange resin (Mitsubishi Chemical Co., Ltd., “Relite JA810”, porous-like resin) is packed in a column, and groundwater is passed for 1 hour under the condition of a space velocity of SV20hr −1. Water and wash the anion exchanger.
After washing, 10 mL of the anion exchanger was weighed with a 10 mL graduated cylinder, dehydrated with a centrifuge, and charged into a 500 mL Erlenmeyer flask. Further, 100 mL of water to be treated was added, and the water to be treated was treated by shaking at room temperature (25 ° C.) for 30 minutes, and then the supernatant was collected.
The collected supernatant was subjected to gas chromatograph (GC) analysis under the following measurement conditions, and the concentration of trichloroacetic acid in the supernatant was measured. The results are shown in Table 2. The lower limit of detection was 1 ppm.

<GC分析条件>
・GC装置:Agilent Technologies社製の「Agilent 6850シリーズ」。
・昇温条件:50℃〜250℃、昇温速度10℃/分。
・分析時間:20分。
・分析カラム:Agilent Technologies社製の「Agilent J&W GCカラム HP−5」。
・キャリアガス:He。
・検出器:FID。
・注入量:1.00μL。
<GC analysis conditions>
GC device: “Agilent 6850 Series” manufactured by Agilent Technologies.
-Temperature rising conditions: 50 ° C to 250 ° C, temperature rising rate 10 ° C / min.
-Analysis time: 20 minutes.
Analytical column: “Agilent J & W GC column HP-5” manufactured by Agilent Technologies.
Carrier gas: He.
-Detector: FID.
Injection volume: 1.00 μL.

「実施例2」
陰イオン交換体として、強塩基性陰イオン交換樹脂(三菱ケミカル株式会社製、「ダイヤイオン PA308」)を用いた以外は、実施例1と同様にして被処理水を処理し、上澄み液中のトリクロロ酢酸の濃度を測定した。結果を表2に示す。
"Example 2"
The treated water was treated in the same manner as in Example 1 except that a strongly basic anion exchange resin (“Diaion PA308” manufactured by Mitsubishi Chemical Corporation) was used as the anion exchanger. The concentration of trichloroacetic acid was measured. The results are shown in Table 2.

「実施例3」
陰イオン交換体として、強塩基性陰イオン交換樹脂(ランクセス社製、「レバチット A8071」)50mLを内径13mmのガラス製カラムに充填し、実施例1と同様の地下水で充分に洗浄した。
次いで、実施例1と同様の被処理水を空間速度がSV20hr−1の条件で通水し、被処理水を処理した。被処理水の通水開始から12時間経過後および24時間経過後の処理水を採取した。採取した処理水について、実施例1と同様にしてGC分析を行い、処理水中のトリクロロ酢酸の濃度を測定した。結果を表2に示す。
"Example 3"
As an anion exchanger, 50 mL of a strongly basic anion exchange resin (“Levacite A8071” manufactured by LANXESS) was packed in a glass column having an inner diameter of 13 mm and thoroughly washed with the same ground water as in Example 1.
Subsequently, the to-be-processed water similar to Example 1 was water-flowed on the conditions whose space velocity is SV20hr- 1 . The treated water was collected after 12 hours and 24 hours from the start of water flow. The collected treated water was subjected to GC analysis in the same manner as in Example 1, and the concentration of trichloroacetic acid in the treated water was measured. The results are shown in Table 2.

被処理水の通水開始から24時間経過した後、被処理水の通水を停止した。次いで、濃度10質量%の塩化ナトリウム水溶液150mLを空間速度がSV2hr−1の条件で通水し、さらに地下水を空間速度がSV5hr−1の条件で1時間通水し、陰イオン交換体を再生した。
陰イオン交換体を再生した後、被処理水を空間速度がSV20hr−1の条件で再び通水し、被処理水を処理した。被処理水の通水開始から24時間経過後の処理水を採取し、トリクロロ酢酸の濃度を測定した。結果を表2に示す。
After 24 hours had passed since the start of the water supply, the water supply was stopped. Then, a concentration of 10 mass% sodium chloride aqueous solution 150mL space velocity through water under conditions of SV2hr -1, further space velocity groundwater is 1 hour through water under conditions of SV5hr -1, was regenerated anion exchanger .
After regenerating the anion exchanger, the water to be treated was passed again under the condition that the space velocity was SV20hr −1 to treat the water to be treated. The treated water was collected after 24 hours from the start of passing the water to be treated, and the concentration of trichloroacetic acid was measured. The results are shown in Table 2.

「実施例4」
陰イオン交換体として、強塩基性陰イオン交換樹脂(ザ・ダウ・ケミカル・カンパニー製、「アンバーライト IRA458」)を用いた以外は、実施例1と同様にして被処理水を処理し、上澄み液中のトリクロロ酢酸の濃度を測定した。結果を表2に示す。
Example 4
Treated water was treated in the same manner as in Example 1 except that a strongly basic anion exchange resin (“Amberlite IRA458” manufactured by The Dow Chemical Company, Inc.) was used as the anion exchanger. The concentration of trichloroacetic acid in the liquid was measured. The results are shown in Table 2.

「比較例1」
陰イオン交換体の代わりに、強酸性陽イオン交換樹脂(三菱ケミカル株式会社製、「ダイヤイオン SK1B」)を用いた以外は、実施例1と同様にして被処理水を処理し、上澄み液中のトリクロロ酢酸の濃度を測定した。結果を表2に示す。
"Comparative Example 1"
The treated water was treated in the same manner as in Example 1 except that a strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, “Diaion SK1B”) was used instead of the anion exchanger. The concentration of trichloroacetic acid was measured. The results are shown in Table 2.

Figure 2019013862
Figure 2019013862

表2の結果から明らかなように、各実施例の場合、上澄み液または処理水から、ハロ酢酸の代表例として知られているトリクロロ酢酸は検出されなかった。特に、実施例3の場合、陰イオン交換体を再生した後も、処理水からトリクロロ酢酸は検出されなかった。
対して、強酸性陽イオン交換樹脂を用いた比較例1の場合、上澄み液中のトリクロロ酢酸の濃度は9.8ppmであり、被処理水からトリクロロ酢酸を殆ど除去できなかった。
As is clear from the results in Table 2, in each example, trichloroacetic acid, which is a typical example of haloacetic acid, was not detected from the supernatant or treated water. In particular, in the case of Example 3, trichloroacetic acid was not detected from the treated water even after the anion exchanger was regenerated.
On the other hand, in the case of Comparative Example 1 using a strongly acidic cation exchange resin, the concentration of trichloroacetic acid in the supernatant was 9.8 ppm, and trichloroacetic acid could hardly be removed from the water to be treated.

1 水処理装置
10 揚水手段
11 揚水ポンプ
12 揚水管
20 貯留槽
21 第1の通水管
30 添加手段(第1の添加手段)
31 第1の収容タンク
32 第1の供給管
40 活性炭処理手段
41 活性炭吸着塔
42 第2の通水管
50 イオン交換処理手段
51 イオン交換体塔
52 フィルター
53 第3の通水管
60 処理水槽
61 処理水供給管
70 添加手段(第2の添加手段)
71 第2の収容タンク
72 第2の供給管
A 井戸
W 地下水
DESCRIPTION OF SYMBOLS 1 Water treatment apparatus 10 Pumping means 11 Pumping pump 12 Pumping pipe 20 Reservoir 21 First water pipe 30 Adding means (first adding means)
Reference Signs List 31 first storage tank 32 first supply pipe 40 activated carbon treatment means 41 activated carbon adsorption tower 42 second water pipe 50 ion exchange treatment means 51 ion exchanger tower 52 filter 53 third water pipe 60 treated water tank 61 treated water Supply pipe 70 Addition means (second addition means)
71 Second storage tank 72 Second supply pipe A Well W Groundwater

Claims (8)

次亜塩素酸塩の添加により生成したハロ酢酸を含む被処理水を陰イオン交換体に接触させてハロ酢酸を除去する、水処理方法。   A water treatment method for removing haloacetic acid by contacting water to be treated containing haloacetic acid produced by addition of hypochlorite with an anion exchanger. 被処理水に次亜塩素酸塩を添加する添加工程と、
次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させるイオン交換処理工程と、
を有する、請求項1に記載の水処理方法。
An addition step of adding hypochlorite to the water to be treated;
An ion exchange treatment step in which the treated water to which hypochlorite is added and the anion exchanger are brought into contact with each other;
The water treatment method according to claim 1, comprising:
前記次亜塩素酸塩を添加した被処理水と活性炭とを接触させる活性炭処理工程をさらに有し、
前記イオン交換処理工程および前記活性炭処理工程を同時に行う、または前記イオン交換処理工程を前記活性炭処理工程の後に行う、請求項2に記載の水処理方法。
Further comprising an activated carbon treatment step in which the treated water to which the hypochlorite is added is brought into contact with activated carbon;
The water treatment method according to claim 2, wherein the ion exchange treatment step and the activated carbon treatment step are performed simultaneously, or the ion exchange treatment step is performed after the activated carbon treatment step.
前記被処理水が地下水または井水である、請求項1〜3のいずれか一項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein the water to be treated is groundwater or well water. 全有機体炭素(TOC)が1ppm以上であり、次亜塩素酸塩を10ppm以上添加した被処理水を陰イオン交換体と接触させる、請求項1〜4のいずれか一項に記載の水処理方法。   The water treatment according to any one of claims 1 to 4, wherein the total amount of organic carbon (TOC) is 1 ppm or more, and water to be treated to which 10 ppm or more of hypochlorite is added is brought into contact with the anion exchanger. Method. 被処理水に次亜塩素酸塩を添加して水処理するに際して生成するハロ酢酸を除去する水処理装置であって、
被処理水に次亜塩素酸塩を添加する添加手段と、
次亜塩素酸塩を添加した被処理水と陰イオン交換体とを接触させるイオン交換処理手段と、
を備える、水処理装置。
A water treatment apparatus for removing haloacetic acid generated when water treatment is performed by adding hypochlorite to water to be treated,
An addition means for adding hypochlorite to the water to be treated;
Ion exchange treatment means for contacting the water to be treated with hypochlorite and the anion exchanger;
A water treatment apparatus comprising:
前記次亜塩素酸塩を添加した被処理水と活性炭とを接触させる活性炭処理手段をさらに備え、
前記イオン交換処理手段および前記活性炭処理手段が1つの処理手段として構成されている、または前記イオン交換処理手段が前記活性炭処理手段の下流に設けられている、請求項6に記載の水処理装置。
Further comprising activated carbon treatment means for contacting the treated water to which the hypochlorite is added and activated carbon;
The water treatment apparatus according to claim 6, wherein the ion exchange treatment means and the activated carbon treatment means are configured as one treatment means, or the ion exchange treatment means is provided downstream of the activated carbon treatment means.
前記被処理水が地下水または井水である、請求項6または7に記載の水処理装置。   The water treatment apparatus according to claim 6 or 7, wherein the water to be treated is groundwater or well water.
JP2017130576A 2017-07-03 2017-07-03 Water treatment method and water treatment equipment Active JP6872442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130576A JP6872442B2 (en) 2017-07-03 2017-07-03 Water treatment method and water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130576A JP6872442B2 (en) 2017-07-03 2017-07-03 Water treatment method and water treatment equipment

Publications (2)

Publication Number Publication Date
JP2019013862A true JP2019013862A (en) 2019-01-31
JP6872442B2 JP6872442B2 (en) 2021-05-19

Family

ID=65357931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130576A Active JP6872442B2 (en) 2017-07-03 2017-07-03 Water treatment method and water treatment equipment

Country Status (1)

Country Link
JP (1) JP6872442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109163A (en) * 2020-01-15 2021-08-02 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment process
WO2022054649A1 (en) * 2020-09-10 2022-03-17 オルガノ株式会社 Water treatment system, pure water production method, and water treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039423A (en) * 1990-05-11 1991-08-13 International Dioxcide, Inc. Process for purification of water
JPH06106161A (en) * 1991-11-15 1994-04-19 Kuraray Chem Corp Activated carbon water purifier
JP2005013883A (en) * 2003-06-26 2005-01-20 Kuraray Chem Corp Active carbon molding and water purifier using the same
JP2008012462A (en) * 2006-07-07 2008-01-24 Yamato:Kk Method and system for cleaning and sterilizing filter
JP2011230038A (en) * 2010-04-26 2011-11-17 Japan Organo Co Ltd Water treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039423A (en) * 1990-05-11 1991-08-13 International Dioxcide, Inc. Process for purification of water
JPH06106161A (en) * 1991-11-15 1994-04-19 Kuraray Chem Corp Activated carbon water purifier
JP2005013883A (en) * 2003-06-26 2005-01-20 Kuraray Chem Corp Active carbon molding and water purifier using the same
JP2008012462A (en) * 2006-07-07 2008-01-24 Yamato:Kk Method and system for cleaning and sterilizing filter
JP2011230038A (en) * 2010-04-26 2011-11-17 Japan Organo Co Ltd Water treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109163A (en) * 2020-01-15 2021-08-02 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment process
JP7481117B2 (en) 2020-01-15 2024-05-10 三菱ケミカルアクア・ソリューションズ株式会社 Water Treatment Methods
WO2022054649A1 (en) * 2020-09-10 2022-03-17 オルガノ株式会社 Water treatment system, pure water production method, and water treatment method

Also Published As

Publication number Publication date
JP6872442B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
Gao et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review
Ødegaard et al. NOM removal technologies–Norwegian experiences
US6669849B1 (en) Water treatment process
RU2577379C1 (en) Treatment of sewage water from coking
CN105800886A (en) Resource recycling and treatment technology of high-concentration degradation-resistant salt-containing organic waste water
CN105800885A (en) Resource recycling and treatment system of high-concentration degradation-resistant salt-containing organic waste water
WO2006002054A2 (en) Hydrogen peroxide based water treatment system and method
JP5792984B2 (en) Method and apparatus for removing dissolved aluminum
JP5609174B2 (en) Water treatment system
Abbasian Chaleshtari et al. A review on per-and polyfluoroalkyl substances (PFAS) remediation: separation mechanisms and molecular interactions
Galjaard et al. Performance evaluation SIX®-Ceramac® in comparison with conventional pre-treatment techniques for Surface Water Treatment
JP6872442B2 (en) Water treatment method and water treatment equipment
Verdickt et al. Applicability of ion exchange for NOM removal from a sulfate-rich surface water incorporating full reuse of the brine
Ivančev-Tumbas et al. p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration–comparison of different operational modes
JP6863849B2 (en) How to remove musty odor substances and water treatment equipment that can remove musty odor substances
Drikas et al. Removal of natural organic matter-a fresh approach
Zhang et al. Fluidized bed magnetic ion exchange (MIEX®) as pre-treatment process for a submerged membrane reactor in wastewater treatment and reuse
KR101672234B1 (en) Chitosan-melamine composite of eliminating posphorus and manufacturing method thereof
JP5616694B2 (en) Perchlorate ion-containing water treatment apparatus and perchlorate ion-containing water treatment method
JP5463928B2 (en) Water treatment system
Pontié et al. Seawater, Brackish Waters, and Natural Waters Treatment with Hybrid Membrane Processes
WO2011155282A1 (en) Fresh water-generating device and fresh water-generating method
EP2850034B1 (en) Ion exchange process with plug flow conditions and short residence times
Parsons 2.7 Disinfection Byproduct Control
JP2016203079A (en) Water treatment metho

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6872442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150