JP2019013125A - Mechanism for obtaining steady heat flow or steady power from time variation in environmental temperature - Google Patents

Mechanism for obtaining steady heat flow or steady power from time variation in environmental temperature Download PDF

Info

Publication number
JP2019013125A
JP2019013125A JP2017130248A JP2017130248A JP2019013125A JP 2019013125 A JP2019013125 A JP 2019013125A JP 2017130248 A JP2017130248 A JP 2017130248A JP 2017130248 A JP2017130248 A JP 2017130248A JP 2019013125 A JP2019013125 A JP 2019013125A
Authority
JP
Japan
Prior art keywords
temperature
heat
storage material
heat transfer
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017130248A
Other languages
Japanese (ja)
Other versions
JP6634664B2 (en
Inventor
剛慈 上田
Takeji Ueda
剛慈 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Front Co Ltd
Original Assignee
Energy Front Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Front Co Ltd filed Critical Energy Front Co Ltd
Priority to JP2017130248A priority Critical patent/JP6634664B2/en
Publication of JP2019013125A publication Critical patent/JP2019013125A/en
Application granted granted Critical
Publication of JP6634664B2 publication Critical patent/JP6634664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

To achieve formation of a heat transfer mechanism in a space or in one direction with a spontaneously steady temperature gradient in time-varying temperature fluctuations without using a large-scale mechanism for concurrently ensuring a high-temperature heat source and a low-temperature heat source, in an event in which energy conversion is executed using a temperature difference, such as temperature difference power generation.SOLUTION: A latent heat storage substance with two different phase transition temperatures or a chemical heat storage substance with two different reaction temperatures is arranged in a spatial manner and the two power storage substances make different temperature reactions at time-varying environmental temperatures, thereby achieving a system whose one side has a higher temperature than the other side.SELECTED DRAWING: Figure 1

Description

本発明は、エンジンなどの廃熱や太陽熱、室温などの時間的に温度が変動する環境から、定常的な空間的に一方向の熱流を自発的に生じる技術、及びその温度差を活用した発電等のエネルギー変換技術に関するものである。   The present invention relates to a technology that spontaneously generates a steady, spatially unidirectional heat flow from an environment in which the temperature fluctuates with time, such as waste heat from an engine, solar heat, or room temperature, and power generation utilizing the temperature difference. It is related to energy conversion technology.

熱エネルギーを機械エネルギーや電気エネルギーに変換するエンジンや発電機などについて、熱エネルギーの最大変換効率は絶対温度の差で決まることがカルノーの定理として知られている。従来、低温熱源を冷却水や常温空気にとり、高温熱源の実現は石油などの化石燃料の利用がなされてきたが、資源の枯渇や地球温暖化対策の観点から、十分に利用されていない廃熱や自然現象から生じる温度差の活用が期待されている。   For engines and generators that convert thermal energy into mechanical energy or electrical energy, it is known as Carnot's theorem that the maximum conversion efficiency of thermal energy is determined by the difference in absolute temperature. Conventionally, fossil fuels such as oil have been used for cooling water or room temperature air as the low-temperature heat source, and the use of fossil fuels such as oil has been used, but waste heat is not fully utilized from the viewpoint of resource depletion and global warming countermeasures. It is expected to utilize the temperature difference caused by natural phenomena.

温度差を活用したエネルギー変換においては高温熱源の確保だけでなく、低温熱源の確保が重要である。特許文献1に示す焼却炉の廃熱を活用した発電技術では焼却炉で生じる排ガスを高温熱源とし、冷却水などを低温熱源としてこれらの熱源間の温度差を活用して発電する。同様のエネルギー変換技術が自動車エンジンなどの廃熱に対しても利用されている。   In energy conversion utilizing the temperature difference, it is important not only to secure a high-temperature heat source but also to secure a low-temperature heat source. In the power generation technology using the waste heat of the incinerator shown in Patent Document 1, the exhaust gas generated in the incinerator is used as a high-temperature heat source, and cooling water or the like is used as a low-temperature heat source to generate power using the temperature difference between these heat sources. Similar energy conversion technology is also used for waste heat from automobile engines.

発電機構としては特許文献2に示す熱電変換素子や特許文献3に示すバイナリー発電などが用いられている。生じた電力はエネルギー変換を通して光源や化学反応の推進など様々に応用できる。   As the power generation mechanism, a thermoelectric conversion element shown in Patent Document 2 or binary power generation shown in Patent Document 3 is used. The generated electric power can be applied in various ways such as light source and promotion of chemical reaction through energy conversion.

これら温度差発電は同時刻において高温熱源と低温熱源が存在することを前提としている。また、高温熱源と低温熱源は空間的に隔離されその温度差が確保されることが好ましい。すなわち、加熱機構と冷却機構を用い、変換機構内部の伝熱による温度差の減少を回避する工夫が施される。   These temperature difference power generations are premised on the existence of a high-temperature heat source and a low-temperature heat source at the same time. Moreover, it is preferable that the high temperature heat source and the low temperature heat source are spatially separated to ensure a temperature difference between them. That is, a device for avoiding a decrease in temperature difference due to heat transfer inside the conversion mechanism is used by using a heating mechanism and a cooling mechanism.

特開2016―90129号公報JP-A-2016-90129 特開2006―74919号公報JP 2006-74919 A 特開2014―194210号公報JP 2014-194210 A

廃熱を生じるエンジンや熱を伴う自然現象は時間的に変動するものが多い。また、熱は拡散しやすく、対象とする空間領域の温度差は消失しやすい。従って狭い空間領域に同時に高温熱源と低温熱源を確保するには大掛かりな装置構成を必要とすることが多い。時間的な温度変動の中でも温度差を自発的に生じ、発電等を可能にするコンパクトな機構が実現できれば、資源問題や地球温暖化問題に大きく貢献できる。   Engines that generate waste heat and natural phenomena with heat often change over time. In addition, heat easily diffuses, and the temperature difference in the target space region tends to disappear. Therefore, in order to secure a high temperature heat source and a low temperature heat source at the same time in a narrow space region, a large-scale apparatus configuration is often required. If a compact mechanism that spontaneously generates a temperature difference even during temporal temperature fluctuations and enables power generation or the like can be realized, it can greatly contribute to resource problems and global warming problems.

室内の気温や壁の温度のように広い範囲でほぼ均一で比較的長い時間周期で変動する熱エネルギーは、その変化総量は大きくても利用可能な電気エネルギー等へのエネルギー変換を行うことはできなかった。   Thermal energy that is almost uniform over a wide range, such as indoor air temperature and wall temperature, and fluctuates in a relatively long time period, can be converted into usable electrical energy even if the total change is large. There wasn't.

そこで本発明では、空間的に温度が均一でも時間的に温度が変動する環境から、空間的に一方向の温度差と定常的熱流を生じるシンプルな伝熱機構、及びその伝熱機構を活用したコンパクトな発電技術を提供する。   Therefore, in the present invention, a simple heat transfer mechanism that generates a temperature difference in one direction spatially and a steady heat flow from an environment in which the temperature fluctuates temporally even if the temperature is spatially uniform, and the heat transfer mechanism are utilized. Provide compact power generation technology.

本発明は、二つの異なる相転移温度を持つ潜熱蓄熱物質または二つの異なる反応温度を持つ化学蓄熱物質を空間的に配置し、時間的に変動する環境温度で二つの潜熱蓄熱物質が異なる温度応答をすることにより定常的に一方が他方よりも高温になることを実現し、またこの温度差を発電等に利用することを最も主要な特徴とする。   The present invention spatially arranges two latent heat storage materials having different phase transition temperatures or two chemical heat storage materials having different reaction temperatures, and the two latent heat storage materials have different temperature responses at temporally varying environmental temperatures. It is the most important feature that one of them is steadily higher in temperature than the other by utilizing the above, and that this temperature difference is utilized for power generation or the like.

上記の二つの潜熱蓄熱物質または化学蓄熱物質は異なる固有の相転移温度または反応温度をもち、相転移または反応を維持する性質を持つ。これら二つが同じ変動する外部の環境温度に触れる場合、その一方は対象とする環境温度変動の平均温度よりも高く最高温度よりも低く、他方は環境変動の平均温度よりも低く最低温度よりも高いことが必要である。もし、二つの触れる外部環境温度に差がある場合は、それぞれ熱交換を行う外部環境の平均温度に設定しても良い。以下、潜熱蓄熱物質と化学蓄熱物質をまとめて蓄熱物質と呼び、物質固有の相転移温度または反応温度をまとめて固有温度と呼ぶ。   The above two latent heat storage materials or chemical heat storage materials have different intrinsic phase transition temperatures or reaction temperatures and have the property of maintaining the phase transition or reaction. When these two are exposed to the same fluctuating external environmental temperature, one is higher than the target environmental temperature fluctuation average temperature and lower than the maximum temperature, and the other is lower than the average environmental fluctuation temperature and higher than the minimum temperature It is necessary. If there is a difference between the two touching external environment temperatures, each may be set to the average temperature of the external environment that performs heat exchange. Hereinafter, the latent heat storage material and the chemical heat storage material are collectively referred to as a heat storage material, and the phase transition temperature or reaction temperature specific to the material is collectively referred to as a specific temperature.

温度差を生じることになる内部の空間と外部環境との熱的結合は、可能な限り二つの蓄熱物質のみを経由して実現される。すなわち、内部空間と二つの蓄熱物質は異なる二つの伝熱面で接し、この二つの伝熱面が直接触れ合わないように伝熱面以外は断熱壁で構成される。蓄熱物質は外部環境温度の時間的変動周期の中で固有温度付近を維持できるために十分な量を用いる。   The thermal coupling between the internal space and the external environment that will cause a temperature difference is realized via only two heat storage materials as much as possible. That is, the internal space and the two heat storage materials are in contact with two different heat transfer surfaces, and the heat transfer surfaces other than the heat transfer surface are configured with heat insulating walls so that the two heat transfer surfaces do not directly touch each other. A sufficient amount of the heat storage material is used so that it can maintain the vicinity of the natural temperature within the temporal fluctuation cycle of the external environment temperature.

蓄熱物質は熱伝導性に乏しい場合は、熱伝導性に富む物質と蓄熱物質との複合材料を構成して外界と内部空間を移動する熱エネルギーの流路とする。   When the heat storage material is poor in heat conductivity, a heat energy flow path that forms a composite material of a material having high heat conductivity and a heat storage material and moves between the outside and the internal space is used.

このようにして実現される内部空間には二つの蓄熱物質によって定常的に温度差が生じるので、この温度差を活用して熱電変換素子を活用した発電やバイナリー発電を行うことが可能となる。   Since the internal space realized in this manner constantly generates a temperature difference due to the two heat storage materials, it is possible to perform power generation and binary power generation using the thermoelectric conversion element by utilizing this temperature difference.

外界と蓄熱物質との熱的なやりとりが内部の熱伝導よりも支配的になって内部の温度差を消失しない工夫として、十分な量の蓄熱物質を用いるほか、蓄熱物質と外部環境と接する境界面に熱整流機構を導入することが有効である。このとき、内部の熱流方向と外部から流入流出する熱の方向性が一致するように整流方向を定める。   In addition to using a sufficient amount of heat storage material, the boundary between the heat storage material and the external environment will be used as a means of preventing the internal temperature difference from disappearing because the thermal exchange between the external environment and the heat storage material is dominant over the internal heat conduction. It is effective to introduce a thermal rectification mechanism on the surface. At this time, the rectification direction is determined so that the internal heat flow direction and the directivity of heat flowing in and out from the outside coincide.

本発明によれば、時間的に温度変動する外部環境から自発的に定常的な温度勾配を生じることができる。さらに、この温度差を用いて、単純でコンパクかつ安価な構成で温度差発電や動力源を実現できる。蓄熱・温度維持作用もあることから、住宅の壁などや家具などに利用して室内の温度調節を自発的に行いながら発電をすることなどが可能になる。コンピュータのCPUなどの温度上昇防止手段としても利用でき、省電力化にもつながる。携帯電源や防災時等の非常用電源、バッテリ交換や電線を引き回しにくい場所でのセンサや通信用電源、自動車や炉などに適用してエネルギーの有効利用にも利用できる。水素製造や蓄電池充電、淡水生成機構用電源など多様なオンサイトのエネルギーインフラとして利用が可能である。夜間は発電できなくなる太陽光発電などと異なり、常時安定して電力を生成できるように設計することができることが特徴である。   According to the present invention, a steady temperature gradient can be generated spontaneously from an external environment in which the temperature fluctuates with time. Furthermore, using this temperature difference, it is possible to realize temperature difference power generation and a power source with a simple, compact and inexpensive configuration. Since it also has a heat storage and temperature maintenance effect, it can be used for housing walls, furniture, etc. to generate electricity while voluntarily adjusting the indoor temperature. It can also be used as a temperature rise prevention means for computer CPUs, etc., leading to power savings. It can also be used for the effective use of energy by applying it to portable power supplies, emergency power supplies for disaster prevention, etc., battery replacement, power supplies for communication in places where it is difficult to route wires, automobiles, furnaces, etc. It can be used as various on-site energy infrastructures such as hydrogen production, storage battery charging, and power supply for freshwater generation mechanism. Unlike solar power generation, which cannot generate power at night, it can be designed to generate power stably at all times.

本発明の実施形態における伝熱機構の概略を示す図である。It is a figure which shows the outline of the heat-transfer mechanism in embodiment of this invention. 高熱伝導度の物質中に蓄熱物質を分散させた複合材料の図である。It is a figure of the composite material which disperse | distributed the thermal storage substance in the substance of high thermal conductivity. 蓄熱物質中に高熱伝導度の物質を分散させた複合材料の図である。It is a figure of the composite material which disperse | distributed the substance of high thermal conductivity in the thermal storage substance. 加熱時及び冷却時の蓄熱物質複合材料の温度応答を示す図である。It is a figure which shows the temperature response of the thermal storage substance composite material at the time of a heating and cooling. 環境温度変動と二種の蓄熱物質複合材料の温度グラフである。It is a temperature graph of environmental temperature fluctuation | variation and two types of thermal storage material composite materials. 第一の実施形態である自然充電電池の図である。It is a figure of the natural charge battery which is 1st embodiment. 第二の実施形態である周期的熱放射による発電系の図である。It is a figure of the electric power generation system by periodic thermal radiation which is 2nd embodiment. 第三の実施形態における離れた変動熱源を用いる発電系の図である。It is a figure of the electric power generation system using the fluctuating heat source in the third embodiment. 第四の実施形態におけるカスケード型発電機構の図である。It is a figure of the cascade type electric power generation mechanism in 4th embodiment.

以下、図面を参照して説明する。   Hereinafter, description will be given with reference to the drawings.

図1に示されるように、本発明の伝熱機構Aは少なくとも断熱壁1と固有温度の異なる蓄熱物質2(固有温度TH)及び3(固有温度TL)で隔離された内部空間4から構成される。二つの蓄熱物質に熱的に接触するように内部空間に伝熱系を入れれば、内部空間を流れる熱流Qが発生する。内部空間に入れるものがエネルギー変換装置であればその熱エネルギーの一部を電力など他のエネルギーに変換することができる。 As shown in FIG. 1, the heat transfer mechanism A of the present invention is separated from an internal space 4 separated by at least a heat storage material 2 (inherent temperature T H ) and 3 (inherent temperature T L ) having a specific temperature different from that of the heat insulating wall 1. Composed. If a heat transfer system is inserted into the internal space so as to be in thermal contact with the two heat storage materials, a heat flow Q flowing through the internal space is generated. If what is put in the internal space is an energy conversion device, a part of the thermal energy can be converted into other energy such as electric power.

内部空間4は少なくとも蓄熱物質2及び3と伝熱面5を通して外部環境と熱的につながる。熱整流機構6を蓄熱物質2と伝熱面5の間、及び蓄熱物質3と伝熱面5の間に挿入することが好ましい。このとき、各々の伝熱面での熱整流の方向はより高温の固有温度THからより低温の固有温度TLに向かう内部空間の熱流Qの方向に一致させる。 The internal space 4 is thermally connected to the external environment through at least the heat storage materials 2 and 3 and the heat transfer surface 5. It is preferable to insert the heat rectifying mechanism 6 between the heat storage material 2 and the heat transfer surface 5 and between the heat storage material 3 and the heat transfer surface 5. At this time, the direction of thermal rectification on each heat transfer surface is made to coincide with the direction of the heat flow Q in the internal space from the higher specific temperature T H to the lower specific temperature T L.

以下、外部環境温度の時間変動から内部空間に定常的な温度勾配、従って定常的な熱流Qを生じるメカニズムについて説明する。以下の説明は潜熱蓄熱物質の例であるが、化学蓄熱物質を使った場合も同様の機構で目的が実現される。   Hereinafter, a mechanism for generating a steady temperature gradient in the internal space and thus a steady heat flow Q from the time variation of the external environment temperature will be described. The following explanation is an example of a latent heat storage material, but the purpose is also realized by a similar mechanism when a chemical heat storage material is used.

潜熱蓄熱物質が相転移温度より低い温度で固体になっており、より温度の高い外部環境から一定の熱流が潜熱蓄熱物質に流入するとき、外部環境に接する表面側から内部空間側に温度勾配ができる。やがて相転移温度に達した表面側は融解する。内部の固/液界面は表面側から内部側に移動し、やがて潜熱蓄熱物質全体が融解し液体になる。逆に潜熱蓄熱物質が相転移温度よりも高く固体になっており、外部環境に熱が流出する場合には表面側から固体になり固/液界面が内部に向かって移動する。    When the latent heat storage material is solid at a temperature lower than the phase transition temperature, and a certain heat flow flows into the latent heat storage material from a higher temperature external environment, there is a temperature gradient from the surface side in contact with the external environment to the internal space side. it can. The surface side that has reached the phase transition temperature eventually melts. The internal solid / liquid interface moves from the surface side to the internal side, and eventually the entire latent heat storage material melts and becomes liquid. On the contrary, the latent heat storage material becomes a solid higher than the phase transition temperature, and when heat flows out to the external environment, it becomes a solid from the surface side and the solid / liquid interface moves toward the inside.

このときの外部から内部への温度勾配や固/液界面の移動速度は潜熱蓄熱物質の熱伝導度によって定まる。一般に潜熱蓄熱物質は熱伝導度が低く、表面と内部の温度変化の差は顕著になりやすい。   At this time, the temperature gradient from the outside to the inside and the moving speed of the solid / liquid interface are determined by the thermal conductivity of the latent heat storage material. In general, the latent heat storage material has low thermal conductivity, and the difference in temperature change between the surface and the inside tends to be remarkable.

しかしながら、図2のようにマイクロカプセルに入った潜熱蓄熱物質が炭素や銀ペーストなど熱伝導度の大きい物質に分散されて複合材料となっているような場合、あるいは図3のように炭素繊維など熱伝導度の大きい物質が潜熱蓄熱物質内に分散されている複合材料となっているような場合は、内部と外部の温度分布はより均一化される。   However, in the case where the latent heat storage material contained in the microcapsule is dispersed into a material having high thermal conductivity such as carbon or silver paste as shown in FIG. 2 to form a composite material, or carbon fiber or the like as shown in FIG. When a material having a high thermal conductivity is a composite material dispersed in the latent heat storage material, the temperature distribution inside and outside is made more uniform.

潜熱蓄熱物質複合材料の初期状態が固体であるとし、外部環境から一定の熱流が与えられた時、潜熱蓄熱物質複合材料の平均温度は図4の左側グラフのように変動する。初期の勾配は固体としての温度上昇、温度停滞状態は固体から液体への相転移でありこれは完全に融解するまで継続する。完全に融解した後は液体として温度上昇する。   When the initial state of the latent heat storage material composite material is solid, and when a constant heat flow is given from the external environment, the average temperature of the latent heat storage material composite material varies as shown in the left graph of FIG. The initial gradient is the temperature rise as a solid, and the temperature stagnation state is a solid-to-liquid phase transition that continues until it is completely melted. After complete melting, the temperature rises as a liquid.

逆に、溶液状態の潜熱蓄熱物質複合材料を一定の冷却速度の環境下に置くと、図4の右側グラフのように左側のグラフを逆にたどる変化を示す。すなわち、液体としての冷却を示す最初の勾配、液体から固体への相転移を示すプラトー、そして固体としての冷却勾配の順に変化する。   Conversely, when the solution-state latent heat storage material composite material is placed in an environment having a constant cooling rate, a change in which the left graph is reversed as shown in the right graph of FIG. 4 is shown. That is, the initial gradient indicating cooling as a liquid, a plateau indicating a phase transition from liquid to solid, and a cooling gradient as a solid change in this order.

このように、潜熱蓄熱物質を活用すれば相転移の間は複合材料の温度を一定に保つことができる。潜熱蓄熱物質の分子鎖長など化学構造や組成を変化させて固有温度を適切に選択すれば望みの温度でプラトーを作ることができる。   Thus, if the latent heat storage material is utilized, the temperature of the composite material can be kept constant during the phase transition. A plateau can be made at a desired temperature by appropriately selecting the proper temperature by changing the chemical structure and composition such as the molecular chain length of the latent heat storage material.

周期的な温度変化をする外部環境に潜熱蓄熱物質が接する時、潜熱蓄熱物質は固化したり液化したりする。周期内で出入りする総熱量よりも潜熱蓄熱材の潜熱総量が大きければ相転移状態の中で液体と固体の比率が変わるだけで潜熱蓄熱複合材料全体の温度としてはプラトーを維持することになる。   When the latent heat storage material comes into contact with an external environment that periodically changes temperature, the latent heat storage material is solidified or liquefied. If the total amount of latent heat of the latent heat storage material is larger than the total amount of heat entering and exiting within the period, the plateau is maintained as the temperature of the entire latent heat storage composite material only by changing the ratio of liquid to solid in the phase transition state.

従って、図5に示すように周期的変動する外部環境温度に対して、相転移温度を保つ量の2種の固有温度(THとTL)の潜熱蓄熱材を用いれば、外部環境が変化しても系の内部に定常的に高温THと低温TLを維持することができる。図1のように内部空間は一方をTH、他方をTLと所定の温度差がある熱源に接しているため、内部空間に熱流Qが発生する。 Therefore, as shown in FIG. 5, the external environment changes if the latent heat storage material has two kinds of intrinsic temperatures ( TH and TL ) that maintain the phase transition temperature with respect to the periodically changing external environment temperature. Even in this case, the high temperature T H and the low temperature T L can be constantly maintained inside the system. As shown in FIG. 1, since the internal space is in contact with a heat source having a predetermined temperature difference between T H and the other T L and the other, heat flow Q is generated in the internal space.

潜熱蓄熱物質と外部環境の周期的な熱の出入りと内部空間の熱流Qの総和に対しても恒常的に相転移状態の範囲になるように潜熱蓄熱物質が用いられた場合、温度差ΔT= THとTLと熱流Qは定常的に一定値となる。仮に潜熱熱容量を超えて熱交換が行われる場合も、二つの潜熱蓄熱物質の外部温度への応答の遅れから温度差が生じるように作成することが可能である。後者の場合には温度差はΔTよりも小さくなる。 If the latent heat storage material is used so that it is constantly in the range of the phase transition state with respect to the sum of the periodic heat input and output of the latent heat storage material and the external environment and the heat flow Q in the internal space, the temperature difference ΔT = T H and T L and the heat flow Q are constantly constant. Even if heat exchange is performed exceeding the latent heat capacity, it is possible to create a temperature difference from the delay in response of the two latent heat storage materials to the external temperature. In the latter case, the temperature difference is smaller than ΔT.

図1に示されるように、熱整流性のある物質6を熱流Qと方向が一致するように潜熱蓄熱物質が外部環境と接する界面に設置すると、外部環境が想定外の振れ幅で変動をした場合であっても、熱流Qと逆行する方向の潜熱蓄熱物質と外部環境との熱交換を相対的に制限でき、内部熱流Qを維持しやすい。外部環境の変動温度の平均よりも高いTHと低いTLを用いる場合、これらの潜熱蓄熱物質の経験する固有温度以上の外部環境からの熱流入が生じる加熱時間と、固有温度以下の外部環境へ流出する冷却時間は一般に等しくならない。常に固有温度を保つためには融解と凝固が一周期で等量の変化をする、すなわち熱流入と流出のバランスをとることが望ましい。よって熱整流の導入はこの調整のためにより好ましい構成である。 As shown in FIG. 1, when the heat rectifying substance 6 is installed at the interface where the latent heat storage material contacts the external environment so that the direction of the heat flow Q coincides with the heat flow Q, the external environment fluctuates with an unexpected fluctuation width. Even in this case, the heat exchange between the latent heat storage material in the direction opposite to the heat flow Q and the external environment can be relatively restricted, and the internal heat flow Q can be easily maintained. When using a high T H and a low T L than the average of the temperature variation of the external environment, and the heating time when heat inflow occurs from specific temperature or more external environment experienced these latent heat storage material, specific temperature or less of the external environment In general, the cooling time flowing out into the is not equal. In order to always maintain the intrinsic temperature, it is desirable that melting and solidification change in an equal amount in one cycle, that is, balance between heat inflow and outflow. Therefore, introduction of thermal rectification is a more preferable configuration for this adjustment.

図1の構成における本質は形状ではなくその構成にある。断熱壁で囲まれた内部空間が二つの蓄熱物質に接した伝熱面を持ち、内部空間は外部環境と蓄熱物質を通して伝熱を担う。系全体の硬さ、二つの伝熱面の位置関係の設計には自由度がある。   The essence in the configuration of FIG. 1 is not the shape but the configuration. The internal space surrounded by the heat insulating wall has a heat transfer surface in contact with the two heat storage materials, and the internal space is responsible for heat transfer through the external environment and the heat storage material. There is flexibility in designing the hardness of the entire system and the positional relationship between the two heat transfer surfaces.

以上のメカニズムによって、外部環境温度の時間変動から内部空間に定常的な温度勾配、従って定常的な熱流Qを生じる。目的の実現のためには、外部環境の温度は完全に周期的な変化でなくても良いが、平均温度の周りを揺動するものである必要がある。そして、THは平均温度と揺動の上限の間に定め、TLは平均温度と揺動の上限の間に定める。平均単調上昇のみ、あるいは逆に単調減少のみをする系では潜熱蓄熱物質が完全に液化または固化してしまい、相転移温度を維持することができずやがて系の全てが平衡温度に到達して温度差ΔTが消失する。 With the above mechanism, a steady temperature gradient, and thus a steady heat flow Q, is generated in the internal space from the time variation of the external environment temperature. In order to realize the purpose, the temperature of the external environment does not have to be completely periodic, but it needs to swing around the average temperature. T H is determined between the average temperature and the upper limit of oscillation, and T L is determined between the average temperature and the upper limit of oscillation. In a system where only the average monotonic rise or conversely monotonous decrease is achieved, the latent heat storage material is completely liquefied or solidified, and the phase transition temperature cannot be maintained. The difference ΔT disappears.

内部熱流Qは熱エネルギーを活用する発電や充電、熱エネルギーを活用する動力源などのエネルギー変換を通した活用、あるいはそれら変換されたエネルギーを活用した化学反応、センシング、演算など多様な応用が可能である。発電機能のみならず、本発明の機構を部屋の壁などに用いる場合は、蓄熱物質を介した外部環境との熱交換で部屋の温度変動が抑制され、温調にかかる消費エネルギーの削減に寄与する。   The internal heat flow Q can be used for various applications such as power generation and charging that use thermal energy, energy conversion such as power source that uses thermal energy, or chemical reaction, sensing, and computation using the converted energy. It is. When the mechanism of the present invention is used not only for the power generation function but also for the wall of the room, etc., the temperature fluctuation of the room is suppressed by heat exchange with the external environment via a heat storage material, contributing to the reduction of energy consumption for temperature control. To do.

以下に本発明の時間的温度変動から空間的温度勾配へ変換する伝熱機構及びその温度差または熱流を活用したエネルギー変換機構の構成部品について、詳細に説明する。   In the following, the heat transfer mechanism for converting a temporal temperature fluctuation into a spatial temperature gradient and the components of the energy conversion mechanism utilizing the temperature difference or heat flow of the present invention will be described in detail.

断熱壁1はポリスチレンフォーム、グラスウール、羊毛断熱材、熱伝導度の低い物質や真空断熱構造を用いることができる。これらに限定されず、断熱性が認められるものはいずれも適用可能である。   The heat insulating wall 1 can be made of polystyrene foam, glass wool, wool heat insulating material, a material having low thermal conductivity, or a vacuum heat insulating structure. However, the present invention is not limited to these, and any of those having heat insulation properties can be applied.

蓄熱物質2及び3で利用可能な潜熱蓄熱物質にはパラフィン、脂肪酸、糖アルコールなど有機物化合物、塩化カルシウム水和物、硫酸ナトリウム水和物などの無機水和塩、ガリウムなどの低融点金属、そして氷−水などが常温付近では使用可能である。また、高温では銅などの金属、Al−Siなどの合金、塩-溶融塩系などが使用できる。これらに限定されず、潜熱蓄熱性が認められるものはいずれも適用可能である。その物質選定は外部環境の温度変動の範囲に融点を持つように行う。   The latent heat storage materials available for the heat storage materials 2 and 3 include organic compounds such as paraffin, fatty acid, sugar alcohol, inorganic hydrate salts such as calcium chloride hydrate and sodium sulfate hydrate, low melting point metals such as gallium, and Ice-water can be used near room temperature. At high temperatures, metals such as copper, alloys such as Al-Si, and salt-molten salt systems can be used. However, the present invention is not limited to these, and any of those having latent heat storage properties is applicable. The substance should be selected so that the melting point is within the temperature fluctuation range of the external environment.

蓄熱物質2及び3で利用可能な化学蓄熱物質にはMgO+H2O→Mg(OH)2などの吸収反応、FeCl3・(m-n)CH3OH+nCH3OH→FeCl3・mCH3OHなどの混合反応、Na2S+5H2O→Na2S・5H2Oなどの水和反応が使用できる。これらに限定されず、化学蓄熱性が認められるものはいずれも適用可能である。その物質選定は外部環境の温度変動の範囲に反応平衡温度を持つように行う。 Heat storage material 2 and chemical heat storage material available in 3 MgO + H2O → Mg (OH ) absorption reaction such as 2, FeCl 3 · (mn), such as CH 3 OH + nCH 3 OH → FeCl 3 · mCH 3 OH A hydration reaction such as a mixed reaction or Na 2 S + 5H 2 O → Na 2 S · 5H 2 O can be used. However, the present invention is not limited to these, and any of those having chemical heat storage properties can be applied. The substance is selected so that the reaction equilibrium temperature is within the temperature fluctuation range of the external environment.

内部空間4に導入する熱エネルギーを電気エネルギーに変換する機構にはビスマス・テルル、鉛・テルル、シリコン・ゲルマニウムなどの素材を用いた熱電変換素子、及び銅、鉄、クロメルなどの熱電対、水蒸気を用いるタービン発電、アンモニアなどを用いるバイナリー発電などが利用可能である。熱エネルギーを力学エネルギーなど別のエネルギーに変換して最終的に電気エネルギーにしても良い。   The mechanism for converting the heat energy introduced into the internal space 4 into electric energy is a thermoelectric conversion element using materials such as bismuth tellurium, lead / tellurium, silicon / germanium, and thermocouples such as copper, iron, chromel, water vapor, etc. Turbine power generation using, binary power generation using ammonia or the like can be used. Thermal energy may be converted into other energy such as mechanical energy and finally converted into electrical energy.

内部空間4に導入する熱エネルギーを力学エネルギーに変換する機構には蒸気機関、スターリングエンジンなどが利用可能である。熱エネルギーを電気エネルギーなど別のエネルギーに変換して最終的に力学エネルギーにしても良い。   A steam engine, a Stirling engine, or the like can be used as a mechanism for converting thermal energy introduced into the internal space 4 into mechanical energy. Thermal energy may be converted into other energy such as electric energy and finally converted into mechanical energy.

さらに、上記の電気エネルギーや力学エネルギーを用いてさらにレーザー等の光エネルギーへの変換、電気分解や充電など化学エネルギーへの変換、ヒーターなどの熱エネルギーへの変換が可能である。これらの付加的な変換機構は、内部空間や他の構成部分の一部を閉めても良く、また外部にあっても良い。   Furthermore, conversion to light energy such as laser, conversion to chemical energy such as electrolysis and charging, and conversion to heat energy such as a heater are possible using the above-described electric energy and dynamic energy. These additional conversion mechanisms may close part of the internal space or other components, or may be external.

伝熱面5はアルミやサファイヤ、カーボン材料など熱伝導度の高い任意の固体及び銀ペーストなどの熱伝導性に優れた流動性のある物質、あるいはその内部に対流する流体や容易に蒸発する液体を含み熱輸送性に優れた構造にする。熱放射で外部環境と熱的交換させてもよく、その場合には、伝熱面は黒体に近いもの(特に赤外線と遠赤外線の領域で放射率が1に近いものや多孔質構造などで広い波長域で放射率が1に近いもの)が好ましい。   The heat transfer surface 5 is an arbitrary solid having high thermal conductivity such as aluminum, sapphire, or carbon material, and a fluid material having excellent thermal conductivity such as silver paste, or a convection fluid or an easily evaporating liquid therein. It has a structure with excellent heat transportability. The heat transfer surface may be thermally exchanged with the external environment by heat radiation, in which case the heat transfer surface is close to a black body (especially in the infrared and far-infrared regions where the emissivity is close to 1 or a porous structure) Those having an emissivity close to 1 in a wide wavelength range are preferred.

また、上記伝熱面は外部環境や本体構造のカバーを通して熱的につながっていてもよく、分離していても良い。前者の例として、二つの伝熱面が同一の金属容器の一部をなしており、一日の外気の温度変動を利用する場合がある。後者の例として、一方の伝熱面が焼却炉やその熱放射に面し、他方の伝熱面が焼却炉の熱放射を直接受けない外気などに面しており、それぞれ異なった温度範囲と周期で変動する外気と熱交換する場合がある。   The heat transfer surface may be thermally connected through an external environment or a cover of the main body structure, or may be separated. As an example of the former, there are cases where two heat transfer surfaces form part of the same metal container and utilize the temperature fluctuation of the outside air for a day. As an example of the latter, one heat transfer surface faces the incinerator and its heat radiation, and the other heat transfer surface faces the outside air that does not directly receive the heat radiation of the incinerator. There is a case where heat is exchanged with the outside air which fluctuates with a cycle.

伝熱面と蓄熱物質の間に入れると好ましい熱整流性物質6には様々な物質が知られている。例えば、接触面に粗さなどがあり伝熱方向によって熱的接触の程度が変化する二つの物質の接触構造、温度勾配方向により歪みや圧が変化し接触面の伝熱性に不均等が生じる二つの物質の接合構造、グラファイト/クオーツなど熱伝導度の温度依存性が異なるために伝熱方向によって総合的な熱伝導に差が出る二つの物質の接合構造、Cu/Cu2Oなど金属と絶縁体の接合において熱伝達キャリアの分布に非対称性がある二つの接合構造、アルミニウムと鉄など仕事関数の異なる金属が酸化膜等の絶縁体を介して接触している構造、炭素やカーボンナノチューブなどが熱伝導方向に対して非対称に分散された構造、真空中で放射率の異なる物質が黒体に近い物質を介して互いに熱放射でエネルギー交換を行う系など多様な物質系または機構、液体を用いた伝熱系で浮力によって下から上に伝わりやすいが上から下に伝わりにくい構造などである。これらに限定されず、対象とする外部環境の温度変動範囲で熱整流性が認められるものはいずれも適用可能である。 Various materials are known as the preferred heat rectifying material 6 when placed between the heat transfer surface and the heat storage material. For example, the contact structure of two substances that have roughness on the contact surface and the degree of thermal contact changes depending on the heat transfer direction, the strain and pressure change depending on the temperature gradient direction, and the heat transfer performance of the contact surface becomes uneven. Bonding structure of two materials, temperature dependence of thermal conductivity such as graphite / quartz, etc., so that there is a difference in total heat conduction depending on the heat transfer direction, insulating material such as Cu / Cu 2 O Two joint structures with asymmetric distribution of heat transfer carriers in body joints, structures where metals with different work functions such as aluminum and iron are in contact via an insulator such as an oxide film, carbon and carbon nanotubes Various materials systems or mechanisms, such as structures that are distributed asymmetrically with respect to the direction of heat conduction, systems in which emissivity is exchanged by heat radiation through materials close to black bodies in vacuum And the like hardly structure transmitted from top to bottom but easily transmitted from bottom to top by the buoyancy heat transfer system using. However, the present invention is not limited to these, and any of those in which thermal rectification is recognized in the temperature fluctuation range of the target external environment can be applied.

以下、第一の実施形態である自然充電電池Bについて説明する。   Hereinafter, the natural charging battery B which is the first embodiment will be described.

図6に示すように、板状の自然充電電池Bが作成可能である。内部には熱電変換素子9からの電力で電池10を充電するための充電用回路11を含み、気温変動の中で自然に蓄電池を充電する。蓄電池からの出力は端子12から取り出す。蓄電池と充電用回路は断熱性のある容器に収められており、熱伝達の経路とならないようにする。室温付近で動作させるためにパラフィンを蓄熱物質として用い、THとTLの融点は分子量で調節する。 As shown in FIG. 6, a plate-shaped natural rechargeable battery B can be created. A charging circuit 11 for charging the battery 10 with electric power from the thermoelectric conversion element 9 is included inside, and the storage battery is charged naturally in the temperature fluctuation. The output from the storage battery is taken out from the terminal 12. The storage battery and the charging circuit are housed in a heat-insulating container so as not to be a heat transfer path. Used as paraffin heat storage material to operate at near room temperature, the melting point of T H and T L is adjusted by the molecular weight.

上記の自然充電電池Bはセンサやその通信電源として、あるいは持ち運び可能な携帯電話等の電子機器とすることができる。多数結合してより大きな板状にして住宅等の壁面に内蔵させることもできる。壁面に利用する場合は、発電のみならず、蓄熱材が室内の温度変動を緩和する効果も生じる。   The natural rechargeable battery B can be a sensor, a communication power source thereof, or an electronic device such as a portable mobile phone. A large number of them can be combined into a larger plate shape and incorporated in the wall surface of a house or the like. When used for a wall surface, not only power generation but also a heat storage material has an effect of relaxing indoor temperature fluctuations.

次に、第二の実施形態である周期的熱放射による発電系Cについて説明する。   Next, the power generation system C using periodic heat radiation according to the second embodiment will be described.

図7の矢印で示すように、太陽光や断続運転する炉など周期的に変動する一方向に向いた熱放射により動作する発電系を構築できる。このとき、伝熱面5を受光・放熱面とするので放射率の高い(従って吸収率の高い)物質を伝熱面とするのが好ましい。この発電構造を壁に並べることにより安定した電力を得ることが可能になる。本技術は自転する宇宙船や周期的に太陽光にさらされる地球外の構造物にも用いることができる。熱放射に対して本発電系を並べた面を持つ構図を自転させることで熱負荷を軽減しながら安定発電するように活用することも可能となる。熱電変換素子9の出力ケーブル2本を系の外に引き出しを明示するために断熱壁が一部途切れたように描かれているが、伝熱面以外は全て断熱壁で囲まれていることが望ましい。以降の図でも同様である。   As shown by the arrows in FIG. 7, it is possible to construct a power generation system that operates by heat radiation directed in one direction that varies periodically, such as sunlight or a furnace that operates intermittently. At this time, since the heat transfer surface 5 is a light receiving / dissipating surface, it is preferable to use a substance having a high emissivity (and thus a high absorption rate) as the heat transfer surface. Stable power can be obtained by arranging the power generation structures on the wall. The technology can also be used for spinning spacecraft and extraterrestrial structures that are periodically exposed to sunlight. By rotating the composition having a surface on which the power generation system is arranged with respect to thermal radiation, it is possible to utilize the system so as to stably generate power while reducing the thermal load. In order to clearly show the two output cables of the thermoelectric conversion element 9 to the outside of the system, the heat insulating wall is depicted as partly interrupted, but all the heat transfer surfaces are surrounded by the heat insulating wall. desirable. The same applies to the subsequent drawings.

次に、第三の実施形態である距離的に離れた変動熱源を用いる発電系Dについて説明する。   Next, a power generation system D that uses a variable heat source that is distant from each other according to the third embodiment will be described.

太陽光に照らされた建築物の天井は室内よりも高くなりやすい。また温められた空気は上昇するので上層階の方が高温になりやすい。溶鉱炉の壁では内壁から外側に向かって温度が下降する。このように、一つの熱的環境の変化が距離の離れた二つの位置で事なる二つの変動熱源となることは広く見られる。この環境下で本発明を適用したのが図8である。   The ceiling of buildings illuminated by sunlight tends to be higher than indoors. In addition, since warmed air rises, the upper floor tends to be hotter. On the wall of the blast furnace, the temperature decreases from the inner wall toward the outer side. Thus, it is widely seen that a change in one thermal environment results in two fluctuating heat sources that occur at two positions that are separated from each other. FIG. 8 shows the application of the present invention in this environment.

図8のように、ある熱源の影響を受ける物体13に温度勾配をもたらす。離れた2点は異なる温度の熱源となる。高温熱源と低温熱源それぞれに潜熱蓄熱物質またはその温度を伝えるヒートパイプや熱交換器などの伝熱機構14を介して、これまで記述して来た構造と同様に内部空間の温度差TH及びTLを生じさせる。大元の熱源が変動する環境下で安定した温度勾配を作成でき、またエネルギー変換を行うことができることは同様である。 As shown in FIG. 8, a temperature gradient is caused in the object 13 affected by a certain heat source. The two distant points become heat sources with different temperatures. Similar to the structure described so far, the temperature difference T H of the internal space and the heat transfer mechanism 14 such as a heat pipe or a heat exchanger for transmitting the latent heat storage material or its temperature to the high temperature heat source and the low temperature heat source, respectively. TL is generated. It is the same that a stable temperature gradient can be created and energy conversion can be performed in an environment where the original heat source fluctuates.

次に、第四の実施形態であるカスケード型発電機構Eについて説明する。   Next, a cascade type power generation mechanism E which is a fourth embodiment will be described.

図9に示されるように、本発明の伝熱機構及びエネルギー変換機構は面方向にアレイ化するだけでなく、伝熱方向に積み重ねてカスケード構造とすることが可能である。すなわち、ある階層のTHは次の階層のTLとなる。これにより、広い温度範囲にわたって無駄のないエネルギーの活用を行うことができる。 As shown in FIG. 9, the heat transfer mechanism and the energy conversion mechanism of the present invention can be not only arrayed in the plane direction but also stacked in the heat transfer direction to form a cascade structure. That, T H of a certain hierarchy is the T L of the next layer. Thereby, it is possible to utilize energy without waste over a wide temperature range.

以上、本発明の実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   Although the embodiments of the present invention have been described in detail above, it should be understood that modifications, variations, and changes can be made without departing from the scope of the claims.

A 伝熱機構本体
B 自然充電電池
C 周期的熱放射による発電系
D 離れた変動熱源を用いる発電系
E カスケード型発電機構
1 断熱壁
2 より高温(TH)の固有温度である蓄熱物質
3 より低温(TL)の固有温度である蓄熱物質
4 内部空間
5 伝熱面
6 熱整流機構
7 蓄熱物質
8 熱伝導度の大きい物質
9 熱電変換素子
10 蓄電池
11 充電用回路
12 電池からの出力端子
13 ある熱源の影響を受ける物体
14 伝熱機構
From the heat storage material 3 is a specific temperature of the hot from A heat transfer mechanism body B natural rechargeable battery C periodic power system E cascaded power generating mechanism using a change heat source away generator system D by heat radiation 1 insulating wall 2 (T H) Thermal storage material that is a low temperature ( TL ) intrinsic temperature 4 Internal space 5 Heat transfer surface 6 Thermal rectification mechanism 7 Thermal storage material 8 Material with high thermal conductivity 9 Thermoelectric conversion element 10 Storage battery 11 Charging circuit 12 Output terminal 13 from battery An object affected by a heat source 14 Heat transfer mechanism

Claims (4)

空間的に分布があっても時間的には各位置での平均温度を中心に温度変動する外部環境に対して、2つの伝熱面以外は断熱壁で囲まれた内部空間を形成し、それら各々の伝熱面を通した外部環境と内部空間の間の熱伝導が、空間的温度分布の効果により一方の伝熱面が他方の伝熱面よりも高い平均温度を中心に変動する外部環境に触れている場合にはそれぞれの接する外部環境の平均温度付近の相転移温度(あるいは反応温度)である潜熱蓄熱物質(あるいは化学蓄熱物質)の影響を受けながら実現され、あるいは外部環境の空間的温度分布が小さいために両伝熱面がほぼ同じ平均温度付近で変動する外部環境に触れている場合には、一方の伝熱面では温度変動の平均温度よりも高く最高温度よりも低い相転移温度(あるいは反応温度)である潜熱蓄熱物質(あるいは化学蓄熱物質)の影響を受けながら実現され、他方の伝熱面では温度変動の平均温度よりも低く最低温度よりも高い相転移温度(あるいは反応温度)である潜熱蓄熱物質(あるいは化学蓄熱物質)の影響を受けながら実現されることにより、温度変動する外部環境から内部空間に自発的で定常的な温度差とそれによる定常的で一方向の熱流を生じることを特徴とする伝熱機構。   Even if there is a spatial distribution, an internal space surrounded by heat insulation walls other than the two heat transfer surfaces is formed against the external environment where the temperature fluctuates around the average temperature at each position in time. External environment where heat conduction between the external environment and the internal space through each heat transfer surface fluctuates around the average temperature of one heat transfer surface higher than the other heat transfer surface due to the effect of spatial temperature distribution In the case of touching, it is realized under the influence of the latent heat storage material (or chemical heat storage material) that is the phase transition temperature (or reaction temperature) around the average temperature of the external environment in contact with each other, or the spatial environment of the external environment If the heat transfer surface is exposed to an external environment where both heat transfer surfaces fluctuate around the same average temperature due to a small temperature distribution, the phase transition is higher than the average temperature of the temperature change on one heat transfer surface and lower than the maximum temperature. Temperature (or reaction temperature) Latent heat storage material (or reaction temperature) that is realized under the influence of latent heat storage material (or chemical heat storage material) and has a phase transition temperature (or reaction temperature) lower than the average temperature of temperature fluctuation and higher than the minimum temperature on the other heat transfer surface ( It is also characterized by the fact that it is realized while being influenced by chemical heat storage materials), and generates a spontaneous and steady temperature difference and a steady and unidirectional heat flow in the internal space from the external environment where the temperature fluctuates. Heat transfer mechanism. 請求項1に記載の伝熱機構において、外部環境と内部空間の間の熱伝導に影響を与える所定の相転移温度(あるいは反応温度)を持つ潜熱蓄熱物質(あるいは化学蓄熱物質)が、熱伝導性に優れた物質中にマイクロカプセル等の部分系として分散された、あるいは逆に所定の相転移温度(あるいは反応温度)を持つ潜熱蓄熱物質(あるいは化学蓄熱物質)の内部に熱伝導性に優れる粒子や繊維等を分散された複合材料であることを特徴とする、温度変動する外部環境から当該内部空間に定常的に一方向の熱流を生じることを特徴とする伝熱機構。   The heat transfer mechanism according to claim 1, wherein the latent heat storage material (or chemical heat storage material) having a predetermined phase transition temperature (or reaction temperature) that affects heat conduction between the external environment and the internal space is heat conduction. Excellent thermal conductivity in a latent heat storage material (or chemical heat storage material) dispersed as a sub-system such as a microcapsule in a material with excellent properties, or conversely, having a predetermined phase transition temperature (or reaction temperature) A heat transfer mechanism characterized in that it is a composite material in which particles, fibers, and the like are dispersed, and a unidirectional heat flow is constantly generated in the internal space from an external environment in which the temperature fluctuates. 請求項1及び2に記載される熱伝達機構の内部空間に生じる温度差を利用して発電機構及び動力源、化学反応の推進などを行うエネルギー変換機構。   An energy conversion mechanism for propelling a power generation mechanism, a power source, a chemical reaction, and the like by utilizing a temperature difference generated in the internal space of the heat transfer mechanism according to claim 1. 請求項1から3に記載の伝熱機構及びエネルギー変換機構において、外部環境からの熱流の非対称性が内部の潜熱蓄熱物質(あるいは化学蓄熱物質)による温度差による熱流の方向と一致するように外部環境と潜熱蓄熱物質あるいは化学蓄熱物質)の境界に熱整流性機構を導入することを特徴とする、温度変動する外部環境から当該内部空間に定常的に一方向の熱流を生じることを特徴とする伝熱機構及びエネルギー変換機構。   4. The heat transfer mechanism and energy conversion mechanism according to claim 1, wherein an external asymmetry of heat flow from the external environment coincides with a direction of heat flow due to a temperature difference caused by an internal latent heat storage material (or chemical heat storage material). It is characterized by introducing a heat rectifying mechanism at the boundary between the environment and the latent heat storage material or chemical storage material), and generating a unidirectional heat flow in the internal space from a temperature-fluctuating external environment Heat transfer mechanism and energy conversion mechanism.
JP2017130248A 2017-07-03 2017-07-03 A mechanism to obtain steady heat flow and stable power from time fluctuation of environmental temperature Active JP6634664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130248A JP6634664B2 (en) 2017-07-03 2017-07-03 A mechanism to obtain steady heat flow and stable power from time fluctuation of environmental temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130248A JP6634664B2 (en) 2017-07-03 2017-07-03 A mechanism to obtain steady heat flow and stable power from time fluctuation of environmental temperature

Publications (2)

Publication Number Publication Date
JP2019013125A true JP2019013125A (en) 2019-01-24
JP6634664B2 JP6634664B2 (en) 2020-01-22

Family

ID=65228093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130248A Active JP6634664B2 (en) 2017-07-03 2017-07-03 A mechanism to obtain steady heat flow and stable power from time fluctuation of environmental temperature

Country Status (1)

Country Link
JP (1) JP6634664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140836A (en) * 2021-04-13 2021-07-20 航天科工空间工程发展有限公司 Thermal control structure and storage battery structure comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926225A (en) * 1995-07-11 1997-01-28 Meidensha Corp Chemical heat pump
JP2006024650A (en) * 2004-07-06 2006-01-26 Sharp Corp Thermoelement using electron tunneling effect
JP2009182143A (en) * 2008-01-30 2009-08-13 Sony Corp Thermoelement and manufacturing method, and thermoelectric module
JP2012074662A (en) * 2009-12-09 2012-04-12 Sony Corp Thermoelectric generator, thermoelectric generating method, electric signal detecting device, and electric signal detecting method
JP2013531458A (en) * 2010-06-23 2013-08-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thermoelectric generator including phase change material
JP2014036196A (en) * 2012-08-10 2014-02-24 Yamaha Corp Thermoelectric unit
JP2014053635A (en) * 2011-12-26 2014-03-20 Tadashi Nakanuma Thermoelectric generator
JP2014208728A (en) * 2013-04-16 2014-11-06 富士高分子工業株式会社 Heat storable silicone material and method for producing the same
JP2016196087A (en) * 2016-07-27 2016-11-24 ナブテスコ株式会社 Lubricant state sensor for industrial robot and industrial robot remote monitoring system
JP2017095529A (en) * 2015-11-18 2017-06-01 三菱樹脂インフラテック株式会社 Paraffin-based composition and heat storage material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926225A (en) * 1995-07-11 1997-01-28 Meidensha Corp Chemical heat pump
JP2006024650A (en) * 2004-07-06 2006-01-26 Sharp Corp Thermoelement using electron tunneling effect
JP2009182143A (en) * 2008-01-30 2009-08-13 Sony Corp Thermoelement and manufacturing method, and thermoelectric module
JP2012074662A (en) * 2009-12-09 2012-04-12 Sony Corp Thermoelectric generator, thermoelectric generating method, electric signal detecting device, and electric signal detecting method
JP2013531458A (en) * 2010-06-23 2013-08-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thermoelectric generator including phase change material
JP2014053635A (en) * 2011-12-26 2014-03-20 Tadashi Nakanuma Thermoelectric generator
JP2014036196A (en) * 2012-08-10 2014-02-24 Yamaha Corp Thermoelectric unit
JP2014208728A (en) * 2013-04-16 2014-11-06 富士高分子工業株式会社 Heat storable silicone material and method for producing the same
JP2017095529A (en) * 2015-11-18 2017-06-01 三菱樹脂インフラテック株式会社 Paraffin-based composition and heat storage material
JP2016196087A (en) * 2016-07-27 2016-11-24 ナブテスコ株式会社 Lubricant state sensor for industrial robot and industrial robot remote monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140836A (en) * 2021-04-13 2021-07-20 航天科工空间工程发展有限公司 Thermal control structure and storage battery structure comprising same

Also Published As

Publication number Publication date
JP6634664B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
Ismail et al. Thermoelectric power generation using waste-heat energy as an alternative green technology
Børset et al. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling
Kaushik et al. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator
CN108615566B (en) Small nuclear reactor heat transmission system cooled by loop parallel heat pipes
Qiu et al. Development of a thermoelectric self-powered residential heating system
JP6202783B2 (en) System having heat storage device and use thereof
Borhani et al. Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite
Yazawa et al. Thermoelectric heat recovery from glass melt processes
Zheng et al. A passive evaporative cooling heat sink method for enhancing low-grade waste heat recovery capacity of thermoelectric generators
Rashidi et al. Assessment of solar chimney combined with phase change materials
GB2493092A (en) Electricity generation apparatus having a thermal store and thermoelectric heat exchanger
Atalay et al. Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids
Kandi et al. State of the art and future prospects for TEG-PCM Systems: A review
Muthu et al. Theoretical and experimental study on a thermoelectric generator using concentrated solar thermal energy
Liu et al. Advances and outlook of TE-PCM system: a review
Escobar et al. Experimental study of a hybrid solar thermoelectric generator energy conversion system
Xu et al. Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery
JP6634664B2 (en) A mechanism to obtain steady heat flow and stable power from time fluctuation of environmental temperature
Al‐Nimr et al. A hybrid TEG/wind system using concentrated solar energy and chimney effect
US7812246B2 (en) Thermoelectric effect device, energy direct conversion system, and energy conversion system
Al-Tahaineh et al. A hybrid TEG/evacuated tube solar collectors for electric power generation and space heating
JPWO2019132041A1 (en) Heating device and its use
US11499785B2 (en) Combined thermal energy storage and heat exchanger unit
WO2013034913A1 (en) Thermoelectric power generation
Yakut et al. Experımental investıgatıon and mathematıcal modelıng of a novel solar thermoelectrıc generator incorporated with thermal condensing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191129

R150 Certificate of patent or registration of utility model

Ref document number: 6634664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250