JP2019012718A - Crystal substrate and crystal substrate processing method - Google Patents

Crystal substrate and crystal substrate processing method Download PDF

Info

Publication number
JP2019012718A
JP2019012718A JP2017127136A JP2017127136A JP2019012718A JP 2019012718 A JP2019012718 A JP 2019012718A JP 2017127136 A JP2017127136 A JP 2017127136A JP 2017127136 A JP2017127136 A JP 2017127136A JP 2019012718 A JP2019012718 A JP 2019012718A
Authority
JP
Japan
Prior art keywords
substrate
crystal substrate
irradiated
laser
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017127136A
Other languages
Japanese (ja)
Other versions
JP7017728B2 (en
Inventor
順一 池野
Junichi Ikeno
順一 池野
山田 洋平
Yohei Yamada
洋平 山田
鈴木 秀樹
Hideki Suzuki
秀樹 鈴木
利香 松尾
Rika Matsuo
利香 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Saitama University NUC filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2017127136A priority Critical patent/JP7017728B2/en
Publication of JP2019012718A publication Critical patent/JP2019012718A/en
Application granted granted Critical
Publication of JP7017728B2 publication Critical patent/JP7017728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide a crystal substrate and a crystal substrate processing method capable of forming a processed layer by arranging a processing trace at a constant depth position inside a substrate up to the vicinity of the side surface of the substrate by irradiating with a laser beam.SOLUTION: A crystal substrate 20 is used when a processed layer 32 is formed inside a substrate by relatively moving the converging position and the substrate while converging a laser light from the irradiated surface 20r which is one of substrate surfaces into the inside of the substrate. A substrate side surface 20s is inclined toward the central axis side of the substrate from the irradiated surface 20r to the surface opposite to the irradiated surface 20r at an inclination angle α within a predetermined range with respect to the central axis of the substrate .SELECTED DRAWING: Figure 2

Description

本発明は、基板内部に加工層を形成する際に用いられる結晶基板および結晶基板加工方法に関する。   The present invention relates to a crystal substrate and a crystal substrate processing method used when forming a processed layer inside a substrate.

加工対象の結晶基板(例えば単結晶基板)にレーザ光を集光して二次元状の加工層を形成し、この加工層から剥離させることが提案されている。   It has been proposed to focus a laser beam on a crystal substrate to be processed (for example, a single crystal substrate) to form a two-dimensional processed layer and to peel the processed layer from the processed layer.

このようにして加工層から剥離させることで、所定の薄厚の剥離基板を得ることができる(例えば、特許文献1参照)。   By peeling from the processed layer in this manner, a predetermined thin substrate can be obtained (for example, see Patent Document 1).

特開2012-020222号公報JP 2012-020222 A

ところで、従来の結晶基板では基板側面が円筒状であるので、基板側面付近に加工痕を形成する際、レーザ光の一部を被照射面でなく基板側面から照射する必要がある。従って、基板側面付近の加工痕の形成精度が、他の加工痕に比べて劣る。すなわち、基板側面付近ではレーザ光の集光位置がずれてしまうことで、基板側面付近まで加工層を一定に形成できない(特に形状や深さ位置を一定にできない)。このため、基板剥離がうまくできない。   By the way, since the substrate side surface is cylindrical in the conventional crystal substrate, it is necessary to irradiate a part of the laser light from the substrate side instead of the irradiated surface when forming a processing mark near the substrate side surface. Accordingly, the formation accuracy of the processing marks near the side surface of the substrate is inferior to other processing marks. That is, the laser beam condensing position is shifted near the substrate side surface, so that the processed layer cannot be formed uniformly up to the substrate side surface (particularly, the shape and depth position cannot be fixed). For this reason, substrate peeling cannot be performed well.

本発明は、上記課題に鑑み、レーザ光を照射して基板側面付近にまで基板内部の一定した深さ位置に加工痕を配列することで加工層とすることが可能となる結晶基板、および、結晶基板加工方法を提供することを課題とする。   In view of the above problems, the present invention provides a crystal substrate that can be formed into a processing layer by irradiating laser light and arranging processing marks at a constant depth position inside the substrate up to the vicinity of the side surface of the substrate, and It is an object to provide a crystal substrate processing method.

上記課題を解決するための本発明の一態様によれば、レーザ光を一方の基板面である被照射面から基板内部に集光しつつ集光位置と基板とを相対的に移動させることで基板内部に加工層を形成する際に用いられる結晶基板であって、前記被照射面から前記被照射面とは反対側の面にかけて、基板側面が、基板中心軸側に傾斜していて前記基板中心軸に対して所定範囲内の傾斜角度で傾斜している結晶基板が提供される。   According to one aspect of the present invention for solving the above-described problem, the laser light is condensed from the irradiated surface, which is one of the substrate surfaces, into the substrate, and the condensing position and the substrate are relatively moved. A crystal substrate used when forming a processed layer inside a substrate, wherein the substrate side surface is inclined toward the substrate central axis from the irradiated surface to a surface opposite to the irradiated surface. A crystal substrate is provided that is inclined at an inclination angle within a predetermined range with respect to the central axis.

被照射面が矩形状であり、前記被照射面の各辺から前記基板側面が延びていてもよい。   The irradiated surface may have a rectangular shape, and the substrate side surface may extend from each side of the irradiated surface.

また、前記被照射面が円状であり、前記基板側面が円錐台面状であってもよい。   The irradiated surface may be circular and the substrate side surface may be a truncated cone surface.

上記課題を解決するための本発明の別の一態様によれば、本発明の一態様に記載の結晶基板を用意する基板用意工程と、前記基板用意工程で用意した前記結晶基板をレーザ光の被照射位置に配置し、レーザ光を集光するレーザ集光手段を前記被照射面上に非接触に配置する配置工程と、前記レーザ集光手段から出たレーザ光を全て、レーザ光のビーム中心軸が前記被照射面に直交しかつ前記被照射面から入射するように照射して前記結晶基板内部にレーザ光を集光しつつ、前記レーザ集光手段と前記結晶基板とを相対的に移動させることで、前記結晶基板内部に加工痕が配列された加工層を形成する形成工程とを備え、前記傾斜角度をαとし、前記結晶基板内において前記被照射面から集光点までのレーザ光の最外面であるビーム側面が基板中心軸に対してなす角度をβとすると、前記形成工程ではα≧βの関係を満たすように前記基板用意工程で前記結晶基板を用意する結晶基板加工方法が提供される。   According to another aspect of the present invention for solving the above-described problem, a substrate preparing step of preparing the crystal substrate according to one embodiment of the present invention, and the crystal substrate prepared in the substrate preparing step of the laser beam An arrangement step of disposing laser condensing means for condensing laser light on the irradiated surface in a non-contact manner at an irradiated position, and a laser beam emitted from the laser condensing means While irradiating so that the central axis is orthogonal to the irradiated surface and entering from the irradiated surface and condensing the laser light inside the crystal substrate, the laser condensing means and the crystal substrate are relatively Forming a processed layer in which processing marks are arranged inside the crystal substrate by moving the laser, and the inclination angle is α, and the laser from the irradiated surface to the condensing point in the crystal substrate The beam side, which is the outermost surface of light, is the substrate When the angle formed with respect to the mandrel and beta, in the forming step crystal substrate processing method for preparing the crystalline substrate in the substrate preparing step so as to satisfy the relationship of alpha ≧ beta is provided.

また、前記形成工程では、前記加工痕のうち前記加工層の縁に位置する縁加工痕から前記加工層に沿った前記基板側面までの距離を、前記縁加工痕を形成した際に前記縁加工痕から発生したクラックが前記加工層に沿って前記基板側面にまで到達し得る範囲内としてもよい。   Further, in the forming step, when the edge machining trace is formed, the edge machining trace is formed by measuring the distance from the edge machining trace located at the edge of the machining layer to the side surface of the substrate along the machining layer. The crack generated from the trace may be within a range in which the crack can reach the side surface of the substrate along the processed layer.

また、前記形成工程では、前記レーザ集光手段に補正環を設け、前記補正環により収差補正をしつつ前記加工層を形成してもよい。   Further, in the forming step, a correction ring may be provided in the laser condensing means, and the processed layer may be formed while correcting the aberration with the correction ring.

本発明によれば、レーザ光を照射して基板内に加工層を形成するに際し、基板側面付近に形成する加工痕の形成精度を向上させることができる結晶基板、および、結晶基板加工方法を提供することができる。   According to the present invention, there is provided a crystal substrate and a crystal substrate processing method capable of improving the formation accuracy of a processing mark formed near the side surface of a substrate when a processing layer is formed in the substrate by irradiating a laser beam. can do.

(a)は、本発明の一実施形態に係る結晶基板加工方法で用いる基板加工装置の構成を示す模式的斜視図であり、(b)は、この基板加工装置のレーザ集光手段に配置されたレンズを説明する模式的側面図である。(A) is a typical perspective view which shows the structure of the substrate processing apparatus used with the crystal substrate processing method which concerns on one Embodiment of this invention, (b) is arrange | positioned at the laser condensing means of this substrate processing apparatus. It is a typical side view explaining a lens. 本発明の一実施形態に係る結晶基板加工方法で、本発明の一実施形態に係る結晶基板内に加工層を形成することを説明する模式的側面図である。It is a typical side view explaining forming a processing layer in a crystal substrate concerning one embodiment of the present invention with a crystal substrate processing method concerning one embodiment of the present invention. 本発明の一実施形態に係る結晶基板加工方法で、レーザ光の集光により結晶基板内に加工層を形成することの変形例を説明する模式的側面図である。It is a typical side view explaining the modification of forming a processing layer in a crystal substrate by condensing a laser beam with a crystal substrate processing method concerning one embodiment of the present invention. 本発明の一実施形態に係る結晶基板の変形例を説明する模式的斜視図である。It is a typical perspective view explaining the modification of the crystal substrate which concerns on one Embodiment of this invention. 結晶基板内に加工層を形成することの従来例を説明する模式的側面図である。It is a typical side view explaining the prior art example of forming a process layer in a crystal substrate. 結晶基板内に加工層を形成することの比較例を説明する模式的側面図である。It is a typical side view explaining the comparative example of forming a processed layer in a crystal substrate.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate. The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

図1で、(a)は、本発明の一実施形態(以下、本実施形態という)に係る結晶基板加工方法で用いる基板加工装置の構成を示す模式的斜視図であり、(b)は、この基板加工装置のレーザ集光手段に配置されたレンズを説明する模式的側面図である。図2は、本発明の一実施形態に係るに係る結晶基板加工方法で、レーザ光の集光により結晶基板内に加工層を形成することを説明する模式的側面図である。   1A is a schematic perspective view showing a configuration of a substrate processing apparatus used in a crystal substrate processing method according to an embodiment of the present invention (hereinafter referred to as this embodiment), and FIG. It is a typical side view explaining the lens arrange | positioned at the laser condensing means of this board | substrate processing apparatus. FIG. 2 is a schematic side view for explaining that a processed layer is formed in a crystal substrate by condensing laser light in the crystal substrate processing method according to one embodiment of the present invention.

基板加工装置10は、載置台12と、載置台12上に固定され、結晶基板(例えば、SiCなどの単結晶基板)を保持する基板保持具13と、載置台12のZ方向(上下方向)位置に移動可能に支えるZステージ14と、Zステージ14をY方向に移動可能に支えるYステージ16と、Yステージ16をX方向に移動可能に支えるXステージ18とを備える。   The substrate processing apparatus 10 includes a mounting table 12, a substrate holder 13 that is fixed on the mounting table 12, and holds a crystal substrate (for example, a single crystal substrate such as SiC), and the Z direction (vertical direction) of the mounting table 12. A Z stage 14 that is movably supported at a position, a Y stage 16 that supports the Z stage 14 so as to be movable in the Y direction, and an X stage 18 that supports the Y stage 16 so as to be movable in the X direction are provided.

また、基板加工装置10は、基板保持具13上に保持された結晶基板20に向けてレーザ光Bを集光するレーザ集光手段22(例えば集光器)を備える。レーザ集光手段22には、レーザ発振装置から出射したレーザ光が入射するようになっている。   In addition, the substrate processing apparatus 10 includes laser condensing means 22 (for example, a concentrator) that condenses the laser light B toward the crystal substrate 20 held on the substrate holder 13. Laser light emitted from the laser oscillation device is incident on the laser condensing means 22.

レーザ集光手段22は、補正環24と、補正環24内に保持された集光レンズ26(例えば、空気中で集光する第1レンズ28と、この第1レンズ28と結晶基板20との間に配置される第2レンズ30とで構成されるレンズ)とを備えていて、結晶基板20の屈折率に起因する収差を補正する機能、すなわち収差補正環としての機能を有している。具体的には、図1(b)に示すように、集光レンズ26は、空気中で集光した際に、集光レンズ26の外周部Eに到達したレーザ光Bが集光レンズ26の中央部Mに到達したレーザ光Bよりも集光レンズ側で集光するように補正する。つまり、集光した際、集光レンズ26の外周部Eに到達したレーザ光Bの集光点EPが、集光レンズ26の中央部Mに到達したレーザ光Bの集光点MPに比べ、集光レンズ26に近い位置となるように補正することが可能になっている。これにより、レーザ光の集光によって形成される加工痕Cのレーザ照射方向における長さを短く、すなわち加工層32(後述)の厚みを薄くし易い。   The laser condensing means 22 includes a correction ring 24, a condensing lens 26 held in the correction ring 24 (for example, a first lens 28 that condenses in the air, and the first lens 28 and the crystal substrate 20). Lens having a second lens 30 disposed between them, and has a function of correcting an aberration caused by the refractive index of the crystal substrate 20, that is, a function as an aberration correction ring. Specifically, as shown in FIG. 1B, when the condenser lens 26 is condensed in the air, the laser beam B reaching the outer peripheral portion E of the condenser lens 26 is reflected by the condenser lens 26. Correction is performed so that the laser beam B that has reached the center M is condensed on the condenser lens side. That is, when the light is condensed, the condensing point EP of the laser light B reaching the outer peripheral portion E of the condensing lens 26 is compared with the condensing point MP of the laser light B reaching the central portion M of the condensing lens 26. Correction can be made so that the position is close to the condenser lens 26. Thereby, the length in the laser irradiation direction of the processing mark C formed by condensing the laser light can be shortened, that is, the thickness of the processing layer 32 (described later) can be easily reduced.

(結晶基板)
本実施形態に係る結晶基板20は、レーザ光Bを被照射面20rから基板内部に集光しつつ集光位置と結晶基板とを相対的に移動させることで基板内部に加工層32を形成する際に用いられる結晶基板である。
(Crystal substrate)
The crystal substrate 20 according to the present embodiment forms the processing layer 32 in the substrate by relatively moving the condensing position and the crystal substrate while condensing the laser beam B from the irradiated surface 20r into the substrate. It is a crystal substrate used in the case.

この結晶基板20は、被照射面20rから被照射面20rとは反対側の面にかけて、基板側面20sが、基板中心軸G側に傾斜していて基板中心軸Gに対して所定範囲内の傾斜角度αで傾斜している。この傾斜角度は、後述の角度βを予め想定した上で決定されている。複数値にわたって角度βを予め想定し、角度βの各値に対応するように各αを決定してもよい。   The crystal substrate 20 has a substrate side surface 20s inclined toward the substrate central axis G from the irradiated surface 20r to the surface opposite to the irradiated surface 20r, and inclined within a predetermined range with respect to the substrate central axis G. It is inclined at an angle α. This inclination angle is determined on the assumption of an angle β described later. The angle β may be assumed in advance over a plurality of values, and each α may be determined so as to correspond to each value of the angle β.

本実施形態では、被照射面20rが矩形状である。そして、被照射面20rの各辺から延びているこの基板側面20sが基板内側に上記傾斜角度で傾斜している。基板側面20sは、例えばこのように斜めに研削することで形成されている。   In the present embodiment, the irradiated surface 20r is rectangular. And this board | substrate side surface 20s extended from each edge | side of the to-be-irradiated surface 20r inclines at the said inclination angle inside a board | substrate. The substrate side surface 20s is formed by, for example, grinding obliquely in this way.

以下、本実施形態に係る結晶基板加工方法を説明する。   Hereinafter, the crystal substrate processing method according to the present embodiment will be described.

本実施形態では、上記の結晶基板20を用意する基板用意工程を行う。この基板用意工程では、結晶基板20内において被照射面20rから集光点までのレーザ光の最外面であるビーム側面Bsが基板中心軸G(図1参照)に対してなす角度(ビーム側面角度)をβとすると、α≧βの関係を満たす結晶基板20を用意する。例えば、図2に示すように、上記関係のうちαとβとが同等となるような結晶基板20を用意する。   In this embodiment, a substrate preparation process for preparing the crystal substrate 20 is performed. In this substrate preparation step, an angle (beam side surface angle) formed by the beam side surface Bs which is the outermost surface of the laser light from the irradiated surface 20r to the condensing point in the crystal substrate 20 with respect to the substrate center axis G (see FIG. 1). ) Is β, a crystal substrate 20 satisfying the relationship of α ≧ β is prepared. For example, as shown in FIG. 2, a crystal substrate 20 is prepared such that α and β are equivalent in the above relationship.

次に、配置工程を行う。この配置工程では、基板用意工程で用意した結晶基板20をレーザ光Bの被照射位置に配置し、レーザ光Bを集光するレーザ集光手段22を被照射面20r上に非接触に配置する。本実施形態では結晶基板20を載置台12上の基板保持具13に保持させることで、結晶基板20を被照射位置に配置している。   Next, an arrangement process is performed. In this arrangement step, the crystal substrate 20 prepared in the substrate preparation step is arranged at the irradiated position of the laser beam B, and the laser condensing means 22 for condensing the laser beam B is arranged on the irradiated surface 20r in a non-contact manner. . In the present embodiment, the crystal substrate 20 is held at the irradiated position by holding the crystal substrate 20 on the substrate holder 13 on the mounting table 12.

そして、形成工程を行う。この形成工程では、レーザ集光手段22から出たレーザ光Bを全て、レーザ光Bのビーム中心軸Bcが被照射面20rに直交しかつ被照射面20rから入射するように照射して結晶基板20の内部にレーザ光Bを集光しつつ、レーザ集光手段22と結晶基板20とを相対的に移動させることで、結晶基板20の内部に加工層32を形成する。本実施形態では、形成工程では、レーザ集光手段22と結晶基板20とをX−Y平面内(二次元平面内)で相対的に移動させることで、被照射面20rから所定深さdの位置に、所定のドットピッチDP、ラインピッチで加工痕Cが配列された加工層32を形成する。   And a formation process is performed. In this forming step, the laser beam B emitted from the laser focusing means 22 is all irradiated so that the beam center axis Bc of the laser beam B is perpendicular to the irradiated surface 20r and incident from the irradiated surface 20r. The processing layer 32 is formed inside the crystal substrate 20 by relatively moving the laser focusing means 22 and the crystal substrate 20 while condensing the laser beam B inside the crystal 20. In the present embodiment, in the forming step, the laser condensing means 22 and the crystal substrate 20 are relatively moved in the XY plane (in the two-dimensional plane), so that the predetermined depth d from the irradiated surface 20r. A processing layer 32 in which processing marks C are arranged at a predetermined dot pitch DP and line pitch is formed at the position.

従って、図2に示すように、基板側面20s付近(基板端面付近)に、加工痕Cのうち加工層32の縁(外縁)に位置する縁加工痕Ceを形成するときであっても、レーザ集光手段22から出たレーザ光Bは、全て被照射面20rに入射し、レーザ光Bの一部が基板側面20sから入射することは回避される。   Therefore, as shown in FIG. 2, even when the edge processing mark Ce located at the edge (outer edge) of the processing layer 32 in the processing mark C is formed near the substrate side surface 20s (near the substrate end surface), the laser All the laser light B emitted from the condensing means 22 is incident on the irradiated surface 20r, and a part of the laser light B is prevented from entering from the substrate side surface 20s.

よって、基板側面20s付近(基板端面付近)にまで基板内部の一定した深さdの位置に加工痕Cを配列することで加工層32とすることが可能な結晶基板20および結晶基板加工方法が実現される。そして、このような加工層32から剥離する際、基板側面20sの処理をせずに容易に剥離して剥離基板を得ることができる。   Therefore, there is provided a crystal substrate 20 and a crystal substrate processing method capable of forming the processing layer 32 by arranging the processing marks C at positions with a constant depth d inside the substrate up to the vicinity of the substrate side surface 20s (near the substrate end surface). Realized. And when peeling from such a processed layer 32, it can peel easily without processing the board | substrate side surface 20s, and a peeling board | substrate can be obtained.

また、基板中央部に形成される加工痕Cと同じ形成精度で基板側面20s付近に縁加工痕Ceを形成することができ、更には基板側面20sに著しく近い位置であっても同じ形成精度で縁加工痕Ceを形成することが可能であり、形成精度が従来に比べて大幅に向上する。   Further, the edge processing mark Ce can be formed in the vicinity of the substrate side surface 20s with the same forming accuracy as the processing mark C formed in the central portion of the substrate, and further, with the same forming accuracy even at a position extremely close to the substrate side surface 20s. The edge processing mark Ce can be formed, and the forming accuracy is greatly improved as compared with the conventional case.

また、レーザ集光手段22は、補正環24と、補正環24内に保持された集光レンズ26とを備えていて、結晶基板20の屈折率に起因する収差を補正する機能、すなわち収差補正環としての機能を有している。このような機能を使用して収差補正しつつ加工層32を形成してもよく、これにより、レーザ光Bの集光によって形成される加工痕Cのレーザ照射方向における長さを短くし易い、すなわち加工層32の厚みを薄くし易い。   Further, the laser condensing means 22 includes a correction ring 24 and a condensing lens 26 held in the correction ring 24, and a function of correcting aberration caused by the refractive index of the crystal substrate 20, that is, aberration correction. It functions as a ring. The processing layer 32 may be formed while correcting aberrations using such a function, which makes it easy to shorten the length in the laser irradiation direction of the processing mark C formed by condensing the laser beam B. That is, it is easy to reduce the thickness of the processed layer 32.

なお、基板用意工程では、複数値にわたってβを予め想定し、βの各値に対応するように各αを決定して複数種の結晶基板20(αが互いに異なる結晶基板)を予め用意しておき、実際のβに対応した結晶基板を選定してもよい。これにより、基板用意工程にかかる時間を大きく短縮することができる。   In the substrate preparation step, β is assumed in advance over a plurality of values, each α is determined so as to correspond to each value of β, and a plurality of types of crystal substrates 20 (crystal substrates having different αs) are prepared in advance. Alternatively, a crystal substrate corresponding to the actual β may be selected. As a result, the time required for the substrate preparation process can be greatly reduced.

また、形成工程では、縁加工痕Ceから加工層32に沿った基板側面20sまでの距離Wを、縁加工痕Ceを形成した際に縁加工痕Ceから発生したクラックK(図2、図3参照)が加工層32に沿って基板側面20sにまで到達し得る範囲内にしてもよい(この場合、基板側面20sにまで加工痕Cが連続的に形成されていると見ることもできる)。これにより、加工層32からの剥離が著しく容易であり、加工層32の形成完了と同時に自然剥離させることも可能である。   Further, in the forming step, the distance W from the edge processing mark Ce to the substrate side surface 20s along the processing layer 32 is set to the crack K generated from the edge processing mark Ce when the edge processing mark Ce is formed (FIGS. 2 and 3). May be within a range that can reach the substrate side surface 20s along the processed layer 32 (in this case, it can also be seen that the processing marks C are continuously formed up to the substrate side surface 20s). Thereby, peeling from the processed layer 32 is remarkably easy, and it is also possible to perform natural peeling simultaneously with completion of the formation of the processed layer 32.

また、図2ではαとβとが同等となるような結晶基板20を用意した例で図示しているが、図3に示すように、βよりもαが大きい結晶基板36を用意してもよい。この場合であっても同様の効果を奏することができる。   2 shows an example in which a crystal substrate 20 in which α and β are equal is shown, but as shown in FIG. 3, a crystal substrate 36 having α larger than β may be prepared. Good. Even in this case, the same effect can be obtained.

また、結晶基板20に代えて、図4に示すような円錐台状の結晶基板40を用いてもよい。この場合、結晶基板40の基板側面40sが、円状の被照射面40rから被照射面40rとは反対側の面にかけて径が徐々に小さくなる円錐台面状となる。この基板側面40sは、テーパ状に研削することで形成される。   Further, instead of the crystal substrate 20, a frustoconical crystal substrate 40 as shown in FIG. 4 may be used. In this case, the substrate side surface 40s of the crystal substrate 40 has a truncated conical surface shape whose diameter gradually decreases from the circular irradiated surface 40r to the surface opposite to the irradiated surface 40r. The substrate side surface 40s is formed by grinding in a tapered shape.

このような結晶基板40を用いて基板側面40s付近(基板端面付近)に加工痕を形成するとき(すなわち縁加工痕Ceを形成するとき)であっても、レーザ集光手段22から出たレーザ光Bは全て被照射面40rに入射し、レーザ光Bの一部が基板側面40sから入射することは回避される。従って、結晶基板20を用いた場合と同様の効果が得られる。   Even when processing marks are formed near the substrate side surface 40s (near the substrate end surface) using such a crystal substrate 40 (that is, when the edge processing marks Ce are formed), the laser emitted from the laser focusing unit 22 is emitted. All the light B is incident on the irradiated surface 40r, and a part of the laser light B is prevented from entering from the substrate side surface 40s. Therefore, the same effect as when the crystal substrate 20 is used can be obtained.

<検討例>
図5は、レーザ光の集光により結晶基板内に加工層を形成することの従来例を説明する模式的側面図である。図6は、レーザ光の集光により結晶基板内に加工層を形成することの比較例を説明する模式的側面図である。
<Examination example>
FIG. 5 is a schematic side view for explaining a conventional example of forming a processed layer in a crystal substrate by condensing laser light. FIG. 6 is a schematic side view illustrating a comparative example of forming a processed layer in a crystal substrate by condensing laser light.

図5に示すように、従来の結晶基板80では基板側面が円筒状であるので、レーザ集光手段22から出たレーザ光Bを全て被照射面40rに入射させる照射形態では、加工層の縁加工痕Ceを基板側面80sの付近(基板端面付近)に加工痕(縁加工痕Ce等)を形成することができない。そして、基板側面80sの付近に加工痕を形成する際には、レーザ光Bの一部を被照射面80rでなく基板側面80sから照射する必要があり、加工痕(縁加工痕Ce等)の形成精度が、上記実施形態に比べて大きく劣る。また、基板側面80sから照射することを行わない場合には、加工痕が形成されない未加工部分が基板側面80s付近に生じてしまう。   As shown in FIG. 5, in the conventional crystal substrate 80, the substrate side surface is cylindrical. Therefore, in the irradiation mode in which all the laser light B emitted from the laser focusing means 22 is incident on the irradiated surface 40r, the edge of the processed layer A processing mark (edge processing mark Ce or the like) cannot be formed in the vicinity of the substrate side surface 80s (near the substrate end surface). When forming a processing mark in the vicinity of the substrate side surface 80s, it is necessary to irradiate a part of the laser beam B from the substrate side surface 80s instead of the irradiated surface 80r. The formation accuracy is greatly inferior compared to the above embodiment. Further, when the irradiation from the substrate side surface 80s is not performed, an unprocessed portion where a processing mark is not formed is generated in the vicinity of the substrate side surface 80s.

また、図6に示すように、比較例の結晶基板90では、αとβとの関係は、α<βとなっておりα≧βにはなっていない。このため、従来例と同様、基板側面90sの付近(基板端面付近)に加工痕(縁加工痕Ce等)を形成する際には、レーザ光Bの一部を被照射面でなく基板側面90sから照射する必要があり、加工痕(縁加工痕Ce等)の形成精度が、上記実施形態に比べて大きく劣る。また、基板側面90sから照射することを行わない場合には、加工痕が形成されない未加工部分が基板側面90s付近に生じてしまう。   Further, as shown in FIG. 6, in the crystal substrate 90 of the comparative example, the relationship between α and β is α <β and α ≧ β is not satisfied. Therefore, as in the conventional example, when forming a processing mark (edge processing mark Ce or the like) in the vicinity of the substrate side surface 90s (in the vicinity of the substrate end surface), a part of the laser beam B is not the irradiated surface but the substrate side surface 90s. Therefore, the formation accuracy of processing marks (edge processing marks Ce and the like) is greatly inferior to that of the above embodiment. Further, when the irradiation is not performed from the substrate side surface 90s, an unprocessed portion where a processing mark is not formed is generated in the vicinity of the substrate side surface 90s.

一方、上記実施形態では、縁加工痕Ceを、基板側面20s付近、更には基板側面20sに著しく近い位置に形成する場合であっても、結晶基板20内へ入射させるレーザ光Bは全て被照射面20rから入射でき、レーザ光Bの一部が基板側面から入射することは回避される。従って、基板側面20s付近にまで基板内部の一定した深さdの位置に加工痕Cを配列することで加工層32とすることができる。そして、基板側面20s付近に、基板中央部に形成される加工痕と同じ形成精度で縁加工痕Ceを形成することができ、更には基板側面20sに著しく近い位置であっても同じ形成精度で縁加工痕Ceを形成することができ、しかも、加工痕が形成されない未加工部分が基板側面20s付近に生じることはない。   On the other hand, in the above embodiment, even when the edge processing mark Ce is formed in the vicinity of the substrate side surface 20s and further in a position extremely close to the substrate side surface 20s, all the laser light B incident on the crystal substrate 20 is irradiated. It can enter from the surface 20r, and it is avoided that a part of laser beam B enters from the substrate side surface. Therefore, the processing layer 32 can be formed by arranging the processing marks C at positions of a constant depth d inside the substrate up to the vicinity of the substrate side surface 20s. In addition, the edge processing mark Ce can be formed in the vicinity of the substrate side surface 20s with the same forming accuracy as the processing mark formed in the central portion of the substrate, and further, with the same forming accuracy even at a position extremely close to the substrate side surface 20s. The edge processing mark Ce can be formed, and an unprocessed portion where no processing mark is formed does not occur in the vicinity of the substrate side surface 20s.

本発明により、レーザ光を基板内部に集光しつつ集光位置と基板とを相対的に移動させて基板側面まで一定の深さ位置で加工層を形成できるため、基板側面の処理をせずに容易に剥離して剥離基板を得ることが可能で、例えば単結晶基板であって、Si基板(シリコン基板)であれば太陽電池に応用可能であり、また、GaN系半導体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなどに応用可能であり、SiCなどであればSiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。   According to the present invention, the processing layer can be formed at a certain depth position to the substrate side surface by relatively moving the condensing position and the substrate while condensing the laser beam inside the substrate. Can be easily peeled off to obtain a peeled substrate. For example, if it is a single crystal substrate and an Si substrate (silicon substrate), it can be applied to solar cells, and a sapphire substrate such as a GaN-based semiconductor device. Can be applied to light emitting diodes, laser diodes, etc., SiC can be applied to SiC power devices, etc., and can be applied in a wide range of fields such as transparent electronics, lighting, and hybrid / electric vehicles. Is possible.

10 基板加工装置
13 基板保持具(基板保持部)
12 載置台
14 Zステージ
16 Yステージ
18 Xステージ
20 結晶基板
20r 被照射面
20s 基板側面
22 レーザ集光手段
24 補正環
26 集光レンズ
28 第1レンズ
30 第2レンズ
32 加工層
36 結晶基板
40 結晶基板
40r 被照射面
40s 基板側面
80 結晶基板
80s 基板側面
80r 被照射面
90 結晶基板
90s 基板側面
B レーザ光
Bc ビーム中心軸
Bs ビーム側面
C 加工痕
Ce 縁加工痕
G 基板中心軸
K クラック
E 外周部
EP 集光点
M 中央部
MP 集光点
W 距離
α 傾斜角度
β 角度
10 Substrate Processing Device 13 Substrate Holder (Substrate Holder)
12 Mounting stage 14 Z stage 16 Y stage 18 X stage 20 Crystal substrate 20r Irradiated surface 20s Substrate side surface 22 Laser condensing means 24 Correction ring 26 Condensing lens 28 First lens 30 Second lens 32 Work layer 36 Crystal substrate 40 Crystal Substrate 40r Irradiated surface 40s Substrate side surface 80 Crystal substrate 80s Substrate side surface 80r Irradiated surface 90 Crystal substrate 90s Substrate side surface B Laser beam Bc Beam center axis Bs Beam side surface C Processing mark Ce Edge processing mark G Substrate axis K Crack E Outer part EP Condensing point M Center part MP Condensing point W Distance α Inclination angle β Angle

Claims (6)

レーザ光を一方の基板面である被照射面から基板内部に集光しつつ集光位置と基板とを相対的に移動させることで基板内部に加工層を形成する際に用いられる結晶基板であって、
前記被照射面から前記被照射面とは反対側の面にかけて、基板側面が、基板中心軸側に傾斜していて前記基板中心軸に対して所定範囲内の傾斜角度で傾斜していることを特徴とする結晶基板。
A crystal substrate used to form a processing layer inside a substrate by concentrating the laser beam from the irradiated surface, which is one substrate surface, to the inside of the substrate while relatively moving the condensing position and the substrate. And
The substrate side surface is inclined toward the substrate central axis side from the irradiated surface to the surface opposite to the irradiated surface, and is inclined at an inclination angle within a predetermined range with respect to the substrate central axis. A featured crystal substrate.
前記被照射面が矩形状であり、
前記被照射面の各辺から前記基板側面が延びていることを特徴とする請求項1に記載の結晶基板。
The irradiated surface is rectangular,
The crystal substrate according to claim 1, wherein the substrate side surface extends from each side of the irradiated surface.
前記被照射面が円状であり、
前記基板側面が円錐台面状であることを特徴とする請求項1に記載の結晶基板。
The irradiated surface is circular,
The crystal substrate according to claim 1, wherein the substrate side surface has a truncated cone shape.
請求項1に記載の結晶基板を用意する基板用意工程と、
前記基板用意工程で用意した前記結晶基板をレーザ光の被照射位置に配置し、レーザ光を集光するレーザ集光手段を前記被照射面上に非接触に配置する配置工程と、
前記レーザ集光手段から出たレーザ光を全て、レーザ光のビーム中心軸が前記被照射面に直交しかつ前記被照射面から入射するように照射して前記結晶基板内部にレーザ光を集光しつつ、前記レーザ集光手段と前記結晶基板とを相対的に移動させることで、前記結晶基板内部に加工痕が配列された加工層を形成する形成工程と
を備え、
前記傾斜角度をαとし、前記結晶基板内において前記被照射面から集光点までのレーザ光の最外面であるビーム側面が基板中心軸に対してなす角度をβとすると、前記形成工程ではα≧βの関係を満たすように前記基板用意工程で前記結晶基板を用意することを特徴とする結晶基板加工方法。
A substrate preparing step of preparing the crystal substrate according to claim 1;
An arrangement step in which the crystal substrate prepared in the substrate preparation step is arranged at a position to be irradiated with laser light, and a laser condensing means for condensing the laser light is arranged in a non-contact manner on the irradiated surface;
All of the laser light emitted from the laser condensing means is irradiated so that the center axis of the laser light is perpendicular to the irradiated surface and incident from the irradiated surface, thereby condensing the laser light inside the crystal substrate. And forming a processing layer in which processing marks are arranged inside the crystal substrate by relatively moving the laser condensing means and the crystal substrate, and
If the tilt angle is α, and the angle formed by the beam side surface, which is the outermost surface of the laser beam from the irradiated surface to the condensing point in the crystal substrate, with respect to the central axis of the substrate is β, A crystal substrate processing method comprising preparing the crystal substrate in the substrate preparation step so as to satisfy a relationship of ≧ β.
前記形成工程では、前記加工痕のうち前記加工層の縁に位置する縁加工痕から前記加工層に沿った前記基板側面までの距離を、前記縁加工痕を形成した際に前記縁加工痕から発生したクラックが前記加工層に沿って前記基板側面にまで到達し得る範囲内とすることを特徴とする請求項4に記載の結晶基板加工方法。   In the forming step, the distance from the edge processing trace located at the edge of the processing layer to the side surface of the substrate along the processing layer is determined from the edge processing trace when the edge processing trace is formed. The crystal substrate processing method according to claim 4, wherein the generated crack is within a range in which the generated crack can reach the side surface of the substrate along the processed layer. 前記形成工程では、前記レーザ集光手段に補正環を設け、前記補正環により収差補正をしつつ前記加工層を形成することを特徴とする請求項4または5に記載の結晶基板加工方法。   6. The crystal substrate processing method according to claim 4, wherein in the forming step, a correction ring is provided in the laser condensing means, and the processed layer is formed while correcting aberrations by the correction ring.
JP2017127136A 2017-06-29 2017-06-29 Crystal substrate and crystal substrate processing method Active JP7017728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127136A JP7017728B2 (en) 2017-06-29 2017-06-29 Crystal substrate and crystal substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127136A JP7017728B2 (en) 2017-06-29 2017-06-29 Crystal substrate and crystal substrate processing method

Publications (2)

Publication Number Publication Date
JP2019012718A true JP2019012718A (en) 2019-01-24
JP7017728B2 JP7017728B2 (en) 2022-02-09

Family

ID=65226429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127136A Active JP7017728B2 (en) 2017-06-29 2017-06-29 Crystal substrate and crystal substrate processing method

Country Status (1)

Country Link
JP (1) JP7017728B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207871A (en) * 2006-01-31 2007-08-16 Denso Corp Semiconductor wafer equipped witt plural semiconductor devices
JP2013161976A (en) * 2012-02-06 2013-08-19 Shin Etsu Polymer Co Ltd Substrate processing method and substrate processing device
JP2016111148A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016215231A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Slice device and method for brittle substrate
WO2016207276A1 (en) * 2015-06-23 2016-12-29 Siltectra Gmbh Method for guiding a crack in the peripheral region of a donor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207871A (en) * 2006-01-31 2007-08-16 Denso Corp Semiconductor wafer equipped witt plural semiconductor devices
JP2013161976A (en) * 2012-02-06 2013-08-19 Shin Etsu Polymer Co Ltd Substrate processing method and substrate processing device
JP2016111148A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016215231A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Slice device and method for brittle substrate
WO2016207276A1 (en) * 2015-06-23 2016-12-29 Siltectra Gmbh Method for guiding a crack in the peripheral region of a donor substrate

Also Published As

Publication number Publication date
JP7017728B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
TWI687560B (en) Wafer generation method
JP6004338B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
KR101752016B1 (en) Method for dividing optical device wafer
TWI524960B (en) Substrate and substrate processing method
US20130312460A1 (en) Manufacturing method of single crystal substrate and manufacturing method of internal modified layer-forming single crystal member
TW201735143A (en) SiC wafer producing method
JP6608713B2 (en) Wafer processing method
WO2014030520A1 (en) Workpiece cutting method
JP2013247147A (en) Processing object cutting method, processing object, and semiconductor element
WO2012108056A1 (en) Monocrystalline member with stress layer formed in interior and monocrystalline substrate production method
KR20160053783A (en) Wafer processing method
KR102399375B1 (en) Wafer processing method
WO2013118645A1 (en) Substrate processing method and substrate processing device
JP2015123465A (en) Substrate processing device and substrate processing method
EP2787338B1 (en) Method and arrangement for manufacturing a sample for microstructural materials diagnostics and corresponding sample
JP2015123466A (en) Substrate processing device and substrate processing method
JP2011167718A (en) Apparatus and method for machining inside of substrate
JP6959073B2 (en) Laser processing equipment
KR20190021163A (en) Wafer for inspection and method of inspecting energy distribution
JP2017070961A (en) Substrate processing method and peeling substrate manufacturing method
US10818554B2 (en) Laser processing method of wafer using plural laser beams
JP2019012718A (en) Crystal substrate and crystal substrate processing method
JP6202696B2 (en) Single crystal substrate manufacturing method
CN216882323U (en) Laser stripping off device
JP6202695B2 (en) Single crystal substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7017728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350