JP2019011669A - Reinforcement structure and construction method of composite plate - Google Patents

Reinforcement structure and construction method of composite plate Download PDF

Info

Publication number
JP2019011669A
JP2019011669A JP2018108316A JP2018108316A JP2019011669A JP 2019011669 A JP2019011669 A JP 2019011669A JP 2018108316 A JP2018108316 A JP 2018108316A JP 2018108316 A JP2018108316 A JP 2018108316A JP 2019011669 A JP2019011669 A JP 2019011669A
Authority
JP
Japan
Prior art keywords
reinforcing
reinforcement
composite plate
shear
clip member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018108316A
Other languages
Japanese (ja)
Other versions
JP6655128B2 (en
Inventor
チュンウク パク
Chun Uk Park
チュンウク パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of KNU
Original Assignee
Industry Academic Cooperation Foundation of KNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of KNU filed Critical Industry Academic Cooperation Foundation of KNU
Publication of JP2019011669A publication Critical patent/JP2019011669A/en
Application granted granted Critical
Publication of JP6655128B2 publication Critical patent/JP6655128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements

Abstract

To provide a reinforcement structure and a construction method of a composite plate.SOLUTION: The invention is related to a reinforcement structure and a construction method of a composite plate embodied to overcome a strength insuffIciency of a concrete beam utilizing a reinforcement member consisted of aluminium, glass fiber and epoxy material and comprises a flexure reinforcement part with a perforated truss structure formed in a longitudinal direction, a shear reinforcement part extending in a right angle direction from both sides of the flexure reinforcement part and having a first clip member formed in one end and an additional shear reinforcement part having a second clip member capable of being fastened to the first clip member of the shear reinforcement part in one end, and being fastened to a reinforced body with the shear reinforcement part.SELECTED DRAWING: Figure 1

Description

本発明は複合プレートの補強構造および施工方法に関するものであって、さらに詳細には、アルミニウム、ガラス繊維およびエポキシ素材で構成された補強材を利用してコンクリート梁の耐力不足を克服するように具現した、複合プレートの補強構造および施工方法に関するものである。   The present invention relates to a composite plate reinforcing structure and a construction method, and more particularly, to realize a lack of proof strength of a concrete beam using a reinforcing material composed of aluminum, glass fiber, and an epoxy material. The present invention relates to a reinforcing structure of a composite plate and a construction method.

現代社会の基幹施設の根幹は、ほとんどが鉄筋コンクリート(reinforced concrete、以下、RCと称する)で形成されている。すべてのRC構造物は、本来の機能を十分に遂行するために設計者によってあらゆる力学が考慮され、環境と状況によって適切な安全率が適用されて使用者に提供される。   Most of the basic infrastructure of modern society is formed of reinforced concrete (hereinafter referred to as RC). All RC structures are provided to the user with all mechanics taken into account by the designer in order to fully perform their original functions, with an appropriate safety factor applied depending on the environment and circumstances.

しかし、予期しない要因による構造的な損傷または環境的な要因などによって老朽化が発生した場合には、設計された構造物の本来の機能を果たせなくなり、前記のような場合には、構造物の本来の機能範囲を確保できるように構造物の安全診断を遂行した後、補修が行われる。また、使用中の構造物が設計当時には十分な耐力を確保していたが、構造変更による建て増しあるいは使用荷重の増加により構造物の耐力を増加させなければならない場合には、再び構造設計を通じて補強が行われる。   However, when aging occurs due to structural damage due to unforeseen factors or environmental factors, the original function of the designed structure cannot be performed. After performing a safety diagnosis of the structure so that the original functional range can be secured, repairs are performed. In addition, the structure in use had sufficient strength at the time of design, but if it is necessary to increase the strength of the structure due to additional construction or increased load due to structural changes, it will be reinforced through structural design again. Is done.

RC構造物の補修、補強には、多様な材料を通じての工法が使われてきた。初期の補修、補強工法に使われた材料は鋼材である。鋼板補強工法は、鋼板をエポキシでコンクリート構造物の引張面に付着させる工法であって、RC構造物の曲げ耐力と剛性の増進効果を期待できるため、1960年代以降長期間使われていた。しかしながら、鋼板補強工法は、比重が大きい鋼を使うため取り扱いが難しく、自重が大きいという短所がある。また、鋼腐食によるコンクリート母体との付着損傷などが問題点に提起されていた。   Various repair methods have been used to repair and reinforce RC structures. The material used for the initial repair and reinforcement method is steel. The steel plate reinforcement method is a method of attaching a steel plate to the tensile surface of a concrete structure with epoxy, and since it can be expected to increase the bending strength and rigidity of the RC structure, it has been used for a long time since the 1960s. However, the steel plate reinforcement method has the disadvantages that it is difficult to handle because it uses steel with a large specific gravity, and that its own weight is large. In addition, problems such as adhesion damage to the concrete matrix due to steel corrosion have been raised.

1980年代、RC構造物の補修・補強分野に鋼板補強工法が一般的に使われている頃に、力学的特性、耐久性および軽量性に優れている繊維補強体(fiber reinforced polymer、以下、FRPと称する)が紹介され、鋼板補強工法に代わるFRP補強工法が研究され始めた。   In the 1980s, when the steel plate reinforcement method was generally used in the field of repair and reinforcement of RC structures, a fiber reinforced polymer (hereinafter referred to as FRP) having excellent mechanical properties, durability and light weight. The FRP reinforcement method to replace the steel plate reinforcement method has been studied.

FRPの種類には、ガラス繊維、アラミド繊維、炭素繊維などがあり、それぞれの物理的特性によって多様な補強工法に使われる。FRPは他の材料よりも強度、軽量、耐腐食性などで大きい長所を有しており、FRPを利用した補修、補強研究が活発に進行されている。   The types of FRP include glass fiber, aramid fiber, and carbon fiber, and are used for various reinforcement methods depending on their physical characteristics. FRP has advantages such as strength, light weight, and corrosion resistance compared to other materials, and repair and reinforcement research using FRP is actively progressing.

FRPで補強されたRC構造物は、実際に曲げ強度が大きく増加するとともに、剛性も大きく増進するものと示された。このように補修、補強材料として大きな長所を有しているFRPの性能を最大限発揮し、付着問題などの短所を補完するために、FRPシート(sheet)工法、FRPプレート(plate)工法、FRP NSM(near surface mounted)工法などが開発されて使われている。   RC structures reinforced with FRP have been shown to actually increase flexural strength and increase stiffness significantly. In order to maximize the performance of FRP, which has great advantages as a repair and reinforcement material in this way, and to supplement the disadvantages such as adhesion problems, the FRP sheet method, FRP plate method, FRP The NSM (near surface mounted) method has been developed and used.

老朽化したRC構造物あるいは補強が必要なRC構造物などは、前記で列挙した工法を通じて強度が向上され、このような工法は、橋梁、建築物などに補修、補強のために使われている。しかし、依然として解決しなければならない課題が残っている。   Aged RC structures or RC structures that require reinforcement are improved in strength through the methods listed above, and such methods are used for repairing and reinforcing bridges and buildings. . However, there are still issues to be solved.

特許文献1には、一般的に検証され原理が簡単なプレフレックス工法を適用して、施設物の剛性を増大させることができ、安全性を確保することができ、耐用年数を増大させ得るようになるコンクリート構造物の補強装置に関して記載されているが、橋梁の床板をなすコンクリート構造物の補強対象領域の下面中央部に接触される接触部が両端部より突出するように中央部に備えられる補強材と、前記コンクリート構造物の補強対象領域の下部に前記補強材を結合して締め付けるための締め付け手段と、を含んで、コンクリート構造物の曲げを補正し補強するように構成されたことを特徴とする。記載された技術によると、コンクリート構造物の補強対象領域の中央部に補強材をその中央突出部が接触され、両端部が離隔するように配置し、締め付けることによってプレフレックス力を加えるものであるため、補修、補強作業の能率が向上する効果があり、プレフレックス工法で補強されてから直ぐに、死荷重、活荷重が構造物に作用される時に構造物と補強材が荷重を適切に分配して対応するようになるので、構造物の剛性および耐久性が大きく増大され得る。   In Patent Document 1, it is possible to increase the rigidity of facilities by applying a pre-flex construction method which is generally verified and has a simple principle, so that safety can be ensured and the service life can be increased. Although the concrete structure reinforcement device is described, the contact portion that comes into contact with the central portion of the lower surface of the area to be reinforced of the concrete structure that forms the floor of the bridge is provided at the center portion so as to protrude from both ends. Including a reinforcing material and a fastening means for fastening the reinforcing material to a lower part of a region to be reinforced of the concrete structure, and configured to correct and reinforce the bending of the concrete structure. Features. According to the described technique, the reinforcement is applied to the central part of the region to be reinforced of the concrete structure so that the central projecting part is in contact with each other and both ends are separated from each other, and the preflex force is applied by tightening. Therefore, it has the effect of improving the efficiency of repair and reinforcement work, and the structure and the reinforcing material distribute the load appropriately when dead load or live load is applied to the structure immediately after reinforcement by the preflex method. The rigidity and durability of the structure can be greatly increased.

特許文献2には、両側の折り曲げ部がコンクリート構造物内でアンカー機能をはっきりと発揮させるようにすることによって、施工されたコンクリート構造物の構造的強度および引張強度をさらに向上させるコンクリート構造物補強用鋼繊維に関して記載されている。記載された技術によると、中央に、一直線に水平に延長形成される胴部と、前記胴部の両側にそれぞれ傾斜折れ部を有し、その傾斜折れ部の終端で再び水平に折り曲げられる水平端部を有する両側の折り曲げ部で構成されたものにおいて、前記両側の折り曲げ部は、前記胴部に対して平行な水平端部対その胴部から傾斜する傾斜折れ部の長さ比が1:1.1〜1:1.2となることを特徴とする。   Patent Document 2 discloses a concrete structure reinforcement that further improves the structural strength and tensile strength of a constructed concrete structure by allowing the bent portions on both sides to clearly exhibit an anchor function in the concrete structure. For steel fibers. According to the described technique, in the center, there is a body portion that is formed to extend horizontally in a straight line, and each of the body portions has inclined bent portions on both sides, and the horizontal end that is bent horizontally again at the end of the inclined bent portion. In the case where the bent parts on both sides have a length ratio of a horizontal end parallel to the trunk part to an inclined folded part inclined from the trunk part, the length ratio is 1: 1. .1 to 1: 1.2.

前述したような従来のコンクリート補強構造に使われた鋼板補強工法は、エポキシを利用して鋼板をコンクリート構造物の引張面に付着する工法であって、RC構造物の曲げ耐力と剛性の増進効果を期待できるため、1960年代以降長期間使われていたが、比重が大きい鋼を使用するため取り扱いが難しく、自重が大きいという短所があるだけでなく、鋼腐食によるコンクリート母体との付着損傷などが問題点として提起されていた。   The steel plate reinforcement method used in the conventional concrete reinforcement structure as described above is a method in which a steel plate is attached to the tensile surface of a concrete structure using epoxy, and the bending strength and rigidity of the RC structure are enhanced. It has been used for a long time since the 1960s, but it is difficult to handle due to the use of steel with a large specific gravity, and it has the disadvantage of its own weight, as well as adhesion damage to the concrete matrix due to steel corrosion. It was raised as a problem.

韓国登録実用新案第20−0182826号Korean registered utility model No. 20-0182826 韓国登録特許第10−0259927号Korean Registered Patent No. 10-0259927

本発明の一側面は、アルミニウム、ガラス繊維およびエポキシ素材で構成された補強材を利用して、クリップ型締結部を設けてコンクリート梁の耐力不足を克服するように具現した、複合プレートの補強構造および施工方法を提供する。   One aspect of the present invention is a composite plate reinforcement structure that is implemented to overcome a lack of strength of concrete beams by providing a clip-type fastening portion using a reinforcing material composed of aluminum, glass fiber, and an epoxy material. And a construction method.

本発明の技術的課題は以上で言及した技術的課題に制限されず、言及されていないさらに他の技術的課題は下記の記載から当業者に明確に理解されるはずである。   The technical problem of the present invention is not limited to the technical problem mentioned above, and other technical problems that are not mentioned should be clearly understood by those skilled in the art from the following description.

本発明の一実施例に係る複合プレートの補強構造は、長さ方向に有孔トラス構造(Perforated Truss Structure)が形成される曲げ補強部;前記曲げ補強部の両側から直角方向に延長形成され、一端に第1クリップ部材が形成されたせん断補強部;および前記せん断補強部の第1クリップ部材と締結できる第2クリップ部材を一端に具備し、前記せん断補強部と共に被補強体に締結される追加せん断補強部を含む。   A reinforcing structure of a composite plate according to an embodiment of the present invention includes a bending reinforcing portion in which a perforated truss structure is formed in a length direction; the bending reinforcing portion is extended in a right angle direction from both sides of the bending reinforcing portion; A shear reinforcing portion having a first clip member formed at one end; and a second clip member that can be fastened to the first clip member of the shear reinforcing portion at one end, and being fastened to the reinforced body together with the shear reinforcing portion Includes shear reinforcement.

一実施例において、前記第1クリップ部材は、前記せん断補強部の一端から内側に折り曲げられたU字状に形成され得る。   In one embodiment, the first clip member may be formed in a U shape that is bent inward from one end of the shear reinforcement portion.

一実施例において、前記第2クリップ部材は、前記追加せん断補強部の一端から外側に折り曲げられたU字状に形成され得る。   In one embodiment, the second clip member may be formed in a U shape that is bent outward from one end of the additional shear reinforcement.

一実施例において、前記第2クリップ部材は、前記第1クリップ部材の逆U字状の溝に挿入されてクリップ状に差し込まれて噛み合わせられ得る。   In one embodiment, the second clip member may be inserted into the inverted U-shaped groove of the first clip member, inserted into a clip shape, and meshed.

一実施例において、前記せん断補強部は、前記第1クリップ部材と前記第2クリップ部材とが噛み合った部分が被補強体と共に締結され得る。   In one embodiment, a portion of the shear reinforcement portion where the first clip member and the second clip member are engaged with each other can be fastened together.

一実施例において、前記せん断補強部は、一方側の開放された部分を密封した後、他方側に被補強体との間に接着剤を充填することができる。   In one embodiment, the shear reinforcement portion may seal an open portion on one side and then fill the other side with an adhesive between the reinforcement target.

一実施例において、前記有孔トラス構造は、前記曲げ補強部の下部に一体型または着脱型で形成され得る。   In one embodiment, the perforated truss structure may be formed integrally or detachably below the bending reinforcement portion.

本発明の他の実施例に係る複合プレートの補強構造は、前記曲げ補強部の表面にガラス繊維強化プラスチック(GFRP:glass fiber reinforced plastic)で形成される多数個の層が交差積層されて補強力を補充するための追加曲げ補強部をさらに含むことができる。   The reinforcing structure of the composite plate according to another embodiment of the present invention includes a plurality of layers formed of glass fiber reinforced plastic (GFRP) on the surface of the bending reinforcing portion. An additional bending reinforcement for replenishing can be further included.

本発明のさらに他の実施例に係る複合プレートの補強施工方法は、曲げ補強部の上部または補強が必要な被補強体に接着剤を塗布するステップ;前記曲げ補強部を被補強体に付着するステップ;および前記曲げ補強部の両側に直角方向に延長形成されたせん断補強部を追加せん断補強部と共に被補強体に締結するステップを含む。   A method for reinforcing a composite plate according to still another embodiment of the present invention includes a step of applying an adhesive to an upper portion of a bending reinforcing portion or a reinforcing member requiring reinforcement; attaching the bending reinforcing portion to the reinforcing member. And a step of fastening a shear reinforcement portion extended in a perpendicular direction on both sides of the bending reinforcement portion together with the additional shear reinforcement portion to the reinforced body.

一実施例において、前記せん断補強部を結合するステップは、前記せん断補強部の一方側の開放された部分を密封するステップ;前記せん断補強部の他方側に前記せん断補強部と被補強体との間の空間に接着剤を充填するステップ;前記せん断補強部の他方側に前記追加せん断補強部をスライディング挿入して前記せん断補強部の第1クリップ部材と前記追加せん断補強部の第2クリップ部材とがクリップ状に噛み合わせられるように締結するステップ;および前記第1クリップ部材と前記第2クリップ部材とが噛み合った部分を被補強体と共に締結するステップを含むことができる。   In one embodiment, the step of coupling the shear reinforcement portion includes the step of sealing an open part on one side of the shear reinforcement portion; the shear reinforcement portion and the reinforced body on the other side of the shear reinforcement portion. Filling the space between the adhesive; sliding insertion of the additional shear reinforcement on the other side of the shear reinforcement, and a first clip member of the shear reinforcement and a second clip member of the additional shear reinforcement; And fastening the portion in which the first clip member and the second clip member are engaged with each other to be reinforced.

前述した本発明の一側面によると、アルミニウム、ガラス繊維およびエポキシ素材で構成された補強材を利用して、クリップ型締結部を設けてコンクリート梁の耐力不足を克服するように具現した複合プレートの補強構造および施工方法を提供することによって、RC梁の強度と剛性を増加させると共に既存の補強工法の通気性、早期脱落または施工性のような短所を補完する効果を有する。   According to one aspect of the present invention described above, a composite plate embodied to overcome a lack of proof strength of a concrete beam by providing a clip-type fastening portion using a reinforcing material composed of aluminum, glass fiber, and an epoxy material. By providing the reinforcing structure and construction method, it has the effect of increasing the strength and rigidity of the RC beam and complementing the disadvantages of existing reinforcement methods such as air permeability, early dropout or construction.

本発明の一実施例に係る複合プレートの補強構造を説明する図面。The figure explaining the reinforcement structure of the composite plate which concerns on one Example of this invention. 本発明の一実施例に係る複合プレートの補強構造を説明する図面。The figure explaining the reinforcement structure of the composite plate which concerns on one Example of this invention. せん断補強部と追加せん断補強部との締結構造を説明する図面。Drawing explaining the fastening structure of a shear reinforcement part and an additional shear reinforcement part. 図1にある補強部およびせん断補強部を示した図面。The figure which showed the reinforcement part and shear reinforcement part in FIG. 本発明の他の実施例に係る複合プレート構造の施工方法を説明するフローチャート。The flowchart explaining the construction method of the composite plate structure which concerns on the other Example of this invention. 図5にあるせん断補強部を結合するステップを説明するフローチャート。The flowchart explaining the step which couple | bonds the shear reinforcement part in FIG. 本発明に係る複合プレートの補強構造の効果を評価するための試験体を示した図面。The figure which showed the test body for evaluating the effect of the reinforcement structure of the composite plate which concerns on this invention. 本発明に係る複合プレートの補強構造の効果を評価するための試験体を示した図面。The figure which showed the test body for evaluating the effect of the reinforcement structure of the composite plate which concerns on this invention. 本発明によって補強された被補強体と補強されていない被補強体の荷重−変位関係を示したグラフである。It is the graph which showed the load-displacement relationship of the to-be-reinforced body reinforced by this invention, and the to-be-reinforced body which is not reinforced.

後述する本発明の詳細な説明は、本発明が実施され得る特定の実施例を例示として図示する添付図面を参照する。これらの実施例は、当業者が本発明を実施できるほどに充分かつ詳細に説明される。本発明の多様な実施例は互いに異なるが、互いに排他的である必要はないということが理解されるべきである。例えば、ここに記載されている特定の形状、構造および特性は、一実施例と関連して本発明の精神および範囲を逸脱することなく他の実施例に具現され得る。また、それぞれの開示された実施例内の個別の構成要素の位置または配置は、本発明の精神および範囲を逸脱することなく変更され得るということが理解されるべきである。したがって、後述する詳細な説明は本発明を限定するためのものではなく、本発明の範囲は、その請求項が主張するものと均等なすべての範囲と共に、添付された請求項によってのみ限定される。図面で類似する参照符号は多様な側面に亘って同一または類似する機能を指し示す。   The following detailed description of the invention refers to the accompanying drawings that illustrate, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different from each other but need not be mutually exclusive. For example, the specific shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention in connection with one embodiment. It should also be understood that the position or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is limited only by the appended claims, along with the full scope of claims to be claimed. . Like reference numerals in the drawings denote the same or similar functions throughout the various aspects.

以下、図面を参照して本発明の好ましい実施例をより詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

図1〜図2は、本発明の一実施例に係る複合プレートの補強構造を説明する図面である。   1 to 2 are diagrams illustrating a reinforcing structure of a composite plate according to an embodiment of the present invention.

具体的には、本発明の一実施例に係る複合プレートの補強構造は、曲げ補強部100、せん断補強部200および追加せん断補強部300を含む。   Specifically, the composite plate reinforcement structure according to an embodiment of the present invention includes a bending reinforcement part 100, a shear reinforcement part 200, and an additional shear reinforcement part 300.

曲げ補強部100は、長さ方向に有孔トラス構造110が形成され、両側から上側直角方向にせん断補強部200がそれぞれ形成され、被補強体に付着して被補強体の曲げを補強する。この時、被補強体とは、現代社会の殆どの基幹施設の根幹をなす鉄筋コンクリート(reinforced concrete)構造物を指し示すが、鉄筋コンクリートに限定されず、補強が必要なその他の構造物でもよい。   A perforated truss structure 110 is formed in the lengthwise direction of the bending reinforcing portion 100, and shear reinforcing portions 200 are respectively formed in the upper right direction from both sides, and adhere to the reinforced body to reinforce the bending of the reinforced body. At this time, the to-be-reinforced body refers to a reinforced concrete structure that forms the basis of most infrastructure in modern society, but is not limited to reinforced concrete, and may be other structures that require reinforcement.

一実施例において、曲げ補強部100は、被補強体に対向する面に接着剤を塗布するか曲げ補強部100が付着される被補強体の付着面に接着剤を塗布した後に被付着体に付着されることによって、被付着体の曲げを補強することができる。   In one embodiment, the bending reinforcing portion 100 is applied to the adherend after applying an adhesive to the surface facing the reinforced body or applying an adhesive to the attachment surface of the reinforced body to which the bending reinforcing portion 100 is attached. By being attached, the bending of the adherend can be reinforced.

一実施例において、曲げ補強部100は、有孔トラス構造を形成することによって、自らの重量を減らしつつも剛性を向上させる効果を提供することができる。   In one embodiment, the bending reinforcing part 100 can provide an effect of improving rigidity while reducing its own weight by forming a perforated truss structure.

せん断補強部200は、曲げ補強部100の両側から直角方向に延長形成され、一端に第1クリップ部材210が形成され、被補強体をせん断補強する。   The shear reinforcement part 200 is formed to extend from both sides of the bending reinforcement part 100 in a right angle direction, and a first clip member 210 is formed at one end to shear and reinforce the object to be reinforced.

一実施例において、せん断補強部200は、曲げ補強部100と一体型で成形され、アルミニウム材質で形成されることによって、鋼材より強度は小さいが軽いため、補強材の取り扱いと施工性を向上させることができる。   In one embodiment, the shear reinforcement portion 200 is integrally formed with the bending reinforcement portion 100 and is formed of an aluminum material, so that the strength is lighter than the steel material, but it is lighter, thus improving the handling and workability of the reinforcement material. be able to.

追加せん断補強部300は、せん断補強部200の第1クリップ部材210と締結できる第2クリップ部材310を一端に具備し、せん断補強部200と共に締結手段(例えば、ボルト、アンカーボルトなど)により被補強体に締結され、せん断補強部200と共に被補強体をせん断補強する。   The additional shear reinforcement part 300 includes a second clip member 310 that can be fastened to the first clip member 210 of the shear reinforcement part 200 at one end, and is reinforced by fastening means (for example, a bolt, an anchor bolt, etc.) together with the shear reinforcement part 200. The body to be reinforced is shear-reinforced with the shear reinforcement portion 200 together with the body.

前述したような構成を有する複合プレートの補強構造は、アルミニウム(AL 6063−T5)で製作される曲げ補強部100、せん断補強部200および追加せん断補強部300を使うことによって、金型による押出加工で製作することができる。この時、AL 6063−T5は成形性および耐食性が優れており、そのため、AL 6063−T5で製造された曲げ補強部100、せん断補強部200および追加せん断補強部300は、コンクリート構造物の剛性、強度、曲げ剛性および耐力増進に寄与することができる。   The composite plate reinforcing structure having the above-described structure is an extrusion process using a mold by using a bending reinforcing part 100, a shear reinforcing part 200, and an additional shear reinforcing part 300 made of aluminum (AL 6063-T5). Can be produced. At this time, AL 6063-T5 is excellent in moldability and corrosion resistance. Therefore, the bending reinforcing portion 100, the shear reinforcing portion 200, and the additional shear reinforcing portion 300 manufactured by AL 6063-T5 are used for the rigidity of the concrete structure. It can contribute to strength, bending rigidity, and yield strength.

前述したような構成を有する複合プレートの補強構造は、図4の断面図に示すように、既存の補強材とは異なり、曲げ補強部100の両端部に垂直にせん断補強部200を延長形成することによって、補強材の端部の脱落と付着性能を向上させることができる。   As shown in the cross-sectional view of FIG. 4, the composite plate reinforcing structure having the above-described configuration is different from the existing reinforcing material in that the shear reinforcing portion 200 is extended vertically at both ends of the bending reinforcing portion 100. As a result, the end portion of the reinforcing member can be removed and the adhesion performance can be improved.

前述したような構成を有する複合プレートの補強構造は、被補強体に定着させるための両側のせん断補強部200で被補強体の端部を包み込むように付着させることによって、せん断補強部200と被補強体であるコンクリート母体との摩擦せん断による接着性能の向上と応力集中現象などによるせん断補強部200の角の剥落などのような破壊現象を防止するため、補強性能を向上させることができる。   The composite plate reinforcement structure having the above-described configuration is formed by attaching the end portions of the reinforced body so as to wrap the ends of the reinforced body with the shear reinforcement parts 200 on both sides for fixing to the reinforced body. Since the adhesion performance by the frictional shear with the concrete base material which is the reinforcement body and the breaking phenomenon such as the corner peeling of the shear reinforcement portion 200 due to the stress concentration phenomenon are prevented, the reinforcement performance can be improved.

前述したような構成を有する複合プレートの補強構造は、アルミニウム、ガラス繊維およびエポキシ素材で構成された補強材を利用して、クリップ型締結部を設けてコンクリート梁の耐力不足を克服するように具現することによって、RC梁の強度と剛性を増加させると共に既存の補強工法の通気性、早期脱落または施工性のような短所を補完することができ、曲げとせん断耐力を共に補強することができる。   The composite plate reinforcement structure having the above-described structure is realized by using a reinforcing material composed of aluminum, glass fiber and epoxy material to provide a clip-type fastening part to overcome the lack of strength of concrete beams. By doing so, it is possible to increase the strength and rigidity of the RC beam and to complement the disadvantages of the existing reinforcement method such as air permeability, early dropout or workability, and to reinforce both bending and shear strength.

図2は、本発明の実施例に係る複合プレートの補強構造の斜視図である。   FIG. 2 is a perspective view of the reinforcing structure of the composite plate according to the embodiment of the present invention.

図2を参照すると、曲げ補強部100は、長さ方向に二つの有孔トラス構造110−1、110−2が形成されるが、有孔トラス構造は該当個数に限定されず、必要に応じて3個以上の有孔トラス構造が形成されてもよい。   Referring to FIG. 2, in the bending reinforcement portion 100, two perforated truss structures 110-1 and 110-2 are formed in the length direction, but the perforated truss structures are not limited to the corresponding number. Three or more perforated truss structures may be formed.

一実施例において、有孔トラス構造110は、図1〜図3の場合には曲げ補強部100の下部に一体型で図示されているが、必要に応じて締結手段または接着手段などの着脱型で形成されてもよい。   In one embodiment, the perforated truss structure 110 is shown integrally in the lower part of the bending reinforcing portion 100 in the case of FIGS. 1 to 3, but it can be attached and detached as required, such as fastening means or adhesive means. May be formed.

図3は、せん断補強部と追加せん断補強部との締結構造を説明する図面である。   FIG. 3 is a view for explaining a fastening structure of the shear reinforcement portion and the additional shear reinforcement portion.

図3を参照すると、第1クリップ部材210は、せん断補強部200の一端(すなわち、せん断補強部200の上端)から内側に折り曲げられた逆U字状に形成され、内側に折り曲げられて形成された空間に第2クリップ部材310の外側に折り曲げられた部分を挿入する。   Referring to FIG. 3, the first clip member 210 is formed in an inverted U shape that is bent inward from one end of the shear reinforcing portion 200 (that is, the upper end of the shear reinforcing portion 200), and is bent inward. A portion bent outside the second clip member 310 is inserted into the space.

第2クリップ部材310は、追加せん断補強部300の一端(すなわち、追加せん断補強部300の下端)から外側に折り曲げられたU字状に形成され、外側に折り曲げられた部分が第1クリップ部材210の内側に折り曲げられて形成された空間に挿入される。   The second clip member 310 is formed in a U shape that is bent outward from one end of the additional shear reinforcement portion 300 (that is, the lower end of the additional shear reinforcement portion 300), and the portion bent outward is the first clip member 210. Is inserted into a space formed by being bent inside.

一実施例において、第2クリップ部材310は、図3に図示された通り、第1クリップ部材210の逆U字状の溝に挿入されてクリップ状に差し込まれて噛み合わせられ得る。   In one embodiment, the second clip member 310 may be inserted into the inverted U-shaped groove of the first clip member 210 and inserted into the clip shape as shown in FIG.

一実施例において、せん断補強部200は、第1クリップ部材210と第2クリップ部材310とが噛み合った部分が締結手段(例えば、ボルト、アンカーボルトなど)により被補強体と共に締結され得る。   In one embodiment, the portion where the first clip member 210 and the second clip member 310 are engaged with each other in the shear reinforcement portion 200 can be fastened together with the member to be reinforced by fastening means (for example, bolts, anchor bolts, etc.).

一実施例において、せん断補強部200は、被補強体に別途の締結手段がない場合にも被補強体に付着されるために、一方側の開放された部分を密封した後、他方側に被補強体との間に接着剤を充填することができる(図1を参照)。   In one embodiment, since the shear reinforcement portion 200 is attached to the reinforced body even when the reinforced body does not have a separate fastening means, the open portion on one side is sealed and then the other side is covered. An adhesive can be filled between the reinforcing body (see FIG. 1).

前述したような構成を有する、複合プレートの補強構造は、追加曲げ補強部400をさらに含むことができる。   The composite plate reinforcing structure having the above-described configuration may further include an additional bending reinforcing portion 400.

追加曲げ補強部400は、曲げ補強部100、せん断補強部200および追加せん断補強部300の表面にガラス繊維強化プラスチック(GFRP)で形成される多数個の層が交差積層されて補強力を補充する(図4を参照)。この時、繊維の配列が単方向である場合、偏心などによって繊維の配列方向と異なる方向に力が作用するようになると、繊維の配列が乱れてハイブリッド材料の構造性能をすべて発揮できなくなるため、補強層を単方向ではない多方向の繊維配列パターンを有することによってハイブリッド材料の構造性能をすべて発揮することができ、要求される機械的特性が具現され得る。   The additional bending reinforcement 400 replenishes the reinforcing force by cross-laminating multiple layers formed of glass fiber reinforced plastic (GFRP) on the surfaces of the bending reinforcement 100, the shear reinforcement 200, and the additional shear reinforcement 300. (See FIG. 4). At this time, when the fiber arrangement is unidirectional, if the force acts in a direction different from the fiber arrangement direction due to eccentricity or the like, the fiber arrangement is disturbed and the hybrid material cannot exhibit all the structural performance. When the reinforcing layer has a multi-directional fiber arrangement pattern that is not unidirectional, the structural performance of the hybrid material can be fully exhibited, and the required mechanical properties can be realized.

一実施例において、追加曲げ補強部400は、相対的に低い弾性係数を有する曲げ補強部100、せん断補強部200および追加せん断補強部300と共に鉄筋コンクリート構造物との非付着によるせん断摩擦を減らすことができるため、合成挙動を誘導することができる。   In one embodiment, the additional bending reinforcement 400 may reduce shear friction due to non-adhesion with the reinforced concrete structure together with the bending reinforcement 100, the shear reinforcement 200, and the additional shear reinforcement 300 having a relatively low elastic modulus. As a result, the synthesis behavior can be induced.

本出願発明の曲げ補強部100、せん断補強部200および追加せん断補強部300で使われたアルミニウムは、鋼材より強度は小さいものの、軽いため補強材の取り扱いと施工性を向上させることができ、ガラス繊維で形成される追加曲げ補強部400は低い強度のアルミニウムを相対的に補強する役割をし、曲げ補強部100の周囲を包み込んでいるため、腐食防止および耐久性を向上させる。また、既存の工法に使われていた補強材料と比べて低い弾性係数のアルミニウムとガラス繊維は、RC構造物との非付着によるせん断摩擦を減らすため、合成挙動を誘導することができる。   Although the aluminum used in the bending reinforcement part 100, the shear reinforcement part 200, and the additional shear reinforcement part 300 of the present invention has a lower strength than a steel material, it is light and can improve the handling and workability of the reinforcement material. The additional bending reinforcement portion 400 formed of fibers serves to relatively reinforce low-strength aluminum and wraps around the bending reinforcement portion 100, thereby improving corrosion prevention and durability. In addition, aluminum and glass fiber having a lower elastic modulus than the reinforcing material used in the existing construction method can reduce the shear friction due to non-adhesion with the RC structure, and thus can induce a synthetic behavior.

図5は、本発明の他の実施例に係る複合プレート構造の施工方法を説明するフローチャートである。   FIG. 5 is a flowchart for explaining a construction method of a composite plate structure according to another embodiment of the present invention.

図5を参照すると、まず、曲げ補強部100の上部または補強が必要な被補強体に接着剤を塗布する(S510)。   Referring to FIG. 5, first, an adhesive is applied to the upper portion of the bending reinforcing portion 100 or a to-be-reinforced body that needs reinforcement (S510).

一実施例において、被補強体に塗布される接着剤は、エポキシ接着剤(エポキシ樹脂、硬化剤、充填剤、希釈剤などとその他の添加剤を基本ベースとしている熱硬化性樹脂系の接着剤であって、硬化後の機械的な特性に優れ、接着力が強く、耐熱性、電気絶縁特性に優れている)を使うことができる。   In one embodiment, the adhesive applied to the reinforced body is an epoxy adhesive (a thermosetting resin based adhesive based on epoxy resin, curing agent, filler, diluent, etc. and other additives) In addition, it has excellent mechanical properties after curing, strong adhesion, excellent heat resistance and electrical insulation properties).

前述したステップS510で接着剤を塗布した場合、図1に図示された通り、曲げ補強部100を被補強体に付着させる(S520)。   When the adhesive is applied in the above-described step S510, the bending reinforcement portion 100 is attached to the reinforced body as shown in FIG. 1 (S520).

前述したステップS520で曲げ補強部100を付着させた場合、曲げ補強部100の両側に直角方向に延長形成されたせん断補強部200を追加せん断補強部300と共に被補強体に締結する(S530)。   When the bending reinforcement part 100 is attached in the above-described step S520, the shear reinforcement part 200 extended at right angles on both sides of the bending reinforcement part 100 is fastened to the reinforced body together with the additional shear reinforcement part 300 (S530).

前述したようなステップを有する複合プレート構造の施工方法は、前述したステップS510の前に本発明によって補強された被補強体の面に対するグラインディング作業、被補強体の仕上げモルタルを除去する作業、被補強体の亀裂に対する補修作業、および被補強体の凹凸面を平坦化する作業のうち一つ以上の作業を遂行する前処理工程を遂行するステップをさらに含むことができる。また、該当前処理工程遂行後に被補強体にプライマーを塗布することができる。   The construction method of the composite plate structure having the steps as described above includes a grinding operation for the surface of the reinforced body reinforced by the present invention before the above-described step S510, an operation for removing the finished mortar of the reinforced body, The method may further include performing a pretreatment process for performing one or more of a repair work for a crack in the reinforcing body and a work for flattening the uneven surface of the reinforced body. Moreover, a primer can be apply | coated to a to-be-reinforced body after performing a corresponding pre-processing process.

前述したような前処理工程を遂行しプライマーを塗布することによって、被補強体と曲げ補強部100との間の付着力を増大させることができる。   By performing the pretreatment process as described above and applying the primer, the adhesion force between the reinforced body and the bending reinforcement portion 100 can be increased.

図6は、図5にあるせん断補強部を結合するステップを説明するフローチャートである。 FIG. 6 is a flowchart for explaining the step of joining the shear reinforcement portions in FIG.

図6を参照すると、せん断補強部200の一方側の開放された部分を密封する(S531)。すなわち、せん断補強部200の一方側は、被補強体とせん断補強部200とが密着して向かい合うのではなく、第1クリップ部材210と第2クリップ部材310とを締結させるための空間だけの隙間を形成するようになるが(図1〜図3を参照)、該当隙間を密封することによって、他方側から充填される接着剤が該当隙間を通じて流出することを防止する。   Referring to FIG. 6, the open part on one side of the shear reinforcement 200 is sealed (S531). In other words, the one side of the shear reinforcement portion 200 is not a space between the object to be reinforced and the shear reinforcement portion 200 in close contact with each other, but a space only for fastening the first clip member 210 and the second clip member 310. (Refer to FIG. 1 to FIG. 3), by sealing the corresponding gap, the adhesive filled from the other side is prevented from flowing out through the corresponding gap.

前述したステップS531で密封した場合、せん断補強部200の他方側にせん断補強部200と被補強体との間の空間に接着剤を充填する(S532)。   When the sealing is performed in step S531, the adhesive is filled in the space between the shear reinforcement portion 200 and the body to be reinforced on the other side of the shear reinforcement portion 200 (S532).

前述したステップS532で接着剤を充填した場合、せん断補強部200の他方側に追加せん断補強部300をスライディング挿入して、第1クリップ部材210と第2クリップ部材310とがクリップ状に噛み合わせられるように締結する(S533)。すなわち、図3に示したように、第1クリップ部材210と第2クリップ部材310とがクリップ状に噛み合わせられるように追加せん断補強部300を調節した後、第2クリップ部材310が第1クリップ部材210に噛み合った状態で長さ方向に挿入され得るように追加せん断補強部300をスライディング挿入することによって、図2に図示された通り、追加せん断補強部300がせん断補強部200に締結されるようにする。   When the adhesive is filled in step S532 described above, the additional shear reinforcement portion 300 is slidingly inserted on the other side of the shear reinforcement portion 200, and the first clip member 210 and the second clip member 310 are engaged in a clip shape. (S533). That is, as shown in FIG. 3, after adjusting the additional shear reinforcement 300 so that the first clip member 210 and the second clip member 310 are engaged in a clip shape, the second clip member 310 is moved to the first clip. The additional shear reinforcement 300 is fastened to the shear reinforcement 200 as shown in FIG. 2 by sliding and inserting the additional shear reinforcement 300 so that it can be inserted in the lengthwise direction while being engaged with the member 210. Like that.

前述したステップS533でクリップ状に締結した場合、第1クリップ部材210と第2クリップ部材310とが噛み合った部分を図3に図示された通り、締結手段(例えば、アンカーボルトなど)を利用して被補強体と共に締結する(S534)。   When the clip is fastened in the above-described step S533, the portion where the first clip member 210 and the second clip member 310 are engaged with each other is fastened using a fastening means (for example, an anchor bolt) as shown in FIG. It fastens with a to-be-reinforced body (S534).

図7〜図9は、本発明の実施例に係る複合プレートの補強構造の効果を評価するための実験を説明する図面である。   7 to 9 are drawings for explaining experiments for evaluating the effect of the composite plate reinforcing structure according to the embodiment of the present invention.

本発明に係る複合プレートの補強構造の効果を評価するための試験体を生成し、本発明が適用されていない被補強体の破壊の様子を実験した。図9は本発明によって補強された被補強体と補強されていない被補強体の荷重−変位関係を示したグラフである。   A test body for evaluating the effect of the reinforcing structure of the composite plate according to the present invention was generated, and the state of destruction of the reinforced body to which the present invention was not applied was tested. FIG. 9 is a graph showing a load-displacement relationship between a reinforced body reinforced by the present invention and an unreinforced reinforced body.

まず、本発明に係る複合プレートの補強構造の曲げおよびせん断補強能力を検証するために、RC梁を製作し、これに本発明で補強した後に曲げおよびせん断実験を遂行した。本発明で補強された実験体と補強されていない実験体の挙動特性を多様な変数解析を通じて実験的に比較・分析したのであり、汎用の構造設計プログラムを通じて実験の信頼性を確認し、本発明で補強された構造物の挙動を予測した。   First, in order to verify the bending and shear reinforcement ability of the reinforcing structure of the composite plate according to the present invention, an RC beam was manufactured and subjected to bending and shearing experiments after being reinforced with the present invention. The behavioral characteristics of the experimental body reinforced and unreinforced with the present invention were experimentally compared and analyzed through various variable analyses, and the reliability of the experiment was confirmed through a general-purpose structural design program. The behavior of the reinforced structure was predicted.

まず図7および図8を参照すると、本発明BE−2で補強された梁の曲げ補強効果を確認するために、基準実験体B−Uを含んで合計3個の実験体を製作したのであり、実験体の大きさおよび鉄筋配筋の詳細は図8に示した。   First, referring to FIGS. 7 and 8, in order to confirm the bending reinforcement effect of the beam reinforced with the BE-2 of the present invention, a total of three experimental bodies including the reference experimental body B-U were manufactured. The details of the size of the experimental body and the reinforcing bar arrangement are shown in FIG.

図7は、実験方法を簡略に表現した様子を示す。すべての実験体の荷重加力は、実験体の中央から両側に300mm離れた所に除荷したのであり、0.02mm/secの速度で実験体が破壊するまで変位制御を実施した。実験体の変位を測定するためのLVDT(linear variable differential transformer)は、実験体の中央の下に前後に二つ設置された。また曲げ破壊実験が進行される間、各材料の挙動を詳察するために、鉄筋の中央に2個のストレインゲージを付着し、有孔トラス複合プレート補強材には7個のストレインゲージに付着した。すべてのデータは、データロガー(data logger)を利用して実験が終了するまで実験体の中央部での垂れと鉄筋および有孔トラス複合プレート補強材の変形率を荷重段階別に測定した。また、実験体の初期亀裂と亀裂進行状況、有孔トラス複合プレート補強材の脱落および破断などを肉眼で観察して記録したのであり、各荷重段階で発生する亀裂を部材の面に記録して実験終了後に亀裂度を作成した。   FIG. 7 shows a simplified representation of the experimental method. The load applied to all the experimental bodies was unloaded at a distance of 300 mm on both sides from the center of the experimental bodies, and displacement control was performed until the experimental bodies were broken at a speed of 0.02 mm / sec. Two LVDTs (linear variable transformers) for measuring the displacement of the experimental body were installed at the front and back under the center of the experimental body. In addition, during the bending fracture experiment, two strain gauges were attached to the center of the reinforcing bar, and seven strain gauges were attached to the perforated truss composite plate reinforcement to investigate the behavior of each material. . All data were measured using a data logger to measure the sag at the center of the experimental body and the deformation rate of the reinforcing bar and perforated truss composite plate by load stage until the experiment was completed. In addition, the initial crack and crack progress of the experimental body, the drop and breakage of the perforated truss composite plate reinforcement were observed and recorded with the naked eye, and the cracks that occurred at each load stage were recorded on the surface of the member. A crack degree was created after the experiment.

比較実験体であるB−U実験体は本発明で補強されていないRC梁であり、力学的メカニズムはコンクリートの圧縮力と鉄筋の引張力が結合して曲げに抵抗するシステムであり、二つの力の平衡関係において引張鉄筋が先に降伏する過小鉄筋比で設計された。基準実験体の荷重除荷実験結果、設計意図と一致する鉄筋引張の降伏による曲げ破壊が現れた。実験初期に曲げ亀裂が中央の荷重除荷区間で発生したのであり、荷重が増加するにつれて中央から両支点方向に亀裂が発生した。荷重が増加し続けてから鉄筋が降伏するにつれて荷重はさほど増加しなかったのであり、実験体の中央の垂れが大きく発生してコンクリートの圧縮破壊と共に実験が終了した。   The B-U experimental body, which is a comparative experimental body, is an RC beam not reinforced by the present invention, and the mechanical mechanism is a system that resists bending by combining the compressive force of concrete and the tensile force of reinforcing bars. It was designed with the ratio of under-reinforcing bars where the tensile rebar yields first in the force balance relationship. As a result of the unloading experiment of the reference experimental body, bending fracture due to the yield of reinforcing bar tension, which is consistent with the design intention, appeared. Bending cracks occurred in the middle of the unloading section in the middle of the experiment, and cracks occurred from the center toward both fulcrums as the load increased. The load did not increase so much as the reinforcing bar yielded after the load continued to increase. The drooping of the center of the experimental body occurred greatly, and the experiment ended with the compression failure of the concrete.

図9を参照すると、本発明によって補強された実験体の構造的挙動は、コンクリートの圧縮力と引張鉄筋の引張力の他にさらに本発明の引張力が加えられて曲げに抵抗するシステムである。補強されていない実験体と比較して引張力が大きくなるため、曲げ強度と剛性の増加を誘導することができ、コンクリート引張部の亀裂を抑制することができる。   Referring to FIG. 9, the structural behavior of the experimental body reinforced by the present invention is a system that resists bending by applying the tensile force of the present invention in addition to the compressive force of the concrete and the tensile force of the reinforcing bar. . Since the tensile force is greater than that of the unreinforced experimental body, an increase in bending strength and rigidity can be induced, and cracks in the concrete tensile portion can be suppressed.

また、本発明で曲げ補強された実験体に現れた破壊モードは、荷重除荷が始まるとハイブリッド材料ビームと引張鉄筋が同時に引張力を受けるようになる。そのうち任意荷重に達すると、鉄筋が先に降伏し、次いで多くの荷重を有孔トラス複合プレート補強材が受けて最大曲げ区間で破断が発生する。   In addition, in the fracture mode that appears in the experimental body reinforced by bending according to the present invention, when the load unloading starts, the hybrid material beam and the tensile reinforcing bar simultaneously receive a tensile force. When an arbitrary load is reached, the reinforcing bar yields first, and then a large amount of load is received by the perforated truss composite plate reinforcement, causing breakage in the maximum bending section.

本発明で補強されたRC梁は、中央を基点として変位が増加するにつれて曲げ亀裂が発生および進展したのであり、最終破壊は主鉄筋とコンクリートとの間のスリップによる圧縮部の破壊で終了したのであり、補強材とコンクリートとの間の付着力は充分であるものと判断される。   The RC beam reinforced with the present invention had bending cracks that developed and progressed as the displacement increased from the center, and the final failure was terminated by the failure of the compression part due to the slip between the main reinforcing bar and the concrete. Yes, it is judged that the adhesion between the reinforcing material and the concrete is sufficient.

基準実験体B−Uの亀裂の様子と曲げ補強実験体BE−2の亀裂の様子を見ると基準実験体の亀裂がより広く分布することが分かる。これは本発明によって補強された実験体が亀裂を抑制し、亀裂の進展を防止するものと判断され得る。また、実験が終了するまで、補強材である本発明の破壊やRC梁との分離は発生しなかった   It can be seen that the cracks in the reference experimental body are more widely distributed when the cracks in the reference experimental body B-U and the cracks in the bending reinforcement experimental body BE-2 are observed. It can be judged that this is because the experimental body reinforced by the present invention suppresses cracks and prevents the development of cracks. Moreover, until the experiment was completed, the breakage of the present invention as a reinforcing material and separation from the RC beam did not occur.

図9を参照すると、基準実験体B−Uを基準として本発明で補強された実験体の初期亀裂荷重、剛性および最大荷重が増加したことが分かった。B−U基準実験体の初期亀裂荷重は11.6kNであり、補強実験体は18.1kNと示された。これは、本発明がコンクリートの引張部に補強されることによって初期亀裂を抑制するものと判断される。基準実験体と補強された実験体の剛性は、初期亀裂が発生する前までは大きな差はなかった。しかし、初期亀裂後の剛性差は示されたのであり、最大荷重も基準実験体B−Uと比較して大きく増加したことが分かった。また、基準実験体より高い荷重で降伏することによって、軟性区間がより大きく挙動するため、曲げ補強効果を期待することができる。   Referring to FIG. 9, it was found that the initial crack load, rigidity, and maximum load of the experimental body reinforced with the present invention were increased with reference to the standard experimental body B-U. The initial crack load of the B-U reference experimental body was 11.6 kN, and the reinforcement experimental body was 18.1 kN. This is judged that the present invention suppresses the initial crack by being reinforced by the tensile portion of the concrete. The rigidity of the reference experimental body and the reinforced experimental body was not significantly different before the initial crack was generated. However, the difference in stiffness after the initial crack was shown, and it was found that the maximum load was greatly increased compared to the reference experimental body B-U. Moreover, since the soft section behaves more greatly by yielding at a higher load than the reference experimental body, a bending reinforcement effect can be expected.

結果として、本発明は曲げおよびせん断強度と剛性の補強のために二つの材料からなる有孔トラス複合プレート補強材をRC梁の引張部に付着して曲げ破壊実験を実施したのであり、本発明で補強された実験体の曲げ特性を分析するために、破壊モード、実験体の亀裂の様子、実験変数に対する影響、有孔トラス複合プレート補強材の変形特性を検討した。そして、次のような結論を得ることができた。   As a result, in the present invention, a perforated truss composite plate reinforcing material made of two materials was attached to a tensile portion of an RC beam to reinforce bending and shear strength and rigidity, and a bending fracture experiment was performed. In order to analyze the bending characteristics of the experimental body reinforced with, we examined the fracture mode, the appearance of cracks in the experimental body, the effect on experimental variables, and the deformation characteristics of the perforated truss composite plate reinforcement. And the following conclusion was able to be obtained.

まず、本発明で補強された実験体は、補強されていない基準実験体と比較して剛性と最大荷重がいずれも増加した。梁の補強実験体は約32.4%〜86.2%の最大荷重増加率を示し、30%程度軟性補強性能も増加した。したがって、本発明の補強遂行能力は優秀なものと判断される。   First, both the rigidity and the maximum load of the experimental body reinforced by the present invention increased compared to the reference experimental body that was not reinforced. The beam reinforcement experimental body showed a maximum load increase rate of about 32.4% to 86.2%, and the soft reinforcement performance increased by about 30%. Therefore, it is judged that the reinforcement performance of the present invention is excellent.

また、実験体の強度、変位および亀裂の様子を通じて補強効果を考慮した時、本発明による補強は効率的であり、コンクリート母体の角の剥落防止および接着性能を向上させるための端部垂直プレート設置は構造物の補強に、より効果的であることが分かる。   In addition, when considering the effect of reinforcement through the strength, displacement and cracking of the experimental body, the reinforcement according to the present invention is efficient, and the end vertical plate is installed to prevent the corner of the concrete matrix from peeling off and to improve the adhesion performance. It can be seen that is more effective for reinforcing the structure.

以上、実施例を参照して説明したが、該当技術分野の熟練した当業者は下記の特許請求の範囲に記載された本発明の思想および領域から逸脱しない範囲内で、本発明を多様に修正および変更させることができることが理解できるはずである。   Although the present invention has been described with reference to the embodiments, those skilled in the art can make various modifications to the present invention without departing from the spirit and scope of the present invention described in the following claims. It should be understood that it can be changed.

100:曲げ補強部
200:せん断補強部
210:第1クリップ部材
300:追加せん断補強部
310:第2クリップ部材
400:追加曲げ補強部
100: bending reinforcement part 200: shear reinforcement part 210: first clip member 300: additional shear reinforcement part 310: second clip member 400: additional bending reinforcement part

Claims (15)

長さ方向に有孔トラス構造が形成される曲げ補強部と、
前記曲げ補強部の両側から直角方向に延長形成され、一端に第1クリップ部材が形成されたせん断補強部と、
前記せん断補強部の第1クリップ部材と締結できる第2クリップ部材を一端に具備し、前記せん断補強部と共に被補強体に締結される追加せん断補強部と、
を含む複合プレートの補強構造。
Bending reinforcement part in which a perforated truss structure is formed in the length direction;
A shear reinforcement portion which is formed to extend in a right angle direction from both sides of the bending reinforcement portion, and a first clip member is formed at one end;
A second clip member that can be fastened to the first clip member of the shear reinforcement portion at one end, and an additional shear reinforcement portion fastened to the reinforced body together with the shear reinforcement portion;
Composite plate reinforcement structure including
前記第1クリップ部材は、前記せん断補強部の一端から内側に折り曲げられた逆U字状に形成されることを特徴とする、請求項1に記載の複合プレートの補強構造。   2. The composite plate reinforcement structure according to claim 1, wherein the first clip member is formed in an inverted U shape bent inward from one end of the shear reinforcement portion. 3. 前記第2クリップ部材は、前記追加せん断補強部の一端から外側に折り曲げられたU字状に形成されることを特徴とする、請求項2に記載の複合プレートの補強構造。   3. The composite plate reinforcement structure according to claim 2, wherein the second clip member is formed in a U-shape bent outward from one end of the additional shear reinforcement portion. 前記第2クリップ部材は、前記第1クリップ部材の逆U字状の溝に挿入されてクリップ状に差し込まれて噛み合わせられることを特徴とする、請求項3に記載の複合プレートの補強構造。   4. The composite plate reinforcing structure according to claim 3, wherein the second clip member is inserted into an inverted U-shaped groove of the first clip member, inserted into a clip shape, and meshed. 5. 前記せん断補強部は、前記第1クリップ部材と前記第2クリップ部材とが噛み合った部分が被補強体と共に締結されることを特徴とする、請求項4に記載の複合プレートの補強構造。   5. The composite plate reinforcement structure according to claim 4, wherein the shear reinforcement portion is fastened together with a to-be-reinforced portion at a portion where the first clip member and the second clip member mesh with each other. 前記せん断補強部は、前記第1クリップ部材と前記第2クリップ部材とが噛み合った部分が被補強体と共に締結するための締結手段を具備することを特徴とする、請求項5に記載の複合プレートの補強構造。   6. The composite plate according to claim 5, wherein the shear reinforcing portion includes fastening means for fastening a portion where the first clip member and the second clip member are engaged together with a to-be-reinforced body. Reinforcement structure. 前記せん断補強部は、一方側の開放された部分を密封した後、他方側に被補強体との間に接着剤を充填することを特徴とする、請求項1に記載の複合プレートの補強構造。   The composite plate reinforcing structure according to claim 1, wherein the shear reinforcing portion seals an open portion on one side and then fills the other side with an adhesive between the reinforcing member and the reinforcing member. . 前記有孔トラス構造は、前記曲げ補強部の下部に一体型または着脱型で形成されることを特徴とする、請求項1に記載の複合プレートの補強構造。   The composite plate reinforcing structure according to claim 1, wherein the perforated truss structure is formed integrally or detachably at a lower portion of the bending reinforcing portion. 前記曲げ補強部、前記せん断補強部および前記追加せん断補強部は、アルミニウムで製作されることを特徴とする、請求項1に記載の複合プレートの補強構造。   2. The composite plate reinforcing structure according to claim 1, wherein the bending reinforcing portion, the shear reinforcing portion, and the additional shear reinforcing portion are made of aluminum. 前記曲げ補強部の表面にガラス繊維強化プラスチック(GFRP)が積層されて補強力を補充するための追加曲げ補強部をさらに含む、請求項1に記載の複合プレートの補強構造。   The reinforcing structure of a composite plate according to claim 1, further comprising an additional bending reinforcing part for laminating glass fiber reinforced plastic (GFRP) on the surface of the bending reinforcing part to supplement the reinforcing force. 前記追加曲げ補強部は、GFRPで形成される多数個の層が交差積層されることを特徴とする、請求項10に記載の複合プレートの補強構造。   The composite plate reinforcing structure according to claim 10, wherein the additional bending reinforcing portion includes a plurality of layers formed of GFRP cross-laminated. 曲げ補強部の上部または補強が必要な被補強体に接着剤を塗布するステップと
前記曲げ補強部を被補強体に付着させるステップと
前記曲げ補強部の両側に直角方向に延長形成されたせん断補強部を追加せん断補強部と共に被補強体に締結するステップと、
を含む複合プレート構造の施工方法。
A step of applying an adhesive to an upper portion of the bending reinforcing portion or a reinforcing member requiring reinforcement; a step of attaching the bending reinforcing portion to the reinforcing member; and shear reinforcement formed to extend at right angles on both sides of the bending reinforcing portion. Fastening the part to the reinforced body together with the additional shear reinforcement part;
Construction method of composite plate structure including
前記接着剤を塗布するステップの前に、被補強体の面に対するグラインディング作業、被補強体の仕上げモルタルを除去する作業、被補強体の亀裂に対する補修作業または被補強体の凹凸面を平坦化する作業のうち一つ以上の作業を遂行する前処理ステップをさらに含むことを特徴とする、請求項12に記載の複合プレート構造の施工方法。   Before the step of applying the adhesive, the grinding work on the surface of the reinforced body, the work of removing the finishing mortar of the reinforced body, the repair work for cracks in the reinforced body, or the uneven surface of the reinforced body is flattened. The method for constructing a composite plate structure according to claim 12, further comprising a pretreatment step of performing one or more of the operations to be performed. 前記前処理ステップを遂行した後、被補強体にプライマーを塗布するステップをさらに含むことを特徴とする、請求項13に記載の複合プレート構造の施工方法。   The construction method of a composite plate structure according to claim 13, further comprising a step of applying a primer to the object to be reinforced after performing the pretreatment step. 前記せん断補強部を結合するステップは、
前記せん断補強部の一方側の開放された部分を密封するステップと、
前記せん断補強部の他方側に前記せん断補強部と被補強体との間の空間に接着剤を充填するステップと、
前記せん断補強部の他方側に前記追加せん断補強部をスライディング挿入して前記せん断補強部の第1クリップ部材と前記追加せん断補強部の第2クリップ部材とがクリップ状に噛み合わせられるように締結するステップと、
前記第1クリップ部材と前記第2クリップ部材とが噛み合った部分を被補強体と共に締結するステップとを含むことを特徴とする、請求項12に記載の複合プレート構造の施工方法。
The step of joining the shear reinforcements comprises
Sealing the open part on one side of the shear reinforcement;
Filling the space between the shear reinforcement portion and the reinforced body on the other side of the shear reinforcement portion with an adhesive;
The additional shear reinforcement portion is slidingly inserted on the other side of the shear reinforcement portion and fastened so that the first clip member of the shear reinforcement portion and the second clip member of the additional shear reinforcement portion are engaged in a clip shape. Steps,
The method for constructing a composite plate structure according to claim 12, further comprising a step of fastening a portion where the first clip member and the second clip member are engaged with each other to be reinforced.
JP2018108316A 2017-06-29 2018-06-06 Composite plate reinforcement structure and construction method Active JP6655128B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0082228 2017-06-29
KR1020170082228A KR101790166B1 (en) 2017-06-29 2017-06-29 Composite Plate Eeinforcement Structure and Construction Method thereof

Publications (2)

Publication Number Publication Date
JP2019011669A true JP2019011669A (en) 2019-01-24
JP6655128B2 JP6655128B2 (en) 2020-02-26

Family

ID=60299743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108316A Active JP6655128B2 (en) 2017-06-29 2018-06-06 Composite plate reinforcement structure and construction method

Country Status (2)

Country Link
JP (1) JP6655128B2 (en)
KR (1) KR101790166B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042563A (en) * 2019-12-04 2020-04-21 东南大学 SMA-FRP shear-resistant reinforced concrete beam device and implementation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382825B1 (en) * 2021-08-31 2022-04-08 경북대학교 산학협력단 Reinforcing material for a building equipped with a light emitting member and a building using the same to form a reinforcing force
WO2023033460A1 (en) * 2021-08-31 2023-03-09 경북대학교 산학협력단 Structure reinforcement material having light-emitting member, and structure having stiffening force formed using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042563A (en) * 2019-12-04 2020-04-21 东南大学 SMA-FRP shear-resistant reinforced concrete beam device and implementation method thereof
CN111042563B (en) * 2019-12-04 2021-11-26 东南大学 SMA-FRP shear-resistant reinforced concrete beam device and implementation method thereof

Also Published As

Publication number Publication date
JP6655128B2 (en) 2020-02-26
KR101790166B1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
Zhou et al. Rehabilitation of notch damaged steel beams using a carbon fiber reinforced hybrid polymeric-matrix composite
US8349109B2 (en) Method for applying a reinforced composite material to a structural member
JP6076918B2 (en) Structural member with energy absorption effect under tension on the outside
JP6655128B2 (en) Composite plate reinforcement structure and construction method
de Castro et al. Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, Part I: Experimental investigation
WO2006020261A2 (en) Confinement reinforcement for masonry and concrete structures
Harries et al. Steel-FRP composite structural systems
KR101683367B1 (en) Fiber Reinforced Concrete Structure With End Slip Prevention
KR101104613B1 (en) Reinforcing method of concrete structures using fiber composites for reinforcing
US8567146B2 (en) Method and apparatus for repairing concrete
Garrido et al. Connection systems between composite sandwich floor panels and load-bearing walls for building rehabilitation
Solahuddin et al. A state-of-the-art review on experimental investigation and finite element analysis on structural behaviour of fibre reinforced polymer reinforced concrete beams
Alhamdan et al. Experimental investigation of the flexural strengthening of fixed-supported RC beams
JP6151047B2 (en) Composite structure construction method and composite structure
Nordin Strengthening structures with externally prestressed tendons: literature review
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
Fornander et al. A New Method for using Prestressed Fibre-Reinforced Polymer Laminates for Strengthening and Repair of Structural Members
KR101818153B1 (en) Strengthening Apparatus for Reinforced Concrete Sturcure And Strengthening Method Using the Same
KR20140124262A (en) Steel Girder reinforced using Fiber Reinforced Polymer
Shaw et al. Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders
Verbruggen et al. The influence of externally bonded longitudinal TRC reinforcement on the crack pattern of a concrete beam
Irshidat et al. Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with externally bonded CFRP sheets
Al-Saoudi Investigation of the Performance of Fibre Reinforced Polymers Anchorage Devices in Strengthening Concrete Bridge Beams Subjected to Fatigue Loading
Nanni et al. Strengthening of RC flexural members with FRP composites
Mohamed Reda A State-of-the-Art Review: Side Near Surface Mounted (SNSM) Technique for Strengthening of RC Beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6655128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250