JP2019010648A - Heating and cooling device - Google Patents

Heating and cooling device Download PDF

Info

Publication number
JP2019010648A
JP2019010648A JP2017126991A JP2017126991A JP2019010648A JP 2019010648 A JP2019010648 A JP 2019010648A JP 2017126991 A JP2017126991 A JP 2017126991A JP 2017126991 A JP2017126991 A JP 2017126991A JP 2019010648 A JP2019010648 A JP 2019010648A
Authority
JP
Japan
Prior art keywords
pressure
container
heating
exhaust
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017126991A
Other languages
Japanese (ja)
Other versions
JP6984194B2 (en
Inventor
毅 松下
Takeshi Matsushita
毅 松下
嘉男 五十嵐
Yoshio Igarashi
嘉男 五十嵐
剛典 和田
Takenori Wada
剛典 和田
昌希 丸山
Masaki Maruyama
昌希 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017126991A priority Critical patent/JP6984194B2/en
Publication of JP2019010648A publication Critical patent/JP2019010648A/en
Application granted granted Critical
Publication of JP6984194B2 publication Critical patent/JP6984194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heating and cooling device capable of improving quality of soldering of a processed member.SOLUTION: A heating and cooling device 100 comprises: an air tight container 5; an induction heating device 3 for heating or cooling a processed member 1; a temperature sensor 13 for measuring temperature of the processed member 1; a pressure sensor 14 for detecting pressure in the container 5; a reduction gas supply device 9 for supplying reduction gas into the container 5; an inert gas supply device 10 for supplying inert gas into the container 5; a vacuum exhaust device 11 for reducing pressure in the container 5; and a controller 6 for controlling heating or cooling by the induction heating device 3 and pressure in the container 5 based on the measured temperature. The vacuum exhaust device 11 has a flow rate adjustment valve 11f for adjusting an exhaust flow rate of a gas on at least any one of branched exhaust pipings, and the controller 6 switches the exhaust pipings based on pressure in the container 5 and changes vacuum exhaust speed in multi stages.SELECTED DRAWING: Figure 1

Description

本発明は、加熱冷却装置に係り、より詳細には、半導体素子を絶縁基板にハンダ付けする半導体モジュールの製造方法に好適な加熱冷却装置に関する。   The present invention relates to a heating / cooling device, and more particularly to a heating / cooling device suitable for a method of manufacturing a semiconductor module in which a semiconductor element is soldered to an insulating substrate.

近年、電力変換用のスイッチングデバイス等として用いられる半導体モジュールは、その使用環境条件が非常に厳しくなっている。IGBT(Insulated Gate Bipolar Transistor)やFWD(Free Wheeling Diode)等の半導体チップと絶縁基板とのハンダ接合面、又は絶縁基板とベース板とのハンダ接合面においても、高接合強度かつ高耐熱性が必要とされている。   In recent years, semiconductor modules used as power conversion switching devices and the like have become very severe in environmental conditions. High bonding strength and high heat resistance are also required on the solder joint surface between the semiconductor chip such as IGBT (Insulated Gate Bipolar Transistor) and FWD (Free Wheeling Diode) and the insulating substrate, or the solder joint surface between the insulating substrate and the base plate. It is said that.

そこで、ハンダ材料として、濡れ性に優れるが接合強度が十分とはいえないSn−Ag系の材料に代えて、高接合強度を得やすく、Sb濃度の高いSn−Sb系の材料が採用されつつある。   Therefore, as a solder material, an Sn-Sb-based material that is easy to obtain a high bonding strength and has a high Sb concentration is being used instead of an Sn-Ag-based material that has excellent wettability but does not have sufficient bonding strength. is there.

しかしながら、Sn−Sb系のハンダ材料は、Sn−Ag系のハンダ材料と比較すると、被ハンダ付け部材の表面に厚い酸化膜が形成されるので、ハンダが濡れにくいという性質がある。このため、被ハンダ付け部材の表面酸化膜を十分還元できず、ハンダ接合面にボイドが生じやすいという問題が生じている。   However, the Sn—Sb solder material has a property that the solder is difficult to wet because a thick oxide film is formed on the surface of the soldering member as compared with the Sn—Ag solder material. For this reason, the surface oxide film of the member to be soldered cannot be sufficiently reduced, and there is a problem that voids are easily generated on the solder joint surface.

この問題を解決するため、特許文献1の被処理部材の製造方法では、積層体を、減圧炉を備えた接合組み立て装置内に投入して炉内を真空排気した後、炉内を正圧の水素雰囲気にして積層体の各部材の表面を還元している。ハンダの加熱溶融後は、炉内を再び真空雰囲気にしてハンダ板中の気泡(ボイドの原因)を除去し、続いて再び炉内を正圧の水素雰囲気にして、ハンダ板中に気泡の移動により生じたトンネル状の孔を塞ぐようにしている(段落0048参照)。   In order to solve this problem, in the method for manufacturing a member to be processed of Patent Document 1, the laminate is put into a joining and assembling apparatus equipped with a decompression furnace, the inside of the furnace is evacuated, and then the inside of the furnace is positively pressurized. The surface of each member of the laminate is reduced in a hydrogen atmosphere. After the solder is melted by heating, the inside of the furnace is again evacuated to remove the bubbles (caused by voids) in the solder plate, and then the inside of the furnace is again brought to a positive pressure hydrogen atmosphere to move the bubbles into the solder plate. (See paragraph 0048).

また、特許文献2の被処理部材の製造方法では、以下の図5に示すようにチャンバ内の温度と圧力とを変化させている。具体的には、(1)雰囲気気体封入工程、(2)低圧溶融工程、(3)加圧工程、(4)再減圧工程、(5)再加圧工程、(6)降温工程の6工程を順番に行う。これにより、ハンダ内のボイドの破裂を防いでいる(段落0014〜0021)。   Moreover, in the manufacturing method of the to-be-processed member of patent document 2, as shown in the following FIG. 5, the temperature and pressure in a chamber are changed. Specifically, (1) atmosphere gas sealing step, (2) low-pressure melting step, (3) pressurizing step, (4) re-depressurizing step, (5) re-pressurizing step, (6) temperature decreasing step In order. This prevents the void in the solder from bursting (paragraphs 0014 to 0021).

特開2003−297860号公報JP 2003-297860 A 特開2006−281309号公報JP 2006-281309 A

特許文献1,2の被処理部材の製造方法では、溶融したハンダ材料中のボイドを除去するため、容器内を真空排気する。しかしながら、この真空排気工程において、排気を高速で行うと、急激な圧力変化によりボイドが膨張して破裂することがあり、ハンダが飛散して、絶縁基板や周辺の部材に付着するという問題があった。一方、排気を低速で行うと、設定した圧力に到達するまでの到達時間が長くなり、工程時間が長くなるという問題があった。   In the manufacturing method of the to-be-processed member of patent document 1, 2, in order to remove the void in the molten solder material, the inside of a container is evacuated. However, in this vacuum evacuation process, if evacuation is performed at a high speed, voids may expand and burst due to a sudden change in pressure, and solder may scatter and adhere to the insulating substrate and surrounding members. It was. On the other hand, when exhaust is performed at a low speed, there is a problem that the time required to reach the set pressure becomes long and the process time becomes long.

このような問題に鑑み、本発明の目的は、真空排気速度を制御して、被処理部材のハンダ付けの品質向上を図ることができる加熱冷却装置を提供することにある。   In view of such a problem, an object of the present invention is to provide a heating / cooling apparatus capable of controlling the evacuation speed and improving the soldering quality of a member to be processed.

上記目的を達成するため、本発明の加熱冷却装置は、被処理部材の出し入れが可能な開閉機構を有する気密性の容器と、前記被処理部材の加熱又は冷却を行う加熱冷却手段と、前記被処理部材の温度を計測するための温度センサと、前記容器内の圧力を検出する圧力センサと、前記容器内に還元ガスを供給する還元ガス供給手段と、前記容器内に不活性ガスを供給する不活性ガス供給手段と、前記容器内を減圧する真空排気手段と、前記温度センサにより計測された温度に基づいて前記加熱冷却手段による加熱又は冷却と前記容器内の圧力とを制御する制御手段とを備える加熱冷却装置において、前記真空排気手段は、前記容器内のガスを排気する真空ポンプが接続された排気配管の流路を分岐して、該分岐された排気配管の少なくとも一方に該ガスの排気流量を調整する流量調整手段を設け、前記制御手段は、前記容器内の圧力に基づいて前記分岐された排気配管を切替え、真空排気速度を多段階に変化させることを特徴とする。   In order to achieve the above object, a heating / cooling device of the present invention comprises an airtight container having an opening / closing mechanism capable of inserting and removing a member to be processed, a heating / cooling means for heating or cooling the member to be processed, and the member to be processed. A temperature sensor for measuring the temperature of the processing member, a pressure sensor for detecting the pressure in the container, a reducing gas supply means for supplying a reducing gas into the container, and an inert gas in the container An inert gas supply means, a vacuum exhaust means for depressurizing the inside of the container, and a control means for controlling heating or cooling by the heating / cooling means and a pressure in the container based on the temperature measured by the temperature sensor; In the heating / cooling apparatus, the vacuum exhaust means branches at least one of the branched exhaust pipes by branching a flow path of an exhaust pipe connected to a vacuum pump that exhausts the gas in the container A flow rate adjusting means for adjusting the exhaust flow rate of the gas is provided, and the control means switches the branched exhaust pipe based on the pressure in the container and changes the vacuum exhaust speed in multiple stages. .

本発明の加熱冷却装置では、気密された容器内に置かれた被処理部材を、加熱冷却手段により還元ガスの雰囲気下で加熱又は冷却するので、ハンダ付けを行うのに適している。また、制御手段は、容器内の圧力に基づいて排気配管を切替え、さらに、真空排気手段の排気速度を多段階に変化させるので、被処理部材のハンダ付けの品質向上を図ることができる。   In the heating / cooling apparatus of the present invention, the member to be processed placed in an airtight container is heated or cooled by the heating / cooling means in an atmosphere of a reducing gas, which is suitable for soldering. Further, since the control means switches the exhaust pipe based on the pressure in the container and further changes the exhaust speed of the vacuum exhaust means in multiple stages, it is possible to improve the soldering quality of the member to be processed.

本発明の加熱冷却装置において、前記制御手段は、前記容器内の圧力が大気圧から予め設定した第1圧力になるまでの第1期間は、前記流量調整手段が設けられた排気配管に切替えて真空排気を行い、前記容器内の圧力が前記第1圧力から予め設定した第2圧力になるまでの第2期間は、前記流量調整手段が設けられていない排気配管に切替えて真空排気を行い、前記容器内の圧力が前記第2圧力から予め設定した第3圧力となるまでの第3期間は、再び前記流量調整手段が設けられた排気配管に切替えて真空排気を行うことが好ましい。   In the heating and cooling apparatus of the present invention, the control means switches to an exhaust pipe provided with the flow rate adjusting means during a first period until the pressure in the container changes from atmospheric pressure to a preset first pressure. During the second period until the pressure in the container reaches the second pressure set in advance from the first pressure, switching to an exhaust pipe not provided with the flow rate adjusting means is performed and evacuating is performed. It is preferable to perform evacuation by switching to the exhaust pipe provided with the flow rate adjusting means again during the third period until the pressure in the container reaches the third pressure set in advance from the second pressure.

上記態様によれば、制御手段は、第1期間に流量調整手段が設けられた排気配管(後述するスロー排気配管)に切替える。流量調整手段が設けられた排気配管を用いることで、排気流量を調整しながら速度を抑えて真空排気を行うことができる。これにより、被処理部材の半導体素子の位置が、急激な圧力変化で移動することを防止することができる。   According to the said aspect, a control means switches to the exhaust pipe (slow exhaust pipe mentioned later) provided with the flow volume adjustment means in the 1st period. By using the exhaust pipe provided with the flow rate adjusting means, it is possible to perform the vacuum exhaust while suppressing the speed while adjusting the exhaust flow rate. Thereby, it can prevent that the position of the semiconductor element of a to-be-processed member moves by rapid pressure change.

また、制御手段は、第2期間に流量調整手段が設けられていない排気配管(後述する粗引配管)に流路を切替える。流量調整手段が設けられていない排気配管を用いることで真空排気の速度を高め、排気時間を短縮することができる。   In addition, the control means switches the flow path to an exhaust pipe (rough drawing pipe to be described later) in which no flow rate adjusting means is provided in the second period. By using the exhaust pipe not provided with the flow rate adjusting means, the speed of the vacuum exhaust can be increased and the exhaust time can be shortened.

また、制御手段は、第3期間に、再び流量調整手段が設けられた排気配管に流路を切替える。第3期間では、速度を抑えて真空排気を行うことにより急激な圧力変化が起こらなくなるので、ハンダ材料中のボイド低減とハンダの飛散とを同時に解消することができる。   Further, the control means switches the flow path to the exhaust pipe provided with the flow rate adjusting means again in the third period. In the third period, a rapid pressure change does not occur by performing vacuum evacuation at a reduced speed, so that it is possible to simultaneously eliminate void reduction and solder scattering in the solder material.

また、本発明の加熱冷却装置において、前記真空排気手段は、前記真空ポンプが接続された排気配管の流路を3以上に分岐して、該分岐された各排気配管にコンダクタンスの異なる流量調整手段を設け、前記制御手段は、各工程に応じた排気速度で所定の圧力となるように真空排気を行うことが好ましい。   Further, in the heating and cooling apparatus of the present invention, the vacuum evacuation means branches the flow path of the exhaust pipe connected to the vacuum pump into three or more, and the flow rate adjusting means having different conductances in the branched exhaust pipes It is preferable that the control means performs vacuum exhaust so that a predetermined pressure is obtained at an exhaust speed corresponding to each step.

真空ポンプが接続された排気配管の流路を3以上に分岐して、各排気配管にコンダクタンスの異なる流量調整手段を設けてもよい。制御手段は、各流量調整手段を制御することにより、より精度を高めて排気流量を制御することができる。   The flow path of the exhaust pipe to which the vacuum pump is connected may be branched into three or more, and a flow rate adjusting means having a different conductance may be provided in each exhaust pipe. The control means can control the exhaust gas flow rate with higher accuracy by controlling each flow rate adjusting means.

本発明の加熱冷却装置の一実施形態に係り、被処理部材の加熱状態の概略構成図である。It is related with one Embodiment of the heating-cooling apparatus of this invention, and is a schematic block diagram of the heating state of a to-be-processed member. 本発明の加熱冷却装置の一実施形態に係り、被処理部材の冷却状態の概略構成図である。It is a schematic block diagram of the cooling state of a to-be-processed member concerning one Embodiment of the heating-cooling apparatus of this invention. 被処理部材を製造する際の温度と圧力の状態変化を示す説明図である。It is explanatory drawing which shows the state change of the temperature and pressure at the time of manufacturing a to-be-processed member. 対策前後のプロセスを比較した図である。It is the figure which compared the process before and after a countermeasure. ボイド発生率を示した図である。It is the figure which showed the void incidence rate. 対策前後のハンダ飛散率を比較した図である。It is the figure which compared the solder scattering rate before and after a countermeasure. 従来の加熱冷却装置において、被処理部材を製造する際の温度と圧力の状態変化を示す説明図である。It is explanatory drawing which shows the state change of the temperature at the time of manufacturing a to-be-processed member in the conventional heating / cooling apparatus.

以下、図1、図2を参照して、本発明の加熱冷却装置の一実施形態を説明する。なお、図1は被処理部材1を加熱する加熱状態、図2は被処理部材1を冷却する冷却状態であり、被処理部材1が載置されるトレイ2の位置のみが異なる。   Hereinafter, an embodiment of the heating and cooling apparatus of the present invention will be described with reference to FIGS. 1 and 2. 1 shows a heating state in which the member 1 to be processed is heated, and FIG. 2 shows a cooling state in which the member 1 to be processed is cooled. Only the position of the tray 2 on which the member 1 to be processed is placed is different.

図1、図2に示すように、加熱冷却装置100の容器5の内部には、主に、被処理部材1、被処理部材1を加熱又は冷却するための誘導加熱装置3、被処理部材1を保持しながら昇降を可能とした昇降装置16(一部)が設けられている。   As shown in FIGS. 1 and 2, the inside of the container 5 of the heating / cooling device 100 mainly includes a member 1 to be processed, an induction heating device 3 for heating or cooling the member 1 to be processed, and a member 1 to be processed. A lifting / lowering device 16 (part) is provided that can be lifted and lowered while holding.

また、容器5の外部には、主に、誘導加熱装置3の内部に冷媒を循環させる冷媒循環装置4、被処理部材1の加熱又は冷却を制御する制御装置6の他、入力装置7、還元ガス供給装置9、不活性ガス供給装置10、真空排気装置11、昇降装置16(一部)が設けられている。   Further, outside of the container 5, mainly, a refrigerant circulation device 4 that circulates a refrigerant inside the induction heating device 3, a control device 6 that controls heating or cooling of the processing target member 1, an input device 7, a reduction A gas supply device 9, an inert gas supply device 10, an evacuation device 11, and a lifting device 16 (part) are provided.

被処理部材1は、放熱性能が優れたベース板1a(例えば、銅やアルミニウム)の上面にハンダ板(図示省略)を介して絶縁基板1b(例えば、Direct Copper Bond)を1個又は複数個積層し、さらに、絶縁基板1bの上面にハンダ板(図示省略)を介して半導体素子1cを複数個配置したものである。   The member 1 to be processed has one or more insulating substrates 1b (for example, Direct Copper Bond) laminated on the upper surface of a base plate 1a (for example, copper or aluminum) having excellent heat dissipation performance via a solder plate (not shown). In addition, a plurality of semiconductor elements 1c are arranged on the upper surface of the insulating substrate 1b via a solder plate (not shown).

そして、加熱処理によりハンダ板を溶融すると、半導体素子1cと絶縁基板1b、絶縁基板1bとベース板1aとが密着され、冷却処理によりハンダを凝固させて接合することで、パワー半導体デバイスが製造される。なお、被処理部材1は、矩形状のトレイ2を介して熱伝導により加熱、冷却ができるようになっている。また、トレイ2は被処理部材1と比較して十分大きいので、トレイ2上に被処理部材1が複数個セットできるようになっている。   Then, when the solder plate is melted by the heat treatment, the semiconductor element 1c and the insulating substrate 1b, the insulating substrate 1b and the base plate 1a are brought into close contact with each other, and the solder is solidified and joined by the cooling treatment, whereby a power semiconductor device is manufactured. The In addition, the to-be-processed member 1 can be heated and cooled by heat conduction through a rectangular tray 2. Further, since the tray 2 is sufficiently larger than the member 1 to be processed, a plurality of members 1 to be processed can be set on the tray 2.

誘導加熱装置3では、誘導加熱コイル3aに交流電流を流すことにより、強度が変化する磁力線が発生する。この磁力線の中に配置された金属等の導電体には、渦電流が流れるので、被処理部材1及びトレイ2を発熱させることができる。誘導加熱コイル3aを形成するパイプの形状は、角型とした方が後述する冷却板3bとの接触面積が大きくなる点で好ましいが、丸型パイプ又は楕円型パイプであってもよい。   In the induction heating device 3, magnetic field lines whose strength changes are generated by passing an alternating current through the induction heating coil 3 a. Since an eddy current flows through a conductor such as a metal disposed in the magnetic lines of force, the member to be processed 1 and the tray 2 can generate heat. The shape of the pipe forming the induction heating coil 3a is preferably a square shape in terms of increasing the contact area with the cooling plate 3b described later, but it may be a round pipe or an elliptical pipe.

また、誘導加熱装置3には、誘導加熱コイル3aを支持するための絶縁体材料で形成された支持板3cと、誘導加熱コイル3aの上面を覆う形で、セラミック材料(例えば、炭化珪素や窒化アルミ)で形成された冷却板3bが設けられている。冷却板3bは、ボルト(図示省略)の締め付け力により冷媒が循環している誘導加熱コイル3aに密着させて、その温度が一定となるように配置されている。   The induction heating device 3 includes a support plate 3c formed of an insulating material for supporting the induction heating coil 3a, and a ceramic material (for example, silicon carbide or nitride) covering the upper surface of the induction heating coil 3a. A cooling plate 3b formed of aluminum is provided. The cooling plate 3b is disposed in close contact with the induction heating coil 3a in which the refrigerant circulates by a tightening force of a bolt (not shown) so that the temperature is constant.

誘導加熱コイル3aの外周側面は、耐熱性を有する絶縁体材料(例えば、PTFE(フッ素樹脂)、ポリミイド、マシナブルセラミックス)によりその上面を覆い、昇降装置16の支持板16fが干渉しないよう形成した絶縁カバー3dを、支持板3cに取り付けている。これにより、被処理部材1及びトレイ2の着脱時に発生する導電性の塵埃が、加熱冷却装置100の長時間運転時に誘導加熱コイル3a上に堆積せず、交流電流を通電したときの短絡や放電を防止することができる。   The outer peripheral side surface of the induction heating coil 3a is covered with an insulating material having heat resistance (for example, PTFE (fluorine resin), polyimide, machinable ceramics) so that the support plate 16f of the lifting device 16 does not interfere with the upper surface. The insulating cover 3d is attached to the support plate 3c. Thereby, the conductive dust generated when the processing target member 1 and the tray 2 are attached / detached does not accumulate on the induction heating coil 3a during the long-time operation of the heating / cooling device 100, and a short circuit or discharge when an alternating current is applied. Can be prevented.

また、誘導加熱コイル3aを形成するパイプ間には、絶縁体材料で形成されたスペーサ3e挿入し、誘導加熱コイル3aに交流電流を通電したときに起こる短絡や放電を防止する構造となっている。   In addition, a spacer 3e made of an insulating material is inserted between the pipes forming the induction heating coil 3a to prevent a short circuit or discharge that occurs when an alternating current is passed through the induction heating coil 3a. .

また、誘導加熱装置3には、誘導加熱コイル3aが配設されていない位置に、冷却板3bと支持板3cとに設けられた貫通孔を通して温度センサ13が挿入され、トレイ2の底面温度を測定可能となっている。温度センサ13は制御装置6に接続され、温度センサ13で測定されたトレイ2の温度が制御装置6に入力されるようになっている。   Further, in the induction heating device 3, a temperature sensor 13 is inserted through a through-hole provided in the cooling plate 3b and the support plate 3c at a position where the induction heating coil 3a is not provided, and the bottom surface temperature of the tray 2 is set. Measurement is possible. The temperature sensor 13 is connected to the control device 6, and the temperature of the tray 2 measured by the temperature sensor 13 is input to the control device 6.

冷媒循環装置4では、熱交換機4aと誘導加熱コイル3aとを、冷媒が循環する冷媒配管4c,4dで接続している。冷媒配管4cの途中には循環ポンプ4bが配置されており、制御装置6は、誘導加熱コイル3aのパイプ内を循環する冷媒の温度や流量を調整するため、信号ラインjを介して熱交換機4aと循環ポンプ4bとを制御する。なお、冷媒としては、一般的に水、純水、超純水、不凍液等の流体が用いられる。   In the refrigerant circulation device 4, the heat exchanger 4a and the induction heating coil 3a are connected by refrigerant pipes 4c and 4d through which the refrigerant circulates. A circulation pump 4b is arranged in the middle of the refrigerant pipe 4c, and the control device 6 adjusts the temperature and flow rate of the refrigerant circulating in the pipe of the induction heating coil 3a so as to adjust the heat exchanger 4a via the signal line j. And the circulation pump 4b. In general, fluid such as water, pure water, ultrapure water, or antifreeze is used as the refrigerant.

気密性の容器5は、蓋部5aと、底板5bと、蓋部5aと底板5bとの接触面に設けられたシール材5cとで構成されている。蓋部5aは、開閉アクチュエータ17から延出されたシャフト18に支持され、シャフト18とともに昇降動作をし、底板5bに対して開閉可能となっている。なお、開閉アクチュエータ17は、信号ラインbを介して制御装置6と接続されている。   The airtight container 5 includes a lid portion 5a, a bottom plate 5b, and a sealing material 5c provided on a contact surface between the lid portion 5a and the bottom plate 5b. The lid portion 5a is supported by a shaft 18 extended from the opening / closing actuator 17, and moves up and down together with the shaft 18, so that the lid 5a can be opened and closed with respect to the bottom plate 5b. The open / close actuator 17 is connected to the control device 6 via the signal line b.

蓋部5aの上面の内側には、被処理部材1から放射される赤外線ふく射を反射して被処理部材1に再入射させるための遮熱カバー5dが取り付けられている。なお、遮熱カバー5dは、誘導加熱コイル3aによる被処理部材1の加熱を妨げない構造となっている。   Inside the upper surface of the lid 5a, a heat insulating cover 5d for reflecting the infrared radiation radiated from the member 1 to be processed and re-entering the member 1 to be processed is attached. The heat shield cover 5d has a structure that does not hinder the heating of the member 1 to be processed by the induction heating coil 3a.

制御装置6は、少なくともRAM、ROM、磁気ディスク又は光ディスク等の記憶手段と、CPUを有する演算手段とを備えており、記憶手段に格納されたプログラムやデータに基づいて、演算手段により各種装置に制御信号が送信されるようになっている。   The control device 6 includes at least storage means such as RAM, ROM, magnetic disk, or optical disk, and arithmetic means having a CPU. Based on the programs and data stored in the storage means, the control means 6 can control various devices. A control signal is transmitted.

また、制御装置6には、入力装置7と、図示しないディスプレイ等からなる表示手段とが接続されている。制御装置6の記憶手段に格納されるデータは、入力装置7から入力することができる。入力装置7から入力するデータとしては、経過時間g、目標加熱時間h、目標冷却時間i等の温度プロファイルデータが挙げられる。   Further, the control device 6 is connected to an input device 7 and display means including a display (not shown). Data stored in the storage means of the control device 6 can be input from the input device 7. Data input from the input device 7 includes temperature profile data such as elapsed time g, target heating time h, target cooling time i, and the like.

制御装置6の記憶手段には、温度センサ13で測定されたトレイ2の温度等も入力される。制御装置6は、入力された温度プロファイルデータに基づいて、被処理部材1の加熱又は冷却処理を行うように制御する。   The temperature of the tray 2 measured by the temperature sensor 13 is also input to the storage unit of the control device 6. Based on the input temperature profile data, the control device 6 performs control so that the processing target member 1 is heated or cooled.

加熱冷却装置100は、還元ガスを容器5内に供給する還元ガス供給装置9を備えている。還元ガス供給装置9は、還元ガスボンベ9cと、還元ガスボンベ9c内の気体を容器5の内部に送出する供給配管9aと、供給配管9aの経路上に設けられた供給弁9bとで構成されている。供給弁9bは制御装置6に接続されているので、制御装置6により開閉を制御することができる。なお、還元ガスとしては、水素や蟻酸等を用いることができる。   The heating / cooling device 100 includes a reducing gas supply device 9 that supplies a reducing gas into the container 5. The reducing gas supply device 9 includes a reducing gas cylinder 9c, a supply pipe 9a for sending the gas in the reducing gas cylinder 9c to the inside of the container 5, and a supply valve 9b provided on the path of the supply pipe 9a. . Since the supply valve 9b is connected to the control device 6, the control device 6 can control the opening and closing. Note that hydrogen, formic acid, or the like can be used as the reducing gas.

また、加熱冷却装置100は、不活性ガスを容器5内に供給する不活性ガス供給装置10を備えている。不活性ガス供給装置10は、不活性ガスボンベ10cと、不活性ガスボンベ10c内の気体を容器5の内部に送出する供給配管10aと、供給配管10aの経路上に設けられた供給弁10bとで構成されている。供給弁10bは制御装置6に接続されているので、制御装置6により開閉を制御することができる。なお、不活性ガスとしては、窒素等を用いることができる。   The heating / cooling device 100 includes an inert gas supply device 10 that supplies an inert gas into the container 5. The inert gas supply device 10 includes an inert gas cylinder 10c, a supply pipe 10a for sending the gas in the inert gas cylinder 10c to the inside of the container 5, and a supply valve 10b provided on the path of the supply pipe 10a. Has been. Since the supply valve 10b is connected to the control device 6, the control device 6 can control the opening and closing. Note that nitrogen or the like can be used as the inert gas.

還元ガス供給装置9及び不活性ガス供給装置10から供給される各ガスにより、容器5内の圧力が圧力センサ14に設定された値(例えば、大気圧以上)を超える場合には、容器5内の圧力を逃がすための放出弁21を開放する。放出弁21は放出配管22に設けられており、制御装置6の信号ラインfを介して開閉動作を行い、容器5内が過圧されないように制御する。なお、圧力センサ14は、容器5の外部に設けられた圧力計19と接続されている。   If the gas supplied from the reducing gas supply device 9 and the inert gas supply device 10 causes the pressure in the container 5 to exceed a value set in the pressure sensor 14 (for example, atmospheric pressure or higher), the inside of the container 5 The release valve 21 for releasing the pressure is opened. The discharge valve 21 is provided in the discharge pipe 22 and performs an opening / closing operation via the signal line f of the control device 6 so as to prevent the inside of the container 5 from being overpressured. The pressure sensor 14 is connected to a pressure gauge 19 provided outside the container 5.

次に、加熱冷却装置100に設けられた真空排気装置11について説明する。真空排気装置11の真空ポンプ11hは、主排気配管11aにより容器5の内部と接続されている。   Next, the vacuum exhaust device 11 provided in the heating / cooling device 100 will be described. The vacuum pump 11h of the vacuum exhaust device 11 is connected to the inside of the container 5 by a main exhaust pipe 11a.

主排気配管11aの途中には、主排気弁11bが設けられている。また、主排気配管11aを二分する形で粗引配管11cとスロー排気配管11eとが設けられている。粗引配管11cには粗引弁11dが設けられ、スロー排気配管11eには排気流量を絞ることで調整が可能な流量調整弁11fとスロー弁11gとが設けられている。   A main exhaust valve 11b is provided in the middle of the main exhaust pipe 11a. Further, a roughing pipe 11c and a slow exhaust pipe 11e are provided so as to bisect the main exhaust pipe 11a. The roughing pipe 11c is provided with a roughing valve 11d, and the slow exhaust pipe 11e is provided with a flow rate adjusting valve 11f and a slow valve 11g that can be adjusted by reducing the exhaust flow rate.

なお、本実施形態において、粗引配管11cに流量調整弁11fとは異なる、コンダクタンスの小さい第2の流量調整弁を設けてもよい。   In the present embodiment, the roughing pipe 11c may be provided with a second flow rate adjusting valve having a small conductance different from the flow rate adjusting valve 11f.

各排気配管上に設けられた主排気弁11b、粗引弁11d及びスロー弁11gは、信号ラインc1〜c3を介して制御装置6と接続されている。また、真空ポンプ11hは、信号ラインdを介して制御装置6と接続され、容器5内の圧力を計測する圧力センサ14は、信号ラインkを介して制御装置6と接続されている。   A main exhaust valve 11b, a roughing valve 11d, and a slow valve 11g provided on each exhaust pipe are connected to the control device 6 through signal lines c1 to c3. The vacuum pump 11h is connected to the control device 6 via a signal line d, and the pressure sensor 14 for measuring the pressure in the container 5 is connected to the control device 6 via a signal line k.

容器5内の雰囲気を減圧させるときには、制御装置6に予め設定された排気動作パターンに従って真空ポンプ11hの動作、主排気弁11b、粗引弁11d及びスロー弁11gの開閉動作を切替えながら排気動作を行う。   When the atmosphere in the container 5 is reduced, the exhaust operation is performed while switching the operation of the vacuum pump 11h and the opening / closing operations of the main exhaust valve 11b, the roughing valve 11d, and the slow valve 11g according to the exhaust operation pattern preset in the control device 6. Do.

図示する真空排気装置11の各排気配管は、流路を二分岐した例であるが、排気流量をより精度よく制御する必要がある場合には、二分岐に限らず、分岐数を3以上に増やしてもよい。   Each exhaust pipe of the vacuum exhaust apparatus 11 shown in the figure is an example in which the flow path is bifurcated. However, when it is necessary to control the exhaust flow rate with higher accuracy, the number of branches is not limited to two and the number of branches is three or more. May increase.

次に、加熱冷却装置100に設けられた昇降装置16について説明する。昇降装置16は、容器5の底板5bに設けられた昇降アクチュエータ16aに、平板状に形成した昇降ベース16bを接続している。そして、昇降ベース16bに固定され、底板5bを貫通する昇降シャフト16dが、底板5bの下面に設けられた昇降軸受け16cで上下方向に移動できるように複数(例えば、昇降ベース16bのコーナー4カ所)に設けられている。   Next, the lifting device 16 provided in the heating / cooling device 100 will be described. In the lifting device 16, a lifting base 16 b formed in a flat plate shape is connected to a lifting actuator 16 a provided on the bottom plate 5 b of the container 5. A plurality of elevating shafts 16d fixed to the elevating base 16b and penetrating the bottom plate 5b can be moved vertically by elevating bearings 16c provided on the lower surface of the bottom plate 5b (for example, four corners of the elevating base 16b). Is provided.

昇降シャフト16dの他端側には台座16eがそれぞれ設けられており、さらに、1対の台座16e間を接続し、被処理部材1が載置されているトレイ2を保持する支持板16fが設けられている。支持板16fは、耐熱性を有する絶縁体材料(例えば、ポリミイド、ピーク板等のエンジニアリングプラスティックやセラミックス)で形成され、加熱された被処理部材1及びトレイ2を保持した場合でも、昇降軸16cに熱が伝導され難いようになっている。   A pedestal 16e is provided on the other end side of the elevating shaft 16d, and a support plate 16f that connects the pair of pedestals 16e and holds the tray 2 on which the member 1 to be processed is placed is provided. It has been. The support plate 16f is formed of an insulating material having heat resistance (for example, engineering plastics or ceramics such as a polyimide or a peak plate), and even when the heated processing target member 1 and the tray 2 are held, the support plate 16f Heat is difficult to conduct.

また、支持板16fは、昇降装置16が下降した場合に、誘導加熱装置3の冷却板3b及び絶縁カバー3dと干渉しないように形成されている。かかる構成の昇降装置16は、制御装置6の信号ラインeの指令により昇降アクチュエータ16aが昇降動作を開始すると、被処理部材1を載置したトレイ2を保持しながら支持板16fをスムーズに昇降させることができる。   The support plate 16f is formed so as not to interfere with the cooling plate 3b and the insulating cover 3d of the induction heating device 3 when the lifting device 16 is lowered. The lifting device 16 configured as described above smoothly lifts and lowers the support plate 16f while holding the tray 2 on which the member 1 to be processed is held when the lifting actuator 16a starts the lifting operation in response to a command of the signal line e of the control device 6. be able to.

被処理部材1を加熱する状態では、制御装置6は、信号ラインeを介して被処理部材1が冷却板3bと非接触状態となる設定位置(図1参照)となるように、昇降装置16の昇降アクチュエータ16aを上昇動作させる。そして、制御装置6は、信号ラインaを介して誘導加熱コイル3aの通電電流、交流の周波数、通電時間、タイミング等を制御する。   In a state in which the member to be processed 1 is heated, the control device 6 is arranged so that the member to be processed 1 is in a non-contact state with the cooling plate 3b via the signal line e (see FIG. 1). The lifting actuator 16a is moved up. And the control apparatus 6 controls the energization current of the induction heating coil 3a, the frequency of alternating current, energization time, timing, etc. via the signal line a.

高温に加熱された被処理部材1及びトレイ2を冷却する状態では、制御装置6は、信号ラインeを介してトレイ2が冷却板3bと接触状態となる設定位置(図2参照)となるように、後述する昇降装置16の昇降アクチュエータ16aを下降動作させる。誘導加熱コイル3aのパイプ内を循環する冷媒で予め冷却されている冷却板3bをトレイ2に接触させることで、高温状態の被処理部材1及びトレイ2との間で熱交換が行われ、急速に冷却することができる。   In a state where the processing target member 1 and the tray 2 heated to a high temperature are cooled, the control device 6 is set to a set position (see FIG. 2) where the tray 2 comes into contact with the cooling plate 3b via the signal line e. Then, the lifting actuator 16a of the lifting device 16 described later is moved downward. By bringing the cooling plate 3b, which has been cooled in advance by the refrigerant circulating in the pipe of the induction heating coil 3a, into contact with the tray 2, heat exchange is performed between the processing target member 1 and the tray 2 in a high temperature state, and rapid Can be cooled to.

特に、被処理部材1の溶融状態のハンダが固化する温度まで急速に冷却させると、ハンダの結晶が緻密で良好な接合品質となることが知られている。このため、冷却板3bの厚さは、被処理部材1及びトレイ2の熱容量に対して1倍以上となるように形成し、その熱容量を大きくすることが好ましい。   In particular, it is known that when the molten solder of the member 1 to be treated is rapidly cooled to a temperature at which the solder is solidified, the solder crystals are dense and have good bonding quality. For this reason, it is preferable that the thickness of the cooling plate 3b is formed so as to be one or more times larger than the heat capacities of the processed member 1 and the tray 2, and the heat capacities thereof are increased.

次に、図3を参照して、加熱冷却装置100により半導体モジュールのハンダ付けを行う動作を、被処理部材1の温度状態、圧力状態に基づいて説明する。   Next, with reference to FIG. 3, the operation | movement which solders a semiconductor module with the heating / cooling apparatus 100 is demonstrated based on the temperature state of the to-be-processed member 1, and a pressure state.

(1)搬入
開閉アクチュエータ17により蓋部5aを上昇させて容器5を開け、被処理部材1を搬入する。被処理部材1をトレイ2上に載置した後、開閉アクチュエータ17によって蓋部5aを下降させて容器5を閉じて、密閉する。
(1) Loading The lid 5a is raised by the opening / closing actuator 17, the container 5 is opened, and the member 1 to be processed is loaded. After the member 1 to be processed is placed on the tray 2, the lid 5 a is lowered by the opening / closing actuator 17 to close and seal the container 5.

(2)真空排気
真空排気装置11の主排気弁11b、スロー弁11g及び粗引弁11dを開いて、真空ポンプ11hを用いて容器5の内部を真空排気し、圧力センサ14に接続された圧力計19の値が所定の真空度(図中のP1の圧力)に到達したところで、主排気弁11b、スロー弁11g及び粗引弁11dを閉じる。
(2) Vacuum exhaust Pressure that is connected to the pressure sensor 14 by opening the main exhaust valve 11b, the slow valve 11g, and the roughing valve 11d of the vacuum exhaust device 11, and evacuating the inside of the container 5 using the vacuum pump 11h. When the value of the total 19 reaches a predetermined degree of vacuum (P1 pressure in the figure), the main exhaust valve 11b, the slow valve 11g, and the roughing valve 11d are closed.

(3)還元ガス導入
還元ガス供給装置9の供給弁9bを開いて、還元ガスボンベ9cから容器5へ還元ガスを供給する。その後、圧力計19により容器5内が所定の圧力(大気圧)に到達したところで、供給弁9bを閉じる。
(3) Introduction of reducing gas The supply valve 9b of the reducing gas supply device 9 is opened to supply the reducing gas from the reducing gas cylinder 9c to the container 5. Thereafter, when the inside of the container 5 reaches a predetermined pressure (atmospheric pressure) by the pressure gauge 19, the supply valve 9b is closed.

(4)加熱(ハンダ溶融と還元処理)
誘導加熱装置3を用いて、被処理部材1が載置されているトレイ2を第1目標加熱温度T2に到達するように、温度センサ13の値を計測しながら加熱制御する。制御装置6は、第1目標加熱温度T2と、温度センサ13の測定温度Tとの偏差を最小にするように、加熱冷却装置100の出力をフィードバック制御することができる。
(4) Heating (solder melting and reduction treatment)
The induction heating device 3 is used to control heating while measuring the value of the temperature sensor 13 so that the tray 2 on which the processing target member 1 is placed reaches the first target heating temperature T2. The control device 6 can feedback control the output of the heating / cooling device 100 so as to minimize the deviation between the first target heating temperature T2 and the measured temperature T of the temperature sensor 13.

本発明の加熱冷却装置100は、誘導加熱コイル3aを用いて被処理部材1を発熱体として直接加熱する方法であるため、昇温速度が速いという利点がある。これにより、加熱時間を短縮して、加熱冷却装置100の処理能力を高めることができる。   Since the heating / cooling device 100 of the present invention is a method of directly heating the processing target member 1 as a heating element using the induction heating coil 3a, there is an advantage that the temperature raising rate is fast. Thereby, heating time can be shortened and the processing capacity of the heating and cooling apparatus 100 can be increased.

(5)減圧動作(ボイド抜き)
被処理部材1が温度T2の状態で所定時間が経過したとき、被処理部材1のハンダ材料中のボイドを脱泡するため、容器5内の圧力を減圧する。容器5内の圧力が大気圧からP4(約50kPa〜20kPa、本発明の「第1圧力」)の領域では、被処理部材1の半導体素子1cの位置が所定位置からずれないように、排気流量を調整する流量調整弁11fを用いて、真空排気装置11の主排気弁11bとスロー弁11gを開放して真空排気を行う。
(5) Pressure reduction operation (void removal)
When a predetermined time elapses when the member to be processed 1 is at the temperature T2, the pressure in the container 5 is reduced in order to degas the void in the solder material of the member 1 to be processed. In the region where the pressure in the container 5 is from atmospheric pressure to P4 (about 50 kPa to 20 kPa, the “first pressure” of the present invention), the exhaust flow rate is set so that the position of the semiconductor element 1c of the member 1 to be processed does not deviate from the predetermined position. The main exhaust valve 11b and the slow valve 11g of the evacuation apparatus 11 are opened to perform evacuation using the flow rate adjustment valve 11f that adjusts the flow rate.

流量調整弁11fは、容器5内がP4の圧力に到達する時間t1(本発明の「第1期間」)が5秒程度となるように排気速度を調整する。容器5内がP4の圧力に到達した場合、P3(約5kPa〜2kPa、本発明の「第2圧力」)までの領域では、粗引弁11dを開いて、粗引配管11cにより真空排気を行う。これにより、排気時間t2(本発明の「第2期間」)を短縮することができる。   The flow rate adjusting valve 11f adjusts the exhaust speed so that the time t1 (the “first period” of the present invention) in which the inside of the container 5 reaches the pressure P4 is about 5 seconds. When the inside of the container 5 reaches the pressure P4, in the region up to P3 (about 5 kPa to 2 kPa, the “second pressure” of the present invention), the roughing valve 11d is opened, and vacuum exhausting is performed by the roughing pipe 11c. . Thereby, the exhaust time t2 (the “second period” of the present invention) can be shortened.

容器5内がP3の圧力に到達した場合、P2(約1kPa〜0.5kPa、本発明の「第3圧力」)までの領域では、粗引弁11dを閉じ、流量調整弁11fにより真空排気装置11の主排気弁11bとスロー弁11gを開いて真空排気を行う。   When the pressure inside the container 5 reaches the pressure P3, the roughing valve 11d is closed in the region up to P2 (about 1 kPa to 0.5 kPa, the “third pressure” of the present invention), and the vacuum exhaust device is operated by the flow rate adjustment valve 11f. 11 main exhaust valve 11b and slow valve 11g are opened to perform evacuation.

この領域の排気動作では、溶融したハンダ材料中のボイドが膨張した際、容器5内の圧力とボイド内部の圧力との差が生じてボイドが破裂、飛散し、絶縁基板1bや他の部材に付着することがある。このため、容器5内の圧力がP3からP2に減圧されるときの排気時間t3(本発明の「第3期間」)は、時間をかけて(例えば、40〜60秒程度)減圧することが好ましく、ハンダ材料中のボイドを破裂させずに脱泡することが可能となり、良好なハンダ付け品質が得られる。   In the evacuation operation in this region, when the void in the molten solder material expands, a difference between the pressure in the container 5 and the pressure in the void occurs, and the void bursts and scatters to the insulating substrate 1b and other members. May adhere. For this reason, the exhaust time t3 (the “third period” of the present invention) when the pressure in the container 5 is reduced from P3 to P2 can be reduced over time (for example, about 40 to 60 seconds). Preferably, the voids in the solder material can be defoamed without rupturing, and a good soldering quality can be obtained.

また、真空排気装置11に設けられた流量調整弁11fは、電気的に弁の開度を調整できるものが望ましいが、さらに、排気配管を分岐して第2の流量調整弁を設けて圧力領域に応じて排気速度を切替えることができる構成としてもよい。   Further, the flow rate adjustment valve 11f provided in the vacuum exhaust device 11 is preferably one that can electrically adjust the opening degree of the valve, but further, a pressure flow region is provided by branching the exhaust pipe and providing a second flow rate adjustment valve. It is good also as a structure which can switch an exhaust speed according to.

(6)還元ガス導入
上記(5)の減圧動作で、容器5内がP2の圧力に到達した場合、還元ガス供給装置9の供給弁9bを開いて、還元ガスボンベ9cから容器5へ還元ガスを供給する。その後、圧力計19により容器5内が大気圧に到達したところで供給弁9bを閉じる。
(6) Reducing gas introduction When the inside of the container 5 reaches the pressure P2 in the pressure reducing operation of (5) above, the supply valve 9b of the reducing gas supply device 9 is opened and the reducing gas is supplied from the reducing gas cylinder 9c to the container 5. Supply. Thereafter, the supply valve 9b is closed when the pressure inside the container 5 reaches atmospheric pressure.

この動作は、ハンダ材料中のボイドが脱泡されると、ハンダの強固な酸化膜により空壁が生じるため、ハンダ材料中の酸化膜を還元ガスにより除去する効果がある。上記(5)と今回の(6)の動作を2回以上繰り返した方がハンダ材料中のボイドが低減されるが、6回以上繰り返してもボイドの低減効果は小さい。   This operation has an effect of removing the oxide film in the solder material with the reducing gas because voids are generated by the strong oxide film of the solder when the void in the solder material is defoamed. The voids in the solder material are reduced when the operations (5) and (6) are repeated twice or more, but the effect of reducing the voids is small even when the operations are repeated six times or more.

(7)冷却(ハンダ凝固)
誘導加熱コイル3aによる加熱を止め、昇降装置16により、被処理部材1を載置しているトレイ2を冷却板3bに接触するように下降させ、被処理部材1を冷却板3bによって冷却する。冷却板3bは直接加熱されない材料で構成されており、冷媒循環装置4で所定温度に冷却された冷媒が循環している誘導加熱コイル3aと接触するので、冷却板3bに接触している被処理部材1を速やかに冷却することができる。
(7) Cooling (solder solidification)
Heating by the induction heating coil 3a is stopped, and the tray 2 on which the processing target member 1 is placed is lowered by the lifting device 16 so as to contact the cooling plate 3b, and the processing target member 1 is cooled by the cooling plate 3b. The cooling plate 3b is made of a material that is not directly heated, and is in contact with the induction heating coil 3a in which the refrigerant cooled to a predetermined temperature by the refrigerant circulation device 4 is circulated. The member 1 can be quickly cooled.

(8)不活性ガス導入
被処理部材1の温度Tは温度センサ13によって測定され、第2目標冷却温度T1になったところで、還元ガス供給装置9の供給弁9bが閉じた後、真空排気装置11の主排気弁11b、スロー弁11g及び粗引弁11dを開いて、真空ポンプ11hを用いて容器5の内部を真空排気する。そして、容器5内が所定の真空度(図中のP1の圧力)に到達したところで主排気弁11b、スロー弁11g及び粗引弁11dを閉じる。この間も被処理部材1は、冷却板3bによって継続的に冷却されている。
(8) Introduction of inert gas After the temperature T of the member 1 to be processed is measured by the temperature sensor 13 and reaches the second target cooling temperature T1, the supply valve 9b of the reducing gas supply device 9 is closed, and then the vacuum exhaust device 11 main exhaust valve 11b, slow valve 11g and roughing valve 11d are opened, and the inside of the container 5 is evacuated using a vacuum pump 11h. The main exhaust valve 11b, the slow valve 11g, and the roughing valve 11d are closed when the inside of the container 5 reaches a predetermined degree of vacuum (pressure P1 in the drawing). During this time, the member to be treated 1 is continuously cooled by the cooling plate 3b.

(9)搬出
開閉アクチュエータ17によって蓋部5aを上昇させて容器5を開放し、被処理部材1を搬出した後、開閉アクチュエータ17によって蓋部5aを下降させて容器5を閉じる。
(9) Unloading The lid 5a is lifted by the opening / closing actuator 17 to open the container 5, and after the member 1 is unloaded, the lid 5a is lowered by the opening / closing actuator 17 to close the container 5.

以上説明したように、本発明の加熱冷却装置100によれば、被処理部材1を昇降動作のみで加熱処理と冷却処理とを連続して行うことができるので、容器5の小型化を図ることができる。   As described above, according to the heating / cooling device 100 of the present invention, the heat treatment and the cooling treatment can be continuously performed on the member to be treated 1 only by the raising / lowering operation. Can do.

また、誘導加熱装置3の誘導加熱コイル3aは、加熱効率の高いトレイ2を介して被処理部材1の被加熱部となるベース板1a、ハンダ、金属板等を加熱することができる。さらに、誘導加熱コイル3aのパイプ内部を循環する冷媒により冷却板3bを蓄熱させ、ハンダが溶融された高温状態の被処理部材1を冷却板3bに接触させて吸熱することで、加熱冷却効率を高めて処理時間を短縮することができる。   In addition, the induction heating coil 3a of the induction heating device 3 can heat the base plate 1a, the solder, the metal plate, and the like that are the heated portion of the member to be processed 1 through the tray 2 with high heating efficiency. Further, the cooling plate 3b is stored by a refrigerant circulating inside the pipe of the induction heating coil 3a, and the high-temperature processed member 1 in which the solder is melted is brought into contact with the cooling plate 3b to absorb heat, thereby improving the heating and cooling efficiency. This can increase the processing time.

また、容器5が小型化することで、排気時間及び還元ガス、不活性ガスの供給時間を短縮することが可能となり、真空排気動作を、容器5内の圧力領域に応じて排気速度を多段階に制御可能となり、半導体モジュールのハンダ材料の飛散を解消することができる。   In addition, since the container 5 is downsized, the exhaust time and the supply time of the reducing gas and the inert gas can be shortened, and the evacuation operation can be performed in multiple stages according to the pressure region in the container 5. Therefore, it is possible to eliminate the scattering of the solder material of the semiconductor module.

次に、図4A〜図4Cを参照して、本実施形態の加熱冷却装置100による実験結果等を説明する。   Next, with reference to FIG. 4A to FIG. 4C, experimental results by the heating / cooling device 100 of the present embodiment will be described.

まず、図4Aは、対策前後の時間と圧力変化を示している。対策前(従来)においては、1.0×105Paから1.0×102Pa以下に真空排気するのにかかる時間が約19秒と短かったため、ハンダ材料中の膨張したボイドが爆裂して、絶縁基板1bや半導体素子1c上に飛散していた。 First, FIG. 4A shows time and pressure change before and after the countermeasure. Before taking countermeasures (conventional), the time taken to evacuate from 1.0 × 10 5 Pa to 1.0 × 10 2 Pa or less was as short as about 19 seconds, so the expanded void in the solder material exploded. As a result, it was scattered on the insulating substrate 1b and the semiconductor element 1c.

しかし、今回、1.0×105Paから1.0×102Paに真空排気するのにかかる時間を、上述の(5)減圧動作により40秒以上に延長した。これにより、次のような実験結果が得られた。 However, this time, the time taken to evacuate from 1.0 × 10 5 Pa to 1.0 × 10 2 Pa was extended to 40 seconds or more by the above-described (5) decompression operation. As a result, the following experimental results were obtained.

図4Bは、対策前後のハンダ材料中のボイド発生率を示している。ここでは、横軸が真空排気回数(回)、縦軸が絶縁基板1b下のボイド発生率(%)である。   FIG. 4B shows the void generation rate in the solder material before and after the countermeasure. Here, the horizontal axis represents the number of times of evacuation (times), and the vertical axis represents the void generation rate (%) under the insulating substrate 1b.

図4Bに示されるように、真空排気回数が1回の場合(従来)に平均のボイド発生率が約2.8%であったのに対し、真空排気回数を2回(2サイクル)とした場合(対策後)に平均のボイド発生率が約1.4%に減少している。また、真空排気回数が3〜5回の場合にも平均のボイド発生率が1.1〜1.6%と、真空排気回数が1回の場合と比較して低い数値が得られた。すなわち、真空排気回数を2回以上にすることでボイド発生率が抑えられるという結果が得られた。   As shown in FIG. 4B, when the number of times of evacuation was 1 (conventional), the average void generation rate was about 2.8%, whereas the number of times of evacuation was set to 2 (2 cycles). In the case (after countermeasures), the average void generation rate has decreased to about 1.4%. Also, when the number of times of vacuum evacuation was 3 to 5, the average void generation rate was 1.1 to 1.6%, which was lower than that when the number of times of vacuum evacuation was one. That is, a result that the void generation rate can be suppressed by setting the number of times of vacuum evacuation to 2 times or more was obtained.

また、図4Cは、対策前後のハンダ材料中のハンダ飛散率を示している。ここでは、横軸がボイド抜きのための真空排気時間(秒)、縦軸がハンダ飛散率(%)である。   FIG. 4C shows the solder scattering rate in the solder material before and after the countermeasure. Here, the horizontal axis represents the evacuation time (seconds) for void removal, and the vertical axis represents the solder scattering rate (%).

図4Cに示されるように、真空排気時間(約19秒)の場合(従来)にハンダ飛散率が約60%であったのに対し、真空排気時間を40秒以上にした場合(対策後)にハンダ飛散率が20%前後に減少している。すなわち、上述の(5)減圧動作により、ハンダ飛散率を従来の約1/3に抑えることができた。   As shown in FIG. 4C, when the evacuation time is about 19 seconds (conventional), the solder scattering rate was about 60%, whereas the evacuation time was 40 seconds or more (after countermeasures). In addition, the solder scattering rate has decreased to around 20%. That is, the solder scattering rate can be suppressed to about 1/3 of the conventional one by the above-described (5) pressure reducing operation.

以上のように、加熱冷却装置100では、真空排気のため分岐された排気配管の一方にガスの排気流量を調整する流量調整弁11fを設けた。制御装置6は、容器5内の圧力に基づいて排気配管を切替え、排気速度を変化させながら真空排気を行う。これにより、被処理部材1のハンダ付けの品質向上を図ることが可能となった。   As described above, in the heating and cooling apparatus 100, the flow rate adjusting valve 11f for adjusting the exhaust flow rate of the gas is provided on one of the exhaust pipes branched for vacuum exhaust. The control device 6 switches the exhaust pipe based on the pressure in the container 5 and performs vacuum exhaust while changing the exhaust speed. This makes it possible to improve the soldering quality of the member 1 to be processed.

本実施形態の加熱冷却装置100は、誘導加熱装置3を用いて被処理部材1の加熱、冷却を行う装置として説明したが、加熱源を熱板やランプヒータ等でプロファイルを形成してもよい。真空排気装置11の減圧制御方法を同一に構成することで、半導体モジュールのハンダ材料中のボイドを低減し、ハンダの飛散による部材の付着を解消する同様の効果が得られる。   The heating / cooling apparatus 100 of the present embodiment has been described as an apparatus that heats and cools the processing target member 1 using the induction heating apparatus 3, but the heating source may be formed with a hot plate, a lamp heater, or the like. . By configuring the decompression control method of the vacuum evacuation device 11 to be the same, it is possible to obtain the same effect of reducing voids in the solder material of the semiconductor module and eliminating adhesion of members due to solder scattering.

1 被処理部材
1a ベース板
1b 絶縁基板
1c 半導体素子
2 トレイ
3 誘導加熱装置(加熱冷却手段)
3a 誘導加熱コイル
3b 冷却板
3c 支持板
3d 絶縁カバー
3e スペーサ
4 冷媒循環装置
4a 熱交換機
4b 循環ポンプ
4c,4d 冷媒配管
5 容器
5a 蓋部
5b 底板
5c シール材
5d 遮熱カバー
6 制御装置(制御手段)
7 入力装置
9 還元ガス供給装置(還元ガス供給手段)
9a 供給配管
9b 供給弁
9c 還元ガスボンベ
10 不活性ガス供給装置(不活性ガス供給手段)
10a 供給配管
10b 供給弁
10c 不活性ガスボンベ
11 真空排気装置(真空排気手段)
11a 主排気配管
11b 主排気弁
11c 粗引配管
11d 粗引弁
11e スロー排気配管
11f 流量調整弁(流量調整手段)
11g スロー弁
11h 真空ポンプ
13 温度センサ
14 圧力センサ
16 昇降装置
16a 昇降アクチュエータ
16b 昇降ベース
16c 昇降軸
16d 昇降シャフト
16e 台座
16f 支持板
17 開閉アクチュエータ
18 シャフト
19 圧力計
21 放出弁
22 放出配管
100 加熱冷却装置
DESCRIPTION OF SYMBOLS 1 To-be-processed member 1a Base board 1b Insulating substrate 1c Semiconductor element 2 Tray 3 Induction heating apparatus (heating-cooling means)
3a Induction heating coil 3b Cooling plate 3c Support plate 3d Insulating cover 3e Spacer 4 Refrigerant circulation device 4a Heat exchanger 4b Circulation pump 4c, 4d Refrigerant piping 5 Container 5a Lid 5b Bottom plate 5c Sealing material 5d Heat shield cover 6 Control device (control means) )
7 Input device 9 Reducing gas supply device (reducing gas supply means)
9a Supply pipe 9b Supply valve 9c Reducing gas cylinder 10 Inert gas supply device (inert gas supply means)
10a supply pipe 10b supply valve 10c inert gas cylinder 11 vacuum exhaust device (vacuum exhaust means)
11a Main exhaust pipe 11b Main exhaust valve 11c Rough exhaust pipe 11d Rough exhaust valve 11e Slow exhaust pipe 11f Flow rate adjusting valve (flow rate adjusting means)
11g Slow valve 11h Vacuum pump 13 Temperature sensor 14 Pressure sensor 16 Lifting device 16a Lifting actuator 16b Lifting base 16c Lifting shaft 16d Lifting shaft 16e Base 16f Support plate 17 Opening / closing actuator 18 Shaft 19 Pressure gauge 21 Release valve 22 Release pipe 100 Heating / cooling device

Claims (3)

被処理部材の出し入れが可能な開閉機構を有する気密性の容器と、
前記被処理部材の加熱又は冷却を行う加熱冷却手段と、
前記被処理部材の温度を計測するための温度センサと、
前記容器内の圧力を検出する圧力センサと、
前記容器内に還元ガスを供給する還元ガス供給手段と、
前記容器内に不活性ガスを供給する不活性ガス供給手段と、
前記容器内を減圧する真空排気手段と、
前記温度センサにより計測された温度に基づいて前記加熱冷却手段による加熱又は冷却と前記容器内の圧力とを制御する制御手段とを備える加熱冷却装置において、
前記真空排気手段は、前記容器内のガスを排気する真空ポンプが接続された排気配管の流路を分岐して、該分岐された排気配管の少なくとも一方に該ガスの排気流量を調整する流量調整手段を設け、
前記制御手段は、前記容器内の圧力に基づいて前記分岐された排気配管を切替え、真空排気速度を多段階に変化させることを特徴とする加熱冷却装置。
An airtight container having an opening / closing mechanism capable of taking in and out the member to be processed;
A heating / cooling means for heating or cooling the member to be treated;
A temperature sensor for measuring the temperature of the member to be processed;
A pressure sensor for detecting the pressure in the container;
Reducing gas supply means for supplying a reducing gas into the container;
An inert gas supply means for supplying an inert gas into the container;
A vacuum exhaust means for decompressing the inside of the container;
In a heating and cooling apparatus comprising a control means for controlling heating or cooling by the heating and cooling means and a pressure in the container based on the temperature measured by the temperature sensor,
The vacuum evacuation means branches a flow path of an exhaust pipe to which a vacuum pump for exhausting the gas in the container is connected, and adjusts the flow rate of the gas to at least one of the branched exhaust pipes Providing means,
The heating and cooling apparatus, wherein the control means switches the branched exhaust pipe based on the pressure in the container and changes the vacuum exhaust speed in multiple stages.
前記制御手段は、
前記容器内の圧力が大気圧から予め設定した第1圧力になるまでの第1期間は、前記流量調整手段が設けられた排気配管に切替えて真空排気を行い、
前記容器内の圧力が前記第1圧力から予め設定した第2圧力になるまでの第2期間は、前記流量調整手段が設けられていない排気配管に切替えて真空排気を行い、
前記容器内の圧力が前記第2圧力から予め設定した第3圧力となるまでの第3期間は、再び前記流量調整手段が設けられた排気配管に切替えて真空排気を行うことを特徴とする請求項1に記載の加熱冷却装置。
The control means includes
In the first period until the pressure in the container changes from atmospheric pressure to a preset first pressure, the exhaust pipe provided with the flow rate adjusting means is switched to perform evacuation,
In the second period until the pressure in the container reaches the second pressure set in advance from the first pressure, the exhaust pipe not provided with the flow rate adjusting means is switched to perform vacuum exhaust,
The vacuum exhaust is performed by switching to the exhaust pipe provided with the flow rate adjusting unit again during the third period until the pressure in the container reaches the third pressure set in advance from the second pressure. Item 2. The heating and cooling device according to Item 1.
前記真空排気手段は、前記真空ポンプが接続された排気配管の流路を2以上に分岐して、該分岐された各排気配管にコンダクタンスの異なる流量調整手段を設け、
前記制御手段は、各工程に応じた排気速度で所定の圧力となるように真空排気を行うことを特徴とする請求項1又は2に記載の加熱冷却装置。
The vacuum evacuation means branches the flow path of the exhaust pipe connected to the vacuum pump into two or more, and is provided with flow rate adjusting means having different conductances in the branched exhaust pipes,
The heating / cooling apparatus according to claim 1 or 2, wherein the control means performs vacuum exhaust so that a predetermined pressure is obtained at an exhaust speed corresponding to each step.
JP2017126991A 2017-06-29 2017-06-29 Heating and cooling device Active JP6984194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017126991A JP6984194B2 (en) 2017-06-29 2017-06-29 Heating and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126991A JP6984194B2 (en) 2017-06-29 2017-06-29 Heating and cooling device

Publications (2)

Publication Number Publication Date
JP2019010648A true JP2019010648A (en) 2019-01-24
JP6984194B2 JP6984194B2 (en) 2021-12-17

Family

ID=65226786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126991A Active JP6984194B2 (en) 2017-06-29 2017-06-29 Heating and cooling device

Country Status (1)

Country Link
JP (1) JP6984194B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235277A (en) * 2000-02-23 2001-08-31 Dainippon Printing Co Ltd Vacuum dryer and vacuum drying method
JP2005243775A (en) * 2004-02-25 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing device and atmosphere substituting method
JP2006054282A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Vacuum processing device and wafer temperature returning method
WO2016104710A1 (en) * 2014-12-26 2016-06-30 富士電機株式会社 Heating and cooling device
JP2017045983A (en) * 2015-08-26 2017-03-02 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235277A (en) * 2000-02-23 2001-08-31 Dainippon Printing Co Ltd Vacuum dryer and vacuum drying method
JP2005243775A (en) * 2004-02-25 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing device and atmosphere substituting method
JP2006054282A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Vacuum processing device and wafer temperature returning method
WO2016104710A1 (en) * 2014-12-26 2016-06-30 富士電機株式会社 Heating and cooling device
JP2017045983A (en) * 2015-08-26 2017-03-02 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus

Also Published As

Publication number Publication date
JP6984194B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
US10583510B2 (en) Heating and cooling device
JP5091296B2 (en) Joining device
JP5129848B2 (en) Joining apparatus and joining method
JP5835533B2 (en) Soldering apparatus and vacuum soldering method
JP6614933B2 (en) Substrate mounting mechanism and substrate processing apparatus
JP6149827B2 (en) Vacuum processing apparatus, control method therefor, vacuum solder processing apparatus, and control method therefor
WO2005077583A1 (en) Soldering method
JP2007180456A (en) Soldering method and method of manufacturing semiconductor module
US11177146B2 (en) Methods and apparatus for processing a substrate
US20130248114A1 (en) Chip bonding apparatus
JP6575135B2 (en) Heating and cooling method and heating and cooling equipment
JP6415328B2 (en) Joining method, program, computer storage medium, joining apparatus and joining system
JP2010245195A (en) Apparatus for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP2019010648A (en) Heating and cooling device
JP2007053268A (en) Manufacturing method of bonding structure, solder bonding method and solder bonding device
JP6770832B2 (en) Joining methods, programs, computer storage media, joining devices and joining systems
JP6453081B2 (en) Joining apparatus, joining system, joining method, program, and computer storage medium
JP2007115924A (en) Method for manufacturing bonded structure
WO2018037610A1 (en) Temperature varying device and temperature varying method
TW201834011A (en) Substrate treating method and apparatus used therefor
JP5439122B2 (en) Heat treatment method and heat treatment apparatus
KR20160086271A (en) Bonding apparatus, bonding system, bonding method and computer storage medium
US20170363356A1 (en) Apparatus For Rapid Cooling Of Substrates Utilizing A Flat Plate And Cooling Channels
JP2016129196A (en) Bonding device, bonding system, bonding method, program and computer storage medium
JP2016129200A (en) Bonding device, bonding system, bonding method, program and computer storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150