JP2019010625A - PROCESSING METHOD OF LOW-pH STRAIN-KJ CULTURE WATER - Google Patents

PROCESSING METHOD OF LOW-pH STRAIN-KJ CULTURE WATER Download PDF

Info

Publication number
JP2019010625A
JP2019010625A JP2017129298A JP2017129298A JP2019010625A JP 2019010625 A JP2019010625 A JP 2019010625A JP 2017129298 A JP2017129298 A JP 2017129298A JP 2017129298 A JP2017129298 A JP 2017129298A JP 2019010625 A JP2019010625 A JP 2019010625A
Authority
JP
Japan
Prior art keywords
culture water
low
carrier
strain
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017129298A
Other languages
Japanese (ja)
Other versions
JP6897370B2 (en
Inventor
つばさ 鏡
Tsubasa Kagami
つばさ 鏡
倉田 稔
Minoru Kurata
稔 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Denso Corp
Original Assignee
Kurita Water Industries Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Denso Corp filed Critical Kurita Water Industries Ltd
Priority to JP2017129298A priority Critical patent/JP6897370B2/en
Publication of JP2019010625A publication Critical patent/JP2019010625A/en
Application granted granted Critical
Publication of JP6897370B2 publication Critical patent/JP6897370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To decompose a contained organic compound by processing low-pH strain-KJ culture water more inexpensively and more efficiently in comparison with a conventional method, to thereby reutilize the low-pH strain-KJ culture water.SOLUTION: In a processing method of low-pH strain-KJ culture water, an organic compound contained in the culture water is decomposed by processing the low-pH strain-KJ culture water with microorganism. Synthetic waste water is brought into contact with a microorganism holding carrier to allow beforehand microorganism to adhere to the carrier, and thereafter, the low-pH strain-KJ culture water is brought into contact with the microorganism holding carrier to which microorganism adheres.SELECTED DRAWING: None

Description

本発明は、低pHのKJ株培養水を、従来法と比較してより低コストで効率的に処理して、その再利用を可能とする方法に関する。   The present invention relates to a method for efficiently reusing a low pH KJ strain culture water at a lower cost than in the conventional method.

微細藻類は、数μm〜数十μmの大きさの単細胞生物である。この微細藻類は、太陽エネルギーを効率よく炭化水素に転換して蓄積し、また各種ミネラルや不飽和脂肪酸などを高濃度に含有する。一部の微細藻類は、デンプン、油脂や糖類などの有用物質を含有するため、これを回収・精製して、医薬品、飼料や燃料として使用するプロセスが提案されている。なお、本発明のKJ株は、シュードココミクサ(Pseudococcomyxa)sp.KJ株(受託番号FERM AP−22254)である(特許文献1)。このKJ株は、炭化水素生産能が高い。また、このKJ株は、窒素欠乏状態(例えば、KJ株の乾燥重量に占める窒素重量が2wt%未満の状態)において、炭化水素生産能を有する。   Microalgae are unicellular organisms having a size of several μm to several tens of μm. This microalgae efficiently converts solar energy into hydrocarbons and accumulates them, and also contains various minerals and unsaturated fatty acids at high concentrations. Some microalgae contain useful substances such as starch, fats and oils, and so a process for recovering and purifying them and using them as pharmaceuticals, feeds and fuels has been proposed. The KJ strain of the present invention is a strain of Pseudococcomyxa sp. KJ strain (Accession number FERM AP-22254) (Patent Document 1). This KJ strain has a high hydrocarbon production capacity. In addition, this KJ strain has a hydrocarbon-producing ability in a nitrogen-deficient state (for example, a state in which the nitrogen weight in the dry weight of the KJ strain is less than 2 wt%).

微細藻類の培養には、オープンポンドと呼ばれる屋外開放池が広く使用されるが、このプロセスでは、目的とする微細藻類以外にも、細菌や他の微細藻類が増殖し、目的とする微細藻類の生産性を低下させる問題があった。この問題を解決するために、低いpHに耐性のある微細藻類であるKJ株を使用し、酸剤、例えば炭酸、塩酸や硫酸を用いて培養水のpHを低く、例えばpH2〜4に保つことで、他の微細藻類や原生生物の増殖を抑えるプロセスが提案されている(非特許文献1,2)。   Open ponds called open ponds are widely used for culturing microalgae. In this process, bacteria and other microalgae grow in addition to the target microalgae. There was a problem of lowering productivity. To solve this problem, use the KJ strain, which is a microalgae resistant to low pH, and keep the pH of the culture water low, for example, pH 2-4, using acid agents such as carbonic acid, hydrochloric acid or sulfuric acid. Thus, a process for suppressing the growth of other microalgae and protists has been proposed (Non-Patent Documents 1 and 2).

しかし、このプロセスでは、培養液の作成に都度酸剤を使用するだけでなく、KJ株を培養した後、酸性の排水を廃棄するために、脱気やアルカリ剤を添加することによって、pHを中和する必要があった。ここで、KJ株培養後の培養水をpH調整することなく再利用することができれば、この課題を解決することができる。   However, in this process, not only the acid agent is used for the preparation of the culture solution, but also after culturing the KJ strain, the pH is adjusted by degassing or adding an alkaline agent to discard the acidic waste water. There was a need to neutralize. Here, if the culture water after culturing the KJ strain can be reused without adjusting the pH, this problem can be solved.

KJ株の培養水にはKJ株が分泌した低濃度の有機化合物がTOCとして例えば5〜15mg/L程度含まれる。このように培養水に有機化合物が含まれる場合、培養水の再利用を繰り返すことで、培養水中のTOC濃度が増加して微生物や他の微細藻類が発生し、KJ株の生産性が低下する。これを防ぐため、何らかの方法で、KJ株培養水に含まれる有機化合物を分解して除去する必要がある。   The culture water of the KJ strain contains, for example, about 5 to 15 mg / L of the low concentration organic compound secreted by the KJ strain as the TOC. Thus, when an organic compound is contained in the culture water, by repeating the reuse of the culture water, the TOC concentration in the culture water increases to generate microorganisms and other microalgae, and the productivity of the KJ strain decreases. . In order to prevent this, it is necessary to decompose and remove the organic compounds contained in the KJ strain culture water by some method.

有機化合物を含む一般排水の処理方法としては、物理化学的方法、例えばUV、オゾンや過酸化水素を用いて排水中の有機化合物を分解除去する方法があるが、エネルギーコストや薬品コストが高く、大量に排出されるKJ株培養水の再利用のための分解方法としては不適当である。   As a method for treating general waste water containing organic compounds, there is a physicochemical method, for example, a method of decomposing and removing organic compounds in waste water using UV, ozone or hydrogen peroxide, but the energy cost and chemical cost are high, It is not suitable as a decomposition method for reusing KJ strain culture water discharged in large quantities.

有機化合物の処理に生物学的処理方法を適用した場合、物理化学的方法と比較してエネルギーコストおよび薬品コストを低減できると考えられる。   When biological treatment methods are applied to the treatment of organic compounds, it is considered that energy costs and chemical costs can be reduced compared to physicochemical methods.

しかし、上記のような低pHのKJ株培養水を処理する場合には、次の問題点があった。
(1) KJ株培養水中の有機化合物を生物学的に処理するためには、対象排水を中和する必要があるが、そのために脱気プロセスや多量のアルカリ剤が必要である。
(2) (1)の方法で得られた処理水を微細藻類の培養に再利用するためには、pHを再度酸性にする必要があり、酸剤、例えば炭酸、塩酸や硫酸などを添加する必要がある。
(3) (1)および(2)のプロセスを繰り返すと、循環水の塩類濃度が上昇し、微細藻類の生産性が低下する。
(4) KJ株培養水は有機化合物濃度が低いため、槽内の微生物はフロックを作らず分散傾向を示す。従って、菌体を活性汚泥法のように高濃度で維持することができず、有機化合物の分解が極めて低い速度で進行することになる。
However, when the low pH KJ strain culture water as described above is treated, there are the following problems.
(1) In order to biologically treat organic compounds in KJ strain culture water, it is necessary to neutralize the target effluent, which requires a degassing process and a large amount of alkaline agent.
(2) In order to reuse the treated water obtained by the method of (1) for cultivation of microalgae, it is necessary to make the pH acidic again, and an acid agent such as carbonic acid, hydrochloric acid or sulfuric acid is added. There is a need.
(3) When the processes of (1) and (2) are repeated, the salt concentration of circulating water increases and the productivity of microalgae decreases.
(4) Since the culture water of KJ strain has a low organic compound concentration, the microorganisms in the tank do not form flocs and show a tendency to disperse. Accordingly, the cells cannot be maintained at a high concentration as in the activated sludge method, and the decomposition of the organic compound proceeds at a very low rate.

特開2015−15918号公報JP2015-15918A

鷲見芳彦、微細藻類(マイクロアルジェ)が開く未来−有用性とその利用−、科学技術動向、Science & Technology Trends September 2009 102,p.11-22.Yoshihiko Sumi, Future Opened by Microalgae-Usefulness and Utilization-Science and Technology Trends, Science & Technology Trends September 2009 102, p.11-22. Hiraoka,S.,Higuchi,S.,Uzuka,A.,Nozaki, H.,Miyagishima,S.(2014).Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH. PloS ONE.9(9),e107702.Hiraoka, S., Higuchi, S., Uzuka, A., Nozaki, H., Miyagishima, S. (2014). Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH. PloS ONE.9 (9), e107702.

本発明は上記の従来技術に鑑みてなされたものであり、低pHのKJ株培養水を、従来法と比較してより低コストで効率的に処理して含有される有機化合物を分解し、低pHの培養水の再利用を可能とする低pHのKJ株培養水の処理方法を提供することを課題とする。   The present invention has been made in view of the above-described prior art, decomposes organic compounds contained by treating KJ strain culture water having a low pH more efficiently and at a lower cost than conventional methods, It is an object of the present invention to provide a treatment method for low pH KJ strain culture water that enables reuse of low pH culture water.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、微生物により培養水中の有機化合物を処理するに当たり、まず、低いpH条件下で炭素源を分解する従属栄養細菌を担体に高濃度に付着させ、その後KJ株培養水を接触させることにより、低pHのKJ株培養水中の有機化合物を効率的に分解することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor, when treating an organic compound in culture water with microorganisms, first, a high concentration of heterotrophic bacteria that decompose carbon sources under low pH conditions as a carrier It was found that the organic compounds in the low-pH KJ strain culture water can be efficiently decomposed by adhering to the KJ strain culture water.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 低pHのKJ株培養水を微生物で処理して、該培養水中の有機化合物を分解することを特徴とする低pHのKJ株培養水の処理方法。 [1] A method for treating low pH KJ strain culture water, comprising treating low pH KJ strain culture water with a microorganism to decompose organic compounds in the culture water.

[2] [1]において、前記低pHのKJ株培養水のpHが2〜4であることを特徴とする低pHのKJ株培養水の処理方法。 [2] The method for treating low pH KJ strain culture water according to [1], wherein the pH of the low pH KJ strain culture water is 2 to 4.

[3] [1]又は[2]において、前記微生物が、Acidisoma sp.、Acidisphaera sp.、Singulisphaera sp.、Acidobacterium sp.、Dyella sp.、Humibacter sp.およびThermosporothrix sp.のいずれか1種又は2種以上を含む従属栄養細菌であることを特徴とする低pHのKJ株培養水の処理方法。 [3] In [1] or [2], the microorganism may be any one of Acidisoma sp., Acidisphaera sp., Singulisphaera sp., Acidobacterium sp., Dyella sp., Humibacter sp. And Thermosporothrix sp. A method for treating low pH KJ strain culture water, which is a heterotrophic bacterium containing more than one species.

[4] [1]ないし[3]のいずれかにおいて、流動床、固定床、散水濾床、および精密濾過膜のいずれかの微生物保持担体に前記微生物を付着させ、該微生物を付着させた担体に、前記低pHのKJ株培養水を接触させることを特徴とする低pHのKJ株培養水の処理方法。 [4] The carrier according to any one of [1] to [3], wherein the microorganism is attached to a microorganism holding carrier of any one of a fluidized bed, a fixed bed, a watering filter bed, and a microfiltration membrane, and the microorganism is attached thereto. And the low pH KJ strain culture water, the method of treating the low pH KJ strain culture water.

[5] [4]において、前記微生物保持担体に合成排水を接触させて予め前記微生物を該担体に付着させた後、該微生物が付着した微生物保持担体に前記低pHのKJ株培養水を接触させることを特徴とする低pHのKJ株培養水の処理方法。 [5] In [4], after the synthetic waste water is brought into contact with the microorganism holding carrier and the microorganism is attached to the carrier in advance, the low pH KJ strain culture water is brought into contact with the microorganism holding carrier to which the microorganism is attached. A method for treating a low pH KJ strain culture water.

[6] [4]又は[5]において、前記微生物保持担体への前記微生物の付着量が50〜1,000mg/L−担体であることを特徴とする低pHのKJ株培養水の処理方法。 [6] A method for treating low pH KJ strain culture water according to [4] or [5], wherein the amount of the microorganism attached to the microorganism-supporting carrier is 50 to 1,000 mg / L-carrier .

本発明によれば、低pHのKJ株培養水中の有機化合物を、微生物によってその低pH値を維持してより低コストで効率的に処理して、含有される有機化合物を分解除去することができる。このため、本発明による処理水を、低pHのKJ株培養水としてそのまま繰り返し再利用することが可能となり、水コスト、培養コスト、排水処理コストを低減することができる。   According to the present invention, the organic compound in the low pH KJ strain culture water can be efficiently treated at a lower cost while maintaining the low pH value by the microorganism, and the organic compound contained can be decomposed and removed. it can. For this reason, the treated water according to the present invention can be repeatedly reused as it is as low pH KJ strain culture water, and the water cost, culture cost, and waste water treatment cost can be reduced.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明者は、低pHのKJ株培養水中の有機化合物を微生物により分解するべく、以下のような検討を行った。   The present inventor conducted the following studies to decompose organic compounds in the low pH KJ strain culture water with microorganisms.

一般的に、微生物保持担体に処理対象となる排水中の有機化合物分解菌を付着させるために、処理対象となる排水を繰り返し供給することで、担体の菌体濃度を高める方法がしばしば用いられるが、本発明で処理対象とする低pHのKJ株培養水では、有機化合物濃度が低いために、担体に十分に菌体が付着する前にバイオフィルムが剥離してしまうことから、KJ株培養水の処理に必要な十分量の菌体を担体に付着、蓄積させることができなかった。   In general, in order to attach organic compound-degrading bacteria in wastewater to be treated to the microorganism-supporting carrier, a method of increasing the cell concentration of the carrier by repeatedly supplying wastewater to be treated is often used. In the low pH KJ strain culture water to be treated in the present invention, since the organic compound concentration is low, the biofilm is peeled off before the cells are sufficiently attached to the carrier. A sufficient amount of cells necessary for the treatment could not be attached to and accumulated on the carrier.

そこで本発明者は鋭意検討し、まず、KJ株培養水とは別に、pH酸性に調整した合成排水を担体に供給することで、低pH条件下でグルコースなど一般的な炭素源を分解する従属栄養細菌を担体に高濃度に付着させた。   Therefore, the present inventor diligently studied, and first, by supplying synthetic effluent adjusted to pH acidity to the carrier separately from the culture water of KJ strain, it is dependent on decomposing general carbon sources such as glucose under low pH conditions. Vegetative bacteria were attached to the carrier at a high concentration.

その後、供給水をKJ株培養水に変更して担体を馴養したところ、1週間程度はKJ株培養水中の有機化合物を同化できない微生物の自己分解が生じ、担体への菌体付着量が減少するとともに培養水中には自己分解によって生じたと考えられる溶存性有機物の濃度が増加したが、その後担体の菌体付着量が安定し、高い速度でKJ株培養水中の有機化合物を分解することができるようになることを確認した。   Then, when the supply water was changed to KJ strain culture water and the carrier was acclimatized, the autolysis of microorganisms that could not assimilate organic compounds in the KJ strain culture water occurred for about one week, and the amount of cells attached to the carrier decreased. At the same time, the concentration of dissolved organic substances thought to have been generated by autolysis in the culture water increased, but then the amount of adherent cells on the carrier stabilized, and the organic compounds in the KJ strain culture water could be decomposed at a high rate. Confirmed to be.

本発明では、このようにして、低pHのKJ株培養水中の有機化合物を、微生物によって効率的に分解することを可能とした。   In the present invention, the organic compound in the low pH KJ strain culture water can be efficiently decomposed by microorganisms in this way.

ここで、低pHのKJ株培養水のpH値とは、前述のオープンポンドにおける微細藻類の培養等において、目的とする微細藻類を選択的に生産するためのpH条件であり、通常、1〜5、好ましくは2〜4の範囲である。   Here, the pH value of the low pH KJ strain culture water is a pH condition for selectively producing the target microalgae in the culture of the microalgae in the above-mentioned open pound, and usually 1 to 5, preferably in the range of 2-4.

本発明で処理する低pHのKJ株培養水中の有機化合物濃度には特に制限はないが、通常TOC濃度として3〜20mg/L程度の比較的低濃度TOC含有水である。   Although there is no restriction | limiting in particular in the organic compound density | concentration in the low pH KJ strain culture water processed by this invention, It is a comparatively low concentration TOC containing water about 3-20 mg / L normally as a TOC density | concentration.

前述の通り、このような低TOC濃度の低pHのKJ株培養水を、微生物で効率的に処理するには、微生物保持担体を用い、この微生物保持担体に微生物を予め高濃度に付着させることが好ましい。   As described above, in order to efficiently treat such low TOC concentration low pH KJ strain culture water with microorganisms, a microorganism holding carrier is used, and microorganisms are attached to the microorganism holding carrier at a high concentration in advance. Is preferred.

この微生物保持担体としては、流動床、固定床、散水濾床の他、精密濾過膜などを用いることができる。   As the microorganism-supporting carrier, a microfiltration membrane or the like can be used in addition to a fluidized bed, a fixed bed, a watering filter bed.

流動床担体を用いる場合、その形状は、球状、ペレット状、中空筒状、糸状等任意であり、大きさも0.1〜10mm程度の径である。材料は天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。好ましくは、ポリウレタンフォーム(ポリウレタンスポンジ)等の発泡樹脂製担体である。   In the case of using a fluidized bed carrier, the shape thereof is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, and a thread shape, and the size is a diameter of about 0.1 to 10 mm. The material is arbitrary, such as a natural material, an inorganic material, or a polymer material, and a gel material may be used. A foamed resin carrier such as polyurethane foam (polyurethane sponge) is preferable.

固定床担体についても、その形状は、糸状、板状、短冊状等任意であり、材料についても天然素材、無機素材、高分子素材等任意で、ゲル状物質を用いても良い。固定床担体についてもポリウレタンフォーム等の発泡樹脂製担体を用いることが好ましい。   As for the fixed bed carrier, the shape thereof is arbitrary such as a thread shape, a plate shape, and a strip shape, and the material may be a natural material, an inorganic material, a polymer material, etc., and a gel material may be used. For the fixed bed carrier, it is preferable to use a foamed resin carrier such as polyurethane foam.

散水濾床としては20〜60mmのプラスチック製濾材またはポリウレタン製濾材が好ましい。精密濾過膜としては中空糸膜が好ましい。   As the sprinkling filter bed, a plastic filter material of 20 to 60 mm or a polyurethane filter material is preferable. A hollow fiber membrane is preferred as the microfiltration membrane.

このような微生物保持担体に微生物を付着させるには、グルコース、酵母エキス等の有機物を含み、TOC濃度は低pHのKJ株培養水のTOCよりも高く50〜1000mg/L程度で、pHが処理する低pHのKJ株培養水と同等のpH値の合成排水を調製し、この合成排水を微生物保持担体に接触させて、Acetobacteraceae科に属する細菌例えばAcidisoma sp.、Isosphaeraceae科に属する細菌例えばSingulisphaera sp.、Rhodanobacteraceae科に属する細菌例えばDyella sp.、Conexibacteraceae科に属する細菌例えばConexibacter sp.、Isosphaeraceae科に属する細菌例えばSingulisphaera sp.、Microbacteriaceae科に属する細菌例えばHumibacter sp.、Thermosporotrichaceae科に属する細菌例えばTermosporothrix sp.、Acidodacteriaceae科に属する細菌例えばAcidobacterium sp.、Patulibacteraceae科に属する細菌例えばPatulibacter sp.、Microbacteriaceae科に属する細菌例えばCurtobacterium sp.、Legionellaceae科に属する細菌例えばLegionella sp.、Patulibacteraceae科に属する細菌例えばPatulibacter sp.、Micropepsaceae科に属する細菌例えばRhizomicrobium sp.などの、グルコース等の一般的な炭素源の分解能を有する従属栄養細菌を付着させる。この場合、微生物保持担体への従属栄養細菌の付着量が少な過ぎると、優先化させたい細菌が十分に付着せず、その後の低pHのKJ株培養水との接触において、有機化合物を効率的に分解する細菌が十分に生存しない可能性があるため、担体への従属栄養細菌の付着量は、50mg/L−担体以上、好ましくは100mg/L−担体以上、より好ましくは300mg/L−担体以上となるようにする。担体への従属栄養細菌の付着量が多い程低pHのKJ株培養水の処理において、有機化合物の分解速度を高めることができるが、付着量を多くするための合成排水による処理に長時間を要するようになるため、従属栄養細菌の付着量は1000mg/L−担体以下でよく、50mg/L−担体以下であってもよい。   In order to attach microorganisms to such a microorganism-supporting carrier, organic substances such as glucose and yeast extract are contained, and the TOC concentration is higher than the TOC of KJ strain culture water having a low pH and is about 50 to 1000 mg / L, and the pH is treated. A synthetic wastewater having a pH value equivalent to that of the low pH KJ culture water is prepared, and this synthetic wastewater is brought into contact with a microorganism-supporting carrier, so that bacteria belonging to the family Acetobacteraceae such as Acidisoma sp. Bacteria belonging to the family Rhodanobacteraceae such as Dyella sp., Bacteria belonging to the family Conexibacteraceae such as Conexibacter sp., Bacteria belonging to the family Isosphaeraceae such as Singulisphaera sp., Bacteria belonging to the family Microbacteriaceae such as ix sp ., Bacteria belonging to the family Acididoacteriaceae such as Acidobacterium sp., Bacteria belonging to the family Patulibacteraceae such as P atulibacter sp., bacteria belonging to the family Microbacteriaceae such as Curtobacterium sp., bacteria belonging to the family Legionellaceae such as Legionella sp., bacteria belonging to the family Patulibacteraceae such as Patulibacter sp. Attach heterotrophic bacteria with the resolution of a typical carbon source. In this case, if the amount of heterotrophic bacteria adhering to the microorganism-supporting carrier is too small, the bacteria to be prioritized do not adhere sufficiently, and the organic compound is efficiently removed in subsequent contact with the low pH KJ strain culture water. The amount of heterotrophic bacteria adhering to the carrier may be 50 mg / L-carrier or more, preferably 100 mg / L-carrier or more, more preferably 300 mg / L-carrier. Try to be above. The higher the amount of heterotrophic bacteria adhering to the carrier, the higher the decomposition rate of organic compounds in the treatment of KJ strain culture water at a low pH, but the longer the treatment with synthetic waste water to increase the amount of attachment. Accordingly, the amount of heterotrophic bacteria attached may be 1000 mg / L-carrier or less, or 50 mg / L-carrier or less.

微生物保持担体に合成排水を接触させて、担体に従属栄養細菌を高濃度に付着させた後は、低pHのKJ株培養水との接触に切り換える。低pHのKJ株培養水との接触に切り換え初期には、一旦、KJ株培養水中の有機化合物を同化できない微生物の自己分解で担体への菌体付着量が減少し、微生物の自己分解で発生した溶存性有機物の増加で、処理水のTOC濃度は、KJ株培養水のTOCよりも多くなるが、接触を継続すると、担体への菌体付着量が安定し、高速度でKJ株培養水中の有機化合物を分解できるようになり、処理水のTOC濃度は低減する。その後は、担体に付着した従属栄養細菌により、KJ株培養水中の有機化合物を安定的に分解することができるようになる。   After the synthetic waste water is brought into contact with the microorganism-supporting carrier and heterotrophic bacteria are attached to the carrier at a high concentration, the carrier is switched to contact with the low pH KJ strain culture water. At the beginning of switching to contact with low pH KJ strain culture water, once the microorganisms cannot assimilate organic compounds in the KJ strain culture water, the amount of cells attached to the carrier decreases, and this occurs due to the self-degradation of microorganisms. As the dissolved organic matter increases, the TOC concentration of the treated water becomes higher than the TOC of the KJ strain culture water. However, if contact is continued, the amount of bacterial cells attached to the carrier becomes stable, and the KJ strain culture water is stabilized at high speed. The TOC concentration of treated water is reduced. Thereafter, organic compounds in the KJ strain culture water can be stably decomposed by heterotrophic bacteria attached to the carrier.

この処理は具体的には、反応槽に前述の微生物保持担体を充填し、この反応槽に前述の合成排水を所定の菌体付着量となるように通水し、その後通水をKJ株培養水に切り換える操作により行うことができる。   Specifically, in this treatment, the reaction vessel is filled with the above-mentioned microorganism-supporting carrier, and the above-mentioned synthetic waste water is passed through the reaction vessel so as to have a predetermined cell adhesion amount. This can be done by switching to water.

このようにして、有機化合物を分解して得られる処理水は、KJ株培養水として有効に再利用することができる。なお、KJ株培養水としての再利用のために、処理水中の有機化合物はTOC濃度で5mg/L以下までに低減することが好ましい。   Thus, the treated water obtained by decomposing the organic compound can be effectively reused as KJ strain culture water. In addition, it is preferable to reduce the organic compound in the treated water to a TOC concentration of 5 mg / L or less for reuse as KJ strain culture water.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

以下の実施例では、微細藻類として、KJ株を使用した。KJ株を培養するための培地には、純水にNH−NおよびPO−P濃度がそれぞれ10mg/L、0.5mg/Lとなるように硫酸アンモニウムとリン酸水素カリウムを添加し、硫酸でpHを3.0に調整したものを用いた。菌体を十分に増殖させた後、得られた培養液を0.45μmのフィルターで濾過することで、KJ株培養水を得た。このKJ株培養水のTOC濃度は10mg/Lであった。 In the following examples, KJ strain was used as the microalgae. To the medium for culturing the KJ strain, ammonium sulfate and potassium hydrogen phosphate were added to pure water so that the concentrations of NH 4 -N and PO 4 -P were 10 mg / L and 0.5 mg / L, respectively. The pH was adjusted to 3.0. After sufficiently growing the cells, the obtained culture solution was filtered with a 0.45 μm filter to obtain KJ strain culture water. The TOC concentration of this KJ strain culture water was 10 mg / L.

合成排水には、グルコース、酵母エキスを超純水で希釈してpHを3.0に調整した合成培地を用いた。この合成排水のTOC濃度は100mg/Lに調整した。   As the synthetic wastewater, a synthetic medium in which glucose and yeast extract were diluted with ultrapure water and the pH was adjusted to 3.0 was used. The TOC concentration of this synthetic waste water was adjusted to 100 mg / L.

微生物保持担体には、ポリウレタンスポンジ(0.3cm×0.3cm×0.3cmの立方体)を用いた。   Polyurethane sponge (0.3 cm × 0.3 cm × 0.3 cm cube) was used as the microorganism holding carrier.

[実施例1]
1L容のメスシリンダーに300mLの微生物保持担体を入れ、合成排水を1Lとなるように分注した。経時的にTOC濃度を測定し、TOC濃度の減少が緩やかになった後、メスシリンダー内の合成排水を捨て、新しい合成排水に入れ替えた。合成排水の入れ替えを10回繰り返した後、メスシリンダーにKJ株培養水を1Lとなるように分注し、経時的にTOC濃度を測定した。その結果、TOC濃度が10mg/Lから100mg/Lまで上昇した。メスシリンダー内のKJ株培養水を捨て、新しいKJ株培養水を分注した。この操作を繰り返したところ、KJ株培養水を2回交換した後、TOC濃度が経時的に減少した。TOC濃度の減少速度はKJ株培養水を入れ替える度に高くなり、KJ株培養水を3回入れ替えた場合、4時間で10mg/LのTOCを分解することができた。
[Example 1]
300 mL of microorganism holding carrier was placed in a 1 L graduated cylinder, and synthetic waste water was dispensed to 1 L. The TOC concentration was measured over time, and after the TOC concentration decreased gradually, the synthetic wastewater in the graduated cylinder was discarded and replaced with new synthetic wastewater. After replacing the synthetic wastewater 10 times, KJ strain culture water was dispensed to 1 L in a graduated cylinder, and the TOC concentration was measured over time. As a result, the TOC concentration increased from 10 mg / L to 100 mg / L. The KJ strain culture water in the graduated cylinder was discarded, and fresh KJ strain culture water was dispensed. When this operation was repeated, the TOC concentration decreased with time after the KJ strain culture water was exchanged twice. The rate of decrease in the TOC concentration increased each time the KJ strain culture water was replaced. When the KJ strain culture water was replaced three times, 10 mg / L TOC could be decomposed in 4 hours.

[比較例1]
1L容のメスシリンダーに300mLの微生物保持担体を入れ、KJ株培養水を1Lとなるように分注した。経時的にTOC濃度を測定し、TOC濃度の減少が緩やかになった後、メスシリンダー内のKJ株培養水を捨て、新しいKJ株培養水に入れ替えた。TOCの減少速度はKJ株培養水を入れ替える度にやや高くなったが、KJ株培養水の入れ替えを10回繰り返した後の10mg/LのTOC分解に要する時間は約500時間であり、KJ株培養水の入れ替えを100回繰り返した後の10mg/LのTOC分解に要する時間は約250時間であった。
[Comparative Example 1]
300 mL of a microorganism holding carrier was placed in a 1 L graduated cylinder, and KJ strain culture water was dispensed to 1 L. The TOC concentration was measured over time, and after the TOC concentration decreased gradually, the KJ strain culture water in the graduated cylinder was discarded and replaced with new KJ strain culture water. The rate of decrease in TOC increased slightly every time KJ strain culture water was replaced, but the time required for 10 mg / L TOC degradation after 10 times of KJ strain culture water replacement was about 500 hours. The time required for 10 mg / L TOC decomposition after 100 times of replacement of the culture water was about 250 hours.

以上の結果から、予めpH酸性の合成排水を接触させて微生物保持担体に従属栄養細菌を高濃度に付着させた後、KJ株培養水の処理に用いることで、低pHのKJ株培養水中の有機化合物を効率的に分解することができ、有機化合物を分解除去した処理水を培養水として再利用することができるようになることが分かる。   From the above results, the pH-trophic synthetic waste water is contacted in advance to attach the heterotrophic bacteria to the microorganism-supporting carrier at a high concentration, and then used for the treatment of the KJ strain culture water. It can be seen that the organic compound can be efficiently decomposed, and the treated water obtained by decomposing and removing the organic compound can be reused as culture water.

なお、実施例1において、合成排水からKJ株培養水に切り換える前の微生物保持担体に付着した微生物をクローンライブラリ法により調べたところ、担体には、低pH条件下でグルコースなどの一般的な炭素源を分解する従属栄養細菌のAcidisoma sp.、Acidisphaera sp.、Singulishaera sp.、Acidobacterium sp.、Dyella sp.、Humibacter sp.、Termosporothrix sp.等が約10mg/L−担体付着していることが確認された。   In Example 1, microorganisms adhering to the microorganism-supporting carrier before switching from synthetic wastewater to KJ strain culture water were examined by the clone library method. As a result, the carrier contained general carbon such as glucose under low pH conditions. It is confirmed that about 10 mg / L-carrier of heterotrophic bacteria Acidisoma sp., Acidisphaera sp., Singulishaera sp., Acidobacterium sp., Dyella sp., Humibacter sp., Termosporothrix sp. It was done.

Claims (6)

低pHのKJ株培養水を微生物で処理して、該培養水中の有機化合物を分解することを特徴とする低pHのKJ株培養水の処理方法。   A method for treating low pH KJ strain culture water, comprising treating low pH KJ strain culture water with microorganisms to decompose organic compounds in the culture water. 請求項1において、前記低pHのKJ株培養水のpHが2〜4であることを特徴とする低pHのKJ株培養水の処理方法。   The method of treating low pH KJ strain culture water according to claim 1, wherein the pH of the low pH KJ strain culture water is 2 to 4. 請求項1又は2において、前記微生物が、Acidisoma sp.、Acidisphaera sp.、Singulisphaera sp.、Acidobacterium sp.、Dyella sp.、Humibacter sp.およびThermosporothrix sp.のいずれか1種又は2種以上を含む従属栄養細菌であることを特徴とする低pHのKJ株培養水の処理方法。   3. The subordinate according to claim 1 or 2, wherein the microorganism comprises one or more of Acidisoma sp., Acidisphaera sp., Singulisphaera sp., Acidobacterium sp., Dyella sp., Humibacter sp., And Thermosporothrix sp. A method for treating a low pH KJ strain culture water, which is a vegetative bacterium. 請求項1ないし3のいずれか1項において、流動床、固定床、散水濾床、および精密濾過膜のいずれかの微生物保持担体に前記微生物を付着させ、該微生物を付着させた担体に、前記低pHのKJ株培養水を接触させることを特徴とする低pHのKJ株培養水の処理方法。   In any one of Claims 1 thru | or 3, the said microorganisms are made to adhere to the microorganisms holding support | carrier in any one of a fluidized bed, a fixed bed, a watering filter bed, and a microfiltration membrane, The carrier to which this microorganism was made to adhere, A method for treating low pH KJ strain culture water, comprising contacting low pH KJ strain culture water. 請求項4において、前記微生物保持担体に合成排水を接触させて予め前記微生物を該担体に付着させた後、該微生物が付着した微生物保持担体に前記低pHのKJ株培養水を接触させることを特徴とする低pHのKJ株培養水の処理方法。   5. The method according to claim 4, wherein the microorganism holding carrier is brought into contact with synthetic waste water to cause the microorganism to adhere to the carrier in advance, and then the low pH KJ strain culture water is brought into contact with the microorganism holding carrier to which the microorganism has adhered. A method for treating low pH KJ strain culture water. 請求項4又は5において、前記微生物保持担体への前記微生物の付着量が50〜1,000mg/L−担体であることを特徴とする低pHのKJ株培養水の処理方法。   6. The method for treating low pH KJ strain culture water according to claim 4 or 5, wherein the amount of the microorganism attached to the microorganism-supporting carrier is 50 to 1,000 mg / L-carrier.
JP2017129298A 2017-06-30 2017-06-30 Treatment method of low pH KJ strain culture water Active JP6897370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017129298A JP6897370B2 (en) 2017-06-30 2017-06-30 Treatment method of low pH KJ strain culture water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017129298A JP6897370B2 (en) 2017-06-30 2017-06-30 Treatment method of low pH KJ strain culture water

Publications (2)

Publication Number Publication Date
JP2019010625A true JP2019010625A (en) 2019-01-24
JP6897370B2 JP6897370B2 (en) 2021-06-30

Family

ID=65226569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017129298A Active JP6897370B2 (en) 2017-06-30 2017-06-30 Treatment method of low pH KJ strain culture water

Country Status (1)

Country Link
JP (1) JP6897370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133263A (en) * 2020-02-21 2021-09-13 株式会社フジタ Water purification system and water purification method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258236A (en) * 1991-02-06 1992-09-14 Ebara Infilco Co Ltd Circulating cleaning of water for raising of marine product and device therefor
US20110247977A1 (en) * 2010-04-07 2011-10-13 Korea Institute Of Science And Technology Device for Treating Wastewater Comprising Nitrogen and Phosphorus and a Method for the Same
JP2014060967A (en) * 2012-09-21 2014-04-10 Kobelco Eco-Solutions Co Ltd Fine algae culture method and fine algae culture facility
JP2014117202A (en) * 2012-12-14 2014-06-30 Denso Corp Culture method and culture system for microalgae
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae
WO2015190116A1 (en) * 2014-06-13 2015-12-17 株式会社デンソー Microalgae culture method, microalgae, and fat/oil production method
JP2016036777A (en) * 2014-08-08 2016-03-22 株式会社神鋼環境ソリューション Wastewater treatment method and wastewater treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258236A (en) * 1991-02-06 1992-09-14 Ebara Infilco Co Ltd Circulating cleaning of water for raising of marine product and device therefor
US20110247977A1 (en) * 2010-04-07 2011-10-13 Korea Institute Of Science And Technology Device for Treating Wastewater Comprising Nitrogen and Phosphorus and a Method for the Same
JP2014060967A (en) * 2012-09-21 2014-04-10 Kobelco Eco-Solutions Co Ltd Fine algae culture method and fine algae culture facility
JP2014117202A (en) * 2012-12-14 2014-06-30 Denso Corp Culture method and culture system for microalgae
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae
WO2015190116A1 (en) * 2014-06-13 2015-12-17 株式会社デンソー Microalgae culture method, microalgae, and fat/oil production method
JP2016036777A (en) * 2014-08-08 2016-03-22 株式会社神鋼環境ソリューション Wastewater treatment method and wastewater treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133263A (en) * 2020-02-21 2021-09-13 株式会社フジタ Water purification system and water purification method

Also Published As

Publication number Publication date
JP6897370B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US7556961B2 (en) Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
JP4602615B2 (en) High concentration culture method of nitrifying bacteria contained in activated sludge
KR100952081B1 (en) Non-discharge palm oil mill effluent treating apparatus and method for treating palm oil mill effluent using the same
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP6621342B2 (en) Method for producing biological activated carbon to which nitrifying bacteria are attached and advanced water purification method
KR20150083435A (en) Operating method for wastewater treatment apparatus
WO2010076794A1 (en) Method of denitrifying brine and systems capable of same
JP2006246847A (en) Method and device for culturing anaerobic ammonia-oxidizing bacterium
CA2348520C (en) Nitrification process
JP2018118209A (en) Nitrogen treatment method
US7294273B2 (en) Process for treatment of organic contaminated water
JP6897370B2 (en) Treatment method of low pH KJ strain culture water
JP6911582B2 (en) Treatment method of low pH microalgae culture water
Dan et al. High salinity wastewater treatment using yeast and bacterial membrane bioreactors
US20210371311A1 (en) Method of purifying lake water using nano and micro bubble
US8323495B2 (en) Method of operating a bioreactor and filtration system
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
KR101622936B1 (en) Apparatus and method for cultivating micro-algae applied ozone oxidation
KR20190074638A (en) Nitrification process with production of resource using photosynthetic oxygen
JP7181251B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
Swain et al. Removal of acid blue 113 dye in a moving bed biofilm reactor using isolated bacterial species
JP2006326435A (en) Tetramethylammonium hydroxide-containing waste water treatment method
JP2019010626A (en) Biological treatment method of strain-kj culture water
JP2021036781A (en) Culture method, culture device, wastewater treatment method and wastewater treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250