JP2019009908A - Squirrel-cage induction rotary electric machine and short-circuit ring support method - Google Patents

Squirrel-cage induction rotary electric machine and short-circuit ring support method Download PDF

Info

Publication number
JP2019009908A
JP2019009908A JP2017123883A JP2017123883A JP2019009908A JP 2019009908 A JP2019009908 A JP 2019009908A JP 2017123883 A JP2017123883 A JP 2017123883A JP 2017123883 A JP2017123883 A JP 2017123883A JP 2019009908 A JP2019009908 A JP 2019009908A
Authority
JP
Japan
Prior art keywords
short
secondary conductor
side joint
joint surface
circuit ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017123883A
Other languages
Japanese (ja)
Inventor
陽介 田口
Yosuke Taguchi
陽介 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2017123883A priority Critical patent/JP2019009908A/en
Priority to CN201810585116.4A priority patent/CN109120126A/en
Publication of JP2019009908A publication Critical patent/JP2019009908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

To secure bond strength while facilitating gap dimension management in bonding between a secondary conductor bar and a short-circuit ring in a squirrel-cage induction rotary electric machine.SOLUTION: A squirrel-cage induction rotary electric machine is provided with: a rotor 10 having a rotor shaft 11, a rotor core 12, a plurality of secondary conductor bars 13, and two short-circuit rings 15 which are bonded to the respective ends of the plurality of secondary conductor bars 13 on both ends thereof; and a stator. Secondary conductor bar side bonding surfaces 14 having at least one recess radially extending along end surfaces are formed on the respective end surfaces of the plurality of secondary conductor bars 13. Each of a short-circuit ring side bonding surface 15b and the secondary conductor bar side bonding surface 14 is bonded by a material for bonding filled between the short-circuit ring side bonding surface 15b and the secondary conductor bar side bonding surface 14.SELECTED DRAWING: Figure 2

Description

本発明は、かご形誘導回転電機および短絡環支持方法に関する。   The present invention relates to a squirrel-cage induction rotating electric machine and a short-circuit ring support method.

かご形誘導回転電機においては、回転子は、両端を回転可能に支持されたロータシャフト、ロータシャフトの径方向外側に設けられた回転子鉄心、および複数の二次導体バーを有する。   In the squirrel-cage induction rotating electric machine, the rotor includes a rotor shaft that is rotatably supported at both ends, a rotor core provided on the radially outer side of the rotor shaft, and a plurality of secondary conductor bars.

複数の二次導体バーは、電気的な導体である。これら複数の二次導体バーのそれぞれは、回転子鉄心内に埋め込まれ、周方向に互いに間隔をもって配され、軸方向に延びて、両端は回転子鉄心から突出している。   The plurality of secondary conductor bars are electrical conductors. Each of the plurality of secondary conductor bars is embedded in the rotor core, is arranged at intervals in the circumferential direction, extends in the axial direction, and both ends protrude from the rotor core.

複数の二次導体バーのそれぞれの端部は、円環状の短絡環により接合され、電気的に短絡しているともに、回転子の回転時に生ずる遠心力に抗するように構成されている(特許文献1参照)。   The respective end portions of the plurality of secondary conductor bars are joined by an annular short-circuited ring and are electrically short-circuited, and are configured to resist centrifugal force generated when the rotor rotates (patent) Reference 1).

特許第3650351号公報Japanese Patent No. 3650351

図9は、従来の短絡環接続構造の例を示す縦断面図である。短絡環15と複数の二次導体バー13のそれぞれとは、ろう付により接合されている。すなわち、二次導体バー13の端部に短絡環15が配され、二次導体バー13の長手方向の端面を接触面とするか、二次導体バー13の端部の径方向内側の側面を接触面として、接触面においてろう付により短絡環15と二次導体バー13が接合されている。   FIG. 9 is a longitudinal sectional view showing an example of a conventional short-circuited ring connection structure. The short ring 15 and each of the plurality of secondary conductor bars 13 are joined by brazing. That is, the short-circuit ring 15 is arranged at the end of the secondary conductor bar 13, and the end surface in the longitudinal direction of the secondary conductor bar 13 is used as a contact surface, or the radially inner side surface of the end of the secondary conductor bar 13 is used as the contact surface. As a contact surface, the short ring 15 and the secondary conductor bar 13 are joined by brazing on the contact surface.

図9に示すような、二次導体バー13の長手方向(Z方向)の端面を接触面とする場合を例にとると、短絡環15とのろう付不良を防ぐために、ろうが入りやすい隙間を作る。このために、二次導体バー13の端部は、径方向外側に向かって僅かに傾斜するような面13mが形成されている。この際、隙間に浸入するろうの量が少ないと、十分な接合強度が得られない。このために、二次導体バー13の端部と短絡環15との間隙寸法の管理が重要となる。   Taking the case where the end surface in the longitudinal direction (Z direction) of the secondary conductor bar 13 is a contact surface as shown in FIG. make. For this reason, the end portion of the secondary conductor bar 13 is formed with a surface 13m that is slightly inclined outward in the radial direction. At this time, if the amount of wax that enters the gap is small, sufficient bonding strength cannot be obtained. For this reason, the management of the gap dimension between the end of the secondary conductor bar 13 and the short-circuit ring 15 is important.

本発明は上記のような課題を解決するためになされたものであり、かご形誘導回転電機において、二次導体バーと短絡環との接合の際の管理を容易にしながら接合強度を確保することを目的とする。   The present invention has been made to solve the above-described problems, and in a squirrel-cage induction rotating electrical machine, it is possible to ensure bonding strength while facilitating management when joining a secondary conductor bar and a short-circuit ring. With the goal.

上述の目的を達成するため、本発明は、軸方向に延びて前記軸方向の両側を回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に固定されて前記軸方向に延びた回転子鉄心と、前記回転子鉄心内を前記軸方向に貫通する複数の二次導体バーと、前記複数の二次導体バーの両端で当該複数の二次導体バーのそれぞれの端部と対向する短絡環側接合面が形成された2つの短絡環とを有する回転子と、前記回転子鉄心の径方向外側に配された固定子鉄心と、前記固定子鉄心内に配された複数の固定子巻線とを有する固定子と、を備えるかご形誘導回転電機であって、前記複数の二次導体バーのそれぞれの端面には、前記短絡環側接合面に平行であり径方向に端面に沿って延びた少なくとも一つの凹部を有する二次導体バー側接合面が形成され、前記短絡環側接合面と前記二次導体バー側接合面のそれぞれは、前記短絡環側接合面と前記二次導体バー側接合面との間に充填された接合用の材料により接合されている、ことを特徴とする。   In order to achieve the above-described object, the present invention extends in the axial direction and extends in the axial direction, and a rotor shaft that is rotatably supported on both sides in the axial direction, and is fixed to a radially outer side of the rotor shaft. A rotor core, a plurality of secondary conductor bars penetrating the rotor core in the axial direction, and opposite ends of the plurality of secondary conductor bars at both ends of the plurality of secondary conductor bars A rotor having two short-circuit rings formed with a short-circuit-ring-side joint surface, a stator core disposed radially outside the rotor core, and a plurality of stators disposed in the stator core A squirrel-cage induction rotating electrical machine having a stator having a winding, and each end face of the plurality of secondary conductor bars is parallel to the short-circuit ring side joint face and radially along the end face Secondary conductor bar side with at least one recess extending A joining surface is formed, and each of the short-circuiting ring-side joining surface and the secondary conductor bar-side joining surface is filled between the short-circuiting ring-side joining surface and the secondary conductor bar-side joining surface. It is characterized by being joined by a material.

また、本発明は、軸方向に延びて前記軸方向の両側を回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に固定されて前記軸方向に延びた回転子鉄心と、前記回転子鉄心内を前記軸方向に貫通する複数の二次導体バーと、前記複数の二次導体バーの両端で当該複数の二次導体バーのそれぞれの端部と接合する2つの短絡環を有する回転子を備えるかご形誘導回転電機において前記2つの短絡環のそれぞれと前記複数の二次導体バーとを接合する短絡環支持方法であって、前記複数の二次導体バーのそれぞれの端部に、短絡環側接合面に平行となる面に周方向に少なくとも一つの径方向に端面に沿って延びた凹部を有する二次導体バー側接合面を形成する二次導体バー側接合面形成ステップと、前記複数の二次導体バーが前記回転子鉄心に組み込まれた状態で、前記2つの短絡環をそれぞれの短絡環側接合面を前記複数の二次導体バーのそれぞれと密着させて仮固定する仮固定ステップと、前記凹部のそれぞれに接合材料を流入させることにより接合部材を形成し前記短絡環と前記複数の二次導体バーのそれぞれとを接合させる接合ステップと、を有することを特徴とする。   Further, the present invention provides a rotor shaft that extends in the axial direction and is rotatably supported on both sides in the axial direction, a rotor core that is fixed radially outside the rotor shaft and extends in the axial direction, A plurality of secondary conductor bars penetrating the rotor core in the axial direction, and two short-circuiting rings joined to respective ends of the plurality of secondary conductor bars at both ends of the plurality of secondary conductor bars In a squirrel-cage induction rotating electrical machine having a rotor, a short-circuit ring support method for joining each of the two short-circuit rings and the plurality of secondary conductor bars, each of the plurality of secondary conductor bars at each end portion A secondary conductor bar side joint surface forming step for forming a secondary conductor bar side joint surface having a recess extending along the end face in the circumferential direction on a surface parallel to the short circuit ring side joint surface; The plurality of secondary conductor bars Temporary fixing step of temporarily fixing the two short-circuiting rings in close contact with each of the plurality of secondary conductor bars in a state where the two short-circuiting rings are incorporated in the rotor core; A bonding step of forming a bonding member by allowing a bonding material to flow in and bonding the short-circuit ring and each of the plurality of secondary conductor bars.

本発明によれば、かご形誘導回転電機において、二次導体バーと短絡環との接合の際の管理を容易にしながら接合強度を確保することができる。   According to the present invention, in the squirrel-cage induction rotating electrical machine, it is possible to ensure the bonding strength while facilitating the management when the secondary conductor bar and the short-circuit ring are bonded.

第1の実施形態に係るかご形誘導回転電機の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the cage induction rotating electrical machine which concerns on 1st Embodiment. 第1の実施形態に係るかご形誘導回転電機の回転子の二次導体バーの端部および短絡環の部分を示す図3のII−II線矢視部分縦断面図である。FIG. 4 is a partial vertical cross-sectional view taken along the line II-II in FIG. 3, showing an end portion of a secondary conductor bar and a portion of a short-circuit ring of the rotor of the squirrel-cage rotary electric machine according to the first embodiment. 第1の実施形態に係るかご形誘導回転電機の回転子の二次導体バーの端部および短絡環の部分を示す図2のIII−III線矢視部分平面図である。FIG. 3 is a partial plan view taken along line III-III in FIG. 2, showing an end portion of a secondary conductor bar and a portion of a short-circuit ring of the rotor of the squirrel-cage induction rotating electric machine according to the first embodiment. 第1の実施形態に係る短絡環接続構造を示す斜視図である。It is a perspective view showing the short circuit ring connection structure concerning a 1st embodiment. 第1の実施形態に係る短絡環接続構造の短絡環側接合面および二次導体バー側接合面を示す図2のV−V線矢視部分横断面図である。FIG. 5 is a partial cross-sectional view taken along line VV in FIG. 2 showing a short-circuit ring side joint surface and a secondary conductor bar-side joint surface of the short-circuit ring connection structure according to the first embodiment. 第1の実施形態に係る短絡環支持方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the short circuit ring support method which concerns on 1st Embodiment. 第2の実施形態に係る短絡環接続構造の短絡環側接合面および二次導体バー側接合面を示す部分横断面図である。It is a partial cross-sectional view which shows the short circuit ring side joint surface and secondary conductor bar side joint surface of the short circuit ring connection structure which concerns on 2nd Embodiment. 第3の実施形態に係る短絡環接続構造の短絡環側接合面および二次導体バー側接合面を示す部分横断面図である。It is a fragmentary cross-sectional view which shows the short circuit ring side joint surface and secondary conductor bar side joint surface of the short circuit ring connection structure which concerns on 3rd Embodiment. 従来の短絡環接続構造の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the conventional short circuit ring connection structure.

以下、図面を参照して、本発明の実施形態に係るかご形誘導回転電機および短絡環支持方法について説明する。   Hereinafter, a squirrel-cage induction rotating electrical machine and a short-circuit ring supporting method according to embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は、第1の実施形態に係るかご形誘導回転電機の構成を示す縦断面図である。かご形誘導回転電機100は、回転子10および固定子20を有する。
[First Embodiment]
FIG. 1 is a longitudinal sectional view showing a configuration of a squirrel-cage induction rotating electrical machine according to the first embodiment. The cage induction rotating electric machine 100 includes a rotor 10 and a stator 20.

回転子10は、ロータシャフト11、回転子鉄心12、複数の二次導体バー13、および2つの短絡環15を有する。   The rotor 10 includes a rotor shaft 11, a rotor core 12, a plurality of secondary conductor bars 13, and two short-circuit rings 15.

ロータシャフト11は、軸方向に延びて、軸方向の両側を軸受30によって回転可能に支持されている。ロータシャフト11の一方の端部には、駆動対象機器などの接合対象との接合のためのカップリング部11aが形成されている。ロータシャフト11の回転子鉄心12と一方の軸受30との間の部分には、空気などの冷却用気体を機内で循環させるための内扇18が設けられている。   The rotor shaft 11 extends in the axial direction and is rotatably supported by bearings 30 on both sides in the axial direction. At one end of the rotor shaft 11, a coupling portion 11a for joining with a joining target such as a drive target device is formed. An inner fan 18 for circulating a cooling gas such as air in the machine is provided in a portion of the rotor shaft 11 between the rotor core 12 and one bearing 30.

回転子鉄心12は、ロータシャフト11の径方向外側に固定されて軸方向に延びた円筒形状である。回転子鉄心12内の磁束は交流で誘導されるため、渦電流による損失を低減するために、回転子鉄心12は、電磁鋼板を積層した積層構造であり、軸方向の両端から端板12a(図2)で締め付ける構成である。   The rotor core 12 has a cylindrical shape that is fixed on the radially outer side of the rotor shaft 11 and extends in the axial direction. Since the magnetic flux in the rotor core 12 is induced by alternating current, the rotor core 12 has a laminated structure in which electromagnetic steel plates are laminated in order to reduce loss due to eddy current, and end plates 12a ( It is the structure tightened in FIG.

複数の二次導体バー13は、軸中心から同じ半径の位置に周方向に互いに間隔をもって、互いに並列に回転子鉄心12内を軸方向に貫通する。複数の二次導体バー13は回転子鉄心12の軸方向の両端からそれぞれ突出している。複数の二次導体バー13の突出している部分は、それぞれ短絡環15によって互いに電気的に接続する。すなわち、2つの短絡環15のそれぞれは、回転子鉄心12の軸方向の両外側に配され、複数の二次導体バー13と接続することにより、複数の二次導体バー13間を電気的に接続し短絡させる。   The plurality of secondary conductor bars 13 penetrate the rotor core 12 in the axial direction in parallel to each other at intervals of the same radius from the axial center in the circumferential direction. The plurality of secondary conductor bars 13 protrude from both ends of the rotor core 12 in the axial direction. The protruding portions of the plurality of secondary conductor bars 13 are electrically connected to each other by the short-circuit ring 15. That is, each of the two short-circuit rings 15 is arranged on both outer sides in the axial direction of the rotor core 12 and is electrically connected between the plurality of secondary conductor bars 13 by connecting to the plurality of secondary conductor bars 13. Connect and short circuit.

固定子20は、固定子鉄心21および固定子巻線22を有する。固定子鉄心21は、円筒形状であり回転子鉄心12の径方向外側に空隙19を介して配されている。固定子巻線22は、固定子鉄心21の径方向の内表面に互いに周方向に並列に軸方向に貫通するように形成された複数のスロット(図示せず)内を貫通し、固定子鉄心21の軸方向の外側で、コイル状に結線されている。   The stator 20 has a stator core 21 and a stator winding 22. The stator iron core 21 has a cylindrical shape and is arranged on the outer side in the radial direction of the rotor iron core 12 via a gap 19. The stator winding 22 penetrates through a plurality of slots (not shown) formed in the radial inner surface of the stator core 21 so as to penetrate in the axial direction in parallel with each other in the circumferential direction. 21 is connected outside in the axial direction in a coil shape.

回転子鉄心12、二次導体バー13、短絡環15、および固定子20は、フレーム40内に収納されている。フレーム40の外表面には、フレーム40から外気への放熱を助長するために、図示しない複数のフィンが設けられている。フレーム40の軸方向の両端はそれぞれ軸受ブラケット35により閉止されている。それぞれの軸受ブラケット35は、軸受30を静止支持する。   Rotor core 12, secondary conductor bar 13, short-circuit ring 15, and stator 20 are housed in frame 40. A plurality of fins (not shown) are provided on the outer surface of the frame 40 in order to promote heat dissipation from the frame 40 to the outside air. Both ends of the frame 40 in the axial direction are closed by bearing brackets 35, respectively. Each bearing bracket 35 supports the bearing 30 stationary.

図2は、第1の実施形態に係るかご形誘導回転電機の回転子の二次導体バーの端部および短絡環の部分を示す図3のII−II線矢視部分縦断面図である。図3は、図2のIII−III線矢視部分平面図である。また、図4は、短絡環接続構造を示す斜視図である。   2 is a partial vertical cross-sectional view taken along the line II-II in FIG. 3 showing the end of the secondary conductor bar and the portion of the short-circuit ring of the rotor of the squirrel-cage induction rotating electric machine according to the first embodiment. FIG. 3 is a partial plan view taken along line III-III in FIG. FIG. 4 is a perspective view showing a short-circuited ring connection structure.

ここで、回転軸に沿った方向をZ方向とし回転子鉄心12の軸方向外側に向かう方向を正とする。回転軸に垂直な平面における回転軸中心から径方向外側に向かう方向をR方向、同じ平面内で、回転軸中心に対応する点の周りを回るのをΘ方向とする。   Here, the direction along the rotation axis is defined as the Z direction, and the direction toward the axially outer side of the rotor core 12 is defined as positive. The direction from the center of the rotation axis toward the radially outer side in the plane perpendicular to the rotation axis is the R direction, and the direction around the point corresponding to the rotation axis center in the same plane is the Θ direction.

短絡環15は、環状であり、素材は銅、アルミニウムなどの電気的に良導体である。短絡環15は、回転子鉄心12に対向する側の面で、それぞれの二次導体バー13の端面と接合する。短絡環15の回転子鉄心12に対向する面は、回転軸に垂直な面内にある短絡環内側端面15aと、この面からさらに傾斜をもたせるように形成された短絡環側接合面15bとを有する。短絡環側接合面15bは、短絡環内側端面15aより径方向の内側の部分に形成されている。   The short-circuit ring 15 is annular, and the material is an electrically good conductor such as copper or aluminum. The short-circuit ring 15 is joined to the end surface of each secondary conductor bar 13 on the surface facing the rotor core 12. The surface of the short-circuiting ring 15 facing the rotor core 12 includes a short-circuiting ring inner end surface 15a in a plane perpendicular to the rotation axis, and a short-circuiting ring-side joint surface 15b formed so as to be further inclined from this surface. Have. The short-circuiting ring-side joining surface 15b is formed in a radially inner portion from the short-circuiting ring inner end surface 15a.

短絡環側接合面15bは、回転軸中心を通る平面において、Z軸に垂直なR軸方向に対して角度Φの傾斜をもつように形成されている。短絡環側接合面15bの傾斜の方向は、R方向外側からR方向内側になるに従って回転子鉄心12および二次導体バー13から遠ざかるような方向である。   The short-circuiting ring-side joint surface 15b is formed so as to have an inclination of an angle Φ with respect to the R-axis direction perpendicular to the Z-axis on a plane passing through the rotation axis center. The direction of the inclination of the short-circuit-ring-side joint surface 15b is a direction that moves away from the rotor core 12 and the secondary conductor bar 13 from the outside in the R direction toward the inside in the R direction.

短絡環15の径方向の外側には、保持環17が設けられている。保持環17は、鋼材などの短絡環15の材料に比べて機械的強度に優れた材料を用いる。また、保持環17は、電気的に導体である必要はなく、たとえば、炭化ケイ素などの化合物半導体やその他の絶縁物を用いてもよい。   A holding ring 17 is provided on the outer side of the short-circuit ring 15 in the radial direction. The holding ring 17 is made of a material having excellent mechanical strength compared to the material of the short-circuiting ring 15 such as steel. In addition, the retaining ring 17 does not need to be an electrical conductor, and for example, a compound semiconductor such as silicon carbide and other insulators may be used.

複数の二次導体バー13のそれぞれの二次導体バー側接合面14は、短絡環側接合面15bに対向するように形成されている。すなわち、回転軸中心を通る平面において、Z軸に垂直なR軸方向に対して角度Φの傾斜で、短絡環側接合面15bの傾斜と同じ向きになるように形成され、二次導体バー側接合面14と短絡環側接合面15bとは互いに平行な面となっている。   Each secondary conductor bar-side joining surface 14 of the plurality of secondary conductor bars 13 is formed to face the short-circuiting ring-side joining surface 15b. In other words, on the plane passing through the center of the rotation axis, it is formed so as to be inclined at an angle Φ with respect to the R-axis direction perpendicular to the Z-axis and in the same direction as the inclination of the short-circuit ring side joint surface 15b. The joint surface 14 and the short-circuit ring side joint surface 15b are parallel to each other.

二次導体バー側接合面14と短絡環側接合面15bとは、これらの間の空間14c内に充填されているろう材あるいは場合によっては半田や接着剤などの接合材料を注入して形成された接合部材16により接合している。なお、溶接用の溶材を供給しながら溶接を行うことにより接合を行うことでもよい。この場合は、二次導体バー側接合面14と短絡環側接合面15bのそれぞれは、その表面の一部が溶材と溶け合って新たな層を形成することになる。   The secondary conductor bar side joining surface 14 and the short-circuiting ring side joining surface 15b are formed by injecting a brazing material filled in a space 14c between them or a joining material such as solder or adhesive in some cases. They are joined by the joining member 16. In addition, joining may be performed by performing welding while supplying a welding material. In this case, each of the secondary conductor bar-side joining surface 14 and the short-circuiting ring-side joining surface 15b partially forms a new layer by melting part of the surface.

図5は、短絡環側接合面および二次導体バー側接合面を示す図2のV−V線矢視部分横断面図である。短絡環側接合面15bと二次導体バー側接合面14とは、互いに間隔を空けずに接している。ここで、接しているとは、面同士が互いに密着するというよりも、少なくとも2か所の点、あるいは2か所の線で接触し、それ以上近づけない状態にあることを意味するものとする。   FIG. 5 is a partial cross-sectional view taken along line VV in FIG. 2 showing the short-circuit ring side joint surface and the secondary conductor bar side joint surface. The short-circuit-ring-side joining surface 15b and the secondary conductor bar-side joining surface 14 are in contact with each other without a gap therebetween. Here, being in contact means that the surfaces are in contact with each other at least two points or two lines, and are not brought closer to each other, rather than being in close contact with each other. .

それぞれの二次導体バー13の二次導体バー側接合面14には、Θ方向に並んだ3つの凹部14bが形成されている。それぞれの凹部14bは、端面に沿ってR方向に二次導体バー13を貫通するように形成されている。凹部14bの断面形状は半円である。端面の周方向の端部と凹部14bとの間、および互いに隣接する凹部14bの間には、それぞれ凸部14aが形成されている。凹部14bは、互いに間隔を空けずに周方向に並んでおり、凸部14aが、線状の稜線となっている。   Three concave portions 14b arranged in the Θ direction are formed on the secondary conductor bar side joint surface 14 of each secondary conductor bar 13. Each recess 14b is formed so as to penetrate the secondary conductor bar 13 in the R direction along the end face. The cross-sectional shape of the recess 14b is a semicircle. Convex portions 14a are formed between the end portion in the circumferential direction of the end surface and the concave portion 14b, and between the adjacent concave portions 14b. The concave portions 14b are arranged in the circumferential direction without being spaced apart from each other, and the convex portions 14a are linear ridge lines.

短絡環側接合面15bは、環状部分にZ軸方向に幅を有するように形成されているので、完全な平面ではない。一方、二次導体バー側接合面14は、通常は、端面に傾斜をつけて凹部14bを形成するため、短絡環側接合面15bと二次導体バー側接合面14とが接している場合は、接する部分は、両端の凸部14aとなる。したがって、両端以外の凸部14aは、短絡環側接合面15bから僅かに離れるが、特に問題はない。   The short-circuiting ring-side joining surface 15b is not a perfect plane because it is formed in the annular portion so as to have a width in the Z-axis direction. On the other hand, the secondary conductor bar side joining surface 14 is normally inclined at the end face to form the concave portion 14b, so that the short-circuit ring side joining surface 15b and the secondary conductor bar side joining surface 14 are in contact with each other. The part which touches becomes the convex part 14a of both ends. Therefore, although the convex part 14a other than both ends leaves | separates slightly from the short circuit ring side joint surface 15b, there is no problem in particular.

なお、ここでは、短絡環側接合面15bと二次導体バー側接合面14とは、互いに間隔を空けずに接している場合を示したが、これに限定されるものではない。接している状態から僅かに離れている場合でもよい。すなわち、接合強度のばらつきが生じないようにギャップを管理しながら実施すればよい。ただし、接した状態で開先合わせをすることは、特別なギャップ管理を必要としない点で大きなメリットとなる。   Here, although the case where the short-circuiting ring-side joining surface 15b and the secondary conductor bar-side joining surface 14 are in contact with each other without a gap is shown, the present invention is not limited to this. The case where it is slightly away from the state which touches may be sufficient. That is, it may be carried out while managing the gap so that the bonding strength does not vary. However, it is a great advantage to perform groove alignment in contact with each other in that special gap management is not required.

ここで、凹部14bの数は、少なくとも一つあれば、必ずしも3つでなくともよい。凹部14bの数および形状、幅w、深さdは、短絡環側接合面15bと二次導体バー側接合面14とを密着させたときに、この両者に挟まれて生ずる空間14cの体積、すなわち注入されるろう材あるいは半田などの接合用の材料の量を決定するとともに、接合時の作業性に影響を与える。たとえば凹部14bが1つの場合には、接合用の材料の量が増えるだけではなく、注入量を多くして注入した場合には、途中で固化せずに液体状態のまま垂れて落下する可能性が大きくなる点を考慮する必要がある。この点で、複数の凹部14bを設ける方がよい場合がある。   Here, the number of the recesses 14b is not necessarily three as long as it is at least one. The number and shape of the recesses 14b, the width w, and the depth d are determined based on the volume of the space 14c that is sandwiched between the short-circuited ring-side joining surface 15b and the secondary conductor bar-side joining surface 14; That is, it determines the amount of brazing material or soldering material to be injected and affects the workability at the time of joining. For example, when the number of the concave portions 14b is one, not only the amount of the material for bonding is increased, but also when the injection amount is increased, there is a possibility that the material will drip and fall without being solidified in the middle. It is necessary to consider the point that becomes larger. In this respect, it may be better to provide a plurality of recesses 14b.

以上のように、凹部14bの数は、二次導体バー13の加工と、接合時の作業とを勘案して設定すればよい。   As described above, the number of the recesses 14b may be set in consideration of the processing of the secondary conductor bar 13 and the work at the time of joining.

図6は、第1の実施形態に係る短絡環支持方法の手順を示すフロー図である。すなわち、かご形誘導回転電機100の組立ての過程において、短絡環15と二次導体バー13との接合に関する手順を示している。   FIG. 6 is a flowchart showing the procedure of the short-circuit ring supporting method according to the first embodiment. That is, the procedure for joining the short-circuit ring 15 and the secondary conductor bar 13 in the process of assembling the cage induction rotating electric machine 100 is shown.

まず、短絡環15に、短絡環側接合面15bを形成する(ステップS01)。また、複数の二次導体バー13のそれぞれの軸方向に突出する部分の端部に、二次導体バー側接合面14を形成する(ステップS02)。   First, the short-circuit ring side joint surface 15b is formed on the short-circuit ring 15 (step S01). Further, the secondary conductor bar-side joining surface 14 is formed at the end of each of the plurality of secondary conductor bars 13 protruding in the axial direction (step S02).

次に、ロータシャフト11、回転子鉄心12および二次導体バー13を組立てる(ステップS03)。この結果、ロータシャフト11の径方向外側に、二次導体バー13が組み込まれた回転子鉄心12が取り付けられた状態となる。   Next, the rotor shaft 11, the rotor core 12, and the secondary conductor bar 13 are assembled (step S03). As a result, the rotor core 12 incorporating the secondary conductor bar 13 is attached to the outer side in the radial direction of the rotor shaft 11.

ステップS01で短絡環側接合面15bを形成した短絡環15を、二次導体バー側接合面14に接するように仮固定し、開先合わせを実施する(ステップS04)。   The short-circuit ring 15 in which the short-circuit ring-side joint surface 15b is formed in step S01 is temporarily fixed so as to be in contact with the secondary conductor bar-side joint surface 14, and groove alignment is performed (step S04).

次に、短絡環側接合面15bと二次導体バー側接合面14との間の空間14cに、ろう材、半田あるいは接着剤などの接合材料を注入し、短絡環側接合面15bと二次導体バー側接合面14との間に接合部材16を介在させる状態とすることにより接合を行う(ステップS05)。なお、接合は、溶材を供給しながら溶接を行うことにより実施することでもよい。接合を行うことにより、短絡環15は、接合部材16を介して複数の二次導体バー13のそれぞれと接合した状態となる。   Next, a bonding material such as brazing material, solder, or adhesive is injected into the space 14c between the short-circuiting ring-side bonding surface 15b and the secondary conductor bar-side bonding surface 14, and the short-circuiting ring-side bonding surface 15b and the secondary surface Joining is performed by setting the joining member 16 between the conductor bar-side joining surfaces 14 (step S05). The joining may be performed by performing welding while supplying the molten material. By performing the bonding, the short-circuit ring 15 is bonded to each of the plurality of secondary conductor bars 13 via the bonding member 16.

短絡環15と複数の二次導体バー13との接合を終了した後、さらに、回転子10の組立て、かご形誘導回転電機100の全体組立てを行う(ステップS06)。   After the joining of the short-circuit ring 15 and the plurality of secondary conductor bars 13 is completed, the rotor 10 and the cage induction rotating electrical machine 100 are further assembled (step S06).

次に、本実施形態の効果を説明する。第1の効果は次のとおりである。   Next, the effect of this embodiment will be described. The first effect is as follows.

短絡環側接合面15bと二次導体バー側接合面14とは、互いに間隔を空けずに2か所の凸部14aで接した状態で開先合わせを行うことにより、開先合わせの際に特別なギャップ管理を必要とせず管理が容易となり、作業性が向上する。また、接合強度などの品質上のばらつきも低減できる。   The short-circuit ring-side joining surface 15b and the secondary conductor bar-side joining surface 14 are aligned with each other by performing groove alignment in a state where they are in contact with each other at two convex portions 14a without being spaced apart from each other. Management is easy without requiring special gap management, and workability is improved. Also, quality variations such as bonding strength can be reduced.

次に、第2の効果を説明する。本実施形態では、二次導体バー側接合面14には、凹部14bが形成されている。このため、接合用の材料を注入する際に、凹部14bにより形成される空間14cに接合用の材料が浸透しやすい効果をもたらす。   Next, the second effect will be described. In the present embodiment, the concave portion 14b is formed in the secondary conductor bar side joining surface 14. For this reason, when injecting the bonding material, the bonding material easily penetrates into the space 14c formed by the recess 14b.

次に、第3の効果を説明する。本実施形態では開先面である短絡環側接合面15bと二次導体バー側接合面14を、軸方向に垂直な方向に対して角度Φだけ傾斜させている。いま、二次導体バー13の断面積をSとすれば、開先面の面積S1は、次の式(1)のように、断面積Sより大きな面積となる。
S1=S/cosΦ …(1)
Next, the third effect will be described. In this embodiment, the short-circuited ring-side joining surface 15b and the secondary conductor bar-side joining surface 14 which are groove surfaces are inclined by an angle Φ with respect to a direction perpendicular to the axial direction. Now, assuming that the cross-sectional area of the secondary conductor bar 13 is S, the area S1 of the groove surface is larger than the cross-sectional area S as shown in the following equation (1).
S1 = S / cosΦ (1)

開先面である短絡環側接合面15bと二次導体バー側接合面14との接合力は、対向する接合面の面積に比例する。したがって、本実施形態による短絡環支持方法により、従来よりも大きな接合力が得られる。   The joining force between the short-circuited ring-side joining surface 15b, which is the groove surface, and the secondary conductor bar-side joining surface 14 is proportional to the area of the opposing joining surface. Therefore, the joining force larger than before can be obtained by the short-circuit ring supporting method according to the present embodiment.

以上のように、本第1の実施形態によれば、かご形誘導回転電機において、二次導体バーと短絡環との接合の際の管理を容易にしながら接合強度を確保することができる。   As described above, according to the first embodiment, in the squirrel-cage induction rotating electric machine, it is possible to ensure the bonding strength while facilitating the management when the secondary conductor bar and the short-circuit ring are bonded.

[第2の実施形態]
図7は、第2の実施形態に係る短絡環接続構造の短絡環側接合面および二次導体バー側接合面を示す部分横断面図である。
[Second Embodiment]
FIG. 7 is a partial cross-sectional view showing a short-circuit ring side joint surface and a secondary conductor bar-side joint surface of the short-circuit ring connection structure according to the second embodiment.

本第2の実施形態は、第1の実施形態の変形である。凸部14aの先端が幅tを有するように二次導体バー側接合面14が形成されている。その他の点では、第1の実施形態と同様である。   The second embodiment is a modification of the first embodiment. The secondary conductor bar side joining surface 14 is formed so that the tip of the convex portion 14a has a width t. Other points are the same as those of the first embodiment.

幅tが大きくなりすぎると、接合部材16のΘ方向の幅の合計値が減る分だけ結合強度が減少するため、幅tの合計値が、必要な結合強度に対する余裕値未満の適切な範囲である必要がある。この適切な範囲内であれば、凸部14aの先端の幅tは目安値として、幅t程度の先端部を形成するように加工すればよいし、それぞれの凸部14aの幅が異なってもよい。   If the width t becomes too large, the bonding strength decreases by the amount that the total value of the width of the joining member 16 in the Θ direction decreases. Therefore, the total value of the width t is within an appropriate range that is less than a margin for the required bonding strength. There must be. If it is within this appropriate range, the width t of the tip of the convex portion 14a may be processed as a guide value so as to form a tip portion of about the width t, and even if the width of each convex portion 14a is different. Good.

第1の実施形態のように、凸部14aを線状に形成しようとする場合、凹部14bのΘ方向の形成位置の僅かなズレによって、凸部14aの高さが変わってしまう恐れがある。たとえば、周方向の端部でずれた場合は、接合用の材料を保持する二次導体バー13の外側との壁が一部欠けてしまうことになる。したがって、凹部14b形成のための切削加工の際の精度が厳しくなる。   When the convex portion 14a is to be formed linearly as in the first embodiment, the height of the convex portion 14a may change due to a slight shift in the formation position of the concave portion 14b in the Θ direction. For example, when it deviates at the end portion in the circumferential direction, a part of the wall from the outside of the secondary conductor bar 13 holding the bonding material is missing. Therefore, the precision at the time of cutting for forming the recess 14b becomes severe.

一方、本第2の実施形態においては、幅tの範囲で凹部14bの加工位置がずれても、このような問題は生じない。したがって、凹部14b形成のための切削加工におけるΘ方向の位置決めの精度は、第1の実施形態ほど厳しくなくともよい。   On the other hand, in the second embodiment, such a problem does not occur even if the processing position of the recess 14b is shifted in the range of the width t. Therefore, the accuracy of positioning in the Θ direction in the cutting process for forming the recess 14b may not be as severe as in the first embodiment.

[第3の実施形態]
図8は、第3の実施形態に係る短絡環接続構造の短絡環側接合面および二次導体バー側接合面を示す部分横断面図である。
[Third Embodiment]
FIG. 8 is a partial cross-sectional view showing a short-circuit ring side joint surface and a secondary conductor bar-side joint surface of the short-circuit ring connection structure according to the third embodiment.

本第3の実施形態は、第1の実施形態の変形である。本実施形態においては、二次導体バー側接合面14に形成される凹部14dの断面形状が第1の実施形態における凹部14bの断面形状と異なる。その他の点においては、第1の実施形態と同様である。   The third embodiment is a modification of the first embodiment. In this embodiment, the cross-sectional shape of the recessed part 14d formed in the secondary conductor bar side joining surface 14 differs from the cross-sectional shape of the recessed part 14b in 1st Embodiment. Other points are the same as in the first embodiment.

本第3の実施形態における二次導体バー側接合面14に形成される凹部14dの断面形状は、Θ方向に延びた矩形のΘ方向の端部に半円が接続した形状である。このため、凹部14dの周方向の幅wが大きくなっても、深さdがそれに従って大きくなるということがない。深さdは別に設定でき、空間14cの体積は凹部14dの幅wにほぼ比例するのみである。この結果、接合用の材料の消費量を適量に抑えることができる。   The cross-sectional shape of the recess 14d formed in the secondary conductor bar-side joining surface 14 in the third embodiment is a shape in which a semicircle is connected to the end of the rectangle extending in the Θ direction in the Θ direction. For this reason, even if the circumferential width w of the recess 14d increases, the depth d does not increase accordingly. The depth d can be set separately, and the volume of the space 14c is almost proportional to the width w of the recess 14d. As a result, the consumption of the joining material can be suppressed to an appropriate amount.

[その他の実施形態]
以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、実施形態では、機内に内扇が一つ設けられており、フィン付のフレームで外気に自然放熱する場合のかご形誘導回転電機を例にとって示したが、冷却方式に拠らず、水冷による強制冷却方式、外扇を設けた強制空冷方式など、他の冷却方式の場合でもよい。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, embodiment is shown as an example and is not intending limiting the range of invention. For example, in the embodiment, a squirrel-cage induction rotating electric machine in which one internal fan is provided in the machine and naturally dissipates heat to the outside air with a finned frame is shown as an example. Other cooling methods such as a forced cooling method by using a forced air cooling method with an external fan may be used.

また、実施形態では、二次導体バー側接合面14に凹部14bを形成するという第1の特徴と、短絡環側接合面15bと二次導体バー側接合面14とに互いに平行な傾斜面を形成するという第2の特徴の両者を有する場合を例にとって示したが、第1の特徴のみを有する形態でも有効である。   In the embodiment, the first feature that the concave portion 14b is formed in the secondary conductor bar side joint surface 14, and the shorted ring side joint surface 15b and the secondary conductor bar side joint surface 14 are inclined parallel to each other. The case of having both of the second features to be formed has been shown as an example, but a form having only the first feature is also effective.

また、第2の実施形態の特徴と第3の実施形態の特徴とを組み合わせてもよい。   Further, the features of the second embodiment and the features of the third embodiment may be combined.

さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。   Furthermore, the embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention.

実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   The embodiments and the modifications thereof are included in the scope of the invention and the scope of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…回転子、11…ロータシャフト、11a…カップリング部、12…回転子鉄心、12a…端板、13…二次導体バー、14…二次導体バー側接合面、14a…凸部、14b、14d…凹部、14c…空間、15…短絡環、15a…短絡環内側端面、15b…短絡環側接合面、16…接合部材、17…保持環、18…内扇、19…空隙、20…固定子、21…固定子鉄心、22…固定子巻線、30…軸受、35…軸受ブラケット、40…フレーム、100…かご形誘導回転電機   DESCRIPTION OF SYMBOLS 10 ... Rotor, 11 ... Rotor shaft, 11a ... Coupling part, 12 ... Rotor core, 12a ... End plate, 13 ... Secondary conductor bar, 14 ... Secondary conductor bar side joining surface, 14a ... Convex part, 14b , 14d ... concave portion, 14c ... space, 15 ... short-circuit ring, 15a ... short-circuit ring inner end surface, 15b ... short-circuit ring side joint surface, 16 ... joining member, 17 ... holding ring, 18 ... inner fan, 19 ... gap, 20 ... Stator, 21 ... stator core, 22 ... stator winding, 30 ... bearing, 35 ... bearing bracket, 40 ... frame, 100 ... squirrel-cage induction rotating electric machine

Claims (6)

軸方向に延びて前記軸方向の両側を回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に固定されて前記軸方向に延びた回転子鉄心と、前記回転子鉄心内を前記軸方向に貫通する複数の二次導体バーと、前記複数の二次導体バーの両端で当該複数の二次導体バーのそれぞれの端部と対向する短絡環側接合面が形成された2つの短絡環とを有する回転子と、
前記回転子鉄心の径方向外側に配された固定子鉄心と、前記固定子鉄心内に配された複数の固定子巻線とを有する固定子と、
を備えるかご形誘導回転電機であって、
前記複数の二次導体バーのそれぞれの端面には、前記短絡環側接合面に平行であり径方向に端面に沿って延びた少なくとも一つの凹部を有する二次導体バー側接合面が形成され、
前記短絡環側接合面と前記二次導体バー側接合面のそれぞれは、前記短絡環側接合面と前記二次導体バー側接合面との間に充填された接合用の材料により接合されている、
ことを特徴とするかご形誘導回転電機。
A rotor shaft that extends in the axial direction and is rotatably supported on both sides in the axial direction, a rotor core that is fixed radially outward of the rotor shaft and extends in the axial direction, and the inside of the rotor core A plurality of secondary conductor bars penetrating in the axial direction, and two short circuits in which short-circuited ring-side joint surfaces facing the respective end portions of the plurality of secondary conductor bars are formed at both ends of the plurality of secondary conductor bars A rotor having a ring;
A stator core having a stator core disposed radially outside the rotor core, and a plurality of stator windings disposed in the stator core;
A squirrel-cage induction rotating electric machine comprising:
Each end surface of the plurality of secondary conductor bars is formed with a secondary conductor bar side joint surface having at least one recess that is parallel to the short-circuit ring side joint surface and extends in the radial direction along the end surface,
Each of the short-circuit ring side joint surface and the secondary conductor bar side joint surface is joined by a joining material filled between the short-circuit ring side joint surface and the secondary conductor bar side joint surface. ,
A squirrel-cage induction rotating electrical machine.
前記短絡環側接合面は、前記短絡環の前記複数の二次導体バーのそれぞれの端部と対向する面の少なくとも一部に、径方向外側から径方向内側になるにつれて前記複数の二次導体バーから遠ざかるような傾斜を有するように形成され、
前記二次導体バー側接合面は、前記短絡環側接合面に平行に対向するような傾斜を有することを特徴とする請求項1に記載のかご形誘導回転電機。
The short-circuit ring-side joining surface is formed on at least a part of a surface of the short-circuit ring that faces each of the ends of the plurality of secondary conductor bars, and the plurality of secondary conductors become radially inward from the radially outer side. Formed to have a slope away from the bar,
The squirrel-cage induction rotating electric machine according to claim 1, wherein the secondary conductor bar side joint surface has an inclination so as to face the short-circuit ring side joint surface in parallel.
前記凹部の横断面形状は、半円形であることを特徴とする請求項1または請求項2に記載のかご形誘導回転電機。   The squirrel-cage induction rotating electric machine according to claim 1 or 2, wherein the recess has a semicircular cross-sectional shape. 前記凹部の横断面形状は、矩形とその周方向の両側にあって前記短絡環側接合面に向かって開いた前記矩形の奥行きに等しい半径を有する4分の1円とを組み合わせた形状であることを特徴とする請求項1または請求項2に記載のかご形誘導回転電機。   The cross-sectional shape of the recess is a combination of a rectangle and a quarter circle on both sides in the circumferential direction and having a radius equal to the depth of the rectangle opened toward the short-circuit ring side joint surface. The squirrel-cage induction rotating electric machine according to claim 1 or 2, characterized by the above-mentioned. 軸方向に延びて前記軸方向の両側を回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に固定されて前記軸方向に延びた回転子鉄心と、前記回転子鉄心内を前記軸方向に貫通する複数の二次導体バーと、前記複数の二次導体バーの両端で当該複数の二次導体バーのそれぞれの端部と接合する2つの短絡環を有する回転子を備えるかご形誘導回転電機において前記2つの短絡環のそれぞれと前記複数の二次導体バーとを接合する短絡環支持方法であって、
前記複数の二次導体バーのそれぞれの端部に、短絡環側接合面に平行となる面に周方向に少なくとも一つの径方向に端面に沿って延びた凹部を有する二次導体バー側接合面を形成する二次導体バー側接合面形成ステップと、
前記複数の二次導体バーが前記回転子鉄心に組み込まれた状態で、前記2つの短絡環をそれぞれの短絡環側接合面を前記複数の二次導体バーのそれぞれと密着させて仮固定する仮固定ステップと、
前記凹部のそれぞれに接合材料を注入させることにより接合部材を形成し前記短絡環と前記複数の二次導体バーのそれぞれとを接合させる接合ステップと、
を有することを特徴とする短絡環支持方法。
A rotor shaft that extends in the axial direction and is rotatably supported on both sides in the axial direction, a rotor core that is fixed radially outward of the rotor shaft and extends in the axial direction, and the inside of the rotor core A cage having a plurality of secondary conductor bars penetrating in the axial direction, and a rotor having two short-circuited rings joined to respective ends of the plurality of secondary conductor bars at both ends of the plurality of secondary conductor bars In the induction rotating electrical machine, a short-circuit ring support method for joining each of the two short-circuit rings and the plurality of secondary conductor bars,
A secondary conductor bar side joint surface having a recess extending along at least one radial direction in the circumferential direction on a surface parallel to the short circuit ring side joint surface at each end portion of the plurality of secondary conductor bars. Forming a secondary conductor bar side joint surface forming step;
In the state where the plurality of secondary conductor bars are incorporated in the rotor core, the two shorting rings are temporarily fixed by closely contacting the respective shorting ring side joint surfaces with the plurality of secondary conductor bars. A fixed step;
A bonding step of forming a bonding member by injecting a bonding material into each of the recesses and bonding the short-circuit ring and each of the plurality of secondary conductor bars;
A method for supporting a short-circuited ring, comprising:
前記二次導体バー側接合面形成ステップの前に、前記短絡環について、前記複数の二次導体バーのそれぞれの端部と対向する短絡環側接合面が、前記軸方向に垂直な方向に対して傾斜するように短絡環側接合面を形成する短絡環側接合面形成ステップをさらに有することを特徴とする請求項5に記載の短絡環支持方法。   Before the secondary conductor bar side joint surface forming step, with respect to the short circuit ring, the short circuit ring side joint surface facing each end of the plurality of secondary conductor bars is in a direction perpendicular to the axial direction. 6. The short-circuiting ring support method according to claim 5, further comprising a short-circuiting ring-side joint surface forming step of forming a short-circuiting ring-side joint surface so as to be inclined.
JP2017123883A 2017-06-26 2017-06-26 Squirrel-cage induction rotary electric machine and short-circuit ring support method Pending JP2019009908A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017123883A JP2019009908A (en) 2017-06-26 2017-06-26 Squirrel-cage induction rotary electric machine and short-circuit ring support method
CN201810585116.4A CN109120126A (en) 2017-06-26 2018-06-08 Cage modle incudes rotating electric machine and short-circuited conducting sleeve bearing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123883A JP2019009908A (en) 2017-06-26 2017-06-26 Squirrel-cage induction rotary electric machine and short-circuit ring support method

Publications (1)

Publication Number Publication Date
JP2019009908A true JP2019009908A (en) 2019-01-17

Family

ID=64822151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123883A Pending JP2019009908A (en) 2017-06-26 2017-06-26 Squirrel-cage induction rotary electric machine and short-circuit ring support method

Country Status (2)

Country Link
JP (1) JP2019009908A (en)
CN (1) CN109120126A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344850B2 (en) * 2020-07-10 2023-09-14 東芝三菱電機産業システム株式会社 Rotor and rotating electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255553A (en) * 1988-08-19 1990-02-23 Hitachi Ltd Rotor of rotating electric machine
JP3180691B2 (en) * 1996-11-15 2001-06-25 三菱電機株式会社 Rotor of cage-type induction motor and method of manufacturing the same
JP3650351B2 (en) * 2001-09-07 2005-05-18 三菱電機株式会社 Cage type induction motor rotor and cage type induction motor

Also Published As

Publication number Publication date
CN109120126A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
JP5942714B2 (en) Rotating electric machine
JP7344807B2 (en) Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
EP2086090B1 (en) Coil assembly for electrical rotating machine, stator for electrical rotating machine, and electrical rotating machine
US10587175B2 (en) Double-stator rotating electric machine
JP4623129B2 (en) Rotating electric machine stator and rotating electric machine
WO2018074561A1 (en) Synchronous reluctance type rotating electrical machine
JP2009131025A (en) Stator for rotary electric machine and rotary electric machine using the same
JP6191370B2 (en) Synchronous motor
US20140117793A1 (en) Transverse flux motor
JP2015177706A (en) Rotor structure of rotary electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP2018061404A (en) Synchronous reluctance type rotary electric machine
JP2019216555A (en) Rotor and rotary electric machine
JP2009077525A (en) Rotor for dynamo-electric machine and dynamo-electric machine
JP2013258889A (en) Induction motor
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP6546042B2 (en) Synchronous reluctance motor
JP6839069B2 (en) Rotating machine
JP2019009908A (en) Squirrel-cage induction rotary electric machine and short-circuit ring support method
WO2015155096A1 (en) C-shaped or u-shaped half-coil, rotor winding with such a half-coil and its manufacturing method
JP7150171B2 (en) Rotating electric machine stator, terminal block and rotating electric machine
JP2016129447A (en) Rotary electric machine
JP6745212B2 (en) Rotor and reluctance rotating electric machine
JP2018108006A (en) Rotor and reluctance rotary electric machine
JP2013192339A (en) Induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204