JP2019007721A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2019007721A
JP2019007721A JP2017126774A JP2017126774A JP2019007721A JP 2019007721 A JP2019007721 A JP 2019007721A JP 2017126774 A JP2017126774 A JP 2017126774A JP 2017126774 A JP2017126774 A JP 2017126774A JP 2019007721 A JP2019007721 A JP 2019007721A
Authority
JP
Japan
Prior art keywords
heat exchanger
polyamine
odor
water
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017126774A
Other languages
Japanese (ja)
Inventor
伊藤 宏
Hiroshi Ito
宏 伊藤
悟 小坂
Satoru Kosaka
悟 小坂
清美 榊原
Kiyomi Sakakibara
清美 榊原
篤 村瀬
Atsushi Murase
篤 村瀬
中村 賢治
Kenji Nakamura
賢治 中村
敬幸 廣瀬
Atsuyuki Hirose
敬幸 廣瀬
一寿 内山
Kazuhisa Uchiyama
一寿 内山
友英 西野
Tomohide Nishino
友英 西野
さゆり 橋本
Sayuri Hashimoto
さゆり 橋本
裕文 弐又
Hirofumi Futamata
裕文 弐又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2017126774A priority Critical patent/JP2019007721A/en
Priority to PCT/JP2018/015457 priority patent/WO2019003577A1/en
Priority to DE112018003333.3T priority patent/DE112018003333T5/en
Priority to US16/610,950 priority patent/US20200064086A1/en
Priority to CN201880043353.6A priority patent/CN110914629A/en
Publication of JP2019007721A publication Critical patent/JP2019007721A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00335Heat exchangers for air-conditioning devices of the gas-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0085Smell or pollution preventing arrangements
    • B60H3/0092Smell or pollution preventing arrangements in the interior of the HVAC unit, e.g. by spraying substances inside the unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To provide a heat exchanger capable of suppressing smell felt by a person in an air-conditioned room and the like.SOLUTION: A heat exchanger having polyamine on at least a part of surface is provided. As polyamine exists on the surface of the heat exchanger, smell components are temporarily held by action of polyamine, and the smell components can be prevented from being released to a room and the like at once by interlocking with evaporation of free water (condensate water and the like). Thus the smell components are moderately released, and change of concentration of smell components in the room is reduced, as a result, the person is prevented from strongly feeling smell. A representative example of polyamine is PEI, and a representative example of the heat exchanger is an evaporator for a vehicle air conditioner. This method is echo-making on the point that the smell components are moderately released to prevent and suppress smell, differently from a conventional method by removing and decomposing the smell components.SELECTED DRAWING: Figure 2A

Description

本発明は、人が室内等で感じるニオイを抑制できる熱交換器に関する。   The present invention relates to a heat exchanger that can suppress odors that a person feels indoors.

建造物や移動体等の室内には、通常、空調装置(「エアコン」という。)が設けられている。空調装置は、熱交換器を通過させた空気を室内に導入して、室内の温度や湿度を調整している。   Air conditioners (referred to as “air conditioners”) are usually provided in rooms such as buildings and moving bodies. The air conditioner introduces air that has passed through a heat exchanger into the room to adjust the temperature and humidity in the room.

このような室内にいる人は、強臭源が無くてもニオイを感じることがある。このようなニオイの原因は、壁面等から放出されるニオイ成分の他、エアコン(特に内蔵されている熱交換器)から或るタイミングで放出されるニオイ成分であることも多い。   People in such rooms may feel odors even without a strong odor source. The cause of such an odor is often an odor component released at a certain timing from an air conditioner (particularly a built-in heat exchanger) in addition to an odor component released from a wall surface or the like.

このようなニオイへの対策(防臭対策、抑臭対策)として、原因となるニオイ成分を吸着・分解、洗浄等により除去することがこれまでなされてきた。また、エアコン用エバポレータのように、表面に多量の凝縮水を生じる部材(装置)の場合なら、臭気物質(ニオイ成分)との親和性が少なく、親水性に優れる処理剤((変性)ポリビニールアルコール等)で表面処理を行うことも提案されている。これに関連する記載が、例えば、下記の特許文献にある。   As countermeasures against such odors (anti-odor countermeasures and anti-odor countermeasures), the odor components that cause them have been removed by adsorption, decomposition, washing, and the like. Also, in the case of a member (apparatus) that produces a large amount of condensed water on the surface, such as an evaporator for an air conditioner, a treatment agent ((modified) polyvinyl) that has low affinity with odorous substances (odorous components) and excellent hydrophilicity It has also been proposed to perform surface treatment with alcohol or the like. The description relevant to this is, for example, in the following patent document.

特許2002−285139号公報Japanese Patent No. 2002-285139 特許2002−285140号公報Japanese Patent No. 2002-285140 特開2003−3282号公報JP 2003-3282 A 特開2004−293916号公報JP 2004-293916 A

上記の特許文献にあるような親水化処理されたエバポレータを用いると、その表面に吸収されたニオイ成分は凝縮水と共に洗い流され、ニオイ成分がエバポレータの表面に蓄積し難くなる。しかし、現実には、そのような表面処理を行ったエバポレータを用いても、エアコンを稼働させると、或るタイミングで人はニオイを感じ得る。このように従来の防臭対策は、必ずしも十分ではなかった。   When a hydrophilized evaporator as in the above-mentioned patent document is used, the odor component absorbed on the surface is washed out with the condensed water, and the odor component is difficult to accumulate on the surface of the evaporator. However, in reality, even if an evaporator having such a surface treatment is used, if an air conditioner is operated, a person may feel odor at a certain timing. Thus, the conventional deodorizing measures have not always been sufficient.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法(機序)により、防臭または抑臭できる熱交換器を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the heat exchanger which can deodorize or deodorize by the method (mechanism) different from the past.

本発明者は上記の課題を解決すべく鋭意研究した結果、ポリアミンを熱交換器の構成材(Al合金板)の表面に存在させると、人が感じるニオイを抑制できることを新たに発見した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventor newly discovered that the presence of polyamine on the surface of the constituent material of the heat exchanger (Al alloy plate) can suppress odors felt by humans. By developing this result, the present invention described below has been completed.

《熱交換器》
(1)本発明は、少なくとも一部の表面にポリアミンを有する熱交換器である。
"Heat exchanger"
(1) The present invention is a heat exchanger having a polyamine on at least a part of its surface.

(2)熱交換器の表面の少なくとも一部にポリアミンが存在することにより、その熱交換器を通過した空気が導入され得る空間において、人は熱交換器に起因したニオイを感じ難くなる。このような効果が得られるメカニズムは、現状、本発明の研究から次のように考えられる。 (2) The presence of polyamine on at least a part of the surface of the heat exchanger makes it difficult for a person to feel odor caused by the heat exchanger in a space where the air that has passed through the heat exchanger can be introduced. The mechanism for obtaining such an effect can be considered as follows from the present research.

先ず人は、極低濃度な物質(ニオイ成分)でも嗅覚で検知して、「ニオイ」と感じる。もっとも人の嗅覚は、ニオイ成分の絶対量(濃度)に対応してニオイの強弱を感じる訳ではなく、ニオイ成分の量(濃度)または質(混在している各ニオイ成分の比率)が変化したときに、ニオイを強く感じ易い。   First of all, a person senses “odor” by detecting even a very low concentration substance (odor component) by smell. However, human olfaction does not feel the intensity of odors corresponding to the absolute amount (concentration) of odor components, but the amount (concentration) or quality of odor components (the ratio of each odor component mixed) has changed. Sometimes it is easy to feel odor.

次に、熱交換器の場合、ニオイ成分の放出には水の放出(蒸発)が大きく関与している。また、その放出されるニオイ成分の多くは、雰囲気中から熱交換器の表面にある水へ吸収等されたものであることが多い。   Next, in the case of a heat exchanger, the release (evaporation) of water is largely involved in the release of odor components. Further, many of the released odor components are often absorbed into the water on the surface of the heat exchanger from the atmosphere.

このような知見と後述する評価試験の結果に基づくと、熱交換器の表面に存在するポリアミンは、ニオイ成分や水を一時的に保持してそれらの放出を抑制し、空調室内へニオイ成分が急激に放出されることを抑止する(つまりニオイ成分を徐放する)。その結果として、空調される室内にいる人は、熱交換器に起因したニオイを感じ難くなったと考えられる。   Based on these findings and the results of the evaluation test described below, the polyamine present on the surface of the heat exchanger temporarily holds odor components and water to suppress their release, and the odor components are contained in the air-conditioned room. Suppresses sudden release (that is, releases odor component slowly). As a result, it is considered that people in the air-conditioned room are less likely to feel the odor caused by the heat exchanger.

《その他》
(1)本発明の熱交換器は、少なくとも表面側にポリアミンがあればよく、熱交換器の表面におけるポリアミンの存在形態は問わない。通常、ポリアミンを含む高分子膜として熱交換器の表面を被覆していることが多い。この場合、高分子膜は、ポリアミン単体でも良いし、ポリアミン以外の重合体、樹脂、金属等を含んでもよい。
<Others>
(1) The heat exchanger of this invention should just have a polyamine on the surface side at least, and the polyamine presence form in the surface of a heat exchanger is not ask | required. Usually, the surface of the heat exchanger is often coated as a polymer film containing polyamine. In this case, the polymer film may be a single polyamine or may contain a polymer, resin, metal, or the like other than polyamine.

本発明でいうポリアミンは、改質されたものでもよく、その末端基の一部が、カルボニル基、カルボキシル基、イミド基、ヒドロキシル基、ニトリル基、ニトロ基、スルフィド基、スルホキシド基、スルホン基、チオール基、エステル基等の極性官能基の一種以上で置換されたものでもよい。また、本発明に係るポリアミンは、複数種の重合体(高分子)が混在したものでもよいし、その一種以上がグラフト重合構造をしていてもよい。   The polyamine referred to in the present invention may be modified, and a part of its end groups are carbonyl group, carboxyl group, imide group, hydroxyl group, nitrile group, nitro group, sulfide group, sulfoxide group, sulfone group, It may be substituted with one or more polar functional groups such as a thiol group and an ester group. The polyamine according to the present invention may be a mixture of a plurality of types of polymers (polymers), or one or more of them may have a graft polymerization structure.

ポリアミンはキレート構造体となると好ましい。金属イオンの配位により、熱交換器に防腐性や抗菌性等を付与できる。また熱交換器の表面に親水性が付与されていると好ましい。ポリアミン自体が親水性を発揮してもよいし、他の重合体(高分子材)と共に熱交換器の表面に親水性が付与されてもよい。   The polyamine is preferably a chelate structure. Coordination of metal ions can impart antiseptic and antibacterial properties to the heat exchanger. Further, it is preferable that hydrophilicity is imparted to the surface of the heat exchanger. Polyamine itself may exhibit hydrophilicity, and hydrophilicity may be imparted to the surface of the heat exchanger together with another polymer (polymer material).

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

ポリアミンの一つであるポリエチレンイミンの分子に水分子が結合包含する様子を示す模式図である。It is a schematic diagram which shows a mode that a water molecule couple | bonds with the molecule | numerator of the polyethyleneimine which is one of the polyamines. ニオイを感じるメカニズムを模式的に示した説明図である。It is explanatory drawing which showed typically the mechanism which feels odor. ニオイ成分が放出されるメカニズムを模式的に示した説明図である。It is explanatory drawing which showed typically the mechanism by which an odor component is discharge | released. ニオイの評価試験に用いた装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the apparatus used for the odor evaluation test. 第1実施例に係る評価試験で得られたグラフである。It is the graph obtained by the evaluation test which concerns on 1st Example. 第2実施例に係る評価試験で得られたグラフである。It is the graph obtained by the evaluation test which concerns on 2nd Example. 評価試験に用いた供試材の表面にある水和層の厚さを示すグラフである。It is a graph which shows the thickness of the hydration layer in the surface of the test material used for the evaluation test.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。方法的な構成要素であっても、一定の場合に物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. A method component can also be a component of an object in certain cases. Which embodiment is the best depends on the target, required performance, and the like.

《ポリアミン》
(1)構造
ポリアミンは、アミノ基を有する重合体である。例えば、第一級アミノ基が3つ以上結合した直鎖脂肪族炭化水素などがある。さらなる具体例として、ポリエチレンイミン(PEI)がある。
《Polyamine》
(1) Structure A polyamine is a polymer having an amino group. For example, there is a linear aliphatic hydrocarbon having three or more primary amino groups bonded thereto. A further specific example is polyethyleneimine (PEI).

PEIは、分子式が(−CH−CH−NH−)nであり、図1に示すような分子構造をしている。その主たる官能基であるアミノ基(−NH−)は、極性基であり、その隣接間距離(隣接するN間距離)は約3.7Åとなっている。アミノ基に水素結合する水の分子径は約2Åである。この観点から、ポリアミンも隣接するアミノ基間の距離が2〜4Åさらには2.5〜3.5Åであると好ましい。 The molecular formula of PEI is (—CH 2 —CH 2 —NH—) n, and has a molecular structure as shown in FIG. The amino group (—NH—), which is the main functional group, is a polar group, and the distance between adjacent areas (distance between adjacent N) is about 3.7 mm. The molecular diameter of water hydrogen-bonded to the amino group is about 2 mm. From this viewpoint, it is preferable that the distance between adjacent amino groups in the polyamine is 2 to 4 mm, and further 2.5 to 3.5 mm.

(2)水特性
ポリアミンは熱交換器の基材表面に生えるように存在し、1分子〜数分子の水を抱かえ込むように包含する。ポリアミンにより包含された水は、ポリアミンと電気的に強く結合し、高温に加熱されても沸点以上に加熱等されない限り、ポリアミンから容易に分離(蒸発、脱着等)することはない。一方、さらにその表面側では、熱交換器の表面が曝される環境(雰囲気の温度や湿度)の変化に応じて、自由に移動し得る凝縮水(結露水)等が容易に生成されたり、蒸発したりする。
(2) Water characteristics Polyamine exists so as to grow on the substrate surface of the heat exchanger, and includes one to several molecules of water. The water contained by the polyamine is electrically strongly bonded to the polyamine and is not easily separated (evaporated, desorbed, etc.) from the polyamine unless heated to a boiling point or higher even when heated to a high temperature. On the other hand, on the surface side, according to changes in the environment (temperature and humidity of the atmosphere) to which the surface of the heat exchanger is exposed, condensed water (condensed water) that can move freely is easily generated, Evaporate.

本願明細書では、適宜、ポリアミンに包含されて容易に放出されることがない水を「結合水」、ポリアミン上への生成またはポリアミン上からの蒸発が容易な水を「自由水」、それらの遷移域にあり両者の中間的な特性を示す水を「中間水」という。なお、熱交換器(特にエバポレータ)の場合、自由水の代表例は空気中の水蒸気が結露した「凝縮水」(結露水)であり、中間水は「吸着水」と言い換えることができる。適宜、本明細書では、「自由水」と同義で「凝縮水」を、「中間水」と同義で「吸着水」をそれぞれ用いる。   In the present specification, as appropriate, water that is included in the polyamine and is not easily released is “bound water”, water that is easily generated or evaporated from the polyamine is “free water”, Water in the transition zone that exhibits intermediate characteristics between the two is called “intermediate water”. In the case of a heat exchanger (especially an evaporator), a representative example of free water is “condensed water” (condensed water) in which water vapor in the air has condensed, and intermediate water can be rephrased as “adsorbed water”. In this specification, “condensed water” is used synonymously with “free water”, and “adsorbed water” is used synonymously with “intermediate water”.

ちなみに、ポリアミン上に形成される結合水・中間水(水和層ともいう)は、厚さが20〜90nmさらには30〜70nmであると好ましい。その厚さが過小では徐放効果が弱くなり、過大な厚さの結合水・中間水を形成することは難しい。このようなポリアミン上に結合している水和層の厚さは、走査型プローブ顕微鏡(SPM)により特定される。   Incidentally, the combined water / intermediate water (also referred to as a hydrated layer) formed on the polyamine preferably has a thickness of 20 to 90 nm, more preferably 30 to 70 nm. If the thickness is too small, the sustained release effect becomes weak, and it is difficult to form excessively thick bound water / intermediate water. The thickness of the hydration layer bonded on such a polyamine is specified by a scanning probe microscope (SPM).

(3)ニオイ特性
ニオイ成分は、熱交換器の基材(例えばAl合金製フィン)の表面において、図2Aに示すように放出され得る。先ず、その基材表面にポリアミンが存在しない場合、図2A(1)に示すように、ニオイ成分は基材表面に生じた自由水(例えば、結露水等の凝縮水)に溶解、吸収さらには濃縮された状態となる。基材表面が曝されている雰囲気の湿度低下や温度上昇により自由水が蒸発すると、その自由水の蒸発と共にニオイ成分も一気に雰囲気中へ放出される。これにより雰囲気中におけるニオイ成分の濃度が急激に高まり、その中にいる人はニオイを強く感じるようになる。
(3) Smell characteristics Smell components can be released on the surface of a heat exchanger substrate (for example, an Al alloy fin) as shown in FIG. 2A. First, when there is no polyamine on the surface of the base material, as shown in FIG. 2A (1), the odor component is dissolved and absorbed in free water (for example, condensed water such as condensed water) generated on the surface of the base material. It becomes a concentrated state. When free water evaporates due to a decrease in humidity or an increase in temperature of the atmosphere to which the substrate surface is exposed, an odorous component is also released into the atmosphere at the same time as the free water evaporates. Thereby, the density | concentration of the odor component in atmosphere increases rapidly, and the person in it comes to feel odor strongly.

次に、熱交換器の基材表面にポリアミンが存在する場合、図2A(2)に示すように、ニオイ成分はその基材表面に生じた自由水(例えば、結露水等の凝縮水)に溶解、吸収して取り込まれた状態となる。この点は上述したポリアミンが存在しない場合と同様である。   Next, when polyamine is present on the base material surface of the heat exchanger, as shown in FIG. 2A (2), the odor component becomes free water (for example, condensed water such as condensed water) generated on the base material surface. It will be dissolved and absorbed and taken up. This is the same as in the case where the polyamine is not present.

しかし、吸収さらには濃縮された状態のニオイ成分の多くは有機物であり、それ自身が極性を有する高分子であることも多く、その多くはポリアミンの極性基に電気的な引力により補足された状態となる。この結果、ポリアミン上にある自由水が蒸発しても、それに連動してニオイ成分も一気に放出されることはない。この点が、図2A(1)に示したようにポリアミンが存在しない場合と相違する一つである。   However, many of the absorbed and concentrated odor components are organic substances, and they are often macromolecules having polarity, many of which are captured by the polar groups of polyamines by electrical attraction. It becomes. As a result, even if the free water on the polyamine evaporates, the odor component is not released all at once. This is one difference from the case where no polyamine is present as shown in FIG. 2A (1).

また、自由水の蒸発後にポリアミン近傍に残る中間水・結合水は自由水よりも蒸発し難く、さらにその結合水は殆ど蒸発しない。従って、自由水の蒸発によって中間水・結合水からなる水和層へ移動したニオイ成分も、やはり、雰囲気中へ一気に放出されることはない。この点も、図2A(1)に示したようにポリアミンが存在しない場合と相違する一つである。   Further, the intermediate water / bonded water remaining in the vicinity of the polyamine after evaporation of free water is less likely to evaporate than free water, and the bond water hardly evaporates. Therefore, the odor component moved to the hydrated layer composed of intermediate water and combined water by evaporation of free water is not released into the atmosphere at once. This point is also different from the case where no polyamine is present as shown in FIG. 2A (1).

さらに、ポリアミンが存在する場合、水和層中の水が緩やかに蒸発するため、それに伴って、ニオイ成分も緩やかに放出され続ける。従って、ポリアミンが存在する場合、水和層にニオイ成分が過度に濃縮されることはない。   Furthermore, when polyamine is present, water in the hydrated layer is gradually evaporated, and accordingly, the odor component is gradually released. Therefore, when polyamine is present, the odor component is not excessively concentrated in the hydrated layer.

なお、自由水や水和層中の水が蒸発した後、再び自由水が生成されると、水和層中に一時的に保持されていた低濃度のニオイ成分の一部が自由水へ移動して(配分されて)、さらに低濃度な状態となるため水和層にニオイが蓄積され続けることはない。   If free water or water in the hydrated layer evaporates and free water is generated again, some of the low-concentration odor components that are temporarily retained in the hydrated layer move to the free water. (Distributed), the hydration layer does not continue to accumulate odors because it is in a lower concentration state.

このような現象が熱交換器の基材表面に存在するポリアミン上で繰り返され、それらが相乗的に作用することにより、ニオイ成分は雰囲気中へ一気に放出されず(つまり徐放されて)、人がニオイを強く感じることが抑止されるようになったと考えられる。   Such a phenomenon is repeated on the polyamine present on the substrate surface of the heat exchanger, and by acting synergistically, the odor component is not released into the atmosphere at once (that is, slowly released) It seems that the strong sense of odor has been suppressed.

(4)エバポレータ上におけるニオイ成分の放出挙動
熱交換器の基材表面にポリアミンが存在することによりニオイ成分が徐放される様子(ニオイ成分の放出挙動)を、図2Bを用いて具体的に詳述する。図2Bは、熱交換器の代表例であるエバポレータ上に、ポリアミンの代表例であるPEIが存在する場合におけるニオイ成分の放出挙動を模式的に示している。
(4) Release behavior of odorous component on evaporator The state of odorous component being released slowly by the presence of polyamine on the substrate surface of the heat exchanger (release behavior of odorous component) is concretely shown in FIG. 2B. Detailed description. FIG. 2B schematically shows the release behavior of an odor component when PEI, which is a typical example of polyamine, is present on an evaporator, which is a typical example of a heat exchanger.

図2B(1)に示すように、エアコンをONにしてコンプレッサが動作を開始すると、圧縮された冷媒がエバポレータ内で断熱膨張して、エバポレータの表面温度が低下する。これによりエバポレータの表面に接した空気は冷却されて、その空気中に含まれていた水蒸気はその表面に結露して自由水(凝縮水、結露水)となる。そして、エバポレータに接する空気中に含まれているニオイ成分は、その自由水に溶解や吸収して取り込まれる。自由水に取り込まれたニオイ成分の一部は、自由水の直ぐ下(基材表面側)にある中間水・結合水からなる水和層へも移動する。こうして各層の水に包含可能な範囲内で、各水中におけるニオイ成分の濃度は平衡状態となる。   As shown in FIG. 2B (1), when the air conditioner is turned on and the compressor starts operating, the compressed refrigerant adiabatically expands in the evaporator, and the surface temperature of the evaporator decreases. As a result, the air in contact with the surface of the evaporator is cooled, and the water vapor contained in the air is condensed on the surface and becomes free water (condensed water, condensed water). And the odor component contained in the air which contacts an evaporator is taken in by dissolving or absorbing in the free water. A part of the odor component taken into the free water also moves to a hydrated layer composed of intermediate water and bound water immediately below the free water (on the substrate surface side). Thus, the concentration of the odor component in each water is in an equilibrium state within a range that can be included in the water of each layer.

図2B(2)に示すように、エアコンのコンプレッサが作動を停止すると、エバポレータの表面温度は上昇を始め、それに応じてその表面にあった自由水は蒸発(放出)する。この際、自由水に溶解、吸収等していたニオイ成分は、自由水の水蒸気(水分子)と共に室内へ放出される。但し、上述したように、自由水に取り込まれたニオイ成分の一部は、中間水・結合水からなる水和層へ移行している(分配されている)。このため自由水の蒸発に連動して、高濃度なニオイ成分が空調される室内へ放出されることはない。さらに中間水・結合水からなる水和層は、PEI側から電気的な引力を受けており、自由水のように自由に蒸発し難い。このため、自由水が蒸発しても、水和層に移行していたニオイ成分が、室内へ一気に放出されることもない。   As shown in FIG. 2B (2), when the compressor of the air conditioner stops operating, the surface temperature of the evaporator starts to rise, and the free water on the surface evaporates (discharges) accordingly. At this time, the odor component dissolved and absorbed in the free water is released into the room together with the free water vapor (water molecules). However, as described above, a part of the odor component taken into the free water is transferred (distributed) to the hydrated layer composed of intermediate water and combined water. For this reason, in conjunction with the evaporation of free water, highly concentrated odor components are not released into the air-conditioned room. Furthermore, the hydrated layer composed of intermediate water and bound water is electrically attracted from the PEI side, and is unlikely to evaporate freely like free water. For this reason, even if free water evaporates, the odor component which has moved to the hydration layer is not released into the room at once.

図2B(3)に示すように、コンプレッサが再始動すると、再びエバポレータの表面に自由水が生成されるようになる。自由水の流出に伴うエバポレータ表面の洗浄等により、徐々に空気中に含まれるニオイ成分も減少する。その結果、自由水に取り込まれるニオイ成分の濃度も低下すると、水和層に一時的に保持されていたニオイ成分が、逆に自由水へ緩やかに移動して、ニオイ成分の濃度が全体的に平衡な状態となる。   As shown in FIG. 2B (3), when the compressor is restarted, free water is generated again on the surface of the evaporator. Odor components contained in the air gradually decrease due to the cleaning of the evaporator surface accompanying the outflow of free water. As a result, when the concentration of the odorous component taken into the free water also decreases, the odorous component temporarily retained in the hydrated layer moves to the free water on the contrary, and the concentration of the odorous component is totally reduced. It becomes an equilibrium state.

図2B(4)に示すように、コンプレッサの再停止により自由水が蒸発してしまうと、それに連動して、水和層から自由水へ移行したニオイ成分も放出される。このとき放出されるニオイ成分の濃度は、当然、比較的低い。   As shown in FIG. 2B (4), when the free water evaporates due to the restart of the compressor, the odor component transferred from the hydrated layer to the free water is also released in conjunction with the evaporation. Naturally, the concentration of the odor component released at this time is relatively low.

図2B(5)に示すように、自由水が蒸発して自由水量が少なくなると、水和層中の水も徐々に蒸発を始める。その蒸発に連動して、水和層中に含まれていたニオイ成分も放出される。この場合も、水和層中に含まれていたニオイ成分は多くないため、その蒸発により放出されるニオイ成分の濃度も低い。   As shown in FIG. 2B (5), when free water evaporates and the amount of free water decreases, the water in the hydrated layer also gradually begins to evaporate. In conjunction with the evaporation, the odor component contained in the hydrated layer is also released. Also in this case, since there are not many odor components contained in the hydrated layer, the concentration of the odor components released by the evaporation is also low.

この後、水和層が新たに生成され、エバポレータに接する空気から自由水等を介してニオイ成分が取り込まれると、ニオイ成分の濃度が低下した中間水・結合水からなる水和層へも、再びニオイ成分の一部が移行して保持される。そして、既述した図2B(1)や図2B(2)等に示したサイクルが再び繰り返される。   After this, a hydration layer is newly generated, and when odor components are taken in from the air in contact with the evaporator via free water, etc., the hydration layer consisting of intermediate water / bonded water with reduced concentration of odor components, Again, part of the odor component migrates and is retained. Then, the cycle shown in FIG. 2B (1) and FIG. 2B (2) described above is repeated again.

いずれにしても、エバポレータの基材表面に存在するPEIが、ニオイ成分を一時的に保持し得る極性を有すると共に水和層を生成することにより、空調室内へニオイ成分が一気に放出されることを妨げている。この結果、ニオイ成分は空調室内に徐放され、空調室内のニオイ成分の濃度変化が緩やかとなり、その空調室内にいる人は強いニオイを感じることがなくなる。   In any case, the PEI present on the surface of the evaporator substrate has a polarity capable of temporarily holding the odor component and generates a hydrated layer, so that the odor component is released into the air-conditioned room at once. Hindering. As a result, the odor component is gradually released into the air-conditioned room, and the concentration change of the odor component in the air-conditioned room becomes gradual, and a person in the air-conditioned room does not feel a strong odor.

(5)分子量
ポリアミンがニオイ成分の徐放作用を発現する理由は、その分子構造に起因している。その分子量が変化すると、水和層の厚さ等が変化し、ニオイ成分の徐放効果も変化し得る。例えば、分子量が大きくなるほど、水和層の厚さが大きくなり、徐放効果ひいては防臭効果が高まる傾向にある。そこでポリアミンの分子量は、300〜70000さらには400〜35000であると好ましい。分子量が過小または過大なポリアミンは入手が容易ではない。また分子量が過小になると徐放効果が弱くなり、分子量が過大になると粘度が高くなり基材表面への付着が難しくなる。
(5) Molecular Weight The reason why polyamine exhibits the sustained release action of odor components is due to its molecular structure. When the molecular weight changes, the thickness of the hydration layer and the like change, and the sustained release effect of the odor component can also change. For example, as the molecular weight increases, the thickness of the hydration layer increases, and the sustained release effect and thus the deodorizing effect tends to increase. Therefore, the molecular weight of the polyamine is preferably 300 to 70000, more preferably 400 to 35000. Polyamines with too low or too high molecular weight are not readily available. Further, when the molecular weight is too small, the sustained release effect is weakened, and when the molecular weight is too large, the viscosity becomes high and adhesion to the substrate surface becomes difficult.

なお、本明細書でいう分子量は、周知なZ平均分子量(Mz)であり、Mz=ΣMi3Ni/ΣMi2Ni (Mi:各分子量、Ni:分子量Miの分子数)により算出されるものを分子量とする。   The molecular weight as used herein is a well-known Z average molecular weight (Mz), and the molecular weight is calculated by Mz = ΣMi3Ni / ΣMi2Ni (Mi: each molecular weight, Ni: molecular number of molecular weight Mi).

(6)付着
ポリアミンは、例えば、熱交換器の基材表面にポリアミン単体として存在しても、別な一種以上の重合体や界面活性剤等と共存していてもよい。ポリアミンと混在させる重合体として、例えば、アミノ基、カルボニル基、カルボキシル基、イミド基、ヒドロキシル基、ニトリル基、ニトロ基、スルフィド基、スルホキシド基、スルホン基、チオール基、エステル基等の極性官能基を一種以上有するものを用いるとよい。
(6) Adhesion For example, the polyamine may exist as a polyamine alone on the surface of the base material of the heat exchanger, or may coexist with one or more other polymers or surfactants. Examples of polymers mixed with polyamines include polar functional groups such as amino groups, carbonyl groups, carboxyl groups, imide groups, hydroxyl groups, nitrile groups, nitro groups, sulfide groups, sulfoxide groups, sulfone groups, thiol groups, and ester groups. It is good to use what has 1 or more types.

ポリアミンの基材表面への付着形態は問わない。高分子膜表層のみへの付着であってもよいし、高分子膜内部を含む膜全体に付着していてもよいし、複合成分からなる高分子膜であってもよい。さらにポリアミンを付着する領域(部位)は、熱交換器の一部でも全部でもよい。熱交換器は、微細な空気通路を多数備えるため、ポリアミンの付着(成膜)方法は熱交換器の形状に応じて塗布法、浸漬法等が適宜選択される。   The form of adhesion of the polyamine to the substrate surface is not limited. It may be attached only to the surface layer of the polymer film, may be attached to the entire film including the inside of the polymer film, or may be a polymer film made of a composite component. Furthermore, the region (part) to which the polyamine is attached may be a part or all of the heat exchanger. Since the heat exchanger includes a large number of fine air passages, a coating method, a dipping method, or the like is appropriately selected as a polyamine adhesion (film formation) method according to the shape of the heat exchanger.

《熱交換器》
熱交換器は、内部を熱媒が流動する流路と、その周囲に配設された空気フィンを備える。熱交換器は、エバポレータが代表的であるが、防臭・抑臭が求められる限り、コンデンサー、ラジエター等でも良く、必ずしも空調用である必要は無い。さらに、熱交換器やそれを備えた設備は、移動体内(自動車、鉄道車両、航空機、船舶等)、家庭内、事業所内等のいずれで用いられてもよい。
"Heat exchanger"
The heat exchanger includes a flow path through which a heat medium flows and air fins disposed around the flow path. The heat exchanger is typically an evaporator, but may be a condenser, a radiator or the like as long as deodorization / deodorization is required, and is not necessarily used for air conditioning. Furthermore, the heat exchanger and the equipment provided with the heat exchanger may be used either in a moving body (automobile, railway vehicle, aircraft, ship, etc.), at home, in a business office, or the like.

車室内にいる人が、カーエアコン(特にエバポレータ)から生じるニオイを感じ難くすることを想定して、ニオイ成分を付着させた種々の試料を用意し、各試料から発生するニオイを評価する試験を行った。このような具体例に基づいて本発明をさらに詳しく説明する。   A test to evaluate the odor generated from each sample by preparing various samples to which odor components are attached, assuming that it is difficult for people in the passenger compartment to feel the odor generated from the car air conditioner (especially an evaporator). went. The present invention will be described in more detail based on such specific examples.

[第1実施例]
《試料》
(1)基材
ニオイ成分を付着させる基材(テストピース)として、ケイ酸系ガラス板(単に「ガラス板」という。/試料11)を用意した。基材のサイズは16×76×1mmとした。
[First embodiment]
"sample"
(1) Base Material A silicate glass plate (simply referred to as “glass plate” / sample 11) was prepared as a base material (test piece) to which an odor component was adhered. The base material size was 16 × 76 × 1 mm.

(2)高分子皮膜
ガラス板の表面は、ポリアミンの代表例であるPEIからなる高分子皮膜(単に「PEI膜」という。)で被覆した。成膜はガラス板表面のシラノール基にグリシジルトリメトキシシランを導入し、ガラス板表面にPEIを付着させて作った。
(2) Polymer film The surface of the glass plate was coated with a polymer film made of PEI which is a typical example of polyamine (simply referred to as “PEI film”). The film was formed by introducing glycidyltrimethoxysilane into silanol groups on the glass plate surface and attaching PEI to the glass plate surface.

(3)ニオイ成分
基材に付着させるニオイ成分として、酢酸、酪酸およびトリメチルアミン(TMA)を用いた。いずれも有機物からなる代表的な臭気物質である。それらニオイ成分の混合水溶液(酢酸:1000ppm、酪酸:100ppm、TMA:1000ppm)中に、各基材を3日間浸漬した。混合水溶液から引き上げた基材は、純水で十分に洗浄した後、室内で自然乾燥させた。こうして得られた各試料をニオイ評価に供した。
(3) Odor Component Acetic acid, butyric acid, and trimethylamine (TMA) were used as the odor components to be attached to the substrate. Both are typical odor substances made of organic substances. Each base material was immersed in a mixed aqueous solution of these odor components (acetic acid: 1000 ppm, butyric acid: 100 ppm, TMA: 1000 ppm) for 3 days. The substrate pulled up from the mixed aqueous solution was sufficiently washed with pure water and then naturally dried indoors. Each sample thus obtained was subjected to odor evaluation.

《試験》
各試料に係るニオイ成分の放出挙動を、図3に示すような試験装置を用いて調べた。具体的にいうと、先ず、ニオイ成分を付着させた試料をガラス製のチャンバに入れ、マスフローメーターと加湿装置を用いて調湿したNをチャンバ内へ導入した。このチャンバを高温(30℃)の恒温槽と低温(2℃)の恒温槽に交互に浸して、チャンバ内の環境(各供試材の表面近傍の温度と湿度)を変化させた。このとき、高温の保持時間:15分間、低温の保持時間:15分間とした。
"test"
The odor component release behavior of each sample was examined using a test apparatus as shown in FIG. Specifically, first, a sample to which an odor component was attached was placed in a glass chamber, and N 2 conditioned using a mass flow meter and a humidifier was introduced into the chamber. This chamber was alternately immersed in a high temperature (30 ° C.) thermostat and a low temperature (2 ° C.) thermostat to change the environment in the chamber (temperature and humidity in the vicinity of the surface of each specimen). At this time, the high temperature holding time: 15 minutes, and the low temperature holding time: 15 minutes.

このチャンバを通過して放出口へ導出される空気について、湿度変化の測定と官能評価(臭気強度評価)を行った。この官能評価と共に、その空気を捕集管に採取して、ガスクロマトグラフ―質量分析装置(GC/MS)を用いて各ニオイ成分の濃度分析も行った。こうして得られた結果を併せて図4に示した。   The air that passed through this chamber and was led to the outlet was measured for humidity change and sensory evaluation (odor intensity evaluation). Along with this sensory evaluation, the air was collected in a collection tube, and the concentration analysis of each odor component was also performed using a gas chromatograph-mass spectrometer (GC / MS). The results thus obtained are also shown in FIG.

図4の上段には、チャンバへ導入する空気の湿度(WET/DRY)と、チャンバの保持温度、放出口(官能評価口)から導出される空気の湿度を示した。また図4の中段と下段には、それぞれ試料11(PEI膜あり)と試料C0(PEI膜なしAl合金板/詳細は後述)について行った官能評価結果とGC/MSによる測定結果を併せて示した。   The upper part of FIG. 4 shows the humidity of the air introduced into the chamber (WET / DRY), the holding temperature of the chamber, and the humidity of the air derived from the discharge port (sensory evaluation port). The middle and lower parts of FIG. 4 also show the sensory evaluation results and the GC / MS measurement results for sample 11 (with PEI film) and sample C0 (without PEI film / details will be described later). It was.

《評価》
図4から明らかなように、PEI膜の有無により、ニオイ成分の放出挙動が異なることが明らかとなった。具体的にいうと、PEI膜がある試料11はPEI膜がない試料C0に対して、GC/MSによるニオイ成分の濃度および官能評価の両方が共になだらかに変化した。すなわち、PEI膜によりニオイ成分が徐放され、それによりニオイを感じ難くなることが明らかとなった。
<Evaluation>
As is clear from FIG. 4, it was revealed that the release behavior of the odor component differs depending on the presence or absence of the PEI film. Specifically, the sample 11 with the PEI film showed a gentle change in both the odor component concentration and the sensory evaluation by GC / MS compared to the sample C0 without the PEI film. That is, it has been clarified that the odor component is gradually released by the PEI film, which makes it difficult to feel the odor.

[第2実施例]
《試料》
ニオイ成分を付着させる基材として、アルミニウム合金板(単に「Al合金板」という。/試料C0)を用意した。このアルミニウム合金板は、熱交換器(エバポレータ)用であり、アルミニウム合金(A1050)を親水性樹脂で表面処理したものである。なお、各基材のサイズは16×76×0.2mmとした。
[Second Embodiment]
"sample"
An aluminum alloy plate (simply referred to as “Al alloy plate” / sample C0) was prepared as a base material to which the odor component was adhered. This aluminum alloy plate is for a heat exchanger (evaporator), and is obtained by surface-treating an aluminum alloy (A1050) with a hydrophilic resin. The size of each substrate was 16 × 76 × 0.2 mm.

そのAl合金板(試料C0)に加えて、そのAl合金板の表面を分子量の異なるPEIからなる高分子皮膜(PEI膜)で被覆した試料21(PEI分子量:600)および試料22(PEI分子量:10000)も用意した。各PEI膜の成膜は第1実施例の場合と同様に行った。   In addition to the Al alloy plate (Sample C0), Sample 21 (PEI molecular weight: 600) and Sample 22 (PEI molecular weight: the surface of the Al alloy plate coated with a polymer film (PEI film) made of PEI having different molecular weights) 10,000). Each PEI film was formed in the same manner as in the first example.

各試料に第1実施例の場合と同様にニオイ成分を付着させた。こうして得られた各試料をニオイ評価に供した。   The odor component was made to adhere to each sample like the case of 1st Example. Each sample thus obtained was subjected to odor evaluation.

《試験》
(1)各供試材について第1実施例の場合と同様な官能評価(臭気強度評価)を行った。得られた結果を図5に併せて示した。図5の上段には、チャンバの温度と放出口(官能評価口)の湿度を示した。また図5の下段には、各試料に係る官能評価結果を示した。
"test"
(1) The same sensory evaluation (odor intensity evaluation) as in the case of the first example was performed for each test material. The obtained results are also shown in FIG. The upper part of FIG. 5 shows the chamber temperature and the humidity at the discharge port (sensory evaluation port). The lower part of FIG. 5 shows the sensory evaluation results for each sample.

(2)走査型プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM:株式会社島津製作所製 SPM−8000FM)を用いて、各試料の供試材(官能評価試験前)の表面にある水和層の厚さを測定した。これにより得られた結果を図6に示した。 (2) Using an atomic force microscope (AFM: SPM-8000FM, manufactured by Shimadzu Corporation), which is a kind of scanning probe microscope (SPM), is on the surface of the specimen (before the sensory evaluation test) of each sample. The thickness of the hydration layer was measured. The results obtained by this are shown in FIG.

《評価》
(1)図5から明らかなように、PEI膜がない試料C0は鋭いピーク的な臭気強度を示した。一方、PEI膜がある試料21および試料22では、臭気強度が大幅に低減され、臭気強度の変化が緩やかになった。この傾向は、アミノ基の導入量が多い試料ほど顕著であった。
<Evaluation>
(1) As is clear from FIG. 5, the sample C0 without the PEI film showed a sharp peak odor intensity. On the other hand, in the samples 21 and 22 having the PEI film, the odor intensity was significantly reduced, and the change in the odor intensity became gentle. This tendency was more prominent for samples with a larger amount of amino groups introduced.

(2)図6から、供試材の表面に生成される水和層の厚さは、試料C0:9nm、試料21:30nm、試料22:50nmであることがわかった。これにより、PEIの分子量が増大するほど、供試材の表面に形成される水和層の厚さも厚くなり、臭気強度が低減されると共に臭気強度の変化が抑制されることも明らかとなった。 (2) From FIG. 6, it was found that the thickness of the hydrated layer generated on the surface of the test material was sample C0: 9 nm, sample 21:30 nm, and sample 22: 50 nm. As a result, it became clear that as the molecular weight of PEI increased, the thickness of the hydrated layer formed on the surface of the test material also increased, and the odor intensity was reduced and the change in odor intensity was suppressed. .

(3)さらに図5から、各試料で臭気強度が最大(ピーク)となるタイミングが異なることも明らかとなった。具体的にいうと、PEI膜がない試料C0では、放出口の湿度が最大となる付近で臭気強度が最大となった。一方、PEI膜がある試料21、22では、放出口の湿度が最大となるときよりも遅れて臭気強度が最大となった。そして既述したように、その試料21、22の最大値は、試料C0よりも大幅に低減されたものであった。 (3) Further, from FIG. 5, it was also clarified that the timing at which the odor intensity reaches the maximum (peak) is different for each sample. Specifically, in the sample C0 without the PEI film, the odor intensity was maximized in the vicinity where the humidity at the discharge port was maximized. On the other hand, in the samples 21 and 22 having the PEI film, the odor intensity was maximized after a time when the humidity at the discharge port was maximized. As described above, the maximum values of the samples 21 and 22 were significantly reduced as compared with the sample C0.

(4)このような傾向が得られた理由は次のように考えられる。PEI膜がない試料C0では、ニオイ成分の放出が供試材表面からの水の蒸発に連動しているためと考えられる。一方、PEI膜がある試料21、22では、ニオイ成分の放出が水の蒸発と必ずしも連動しておらず、PEI膜によりニオイ成分が緩やかに放出(つまり徐放)され続けるためと考えられる。 (4) The reason why such a tendency is obtained is considered as follows. In the sample C0 without the PEI film, it is considered that the release of the odor component is linked to the evaporation of water from the surface of the test material. On the other hand, in the samples 21 and 22 having the PEI film, it is considered that the release of the odor component is not necessarily interlocked with the evaporation of water, and the odor component is gradually released (that is, gradually released) by the PEI film.

また、分子量の大きいPEIで成膜した試料ほど、臭気強度の最大値が低減されると共に、臭気強度が最大となるタイミングが遅れている。この理由のひとつとして、分子量の大きいPEIほど、基材表面に厚い水和層を形成でき、より多くのニオイ成分を一時的に保持できるためと考えられる。   In addition, as the sample is formed with PEI having a higher molecular weight, the maximum value of the odor intensity is reduced and the timing at which the odor intensity is maximized is delayed. One reason for this is considered to be that the higher the molecular weight of PEI, the thicker the hydrated layer can be formed on the substrate surface, and the more odorous components can be temporarily retained.

いずれにしても、熱交換器の基材表面にポリアミンが存在することにより、ニオイ成分が緩やかに放出(徐放)され、雰囲気中の環境(湿度、温度等)が変化してもニオイ成分が急激に放出されることがなく、人がニオイを強く感じることが顕著に抑止されることが明らかとなった。   In any case, due to the presence of polyamine on the surface of the heat exchanger substrate, the odorous component is released slowly (slow release), and the odorous component remains even if the ambient environment (humidity, temperature, etc.) changes. It was revealed that human beings feel odor strongly without being released suddenly.

Claims (7)

少なくとも一部の表面にポリアミンを有する熱交換器。   A heat exchanger having a polyamine on at least a part of its surface. 前記ポリアミンは、分子量が300〜70000である請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the polyamine has a molecular weight of 300 to 70000. 前記ポリアミンは、隣接するアミノ基間の距離が2〜4Åである請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the polyamine has a distance between adjacent amino groups of 2 to 4 mm. 前記ポリアミンは、厚さが20〜90nmである水和層を包含している請求項1〜3のいずれかに記載の熱交換器。   The heat exchanger according to claim 1, wherein the polyamine includes a hydration layer having a thickness of 20 to 90 nm. 前記ポリアミンは、カルボニル基、カルボキシル基、イミド基、ヒドロキシル基、ニトリル基、ニトロ基、スルフィド基、スルホキシド基、スルホン基、チオール基またはエステル基から選択される1種以上の官能基をさらに有する重合体である請求項1〜4のいずれかに記載の熱交換器。   The polyamine has a functional group further having one or more functional groups selected from carbonyl group, carboxyl group, imide group, hydroxyl group, nitrile group, nitro group, sulfide group, sulfoxide group, sulfone group, thiol group or ester group. The heat exchanger according to any one of claims 1 to 4, which is a coalescence. 前記ポリアミンは、少なくともポリエチレンイミン(PEI)を含む請求項1〜5のいずれかに記載の熱交換器。   The heat exchanger according to claim 1, wherein the polyamine contains at least polyethyleneimine (PEI). エバポレータである請求項1〜6のいずれかに記載の熱交換器。   It is an evaporator, The heat exchanger in any one of Claims 1-6.
JP2017126774A 2017-06-28 2017-06-28 Heat exchanger Pending JP2019007721A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017126774A JP2019007721A (en) 2017-06-28 2017-06-28 Heat exchanger
PCT/JP2018/015457 WO2019003577A1 (en) 2017-06-28 2018-04-13 Heat exchanger
DE112018003333.3T DE112018003333T5 (en) 2017-06-28 2018-04-13 Heat exchanger
US16/610,950 US20200064086A1 (en) 2017-06-28 2018-04-13 Heat exchanger
CN201880043353.6A CN110914629A (en) 2017-06-28 2018-04-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126774A JP2019007721A (en) 2017-06-28 2017-06-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2019007721A true JP2019007721A (en) 2019-01-17

Family

ID=64740596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126774A Pending JP2019007721A (en) 2017-06-28 2017-06-28 Heat exchanger

Country Status (5)

Country Link
US (1) US20200064086A1 (en)
JP (1) JP2019007721A (en)
CN (1) CN110914629A (en)
DE (1) DE112018003333T5 (en)
WO (1) WO2019003577A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161876A (en) * 2010-02-15 2011-08-25 Nippon Parkerizing Co Ltd Aluminum or aluminum alloy material having surface-treated film and method of heat treatment thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502210B2 (en) * 1991-06-11 1996-05-29 株式会社日立製作所 Heat exchanger and its manufacturing method
CN105264063B (en) * 2012-12-21 2018-12-11 现代自动车株式会社 The composition for being used to prevent smell comprising odorlessness microorganism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161876A (en) * 2010-02-15 2011-08-25 Nippon Parkerizing Co Ltd Aluminum or aluminum alloy material having surface-treated film and method of heat treatment thereof

Also Published As

Publication number Publication date
CN110914629A (en) 2020-03-24
DE112018003333T5 (en) 2020-03-05
US20200064086A1 (en) 2020-02-27
WO2019003577A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
KR101373959B1 (en) Heat exchanger fin, heat exchanger and air-conditioning device
JP5270946B2 (en) Aluminum fin material for heat exchanger
JP2019007721A (en) Heat exchanger
US7323194B2 (en) Hydrophilic antimicrobial composition for an air conditioner evaporator of a vehicle
Zeng et al. Excellent regeneration, easy separation and high capacity of 3D chitosan–melamine sponge composites for anionic dye removal
JP6831758B2 (en) Smell sustained release agent and odor sustained release member
US20190202166A1 (en) Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
JP2001049133A (en) Synthetic resin composition
US20160045893A1 (en) Adsorbent, method of manufacturing adsorbent, and adsorption-type heat pump
JP2009030911A (en) Air conditioner, and refrigeration cycle device
CN110760252B (en) Functional coating and preparation method and application thereof
AU2008255206A1 (en) Aluminium alloy heat exchanger resistive to tobacco odour impregnation
JP2000005544A (en) Deodorant and deodorizing method
JP2011001466A (en) Contaminant treating agent in living room space, and manufacturing method and using method for the same
JP2001321425A (en) Adsorbent and adsorbing material for volatile organic compound or the like
WO2022071515A1 (en) Adsorption heat exchanger
CN111133270A (en) Heat exchanger
WO2022071145A1 (en) Adsorption heat exchanger
WO2022071146A1 (en) Adsorption heat exchanger
KR100556110B1 (en) Hydrophilic Antibacterial Agent for Evaporator of Air Conditioner
JP4359157B2 (en) Deodorizing apparatus and deodorizing method
KR20180041391A (en) Adsorbent of life harmful substances having antibiotic and manufacturing method thereof
JPH04254196A (en) Heat exchanger made of aluminum
JP2005144272A (en) Method of deodorizing rubber and method for producing clean air
JP2019078464A (en) Air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200818

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201014

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201215

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210316

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210622

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210727

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210727