JP2019006963A - Manufacturing method of composite resin particle, resin molded body, and composite resin particle - Google Patents

Manufacturing method of composite resin particle, resin molded body, and composite resin particle Download PDF

Info

Publication number
JP2019006963A
JP2019006963A JP2017126604A JP2017126604A JP2019006963A JP 2019006963 A JP2019006963 A JP 2019006963A JP 2017126604 A JP2017126604 A JP 2017126604A JP 2017126604 A JP2017126604 A JP 2017126604A JP 2019006963 A JP2019006963 A JP 2019006963A
Authority
JP
Japan
Prior art keywords
composite resin
fine powder
resin particle
resin particles
carbon nanomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017126604A
Other languages
Japanese (ja)
Other versions
JP6694412B2 (en
Inventor
祥人 幸田
Yoshito Koda
祥人 幸田
健太朗 三好
Kentaro Miyoshi
健太朗 三好
克則 高田
Katsunori Takada
克則 高田
坂井 徹
Toru Sakai
徹 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017126604A priority Critical patent/JP6694412B2/en
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to TW107122089A priority patent/TWI753180B/en
Priority to SG11201910909SA priority patent/SG11201910909SA/en
Priority to PCT/JP2018/024265 priority patent/WO2019004235A1/en
Priority to KR1020197036405A priority patent/KR20200022382A/en
Priority to EP18825350.4A priority patent/EP3647343A4/en
Priority to US16/616,645 priority patent/US11149121B2/en
Priority to CN201880039952.0A priority patent/CN110753716A/en
Publication of JP2019006963A publication Critical patent/JP2019006963A/en
Application granted granted Critical
Publication of JP6694412B2 publication Critical patent/JP6694412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Abstract

To manufacture a composite resin particle with maintaining physical properties originally obtained by PTFE derived from a fine powder.SOLUTION: There is selected a manufacturing method of a composite resin particle including a first process for cracking a fine powder containing PTFE obtained by an emulsion polymerization in the presence of a ketone-based solvent, a second process for dispersing the cracked fine powder, a carbon nanomaterial in the ketone-based solvent to obtain a composite resin particle dispersion, and a third process for removing the ketone-based solvent from the composite resin particle dispersion to obtain a composite resin particle, in which the fine powder is cracked to have average particle diameter of 50 μm or less in the first process, and a temperature of the ketone-based solvent is 20°C or less.SELECTED DRAWING: None

Description

本発明は、複合樹脂粒子の製造方法、樹脂成形体、及び複合樹脂粒子に関する。   The present invention relates to a method for producing composite resin particles, a resin molded body, and composite resin particles.

カーボンナノチューブ(以下、「CNT」とも記す。)等のカーボンナノ材料は、結晶性、導電性、及び熱伝導性等の諸物性に優れ、広く実用化されている。カーボンナノ材料と、樹脂材料とを含む複合樹脂粒子は、電子部品、及び自動車部品等に利用される成形体に用いられている。   Carbon nanomaterials such as carbon nanotubes (hereinafter also referred to as “CNT”) are excellent in various physical properties such as crystallinity, conductivity, and thermal conductivity, and are widely put into practical use. Composite resin particles containing a carbon nanomaterial and a resin material are used in molded articles used for electronic parts, automobile parts, and the like.

樹脂材料の一例として、テトラフルオロエチレン(以下、「TFE」とも記す。)の重合体であるポリテトラフルオロエチレン(以下、「PTFE」とも記す。)がある。PTFEは成形性に優れ、機械的強度、耐熱性、及びしなやかさ等に優れた樹脂である。
しかし、PTFEは、電気絶縁性であるため、用途によっては導電性を付与する必要がある。
As an example of the resin material, there is polytetrafluoroethylene (hereinafter also referred to as “PTFE”) which is a polymer of tetrafluoroethylene (hereinafter also referred to as “TFE”). PTFE is a resin excellent in moldability and excellent in mechanical strength, heat resistance, flexibility and the like.
However, since PTFE is electrically insulating, it is necessary to impart conductivity depending on the application.

そこでカーボンナノ材料が有する優れた導電性を利用してPTFEに導電性を付与するために、カーボンナノ材料とPTFEを含む複合樹脂粒子の開発が行われている(特許文献1)。
特許文献1は、モールディングパウダーと称される粒径が1〜100μm程度のPTFEの粉体と、長さが1〜100μm程度のCNTとを、ケトン系溶媒等に分散させて複合樹脂粒子分散液とし、当該複合樹脂粒子分散液からケトン系溶媒等を除去して複合樹脂粒子を製造する方法を開示している。なお、モールディングパウダーは、TFEを懸濁重合等して得られるPTFEを含む粉体である。
Therefore, in order to impart conductivity to PTFE using the excellent conductivity of the carbon nanomaterial, development of composite resin particles containing the carbon nanomaterial and PTFE has been performed (Patent Document 1).
Patent Document 1 discloses a composite resin particle dispersion obtained by dispersing PTFE powder called a molding powder having a particle size of about 1 to 100 μm and CNT having a length of about 1 to 100 μm in a ketone solvent or the like. And a method for producing a composite resin particle by removing a ketone solvent or the like from the composite resin particle dispersion. The molding powder is a powder containing PTFE obtained by suspension polymerization of TFE.

PTFEの粉体として、モールディングパウダーの他にファインパウダーがある。ファインパウダーは、TFEを乳化重合等して得られるPTFEを含む粉体である。一般的に、ファインパウダーの粒径は、500μm程度であり、モールディングパウダーの粒径より大きく、カーボンナノ材料と複合樹脂粒子を形成するには不向きである。
しかし、ファインパウダーは、乾燥、計量、梱包、及び移送等の作業をするときに扱いやすく、押出成形をする際における助剤混合、及び金型充填等の工程で取り扱いやすい。
特許文献2は、かかるファインパウダーを、炭酸ガスの存在下で、フィラーとともに解砕して、ファインパウダーと、フィラーとを均一に混合してPTFEとフィラーの凝集体を得る方法を開示している。特許文献2は、上記の方法で得られた凝集体に溶剤を添加し湿潤させて、所望の粒径を有する成形用の粉末を製造する方法を開示している。
PTFE powder includes fine powder in addition to molding powder. The fine powder is a powder containing PTFE obtained by emulsion polymerization or the like of TFE. In general, the fine powder has a particle size of about 500 μm, which is larger than the particle size of the molding powder, and is unsuitable for forming carbon nanomaterials and composite resin particles.
However, the fine powder is easy to handle when performing operations such as drying, weighing, packing, and transferring, and is easy to handle in the process of mixing the auxiliary agent during extrusion and filling the mold.
Patent Document 2 discloses a method of pulverizing such fine powder together with a filler in the presence of carbon dioxide gas, and uniformly mixing the fine powder and the filler to obtain an aggregate of PTFE and filler. . Patent Document 2 discloses a method of producing a molding powder having a desired particle size by adding a solvent to the aggregate obtained by the above method and moistening it.

特開2015−30821号公報Japanese Patent Laying-Open No. 2015-30821 特開2015−151543号公報JP-A-2015-151543

しかしながら、特許文献1に記載の手法をファインパウダーに適用しても、フッ素樹脂粒子の表面にCNTが付着しにくい。これは、ファインパウダーのフッ素樹脂粉末の表面は、モールディングパウダーに比べて凹凸が少ないうえに粒径が大きいこと、すなわちCNTと接触できるフッ素樹脂粒子の比表面積が小さいことに起因する。フッ素樹脂粒子の表面にCNTが付着しにくいことにより、フッ素樹脂粒子表面に付着しないCNTが多く存在するようになる。よって、CNT分散液とフッ素樹脂粉末の混合スラリーを回収、乾燥して得られた複合樹脂粒子中には、付着しないで残ったCNTが凝集体として多数混在してしまう。
以上より、特許文献1に記載の手法により得られた複合樹脂粒子の成形体には、CNTの凝集体が原因で、割れ等の欠陥が生じる。さらに、かかる成形体の機械物性は著しく低下し、成形体の導電性も不安定である。
However, even if the technique described in Patent Document 1 is applied to fine powder, CNTs are unlikely to adhere to the surface of the fluororesin particles. This is because the surface of the fluororesin powder of the fine powder has less irregularities than the molding powder and has a large particle size, that is, the specific surface area of the fluororesin particles that can come into contact with the CNT is small. Since the CNTs hardly adhere to the surface of the fluororesin particles, there are many CNTs that do not adhere to the surface of the fluororesin particles. Therefore, in the composite resin particles obtained by collecting and drying the mixed slurry of the CNT dispersion liquid and the fluororesin powder, a large number of CNTs remaining without adhering are mixed.
From the above, the composite resin particle molded body obtained by the method described in Patent Document 1 has defects such as cracks due to the aggregates of CNTs. Further, the mechanical properties of such a molded body are remarkably lowered, and the conductivity of the molded body is also unstable.

特許文献2に記載された方法は、いわゆる乾式混合により、フィラーを含む複合樹脂粒子を製造する方法である。ところが乾式混合ではCNTバンドルが分散せず、単分散レベルでフィラーとファインパウダーとの複合化ができない。そのため特許文献2の方法で、CNTの濃度を0.2質量%程度にして複合樹脂粒子を製造しても、複合樹脂粒子に導電性等を付与できない。
さらに、特許文献2に記載された方法にあっては、30質量%と多量の黒鉛粉末を使用している。そのため当該方法で得られる複合樹脂粒子の成形体は、しなやかさ等の物性が低下する。
以上より、特許文献2に記載の方法は、多量のCNTを使用しないと、所望とする導電性を達成することができず、多量のCNTを使用することでファインパウダーが本来有するしなやかさ等の優れた性質が低下する。
The method described in Patent Document 2 is a method for producing composite resin particles containing a filler by so-called dry mixing. However, the dry mixing does not disperse the CNT bundle, and the filler and fine powder cannot be combined at the monodisperse level. Therefore, even if the composite resin particles are produced by the method of Patent Document 2 with the concentration of CNT being about 0.2% by mass, conductivity or the like cannot be imparted to the composite resin particles.
Further, in the method described in Patent Document 2, a large amount of graphite powder of 30% by mass is used. Therefore, the composite resin particle molded body obtained by the method has low physical properties such as flexibility.
From the above, the method described in Patent Document 2 cannot achieve the desired conductivity unless a large amount of CNT is used, and the fine powder originally possessed by using a large amount of CNT, etc. Superior properties are reduced.

本発明は、上記事情に鑑みてなされたものであって、ファインパウダー由来のPTFEの本来の物性が維持された複合樹脂粒子を製造することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at manufacturing the composite resin particle by which the original physical property of PTFE derived from fine powder was maintained.

本発明は以下の構成を有する。
[1] 乳化重合により得られるポリテトラフルオロエチレンを含むファインパウダーを、ケトン系溶媒の存在下で解砕する第一工程と、解砕された前記ファインパウダーと、カーボンナノ材料と、を前記ケトン系溶媒に分散させて複合樹脂粒子分散液を得る第二工程と、前記複合樹脂粒子分散液から前記ケトン系溶媒を除去して複合樹脂粒子を得る第三工程と、を含み、前記第一工程で前記ファインパウダーの平均粒径を50μm以下に解砕するとともに、前記ケトン系溶媒の温度を20℃以下にすることを特徴とする複合樹脂粒子の製造方法。
[2] 前記カーボンナノ材料の濃度が、前記カーボンナノ材料と前記ファインパウダーとの合計100質量%に対して0.01〜0.5質量%であることを特徴とする[1]に記載の複合樹脂粒子の製造方法。
[3] 前記ケトン系溶媒がメチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、及びシクロヘキサノンからなる群より選ばれる少なくとも1つを含むことを特徴とする[1]又は[2]に記載の複合樹脂粒子の製造方法。
[4] 前記カーボンナノ材料がカーボンナノチューブであることを特徴とする[1]〜[3]のいずれか1項に記載の複合樹脂粒子の製造方法。
[5] [1]〜[4]のいずれか1項に記載の複合樹脂粒子の製造方法で製造された複合樹脂粒子を用いて成形された樹脂成形体。
[6] 乳化重合により得られるポリテトラフルオロエチレンを含むファインパウダー由来のポリテトラフルオロエチレンと、カーボンナノ材料とを含む複合樹脂粒子であって、当該複合樹脂粒子の体積抵抗率が1.0×10Ω・cm以下である複合樹脂粒子。
The present invention has the following configuration.
[1] A first step of pulverizing a fine powder containing polytetrafluoroethylene obtained by emulsion polymerization in the presence of a ketone solvent; the pulverized fine powder; and a carbon nanomaterial. A first step of obtaining a composite resin particle dispersion by dispersing in a system solvent, and a third step of obtaining a composite resin particle by removing the ketone solvent from the composite resin particle dispersion. And crushing the fine powder to an average particle size of 50 μm or less, and setting the temperature of the ketone solvent to 20 ° C. or less.
[2] The concentration of the carbon nanomaterial is 0.01 to 0.5% by mass with respect to a total of 100% by mass of the carbon nanomaterial and the fine powder. A method for producing composite resin particles.
[3] The composite resin particle according to [1] or [2], wherein the ketone solvent includes at least one selected from the group consisting of methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, and cyclohexanone. Manufacturing method.
[4] The method for producing composite resin particles according to any one of [1] to [3], wherein the carbon nanomaterial is a carbon nanotube.
[5] A resin molded body molded using the composite resin particles produced by the method for producing composite resin particles according to any one of [1] to [4].
[6] Composite resin particles containing fine powder-derived polytetrafluoroethylene containing polytetrafluoroethylene obtained by emulsion polymerization and a carbon nanomaterial, and the volume resistivity of the composite resin particles is 1.0 × Composite resin particles of 10 9 Ω · cm or less.

本発明によれば、ファインパウダー由来のPTFEの物性を維持しながら、カーボンナノ材料がファインパウダー由来のPTFEに均一に付着した複合樹脂粒子を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the composite resin particle in which the carbon nanomaterial adhered uniformly to PTFE derived from fine powder can be manufactured, maintaining the physical property of PTFE derived from fine powder.

以下の用語の定義は、本明細書、及び特許請求の範囲にわたって適用される。
「平均粒径」とは、粒度分布計を用いて測定される値である。
「体積抵抗率」とは、抵抗率計(三菱化学アナリテック社製「ロレスタGPMCP−T610型」)を用いて四端子法により測定される値である。
「複合樹脂粒子分散液」とは、複合樹脂粒子が液状媒体に分散したものを意味する。
「複合樹脂粒子」とは、樹脂とカーボンナノ材料とを含んで構成される複合体の粒子を意味する。
The following definitions of terms apply throughout this specification and the claims.
The “average particle size” is a value measured using a particle size distribution meter.
The “volume resistivity” is a value measured by a four-terminal method using a resistivity meter (“Loresta GPMCP-T610 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
“Composite resin particle dispersion” means a dispersion of composite resin particles in a liquid medium.
“Composite resin particles” mean composite particles comprising a resin and a carbon nanomaterial.

[複合樹脂粒子の製造方法]
以下、本発明を適用した一実施形態である複合樹脂粒子の製造方法について説明する。本実施形態の複合樹脂粒子の製造方法は、第一工程と、第二工程と、第三工程とを含む。第一工程は、乳化重合により得られるポリテトラフルオロエチレンを含むファインパウダー(以下、単に「ファインパウダー」と記すこともある。)を、ケトン系溶媒の存在下で解砕する工程である。第二工程は、解砕された前記ファインパウダーと、カーボンナノ材料と、を前記ケトン系溶媒に分散させて複合樹脂粒子分散液を得る工程である。第三工程は、前記複合樹脂粒子分散液から前記ケトン系溶媒を除去して複合樹脂粒子を得る工程である。
[Production method of composite resin particles]
Hereinafter, the manufacturing method of the composite resin particle which is one Embodiment to which this invention is applied is demonstrated. The method for producing composite resin particles of the present embodiment includes a first step, a second step, and a third step. The first step is a step of crushing fine powder containing polytetrafluoroethylene obtained by emulsion polymerization (hereinafter sometimes simply referred to as “fine powder”) in the presence of a ketone solvent. The second step is a step of obtaining a composite resin particle dispersion by dispersing the pulverized fine powder and the carbon nanomaterial in the ketone solvent. The third step is a step of obtaining the composite resin particles by removing the ketone solvent from the composite resin particle dispersion.

本実施形態の複合樹脂粒子の製造方法は、前記第一工程を前記第二工程より先に行い、前記第一工程で前記ファインパウダーの平均粒径を50μm以下に解砕するとともに、前記第一工程で前記ケトン系溶媒の温度を20℃以下にすることを特徴とする。
以下、本実施形態に係る複合樹脂粒子の製造方法を、各工程の順に詳細に説明する。
In the method for producing composite resin particles of the present embodiment, the first step is performed before the second step, the average particle size of the fine powder is crushed to 50 μm or less in the first step, and the first step In the step, the temperature of the ketone solvent is set to 20 ° C. or lower.
Hereinafter, the method for producing composite resin particles according to the present embodiment will be described in detail in the order of each step.

(第一工程)
以下、本実施形態の複合樹脂粒子の製造方法の第一工程について説明する。
第一工程は、ケトン系溶媒の存在下で、ファインパウダーを解砕する工程である。
ケトン系溶媒としては、メチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、及びシクロヘキサノン等が挙げられるがこれらに限定されない。ケトン系溶媒としては、合成したものを用いてもよく、市販品を用いてもよい。
(First step)
Hereinafter, the 1st process of the manufacturing method of the composite resin particle of this embodiment is demonstrated.
The first step is a step of crushing the fine powder in the presence of a ketone solvent.
Examples of the ketone solvent include, but are not limited to, methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, and cyclohexanone. As a ketone solvent, what was synthesize | combined may be used and a commercial item may be used.

ファインパウダーは乳化重合により得られるPTFEを含む粉体である。かかるファインパウダーは公知の方法で合成することができる。ファインパウダーの合成方法としては、特に限定されないが、一例として、安定化剤と、乳化剤とを用いてTFEを乳化重合し、乳化重合した反応液中の粒子を凝集させた数百μm程度の粒子を乾燥する方法がある。
ファインパウダーとしては、合成したものを用いてもよく、市販品を用いてもよい。
ファインパウダーの市販品としては、ダイキン工業株式会社製「PTFEファインパウダーグレードF−104(平均粒径:約500μm)」等が挙げられるがこれらに限定されない。
Fine powder is a powder containing PTFE obtained by emulsion polymerization. Such fine powder can be synthesized by a known method. The method for synthesizing the fine powder is not particularly limited. As an example, particles having a size of about several hundred μm are obtained by emulsion-polymerizing TFE using a stabilizer and an emulsifier, and agglomerating particles in the reaction solution obtained by emulsion polymerization. There are ways to dry.
As fine powder, what was synthesize | combined may be used and a commercial item may be used.
Examples of commercially available fine powder include “PTFE fine powder grade F-104 (average particle size: about 500 μm)” manufactured by Daikin Industries, Ltd., but are not limited thereto.

ファインパウダーは、機械的なエネルギーをかけることで解砕することができる。
一般的に、ファインパウダーに含まれるPTFEの分子鎖は、製造時の乳化重合によって折りたたまれている。かかるファインパウダーの分子鎖は、20℃より高温の条件下で繊維状に開いてしまう傾向がある。分子鎖が繊維状に開くことによって、ファインパウダーが本来有するPTFE由来の物性等の性質は変化してしまう。
Fine powder can be crushed by applying mechanical energy.
Generally, the molecular chain of PTFE contained in fine powder is folded by emulsion polymerization at the time of production. The molecular chain of such fine powder tends to open like a fiber under conditions higher than 20 ° C. When the molecular chain opens like a fiber, properties such as physical properties derived from PTFE inherent to the fine powder are changed.

本実施形態の複合樹脂粒子の製造方法の第一工程では、解砕の際にファインパウダーにかかるせん断力を抑制することを特徴としている。当該せん断力を抑制することにより、せん断の際に生じる熱を低減することができ、PTFEの分子鎖の折りたたみ構造を維持することができる。
ファインパウダーを解砕する方法としては、ファインパウダーの粉体粒子にかかるせん断力が抑制されていれば特に限定されない。解砕方法の一例として、スターラーを用いた撹拌、超音波による解砕、及びフードプロセッサー等の公知の解砕機による解砕等が挙げられるがこれらに限定されない。
The first step of the method for producing composite resin particles of the present embodiment is characterized in that the shearing force applied to the fine powder during crushing is suppressed. By suppressing the shear force, heat generated during shearing can be reduced, and the folded structure of the molecular chain of PTFE can be maintained.
The method for crushing the fine powder is not particularly limited as long as the shearing force applied to the powder particles of the fine powder is suppressed. Examples of the pulverization method include, but are not limited to, stirring using a stirrer, pulverization using ultrasonic waves, and pulverization using a known pulverizer such as a food processor.

原料となるファインパウダーの平均粒径は一概には言えないが、解砕工程の作業性の観点から、400〜500μm程度であることが好ましい。ファインパウダーの平均粒径が、400〜500μm程度であれば、解砕の際に過剰量のエネルギーをファインパウダーに与えずに済み、所定の平均粒径に解砕しやすくなる。   Although the average particle diameter of the fine powder as a raw material cannot be generally stated, it is preferably about 400 to 500 μm from the viewpoint of workability in the crushing process. When the average particle size of the fine powder is about 400 to 500 μm, it is not necessary to give an excessive amount of energy to the fine powder during crushing, and it becomes easy to crush to a predetermined average particle size.

本実施形態の複合樹脂粒子の製造方法の第一工程では、ファインパウダーの平均粒径を50μm以下に解砕する。第一工程でファインパウダーの平均粒径を50μm以下に解砕することにより、ファインパウダーのフッ素樹脂粒子の表面の凹凸が大きくなり、比表面積が増加し、カーボンナノ材料と接触できる表面が増える。これにより、カーボンナノ材料との接触確率が増し、ファインパウダーの粒子の表面に吸着できるカーボンナノ材料の量が増えやすくなる。そのため、ファインパウダーの平均粒径が50μm以下であれば、カーボンナノ材料を均一にファインパウダーの表面に吸着、及び含浸させやすくなり、カーボンナノ材料の凝集体を低減しやすくなる。   In the first step of the method for producing composite resin particles of this embodiment, the fine powder has an average particle size of 50 μm or less. By crushing the average particle size of the fine powder to 50 μm or less in the first step, the irregularities on the surface of the fluororesin particles of the fine powder increase, the specific surface area increases, and the surface that can come into contact with the carbon nanomaterial increases. As a result, the probability of contact with the carbon nanomaterial increases, and the amount of the carbon nanomaterial that can be adsorbed on the surface of the fine powder particles tends to increase. Therefore, when the average particle size of the fine powder is 50 μm or less, the carbon nanomaterial can be easily adsorbed and impregnated on the surface of the fine powder, and the aggregates of the carbon nanomaterial can be easily reduced.

本実施形態の複合樹脂粒子の製造方法の第一工程では、ファインパウダーの平均粒径を5μm以上に解砕することが好ましい。第一工程でファインパウダーの平均粒径を5μm以上に解砕すれば、ファインパウダーの比表面積が増えすぎず、ファインパウダーに対するカーボンナノ材料の量が不足しにくい。よって、ファインパウダーの表面の領域において、カーボンナノ材料が吸着している領域と、吸着していない領域の分布ができにくく、導電性を安定化しやすくなる。以上より、第一工程でファインパウダーの平均粒径を5μm〜50μmの範囲に解砕すれば、ファインパウダーの表面にカーボンナノ材料を均一に付着させることができ、外観均一性が高く、かつ、導電性も良好な成形体を得ることができる複合樹脂粒子を製造しやすい。   In the first step of the method for producing composite resin particles of the present embodiment, it is preferable that the fine powder has an average particle size of 5 μm or more. If the average particle size of the fine powder is crushed to 5 μm or more in the first step, the specific surface area of the fine powder does not increase excessively, and the amount of the carbon nanomaterial relative to the fine powder is unlikely to be insufficient. Therefore, in the area | region of the surface of fine powder, the distribution of the area | region which the carbon nanomaterial adsorb | sucked and the area | region which is not adsorb | sucking is difficult, and it becomes easy to stabilize electroconductivity. From the above, if the average particle size of the fine powder is crushed in the range of 5 μm to 50 μm in the first step, the carbon nanomaterial can be uniformly attached to the surface of the fine powder, the appearance uniformity is high, and It is easy to produce composite resin particles capable of obtaining a molded article having good conductivity.

本実施形態の複合樹脂粒子の製造方法の第一工程では、ケトン系溶媒の温度を20℃以下にする。本実施形態の複合樹脂粒子の製造方法の他の一例では、第一工程では、ケトン系溶媒の温度を10℃以下にする。第一工程でケトン系溶媒の温度を20℃以下にすることにより、ファインパウダーの優れた物性を維持しながら、カーボンナノ材料がファインパウダーに均一に付着した複合樹脂粒子を製造することができる。   In the first step of the method for producing composite resin particles of this embodiment, the temperature of the ketone solvent is set to 20 ° C. or lower. In another example of the method for producing composite resin particles of the present embodiment, the temperature of the ketone solvent is set to 10 ° C. or lower in the first step. By setting the temperature of the ketone solvent to 20 ° C. or lower in the first step, it is possible to produce composite resin particles in which the carbon nanomaterial is uniformly attached to the fine powder while maintaining the excellent physical properties of the fine powder.

本実施形態の複合樹脂粒子の製造方法の第一工程は、ケトン系溶媒の存在下で行うため、湿式による混合を行うことができる。本実施形態の複合樹脂粒子の製造方法は、ケトン系溶媒を冷却することで、ファインパウダーを20℃以下で解砕できるので、乾式による混合でファインパウダーを冷却する場合と比較して簡便な方法である。ケトン系溶媒の温度を20℃以下にする方法としては、氷浴等が挙げられるが特に限定されない。   Since the 1st process of the manufacturing method of the composite resin particle of this embodiment is performed in presence of a ketone solvent, it can mix by wet. Since the fine powder can be crushed at 20 ° C. or lower by cooling the ketone solvent, the method for producing the composite resin particles of the present embodiment is a simpler method than the case of cooling the fine powder by dry mixing. It is. An example of a method for setting the temperature of the ketone solvent to 20 ° C. or lower includes an ice bath, but is not particularly limited.

本実施形態の複合樹脂粒子の製造方法では、第一工程を、第二工程より先に行う。第一工程を第二工程より先に行うことにより、第二工程で用いるカーボンナノ材料がファインパウダー中のPTFEからなる粒子の表層に均一に付着しやすくなり、カーボンナノ材料をファインパウダーに固定化することができる。これにより、第二工程で得られる複合樹脂粒子分散液の分散性が向上する。   In the method for producing composite resin particles of this embodiment, the first step is performed before the second step. By performing the first step before the second step, the carbon nanomaterial used in the second step can easily adhere uniformly to the surface layer of particles made of PTFE in the fine powder, and the carbon nanomaterial is fixed to the fine powder. can do. Thereby, the dispersibility of the composite resin particle dispersion obtained in the second step is improved.

本実施形態の複合樹脂粒子の製造方法では、第一工程で、適切な解砕方法を選択することで、ファインパウダーの分子鎖が繊維化することなく、ファインパウダーを50μm以下まで解砕させることができる。そのため、ファインパウダーの優れた物性を維持しながら、カーボンナノ材料がファインパウダーに均一に付着しやすくすることができる。   In the method for producing composite resin particles of the present embodiment, in the first step, by selecting an appropriate crushing method, the fine powder can be crushed to 50 μm or less without causing molecular chains of the fine powder to be fibrillated. Can do. Therefore, the carbon nanomaterial can easily adhere to the fine powder uniformly while maintaining the excellent physical properties of the fine powder.

本実施形態の複合樹脂粒子の製造方法の一例では、第一工程で、ケトン系溶媒の存在下で、ファインパウダーを解砕することによって、ファインパウダーがケトン系溶媒中に分散している樹脂スラリーを得ることができる。   In an example of the method for producing composite resin particles of the present embodiment, in the first step, resin slurry in which fine powder is dispersed in a ketone solvent by crushing fine powder in the presence of a ketone solvent. Can be obtained.

(第二工程)
以下、本実施形態の複合樹脂粒子の製造方法の第二工程について説明する。
第二工程は、第一工程で解砕したファインパウダーと、カーボンナノ材料と、をケトン系溶媒に分散させて複合樹脂粒子分散液を得る工程である。複合樹脂粒子は、第二工程で生成される複合樹脂粒子である。当該複合樹脂粒子は、ファインパウダー由来のPTFEと、カーボンナノ材料とを含む。複合樹脂粒子分散液は、ファインパウダー由来のPTFEと、カーボンナノ材料とを含む複合樹脂粒子がケトン系溶媒に分散している液体である。
(Second step)
Hereinafter, the 2nd process of the manufacturing method of the composite resin particle of this embodiment is demonstrated.
The second step is a step of obtaining a composite resin particle dispersion by dispersing the fine powder crushed in the first step and the carbon nanomaterial in a ketone solvent. The composite resin particles are composite resin particles produced in the second step. The composite resin particles include fine powder-derived PTFE and a carbon nanomaterial. The composite resin particle dispersion is a liquid in which composite resin particles containing PTFE derived from fine powder and a carbon nanomaterial are dispersed in a ketone solvent.

カーボンナノ材料は、配列された炭素六員環構造から形成される材料である。カーボンナノ材料の平均長さは、一概には言えないが、10〜600μmであることが好ましい。カーボンナノ材料の平均長さが、前記下限値以上であれば、得られる複合樹脂時粒子の導電性が優れやすい。カーボンナノ材料の平均長さが、前記上限値以下であれば、得られるファインパウダーにカーボンナノチューブが均一に付着しやすい。
カーボンナノ材料としては、カーボンナノファイバー、カーボンナノホーン、カーボンナノコイル、グラフェン、フラーレン、アセチレンブラック、ケッチョンブラック、カーボンブラック及びカーボンファイバー等が挙げられるがこれらに限定されない。
The carbon nanomaterial is a material formed from an aligned carbon six-membered ring structure. The average length of the carbon nanomaterial cannot be generally specified, but is preferably 10 to 600 μm. If the average length of the carbon nanomaterial is equal to or greater than the lower limit, the resulting composite resin particles are likely to have excellent conductivity. If the average length of the carbon nanomaterial is equal to or less than the upper limit value, the carbon nanotubes are likely to adhere uniformly to the resulting fine powder.
Examples of the carbon nanomaterial include, but are not limited to, carbon nanofiber, carbon nanohorn, carbon nanocoil, graphene, fullerene, acetylene black, ketchon black, carbon black, and carbon fiber.

本実施形態の複合樹脂粒子の製造方法の第二工程で生成される複合樹脂粒子は、ファインパウダーの由来のPTFEを含む粒子の表層に、カーボンナノ材料が均一に付着していることが好ましい。これにより、成形性、機械的物性等のPTFEの由来の優れた性質を維持することができ、複合樹脂粒子の導電性を安定させることができる。   In the composite resin particles produced in the second step of the method for producing composite resin particles of the present embodiment, the carbon nanomaterial is preferably uniformly attached to the surface layer of particles containing PTFE derived from fine powder. Thereby, excellent properties derived from PTFE such as moldability and mechanical properties can be maintained, and the conductivity of the composite resin particles can be stabilized.

本実施形態の複合樹脂粒子の製造方法の一例では、第二工程で用いられるカーボンナノ材料がケトン系溶媒に分散していてもよい。第二工程で用いられるカーボンナノ材料としては、例えば、カーボンナノ材料であるCNTが、メチルエチルケトン(以下、「MEK」とも記す。)等のケトン系溶媒に分散しているCNT分散液であってもよい。   In an example of the method for producing composite resin particles of the present embodiment, the carbon nanomaterial used in the second step may be dispersed in a ketone solvent. Examples of the carbon nanomaterial used in the second step include a CNT dispersion liquid in which CNT, which is a carbon nanomaterial, is dispersed in a ketone solvent such as methyl ethyl ketone (hereinafter also referred to as “MEK”). Good.

本実施形態の複合樹脂粒子の製造方法の一例では、第一工程で得られた樹脂スラリーと、CNT分散液とを第二工程で混合してもよい。これにより複合樹脂粒子分散液を得ることができる。   In an example of the method for producing composite resin particles of the present embodiment, the resin slurry obtained in the first step and the CNT dispersion may be mixed in the second step. Thereby, a composite resin particle dispersion can be obtained.

本実施形態の複合樹脂粒子の製造方法の一例では、いわゆる湿式混合により複合樹脂粒子分散液を得てもよい。湿式混合であれば、カーボンナノ材料のバンドルが分散しやすく、単分散に近い状態でファインパウダー由来のPTFEとカーボンナノ材料とを複合化することができる。   In an example of the method for producing composite resin particles of this embodiment, a composite resin particle dispersion may be obtained by so-called wet mixing. If wet mixing is performed, the bundle of carbon nanomaterials can be easily dispersed, and the fine powder-derived PTFE and the carbon nanomaterial can be combined in a state close to monodispersion.

本実施形態の複合樹脂粒子の製造方法の一例では、カーボンナノ材料を単分散に近い状態でファインパウダー由来のPTFE樹脂粒子の表層に均一に付着し、固定化させることができる。そのため、本実施形態の複合樹脂粒子の製造方法の一例では、きわめて低い濃度のカーボンナノ材料を用いても複合樹脂粒子に導電性を付与することができる。   In an example of the method for producing composite resin particles of the present embodiment, the carbon nanomaterial can be uniformly attached to the surface layer of PTFE resin particles derived from fine powder in a state close to monodispersion, and can be fixed. Therefore, in an example of the method for producing composite resin particles of the present embodiment, conductivity can be imparted to the composite resin particles even when an extremely low concentration of carbon nanomaterial is used.

本実施形態の複合樹脂粒子の製造方法の一例では、カーボンナノ材料の濃度がカーボンナノ材料とファインパウダーとの合計100質量%に対して0.01〜0.5質量%である。カーボンナノ材料の濃度が前記下限値以上であれば、複合樹脂粒子に導電性を付与しやすい。カーボンナノ材料の濃度が前記上限値以下であれば、ファインパウダーの成形性、機械物性等の優れた物性をそのまま維持することができる。
本実施形態の複合樹脂粒子の製造方法の一例では、ファインパウダーに対してきわめて少量のカーボンナノ材料を使用することで、得られる複合樹脂粒子に導電性を付与し、かつ、ファインパウダーの成形性、機械物性等の優れた物性をそのまま維持できる。
In an example of the manufacturing method of the composite resin particle of this embodiment, the density | concentration of carbon nanomaterial is 0.01-0.5 mass% with respect to a total of 100 mass% of carbon nanomaterial and fine powder. If the density | concentration of a carbon nanomaterial is more than the said lower limit, it will be easy to provide electroconductivity to a composite resin particle. If the concentration of the carbon nanomaterial is not more than the above upper limit value, excellent physical properties such as fine powder moldability and mechanical properties can be maintained as they are.
In an example of the method for producing composite resin particles of the present embodiment, by using a very small amount of carbon nanomaterial with respect to the fine powder, conductivity is imparted to the obtained composite resin particles, and the moldability of the fine powder is increased. Excellent physical properties such as mechanical properties can be maintained as they are.

半導体分野ではフィラーの発塵、及びアウトガスを低減することが強く求められる。上述した本実施形態の複合樹脂粒子の製造方法の一例によれば、カーボンナノ材料の使用量が少ないので、製造工程におけるカーボンナノ材料によるコンタミの発生リスクを低減できる。   In the semiconductor field, there is a strong demand for reducing filler dust generation and outgassing. According to the example of the method for producing composite resin particles of the present embodiment described above, the amount of carbon nanomaterial used is small, so that the risk of contamination caused by the carbon nanomaterial in the production process can be reduced.

本実施形態の複合樹脂粒子の製造方法の一例の第二工程では、第一工程で解砕したファインパウダーと、カーボンナノ材料と、をケトン系溶媒に分散させる際に、公知の分散剤を使用してもよい。分散剤としては、アクリル系分散剤等の公知の分散剤が挙げられるが、これに限定されない。   In the second step of an example of the method for producing composite resin particles of the present embodiment, a known dispersant is used when the fine powder crushed in the first step and the carbon nanomaterial are dispersed in the ketone solvent. May be. Examples of the dispersant include known dispersants such as acrylic dispersants, but are not limited thereto.

(第三工程)
以下、本実施形態の複合樹脂粒子の製造方法の第三工程について説明する。
第三工程は、第二工程で作製した複合樹脂粒子分散液からケトン系溶媒を除去して複合樹脂粒子を得る工程である。複合樹脂粒子分散液からケトン系溶媒を除去する方法は、固液分離等の公知の溶媒除去方法であってよく、特に制限されない。
(Third process)
Hereinafter, the 3rd process of the manufacturing method of the composite resin particle of this embodiment is demonstrated.
The third step is a step of obtaining the composite resin particles by removing the ketone solvent from the composite resin particle dispersion prepared in the second step. The method for removing the ketone solvent from the composite resin particle dispersion may be a known solvent removal method such as solid-liquid separation, and is not particularly limited.

本実施形態の複合樹脂粒子の製造方法の一例では、複合樹脂粒子分散液をスラリーポンプによってスプレードライヤー装置に供給して乾燥し、複合樹脂粒子を得ることができる。乾燥した粉末を回収し、複合樹脂粒子を得ることができる。
なお、複合樹脂粒子分散液は、真空乾燥、加熱乾燥、及び自然乾燥等公知の乾燥方法によって乾燥されてもよく、乾燥方法はこれらに限定されない。
In an example of the method for producing composite resin particles of the present embodiment, the composite resin particle dispersion can be supplied to a spray dryer apparatus by a slurry pump and dried to obtain composite resin particles. The dried powder can be collected to obtain composite resin particles.
The composite resin particle dispersion may be dried by a known drying method such as vacuum drying, heat drying, and natural drying, and the drying method is not limited thereto.

(作用効果)
以上説明した、本実施形態の複合樹脂粒子の製造方法によれば、第一工程を第二工程より先に行うので、ファインパウダーにカーボンナノ材料が均一に付着した複合樹脂粒子を製造することができる。
また、本実施形態の複合樹脂粒子の製造方法によれば、第一工程でファインパウダーの平均粒径を50μm以下に解砕し、ケトン系溶媒の温度を20℃以下にするので、ファインパウダーの分子鎖が繊維状に開くことを防止することができ、ファインパウダーの物性が損なわれにくい。
また、本実施形態の複合樹脂粒子の製造方法においては、CNTの凝集体を生じさせないために、ファインパウダーとCNTとを混合する前に、ファインパウダーを解砕し、平均粒径を50μm以下にしている。そのため、本実施形態の複合樹脂粒子の製造方法によれば、ファインパウダーの表面の凹凸が大きくなり、CNTが吸着できる面積が増え、均一にCNTを付着させやすい。
よって、本実施形態の複合樹脂粒子の製造方法によれば、ファインパウダー由来のPTFEの本来の物性が維持された複合樹脂粒子を製造することができる。
(Function and effect)
According to the composite resin particle manufacturing method of the present embodiment described above, since the first step is performed before the second step, it is possible to manufacture composite resin particles in which the carbon nanomaterial is uniformly attached to the fine powder. it can.
Further, according to the method for producing composite resin particles of this embodiment, the fine powder has an average particle size of 50 μm or less in the first step and the temperature of the ketone solvent is 20 ° C. or less. It is possible to prevent the molecular chain from opening in the form of a fiber, and the physical properties of the fine powder are hardly impaired.
Further, in the method for producing composite resin particles of the present embodiment, in order to prevent the formation of CNT aggregates, before mixing the fine powder and the CNT, the fine powder is crushed to an average particle size of 50 μm or less. ing. Therefore, according to the method for producing composite resin particles of the present embodiment, the unevenness of the surface of the fine powder is increased, the area that can adsorb CNTs is increased, and CNTs are easily adhered uniformly.
Therefore, according to the manufacturing method of the composite resin particle of this embodiment, the composite resin particle in which the original physical property of PTFE derived from fine powder is maintained can be manufactured.

[樹脂成形体]
以下、本発明を適用した一実施形態である樹脂成形体について説明する。
本実施形態の樹脂成形体は、上述した本実施形態の「[複合樹脂粒子の製造方法]」の項の記載にしたがって製造された複合樹脂粒子を用いて成形された樹脂成形体である。
かかる複合樹脂粒子は、カーボンナノ材料がファインパウダー由来のPTFEに均一に付着している。そのため本実施形態の樹脂成形体は、成形性、及び機械的物性等のファインパウダー由来の優れた物性に加えて、優れた外観均一性を備えることができる。
本実施形態の樹脂成形体によれば、従来困難であったファインパウダー由来のPTFEに対するカーボンナノ材料の均一分散が可能となり、成形割れの発生、機械物性の低下が低減されたしなやかな成形体を得ることができる。
本実施形態の樹脂成形体は、半導体分野で利用される薬液チューブ等用の樹脂成形体としての用途を有する。
[Resin molding]
Hereinafter, a resin molded body which is an embodiment to which the present invention is applied will be described.
The resin molded body of the present embodiment is a resin molded body molded using the composite resin particles manufactured according to the description in the section “[Method of manufacturing composite resin particles]” of the present embodiment described above.
In such composite resin particles, the carbon nanomaterial is uniformly attached to PTFE derived from fine powder. Therefore, the resin molded body of this embodiment can have excellent appearance uniformity in addition to excellent physical properties derived from fine powder such as moldability and mechanical properties.
According to the resin molded body of the present embodiment, it is possible to uniformly disperse the carbon nanomaterial with respect to PTFE derived from fine powder, which has been difficult in the past, and a flexible molded body with reduced generation of molding cracks and reduced mechanical properties is obtained. Can be obtained.
The resin molded body of the present embodiment has a use as a resin molded body for chemical liquid tubes and the like used in the semiconductor field.

[複合樹脂粒子]
以下、本発明を適用した一実施形態である複合樹脂粒子について説明する。
本実施形態の複合樹脂粒子は、ファインパウダー由来のPTFEと、カーボンナノ材料とを含む。複合樹脂粒子は、ファインパウダーにカーボンナノ材料が均一に付着していることが好ましい。
[Composite resin particles]
Hereinafter, the composite resin particle which is one embodiment to which the present invention is applied will be described.
The composite resin particle of this embodiment contains PTFE derived from fine powder and a carbon nanomaterial. The composite resin particles preferably have the carbon nanomaterial uniformly attached to the fine powder.

本実施形態の複合樹脂粒子は、下記の態様を有する。
ファインパウダー由来のPTFEと、カーボンナノ材料とを含む複合樹脂粒子であって、当該複合樹脂粒子の体積抵抗率が1.0×10Ω・cm以下である複合樹脂粒子。
The composite resin particles of the present embodiment have the following aspects.
A composite resin particle comprising PTFE derived from fine powder and a carbon nanomaterial, wherein the composite resin particle has a volume resistivity of 1.0 × 10 9 Ω · cm or less.

本実施形態の複合樹脂粒子のPTFEの含有量は、複合樹脂粒子100質量%に対して、98〜99.8質量%であることが好ましい。PTFEの含有量が前記下限値以上であれば、本実施形態の複合樹脂粒子の機械的強度、耐熱性、及びしなやかさ等が優れやすい。PTFEの含有量が前記上限値以下であれば、本実施形態の複合樹脂粒子の成形性が優れやすい。   The PTFE content of the composite resin particles of the present embodiment is preferably 98 to 99.8% by mass with respect to 100% by mass of the composite resin particles. If the content of PTFE is equal to or higher than the lower limit, the mechanical strength, heat resistance, flexibility and the like of the composite resin particles of this embodiment are likely to be excellent. If content of PTFE is below the said upper limit, the moldability of the composite resin particle of this embodiment will be easy to be excellent.

本実施形態の複合樹脂粒子のカーボンナノ材料の含有量は、複合樹脂粒子100質量%に対して、0.01〜0.5質量%であることが好ましい。カーボンナノ材料の含有量が前記下限値以上であれば、本実施形態の複合樹脂粒子の導電性が優れやすい。カーボンナノ材料の含有量が前記上限値以下であれば、本実施形態の複合樹脂粒子のPTFE由来の物性が損なわれにくい。なお、本実施形態の複合樹脂粒子は、任意成分として公知の分散剤等を含むことができる。   The content of the carbon nanomaterial in the composite resin particles of the present embodiment is preferably 0.01 to 0.5% by mass with respect to 100% by mass of the composite resin particles. When the content of the carbon nanomaterial is equal to or higher than the lower limit, the conductivity of the composite resin particle of the present embodiment is easily excellent. If content of a carbon nanomaterial is below the said upper limit, the physical property derived from PTFE of the composite resin particle of this embodiment will be hard to be impaired. In addition, the composite resin particle of this embodiment can contain a well-known dispersing agent etc. as an arbitrary component.

本実施形態の複合樹脂粒子の体積抵抗率は、1.0×10Ω・cm以下であり、10Ω・cm以下であることが好ましく、10Ω・cm以下であることがより好ましい。体積抵抗率が1.0×10Ω・cm以下であることにより、本実施形態の複合樹脂粒子から得られる成形体の導電性が優れやすい。 The volume resistivity of the composite resin particles of the present embodiment is 1.0 × 10 9 Ω · cm or less, preferably 10 7 Ω · cm or less, and more preferably 10 5 Ω · cm or less. . When the volume resistivity is 1.0 × 10 9 Ω · cm or less, the conductivity of the molded body obtained from the composite resin particles of the present embodiment is easily excellent.

本実施形態の複合樹脂粒子は、上述した本実施形態の「[複合樹脂粒子の製造方法]」の項の記載にしたがって製造することができる。   The composite resin particles of the present embodiment can be produced according to the description in the section “[Production method of composite resin particles]” of the present embodiment described above.

以上、本発明の実施形態について詳述したが、本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
たとえば、ケトン系溶媒には、本発明の効果を損なわない範囲であれば、水、及びアルコール系溶媒等の公知の溶媒が含まれていてもよい。
As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to this specific embodiment. Moreover, addition, omission, substitution, and other modifications of the configuration may be added to the present invention within the scope of the gist of the present invention described in the claims.
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the ketone solvent may contain known solvents such as water and alcohol solvents as long as the effects of the present invention are not impaired.

<実施例>
以下、本発明の効果について、実施例及び比較例によって詳細に説明する。なお、本発明は、以下の実施例の内容に限定されるものではない。
<Example>
Hereinafter, the effects of the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to the contents of the following examples.

<実施例1,2、比較例1>
まず、PTFEファインパウダー5gとMEK20gとをビーカーに入れ、ビーカーを氷浴してMEKの温度を10℃以下に保持しながら、マグネチックスターラーを用いて撹拌を行った。マグネチックスターラーで撹拌しながら、超音波分散機(MST社製「UH−50」)を出力50W、周波数20kHzの条件で用いて、表1に示すように各例の解砕時間を変更して、MEK中にPTFEファインパウダーを解砕し、MEK樹脂スラリーを作製した。
<Examples 1 and 2 and Comparative Example 1>
First, 5 g of PTFE fine powder and 20 g of MEK were placed in a beaker, and stirred using a magnetic stirrer while keeping the temperature of the MEK at 10 ° C. or lower by bathing the beaker. While stirring with a magnetic stirrer, using an ultrasonic disperser (“UH-50” manufactured by MST) under conditions of an output of 50 W and a frequency of 20 kHz, the crushing time of each example was changed as shown in Table 1. The PTFE fine powder was crushed in MEK to prepare a MEK resin slurry.

Figure 2019006963
Figure 2019006963

次に、CNT濃度が0.2質量%となるようにCNTをMEKに分散させたCNT分散液を調整した。上記の解砕工程で作製したMEK樹脂スラリーに当該CNT分散液を1.25g加えた。マグネチックスターラーを用いて10分間攪拌し、CNT複合樹脂スラリーを作製した。
CNT複合樹脂スラリー中のMEKを除去し、スラリーを乾燥させて複合樹脂粒子であるCNT複合フッ素樹脂粉末(CNT含有量0.05質量%)を得た。
実施例1,2で得られたCNT複合フッ素樹脂粉末について、複数の箇所で体積抵抗率を測定したところ、1.2×10〜6.7×10Ω・cmであった。
Next, a CNT dispersion liquid in which CNTs were dispersed in MEK so as to have a CNT concentration of 0.2% by mass was prepared. 1.25 g of the CNT dispersion was added to the MEK resin slurry prepared in the above crushing step. The mixture was stirred for 10 minutes using a magnetic stirrer to prepare a CNT composite resin slurry.
MEK in the CNT composite resin slurry was removed, and the slurry was dried to obtain CNT composite fluororesin powder (CNT content 0.05 mass%) as composite resin particles.
The volume resistivity of the CNT composite fluororesin powder obtained in Examples 1 and 2 was measured at a plurality of locations, and was 1.2 × 10 7 to 6.7 × 10 7 Ω · cm.

得られた複合樹脂粒子5gを金型充填し、成形機(三庄インダストリー社製「手動式5tonテーブルプレス」)によって徐々に加圧し、40MPaの圧力で1分間保ち、圧縮予備成形を行い、CNT複合フッ素樹脂成形体(φ30mm、厚さ3mm)を得た。   5 g of the obtained composite resin particles were filled in a mold, gradually pressurized by a molding machine (“manual 5 ton table press” manufactured by Sansho Industry Co., Ltd.), kept at a pressure of 40 MPa for 1 minute, and subjected to compression pre-molding. A composite fluororesin molded body (φ30 mm, thickness 3 mm) was obtained.

<比較例2>
氷浴を行わなかったこと以外は、実施例1と同様にして、CNT複合フッ素樹脂粉末を作製した。得られたCNT複合フッ素樹脂粉末は、繊維化したゲル状の塊と粉末状の粉に分かれた。
繊維化したサンプルも含めて金型に充填して圧縮予備成形を実施したが、金型から予備成形体が容易に外れない状態であった。予備成形体を無理矢理取り出して評価サンプルを得た。
<Comparative Example 2>
A CNT composite fluororesin powder was produced in the same manner as in Example 1 except that the ice bath was not performed. The obtained CNT composite fluororesin powder was divided into a fiberized gel lump and powdery powder.
Although compression molding was carried out by filling the mold including the fiberized sample, the preform was not easily detached from the mold. The preform was forcibly removed and an evaluation sample was obtained.

「体積抵抗率」
得られたCNT複合フッ素樹脂成形体、又は比較例2の成形体について体積抵抗率を以下の記載にしたがって測定した。
抵抗率計(三菱化学アナリテック社製「ロレスタGP MCP−T610型」、四端子法)を用いて体積抵抗率を測定した。測定結果を表1に示した。
"Volume resistivity"
The volume resistivity of the obtained CNT composite fluororesin molded product or the molded product of Comparative Example 2 was measured according to the following description.
The volume resistivity was measured using a resistivity meter (“Loresta GP MCP-T610 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd., four-terminal method). The measurement results are shown in Table 1.

「金型からの離形性」
金型による圧縮予備成形を行った後、金型から予備成形体が容易に外れたものを○、容易に外れなかったものを×と評価した。
"Releasability from mold"
After compression pre-molding with a mold, the case where the preform was easily removed from the mold was evaluated as ◯, and the case where it was not easily detached was evaluated as x.

「外観均一性」
得られたCNT複合フッ素樹脂成形体、又は比較例2の成形体について外観均一性を以下の記載にしたがって判定した。
目視による外観検査において大きさ1mm以上の樹脂凝集体個数が5.0個/cm以下であり、かつ、大きさ1mm以上のCNT凝集体個数が1.0個/cmであるものを良好と判定し、それ以外のものを不良と判定した。
"Appearance uniformity"
The appearance uniformity of the obtained CNT composite fluororesin molded product or the molded product of Comparative Example 2 was determined according to the following description.
In visual inspection, the number of resin aggregates having a size of 1 mm or more is 5.0 / cm 2 or less and the number of CNT aggregates having a size of 1 mm or more is 1.0 / cm 2 It was determined that it was not good.

表1に示すように、実施例1のCNT複合フッ素樹脂成形体の体積抵抗率は、1.39×10Ω・cm〜2.00×10Ω・cmであり、実施例2のCNT複合フッ素樹脂成形体の体積抵抗率は、1.63×10Ω・cm〜2.90×10Ω・cmであった。これに対して、比較例1のCNT複合フッ素樹脂成形体の体積抵抗率は、1.94×10Ω・cm〜8.12×10Ω・cmであり、体積抵抗率の数値の変動幅が大きかった。これにより、実施例1,2の複合樹脂粒子は、比較例1に比べてファインパウダーにCNTが均一に付着していることが示唆された。 As shown in Table 1, the volume resistivity of the CNT composite fluorine-containing resin molded article of Example 1 is 1.39 × 10 2 Ω · cm~2.00 × 10 2 Ω · cm, Example 2 CNT the volume resistivity of the composite fluorine-containing resin molded article was 1.63 × 10 2 Ω · cm~2.90 × 10 2 Ω · cm. On the other hand, the volume resistivity of the CNT composite fluororesin molded body of Comparative Example 1 is 1.94 × 10 2 Ω · cm to 8.12 × 10 3 Ω · cm, and the numerical value of the volume resistivity varies. The width was large. This suggested that the composite resin particles of Examples 1 and 2 had CNTs uniformly attached to the fine powder as compared with Comparative Example 1.

表1に示すように、実施例1,2のCNT複合フッ素樹脂成形体の外観均一性は良好であった。一方、比較例1,2のCNT複合フッ素樹脂成形体は、実施例1、2に比べると凝集体が目立ち、外観均一性は不良であった。比較例2では、繊維化したゲル状の塊がみられた。これより、比較例2のCNT複合フッ素樹脂成形体は、ファインパウダーの物性が損なわれていることが示唆された。   As shown in Table 1, the appearance uniformity of the CNT composite fluororesin molded bodies of Examples 1 and 2 was good. On the other hand, in the CNT composite fluororesin molded bodies of Comparative Examples 1 and 2, compared with Examples 1 and 2, the aggregates were conspicuous and the appearance uniformity was poor. In Comparative Example 2, a fiberized gel-like lump was observed. From this, it was suggested that the physical properties of the fine powder were impaired in the CNT composite fluororesin molded body of Comparative Example 2.

本発明の複合樹脂粒子の製造方法は、押出成形で使用する導電性フッ素樹脂の製造に適用される際に利用可能性が高い。かかる導電性フッ素樹脂は押出成形に利用され、半導体分野で帯電防止を目的として、利用される薬液チューブに用いられる。   The method for producing composite resin particles of the present invention is highly applicable when applied to the production of a conductive fluororesin used in extrusion molding. Such a conductive fluororesin is used for extrusion molding, and is used in a chemical solution tube used for the purpose of preventing electrification in the semiconductor field.

Claims (6)

乳化重合により得られるポリテトラフルオロエチレンを含むファインパウダーを、ケトン系溶媒の存在下で解砕する第一工程と、
解砕された前記ファインパウダーと、カーボンナノ材料と、を前記ケトン系溶媒に分散させて複合樹脂粒子分散液を得る第二工程と、
前記複合樹脂粒子分散液から前記ケトン系溶媒を除去して複合樹脂粒子を得る第三工程と、を含み、
前記第一工程で前記ファインパウダーの平均粒径を50μm以下に解砕するとともに、前記ケトン系溶媒の温度を20℃以下にすることを特徴とする複合樹脂粒子の製造方法。
A first step of crushing fine powder containing polytetrafluoroethylene obtained by emulsion polymerization in the presence of a ketone solvent;
A second step of obtaining a composite resin particle dispersion by dispersing the pulverized fine powder and the carbon nanomaterial in the ketone solvent;
A third step of removing the ketone solvent from the composite resin particle dispersion to obtain composite resin particles,
In the first step, the fine powder is crushed to an average particle size of 50 μm or less, and the temperature of the ketone solvent is set to 20 ° C. or less.
前記カーボンナノ材料の濃度が、前記カーボンナノ材料と前記ファインパウダーとの合計100質量%に対して0.01〜0.5質量%であることを特徴とする請求項1に記載の複合樹脂粒子の製造方法。   2. The composite resin particle according to claim 1, wherein the concentration of the carbon nanomaterial is 0.01 to 0.5% by mass with respect to 100% by mass in total of the carbon nanomaterial and the fine powder. Manufacturing method. 前記ケトン系溶媒がメチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、及びシクロヘキサノンからなる群より選ばれる少なくとも1つを含むことを特徴とする請求項1又は2に記載の複合樹脂粒子の製造方法。   The method for producing composite resin particles according to claim 1, wherein the ketone solvent contains at least one selected from the group consisting of methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, and cyclohexanone. 前記カーボンナノ材料がカーボンナノチューブであることを特徴とする請求項1〜3のいずれか一項に記載の複合樹脂粒子の製造方法。   The said carbon nanomaterial is a carbon nanotube, The manufacturing method of the composite resin particle as described in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれか一項に記載の複合樹脂粒子の製造方法で製造された複合樹脂粒子を用いて成形された樹脂成形体。   The resin molded object shape | molded using the composite resin particle manufactured with the manufacturing method of the composite resin particle as described in any one of Claims 1-4. 乳化重合により得られるポリテトラフルオロエチレンを含むファインパウダー由来のポリテトラフルオロエチレンと、カーボンナノ材料とを含む複合樹脂粒子であって、
当該複合樹脂粒子の体積抵抗率が1.0×10Ω・cm以下である複合樹脂粒子。
A composite resin particle comprising polytetrafluoroethylene derived from fine powder containing polytetrafluoroethylene obtained by emulsion polymerization, and a carbon nanomaterial,
Composite resin particles in which the volume resistivity of the composite resin particles is 1.0 × 10 9 Ω · cm or less.
JP2017126604A 2017-06-28 2017-06-28 Method for producing composite resin particles, resin molded body, and composite resin particles Expired - Fee Related JP6694412B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017126604A JP6694412B2 (en) 2017-06-28 2017-06-28 Method for producing composite resin particles, resin molded body, and composite resin particles
SG11201910909SA SG11201910909SA (en) 2017-06-28 2018-06-27 Method for producing composite resin particles, resin molded article, and composite resin particles
PCT/JP2018/024265 WO2019004235A1 (en) 2017-06-28 2018-06-27 Composite resin particle production method, resin molded article, and composite resin particles
KR1020197036405A KR20200022382A (en) 2017-06-28 2018-06-27 Method for producing composite resin particles, resin molded body and composite resin particles
TW107122089A TWI753180B (en) 2017-06-28 2018-06-27 A method for producing composite resin particle, resin molding, and composite resin particle
EP18825350.4A EP3647343A4 (en) 2017-06-28 2018-06-27 Composite resin particle production method, resin molded article, and composite resin particles
US16/616,645 US11149121B2 (en) 2017-06-28 2018-06-27 Method for producing composite resin particles, resin molded article, and composite resin particles
CN201880039952.0A CN110753716A (en) 2017-06-28 2018-06-27 Method for producing composite resin particles, resin molded article, and composite resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126604A JP6694412B2 (en) 2017-06-28 2017-06-28 Method for producing composite resin particles, resin molded body, and composite resin particles

Publications (2)

Publication Number Publication Date
JP2019006963A true JP2019006963A (en) 2019-01-17
JP6694412B2 JP6694412B2 (en) 2020-05-13

Family

ID=64741634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126604A Expired - Fee Related JP6694412B2 (en) 2017-06-28 2017-06-28 Method for producing composite resin particles, resin molded body, and composite resin particles

Country Status (8)

Country Link
US (1) US11149121B2 (en)
EP (1) EP3647343A4 (en)
JP (1) JP6694412B2 (en)
KR (1) KR20200022382A (en)
CN (1) CN110753716A (en)
SG (1) SG11201910909SA (en)
TW (1) TWI753180B (en)
WO (1) WO2019004235A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745608B (en) * 2020-12-29 2023-07-28 施柏德(厦门)科技有限公司 PTFE composite material with excellent uniformity and manufacturing process and application thereof
KR102598911B1 (en) * 2021-09-08 2023-11-09 주식회사 티엠시비앤티 A method for producing a bush lubricating coating agent, the bush lubricating coating agent thus prepared, and a lubricating coating film formed on the inner peripheral surface of the bush with the bush lubricating coating agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101430A (en) * 1986-10-17 1988-05-06 Nok Corp Production of fluorocarbon resin composite composition
JP2015030821A (en) * 2013-08-05 2015-02-16 大陽日酸株式会社 Composite resin particles, and method of producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284005B2 (en) 2001-04-02 2009-06-24 株式会社リコー Electrophotographic toner and method for producing the same
JP5968720B2 (en) * 2012-08-07 2016-08-10 大陽日酸株式会社 Method for producing composite resin material particles, and method for producing composite resin molded body
JP2015151543A (en) 2014-02-19 2015-08-24 株式会社サンケイ技研 Powder for paste extrusion molding and method for producing the same
US10414896B2 (en) * 2015-07-31 2019-09-17 Zeon Corporation Composite resin material, slurry, shaped composite resin material product, and slurry production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101430A (en) * 1986-10-17 1988-05-06 Nok Corp Production of fluorocarbon resin composite composition
JP2015030821A (en) * 2013-08-05 2015-02-16 大陽日酸株式会社 Composite resin particles, and method of producing the same

Also Published As

Publication number Publication date
KR20200022382A (en) 2020-03-03
SG11201910909SA (en) 2020-01-30
US20200199306A1 (en) 2020-06-25
EP3647343A1 (en) 2020-05-06
EP3647343A4 (en) 2021-03-03
TW201906900A (en) 2019-02-16
US11149121B2 (en) 2021-10-19
TWI753180B (en) 2022-01-21
JP6694412B2 (en) 2020-05-13
CN110753716A (en) 2020-02-04
WO2019004235A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
Li et al. Selective laser sintering 3D printing: A way to construct 3d electrically conductive segregated network in polymer matrix
Martone et al. Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites
JP6484348B2 (en) Uniform dispersion of graphene nanoparticles in the host
Chatterjee et al. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites
Liu et al. Electrical conductivity of carbon nanotube/poly (vinylidene fluoride) composites prepared by high-speed mechanical mixing
JP5968720B2 (en) Method for producing composite resin material particles, and method for producing composite resin molded body
CN102585335B (en) Method for preparing polyethylene/graphene conductive composite material
KR20150027146A (en) Composite material with a very low concentration of carbon nanofillers, production method thereof and uses of said material
TWI705103B (en) Composite resin material and molded article
JP2015030821A (en) Composite resin particles, and method of producing the same
WO2010147101A1 (en) Carbon nanotube-rich resin composition and method for producing same
US11149121B2 (en) Method for producing composite resin particles, resin molded article, and composite resin particles
Othman et al. Carbon nanotube hybrids and their polymer nanocomposites
JP2016056230A (en) Production method of carbon nanotube-containing resin composition, carbon nanotube-containing resin composition, and composite material
JP7050617B2 (en) Manufacturing method of composite resin particles, composite resin particles
CN111601770A (en) Agglomerated solid materials prepared from bulk carbon nanotubes
Park et al. Dispersion of multi-walled carbon nanotubes mechanically milled under different process conditions
Jagannathan et al. A Systematic Study on Mechanical Properties of CNT Reinforced HDPE Composites Developed Using 3D Printing.
JP7381498B2 (en) Composite secondary particles containing carbon nanotubes and their manufacturing method
Chirita et al. Mechanical Characterization of Graphite and Graphene/Vinyl-Ester Nanocomposite Using Three Point Bending Test
Adhikari et al. Reinforcement on properties of poly (vinyl alcohol) films by embedding functionalized carbon micro coils
Rahmandoust et al. CNT-based nanocomposites
Aziz et al. Effect of multi-wall carbon nanotubes on the properties of natural rubber nanocomposites
Novikov et al. ORY‐22
CN115558158A (en) Carbon nanotube pre-dispersed master batch and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6694412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees