JP2019005752A - One-end sealed type cylindrical ceramic substrate for separation membrane, and manufacturing method of the same - Google Patents

One-end sealed type cylindrical ceramic substrate for separation membrane, and manufacturing method of the same Download PDF

Info

Publication number
JP2019005752A
JP2019005752A JP2018187688A JP2018187688A JP2019005752A JP 2019005752 A JP2019005752 A JP 2019005752A JP 2018187688 A JP2018187688 A JP 2018187688A JP 2018187688 A JP2018187688 A JP 2018187688A JP 2019005752 A JP2019005752 A JP 2019005752A
Authority
JP
Japan
Prior art keywords
cylindrical
porous ceramic
separation membrane
sealing portion
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018187688A
Other languages
Japanese (ja)
Other versions
JP6653004B2 (en
Inventor
裕和 渡邉
Hirokazu Watanabe
裕和 渡邉
智一 江田
Tomokazu Eda
智一 江田
隆行 大橋
Takayuki Ohashi
隆行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2018187688A priority Critical patent/JP6653004B2/en
Publication of JP2019005752A publication Critical patent/JP2019005752A/en
Application granted granted Critical
Publication of JP6653004B2 publication Critical patent/JP6653004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/2627Extrusion dies using means for making hollow objects with transverse walls, e.g. hollow objects closed on all sides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Glass Compositions (AREA)

Abstract

To provide a one-end sealed type cylindrical ceramic substrate for a separation membrane which suppresses deterioration in separation performance of a separation membrane filter.SOLUTION: With a one-end sealed type cylindrical ceramic substrate 10 for a separation membrane, a dense glass layer 18 is formed on an outside surface of a sealing part 14 which is anchored on one-side opening of a cylindrical part 12 of a porous ceramic substrate 16 to seal the opening and in which a projection 20 having a fracture surface having a surface structure different from that of the cylindrical part 12 is formed. This configuration enables a defect-free uniform separation membrane to be formed on a surface of the one-end sealed type cylindrical ceramic substrate 10 for the separation membrane, thereby suppressing significant deterioration in separation performance of the separation membrane due to generation of local leaks or the like.SELECTED DRAWING: Figure 2

Description

本発明は、筒状の片方の端部が封止された片端封止型筒状セラミックスに関し、とりわけそれを用いた分離膜フィルターの分離性能の劣化を抑制する技術に関する。   The present invention relates to a one-end-sealed cylindrical ceramic in which one end of a cylinder is sealed, and more particularly to a technique for suppressing deterioration in separation performance of a separation membrane filter using the same.

固液分離、液体分離、気液分離、気体分離のために分離膜フィルターが広く使用されている。分離膜フィルターは、ガスまたは液体などの被処理流体中から分離対象成分のみを分離する機能を有するが、多くの場合それ自体のみでは機械的強度が小さい分離膜を上記被処理流体の透過性を有し、機械的強度を有する筒状の基材表面に担持したものである。特に、セラミックス多孔質基材にアルミナ、シリカ、ゼオライト、炭素などの分離膜として機能する無機多孔質膜が成膜された分離膜フィルターは、石油化学、食品化学、エネルギー産業の分野において、精密濾過(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、逆浸透膜(RO膜)、浸透気化膜(PV膜)、蒸気濾過膜(VP膜)などに使用されている。   Separation membrane filters are widely used for solid-liquid separation, liquid separation, gas-liquid separation, and gas separation. A separation membrane filter has a function of separating only components to be separated from a fluid to be treated such as a gas or a liquid, but in many cases, the separation membrane filter has a low mechanical strength by itself to improve the permeability of the fluid to be treated. And is carried on the surface of a cylindrical substrate having mechanical strength. In particular, separation membrane filters in which an inorganic porous membrane that functions as a separation membrane such as alumina, silica, zeolite, and carbon is formed on a ceramic porous substrate are used in the fields of petrochemistry, food chemistry, and energy industries. (MF membrane), ultrafiltration membrane (UF membrane), nanofiltration membrane (NF membrane), reverse osmosis membrane (RO membrane), pervaporation membrane (PV membrane), vapor filtration membrane (VP membrane), etc. Yes.

分離膜フィルターは、ガスまたは液体分離装置に、たとえば分離槽内から外部へ分離処理済み流体を回収する接合部材の一端部に接合されて使用されるところ、両端が開口の円筒状の基材に分離膜が担持された分離膜フィルターのガスまたは液体分離装置への接合においては、一方の開口縁と上記接合部材との一端部の接合に加えて、他方の開口をたとえば封止部材により気密に封止する必要があり、封止部の気密性が担保されなければ被処理流体の処理済み流体への混入などの恐れが高まる。そのため、分離装置への装着の際に接合部材との接合部の1か所を気密に封止することに留意すれば足りる、片側のみが開口の片端封止型多孔質筒状セラミックスが求められており、従来から様々な製造方法で製造された片端封止型多孔質筒状セラミックスが提案されている。これに対して、基材の円筒部と円筒部の片側の開口を封止する封止部とを押出成形法によって一体成形することにより得られる片端封止型筒状セラミックスが、特許文献1において提案されている。   The separation membrane filter is used in a gas or liquid separation device, for example, joined to one end of a joining member that collects the separated fluid from the inside of the separation tank to the outside. In joining a separation membrane filter carrying a separation membrane to a gas or liquid separation device, in addition to joining one opening edge and one end of the joining member, the other opening is made airtight by, for example, a sealing member. If it is necessary to seal, and the airtightness of the sealing portion is not ensured, there is an increased risk of mixing the fluid to be processed into the processed fluid. Therefore, it is sufficient to take care to hermetically seal one part of the joint with the joining member when mounted on the separation device, and there is a need for a one-end sealed porous cylindrical ceramic that is open only on one side. Conventionally, one-end-sealed porous cylindrical ceramics manufactured by various manufacturing methods have been proposed. On the other hand, Patent Document 1 discloses a one-end sealed cylindrical ceramic obtained by integrally forming a cylindrical portion of a base material and a sealing portion that seals an opening on one side of the cylindrical portion by an extrusion molding method. Proposed.

この特許文献1のたとえば図1では、円筒部の外周面形状を形成する口金と、円筒部の内周面形状を形成する、口金の内部の所定位置に設置される芯金と、封止部の内周面形状を形成する半球状部を先端に有し、芯金内部に摺動可能に設けられたピストンと、封止部の外周面形状を形成する半球状の凹面が口金の開口に対抗するように口金に対して着脱可能に設けられ、押し出された成形素地が封止部成形空間から外部へ排出される貫通孔を凹面に有する外型と、から構成される押出成形機を用いることにより成形された片端封止型筒状セラミックスが提案されている。上記押出成形機内に充填された成形素地の一部が外型の貫通孔を通じて封止部成形空間から排出されるまで成形素地が押し出された後に外型が外され、円筒部を所望長さとするためにピストンがその先端が芯金内部から離隔する方向へ摺動される。この簡易な押出成形機を用いた簡易な製法で、機械的な強度および高い気密性を有する、円筒部と封止部とが一体形成された片端封止型筒状セラミックスを連続的に大量生産することが可能となり、製造コストを引き下げることができる。   For example, in FIG. 1 of Patent Document 1, a base that forms the outer peripheral surface shape of the cylindrical portion, a core that is formed at the predetermined position inside the base, which forms the inner peripheral surface shape of the cylindrical portion, and a sealing portion The piston has a hemispherical portion that forms the inner peripheral surface shape of the inner end of the metal core and is slidably provided inside the metal core, and the hemispherical concave surface that forms the outer peripheral surface shape of the sealing portion is the opening of the base. An extrusion molding machine is used, which is provided so as to be detachable from the die so as to oppose, and has an outer mold having a through hole on the concave surface through which the extruded molding base is discharged from the sealing portion molding space to the outside. One-end-sealed cylindrical ceramics formed by this method have been proposed. After the molding base is pushed out until a part of the molding base filled in the extrusion molding machine is discharged from the sealing portion molding space through the through hole of the outer mold, the outer mold is removed, and the cylindrical portion has a desired length. Therefore, the piston is slid in the direction in which the tip is separated from the inside of the metal core. Continuous mass production of one-end sealed cylindrical ceramics with a cylindrical part and a sealing part integrally formed with a mechanical strength and high airtightness by a simple manufacturing method using this simple extruder This can reduce the manufacturing cost.

また、特許文献1の図2では、円筒部の外周面形状を形成する口金と、円筒部の内周面形状を形成する芯金と、封止部の内周面形状を形成する芯金の先端に設けられた半球状の多孔体から形成された先端型と、封止部の外周面形状を形成する半球状の凹面が口金の開口に対抗するように設けられた多孔体から成る外型とから構成され、多孔体の先端型および外型の凹面により構成される封止部形成空間と芯金内部に設けられた貫通孔および外型の凹面とは反対側の外部とにおいて、空気の流通が可能な押出成形機が用いられている。この押出成形機において、先ず、押出成形機内に充填された封止部を形成する成形素地の側すなわち封止部成形空間から芯金内部および外型外部方向へ空気が流通されるように吸引された状態で、押出成形機内の封止部成形空間へ成形素地が押し出される。次に、外型の外部方向から封止部成形空間へ向けて空気が流通されるように圧力がかけられた状態で外型が外される。最後に、芯金内部から先端型を通じて封止部を形成する成形素地方向へ空気が流通するように圧力がかけられて所望長さの円筒部とされた片端封止型筒状セラミックスが得られる。   Moreover, in FIG. 2 of patent document 1, the nozzle | cap | die which forms the outer peripheral surface shape of a cylindrical part, the metal core which forms the inner peripheral surface shape of a cylindrical part, and the metal core which forms the inner peripheral surface shape of a sealing part A tip mold formed from a hemispherical porous body provided at the tip, and an outer mold composed of a porous body provided so that the hemispherical concave surface forming the outer peripheral surface shape of the sealing portion opposes the opening of the die The sealing portion forming space composed of the tip of the porous body and the concave surface of the outer mold and the outside of the through hole provided inside the cored bar and the outer surface opposite to the concave surface of the outer mold, An extrusion molding machine capable of distribution is used. In this extrusion molding machine, first, air is sucked so that air flows from the side of the molding base forming the sealing portion filled in the extrusion molding machine, that is, from the sealing portion molding space to the inside of the core metal and the outside of the outer mold. In this state, the molding base is extruded into the sealing portion molding space in the extruder. Next, the outer mold is removed in a state where pressure is applied so that air flows from the outer direction of the outer mold toward the sealing portion molding space. Finally, pressure is applied so that air flows from the inside of the metal core toward the forming substrate forming the sealing portion through the tip die, thereby obtaining a one-end sealed cylindrical ceramic having a cylindrical portion of a desired length. .

特開平01−225506号公報Japanese Patent Laid-Open No. 01-225506

ところで、特許文献1の図1の片端封止型筒状セラミックスには、外型の貫通孔から成形素地が排出された状態で外型が口金から取り外される際に、貫通孔内部の成形素地がその一部を封止部に残して物理的に破断されることにより封止部の先端に破断面を有する突起が形成される。この封止部に残された突起の破断面は、円筒部および封止部の破断面以外の平滑な表面構造とは異なり粗い表面構造を有する。ここで、一般的にセラミック多孔質基材表面への分離膜の形成は、基材の表面構造および基材内部の細孔構造(気孔率、平均細孔径)に影響を受け、たとえば基材表面の一部が平滑ではないならば、その一部において均一な分離膜形成が局部的に妨げられる。そのため、特許文献1の図1の片端封止型筒状セラミックスは、封止部に形成された突起周辺において良好に分離膜形成を行うことができず、分離膜の局部的な漏れが発生する恐れがあることから、分離膜フィルター全体の性能劣化を生じる可能性があった。また、特許文献1の図2の片端封止型筒状セラミックスは、外型に貫通孔が形成されておらず、封止部に突起および表面構造の粗い破断面が形成されることはないが、成形素地が封止部成形空間へ押し出される際に封止部の先端付近を最高として局部的に高圧が加わるため、封止部の先端がそれ以外と比較して緻密な細孔構造となることから、その部分に良好に分離膜形成を行うことが困難であり、分離膜フィルター全体の性能劣化を生じる可能性があった。   By the way, in the one-end sealed cylindrical ceramics of FIG. 1 of Patent Document 1, when the outer mold is removed from the die in a state where the molding matrix is discharged from the outer mold through-hole, the molding matrix inside the through-hole is formed. A protrusion having a fractured surface is formed at the tip of the sealing portion by being physically broken while leaving a part of the sealing portion. Unlike the smooth surface structure other than the fracture surface of the cylindrical portion and the sealing portion, the fracture surface of the protrusion left on the sealing portion has a rough surface structure. Here, in general, the formation of a separation membrane on the surface of a ceramic porous substrate is affected by the surface structure of the substrate and the pore structure (porosity, average pore diameter) inside the substrate. If a part of the film is not smooth, uniform separation membrane formation is partially prevented in the part. For this reason, the one-end sealed cylindrical ceramic of FIG. 1 of Patent Document 1 cannot satisfactorily form a separation membrane around the protrusion formed on the sealing portion, and local leakage of the separation membrane occurs. Due to the fear, the performance of the entire separation membrane filter may be deteriorated. Further, in the one-end sealed cylindrical ceramics of FIG. 2 of Patent Document 1, a through hole is not formed in the outer mold, and a projection and a rough fracture surface of the surface structure are not formed in the sealed portion. When the molding substrate is pushed out into the sealing part molding space, a high pressure is locally applied with the vicinity of the tip of the sealing part being the highest, so that the tip of the sealing part has a dense pore structure as compared with the rest. For this reason, it is difficult to form a separation membrane satisfactorily at that portion, and the performance of the entire separation membrane filter may be deteriorated.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、分離膜フィルターの分離性能の劣化を抑制する分離膜用片端封止型筒状セラミックス基材を提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a single-side sealed cylindrical ceramic substrate for a separation membrane that suppresses the deterioration of the separation performance of the separation membrane filter. There is.

すなわち、本発明の要旨とするところは、(a)外側表面に分離膜が成膜される分離膜用片端封止型筒状セラミックス基材であって、(b)筒部と、該筒部の片側の開口に固着されて該開口を封止し、該筒部に対して表面構造または細孔構造が異なる部分を有する封止部とを備え、前記封止部の表面に破断面が局所的に形成されている多孔質セラミック基材と、(c)前記多孔質セラミック基材の熱膨張係数に対する熱膨張係数差が2×10−6/K未満である熱膨張係数を有するガラス層であって、前記封止部の表面に前記破断面を覆うように直接に又は平均細孔径が前記多孔質セラミック基材よりも小さいアルミナを主成分とする多孔質アルミナセラミック層を介して間接的に形成されたガラスを主成分とする緻密層と、を備えていることにある。 That is, the gist of the present invention is (a) a single-end-sealed cylindrical ceramic substrate for a separation membrane in which a separation membrane is formed on the outer surface, (b) a tubular portion and the tubular portion And a sealing portion having a portion having a surface structure or a pore structure different from that of the cylindrical portion, and having a fracture surface locally on the surface of the sealing portion. And (c) a glass layer having a coefficient of thermal expansion that is less than 2 × 10 −6 / K with respect to the coefficient of thermal expansion of the porous ceramic substrate. Either directly on the surface of the sealing portion so as to cover the fracture surface or indirectly through a porous alumina ceramic layer mainly composed of alumina whose average pore diameter is smaller than that of the porous ceramic substrate. A dense layer mainly composed of the formed glass. It is in.

本発明の分離膜用片端封止型筒状セラミックス基材によれば、多孔質セラミック基材の筒部の片側の開口に固着されて開口を封止し、筒部に対して表面構造または細孔構造が異なる部分を有する封止部の表面に、前記多孔質セラミック基材の熱膨張係数に対する熱膨張係数差が2×10−6/K未満である熱膨張係数を有するガラス層であって、前記封止部の表面に前記破断面を覆うように直接に又は平均細孔径が前記多孔質セラミック基材よりも小さいアルミナを主成分とする多孔質アルミナセラミック層を介して間接的に形成されたガラスを主成分とする緻密層が備えられている。このため、分離膜用片端封止型筒状セラミックス基材の表面全体に欠陥のない均一な分離膜を形成することが可能となり、局部的な分離膜のリークなどの発生による分離膜フィルターの著しい分離性能の劣化を抑制することが可能となる。 According to the single-end-sealed cylindrical ceramic substrate for separation membrane of the present invention, the opening is sealed by being fixed to the opening on one side of the cylindrical portion of the porous ceramic substrate, and the surface structure or fine structure is sealed to the cylindrical portion. A glass layer having a thermal expansion coefficient difference of less than 2 × 10 −6 / K on the surface of the sealing portion having a part having a different pore structure, the thermal expansion coefficient difference of the porous ceramic base material being less than 2 × 10 −6 / K. In addition, it is formed directly on the surface of the sealing portion so as to cover the fracture surface or indirectly through a porous alumina ceramic layer mainly composed of alumina whose average pore diameter is smaller than that of the porous ceramic base material. A dense layer mainly composed of glass is provided. For this reason, it becomes possible to form a uniform separation membrane having no defects over the entire surface of the single-end-sealed cylindrical ceramic substrate for separation membrane, and the separation membrane filter is significantly affected by the occurrence of local leakage of the separation membrane. It becomes possible to suppress degradation of the separation performance.

ここで、前記筒部に対して表面構造が異なる封止部とは、たとえば、押出成形により筒部と封止部とが一体成形されることにより形成された分離膜用片端封止型筒状セラミックス基材の形成工程において、外型が外される際に外型の貫通孔から排出された成形素地の一部が封止部に残されて形成される突起、および突起の破断面の表面構造が、押出成形により平滑に形成された筒部の表面構造に対して粗いことであり、表面粗さで評価される。表面粗さは、目的とする分離膜用片端封止型筒状セラミックス基材の筒部および封止部の表面を干渉顕微鏡、レーザー顕微鏡などにより測定される。また、前記筒部に対して細孔構造が異なる封止部とは、たとえば、筒部の片側に封止部を一体的に形成するために封止部形成空間へ成形素地が押出される際に、成形素地の逃げ場がないと、封止部の先端に局部的に高圧が付加されることにより、封止部の先端が筒部と比較して気孔率が小さく、平均細孔径が小さい緻密な性質となることである。   Here, the sealing portion having a surface structure different from that of the cylindrical portion is, for example, a single-end sealed cylindrical shape for a separation membrane formed by integrally forming the cylindrical portion and the sealing portion by extrusion molding. In the ceramic substrate forming process, when the outer mold is removed, a projection formed by leaving a part of the molding substrate discharged from the through hole of the outer mold in the sealing portion, and the surface of the fracture surface of the projection The structure is rough with respect to the surface structure of the cylindrical portion formed smoothly by extrusion molding, and is evaluated by the surface roughness. The surface roughness is measured with an interference microscope, a laser microscope, or the like on the surface of the cylinder part and the sealing part of the target single-sided sealed ceramic ceramic substrate for separation membrane. In addition, the sealing portion having a pore structure different from that of the cylindrical portion is, for example, when the molding base is extruded into the sealing portion forming space in order to integrally form the sealing portion on one side of the cylindrical portion. In addition, if there is no escape place for the molding substrate, a high pressure is locally applied to the tip of the sealing portion, so that the tip of the sealing portion has a smaller porosity and a smaller average pore diameter than the cylindrical portion. It becomes a natural property.

また、好適には、前記多孔質セラミック基材は、多層構造である。このため、たとえば、セラミックス層の内層よりも外層が緻密にされた多層構造の多孔質セラミック基材の封止部の表面に緻密層が形成されることにより、単層よりも分離性能が向上された分離膜用片端封止型筒状セラミックス基材とすることができる。   Preferably, the porous ceramic substrate has a multilayer structure. For this reason, for example, by forming a dense layer on the surface of the sealing portion of the porous ceramic base material having a multilayer structure in which the outer layer is more dense than the inner layer of the ceramic layer, the separation performance is improved as compared with the single layer. In addition, a single-end sealed cylindrical ceramic substrate for a separation membrane can be obtained.

また、好適には、前記多孔質セラミック基材が、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素のうちのいずれか1つを主成分として形成されている。このため、分離膜フィルターの分離性能を担保するのに適切な多孔性を有するとともに分離膜が成膜されるのに十分な機械的強度を有する分離膜用片端封止型筒状セラミックス基材を提供することができる。   Preferably, the porous ceramic base material is formed mainly of any one of alumina, zirconia, mullite, silica, titania, silicon nitride, and silicon carbide. For this reason, there is provided a single-end sealed cylindrical ceramic substrate for a separation membrane that has an appropriate porosity to ensure the separation performance of the separation membrane filter and has sufficient mechanical strength to form a separation membrane. Can be provided.

また、好適には、前記多孔質セラミック基材の熱膨張係数と前記ガラスを主成分とする前記緻密層の熱膨張係数との差が、1×10−6/K未満である。このため、前記多孔質セラミック基材の封止部の表面にガラスを主成分とする緻密層を形成するための焼成時において、ガラスのひび割れや多孔質セラミック基材からの剥離が抑制されることから、分離膜用片端封止型筒状セラミックス基材に分離膜が成膜されて成る分離膜フィルターの性能劣化を一層抑制することができる。 Preferably, the difference between the thermal expansion coefficient of the porous ceramic base material and the thermal expansion coefficient of the dense layer containing glass as a main component is less than 1 × 10 −6 / K. For this reason, during firing to form a dense layer mainly composed of glass on the surface of the sealing portion of the porous ceramic base material, cracking of the glass and peeling from the porous ceramic base material are suppressed. Therefore, it is possible to further suppress the deterioration of the performance of the separation membrane filter formed by forming the separation membrane on the single-end sealed cylindrical ceramic substrate for separation membrane.

また、好適には、前記ガラスの組成は、SiOを主成分とし、Al、TiO、ZrO、ZnO、B、Bi、アルカリ金属、アルカリ土類金属のいずれかを含むものである。このような組成のガラスの線熱膨張率は、多孔質セラミック基材の線熱膨張率との差が、2×10−6未満に調節され得るため、焼成時のガラスのひび割れや多孔質セラミック基材からの剥離が抑制されて、分離膜フィルターの性能劣化を一層抑制する分離膜用片端封止型筒状セラミックス基材を提供することができる。 Preferably, the composition of the glass is mainly composed of SiO 2 and is composed of Al 2 O 3 , TiO 2 , ZrO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , alkali metal, alkaline earth metal. One of them is included. The difference between the linear thermal expansion coefficient of the glass having such a composition and the linear thermal expansion coefficient of the porous ceramic base material can be adjusted to less than 2 × 10 −6. Separation from the base material is suppressed, and a single-end sealed cylindrical ceramic base material for a separation membrane that further suppresses performance deterioration of the separation membrane filter can be provided.

また、好適には、前記多孔質セラミック基材は、押出成形機の口金の開口が貫通孔を有する外型によって閉じられた状態で、前記筒部と前記封止部とが押出成形によって一体成形された後、前記外型が前記口金から取り外されることにより前記破断面が前記封止部の表面に局所的に形成される。このため、多孔質セラミック基材の筒部と封止部とを接合する工程が不要となる。これにより、円筒部と封止部との接合部分からの被処理流体の処理済み流体への漏れの発生をなくすことができ、また、筒部と封止部との境界の強度を担保することができる。   Preferably, the porous ceramic base material is integrally formed by extrusion molding with the cylindrical portion and the sealing portion in a state where the opening of the die of the extrusion molding machine is closed by an outer mold having a through hole. Then, the fracture surface is locally formed on the surface of the sealing portion by removing the outer mold from the die. For this reason, the process of joining the cylinder part and sealing part of a porous ceramic base material becomes unnecessary. Thereby, it is possible to eliminate the occurrence of leakage of the fluid to be processed from the joined portion between the cylindrical portion and the sealing portion to the processed fluid, and to ensure the strength of the boundary between the cylindrical portion and the sealing portion. Can do.

また、好適には、前記多孔質セラミック基材は、押出成形機の口金の開口が貫通孔を有する外型によって閉じられた状態で、前記多孔質セラミック基材の前記円筒部と前記封止部とが、内筒および外筒を設けた多重管の該内筒内部および該内筒と該外筒との間に、異なる性質のセラミックス成形原料を各別に供給して押出して、合流させることで一体成形する押出成形によって一体成形された後、前記外型が前記口金から取り外されることにより前記破断面が前記封止部の表面に局所的に形成される。このように構成された多孔質セラミック基材は、その多層構造の気孔率や平均細孔径が適切に調節されて、単層の多孔質セラミック基材を用いる場合よりも分離膜フィルターの分離性能を一層向上することができる。   Preferably, the porous ceramic base material has the cylindrical portion and the sealing portion of the porous ceramic base material in a state where the opening of the die of the extruder is closed by an outer mold having a through hole. And by feeding, extruding, and joining ceramic forming raw materials of different properties separately inside the inner tube of the multiple tube provided with the inner tube and the outer tube, and between the inner tube and the outer tube. After being integrally formed by extrusion molding, the outer mold is removed from the die, whereby the fracture surface is locally formed on the surface of the sealing portion. The porous ceramic base material configured in this way has the separation performance of the separation membrane filter better than that of using a single layer porous ceramic base material by appropriately adjusting the porosity and average pore diameter of the multilayer structure. This can be further improved.

また、好適には、前記多孔質セラミック基材の前記封止部とは反対側の端部には開口が形成され、前記開口が形成された端部の端面、および前記端面に隣接する内周面および外周面に前記ガラスを主成分とする緻密層と同様の緻密層が形成されている。このため、多孔質セラミック基材の開口の表面に形成された緻密層が接合剤として機能することにより、たとえば上記開口を封止する封止部材が接合されるため、封止部材による封止の際に開口側端部へ締付力を付与することが不要となりそれによる分離膜用片端封止型筒状セラミックス基材の破損を防ぐことができる。また、多孔質セラミック基材の熱膨張係数と緻密層の熱膨張係数との差が小さい場合には、多孔質セラミック基材の表面への分離膜形成工程における焼成時に、多孔質セラミック基材と封止部材との接合部においてガスや液体などの漏れの原因となる緻密体のひび割れなどを好適に防ぐことができ、分離膜フィルターの分離性能を一層向上することができる。   Preferably, an opening is formed at an end of the porous ceramic substrate opposite to the sealing portion, an end surface of the end where the opening is formed, and an inner periphery adjacent to the end surface A dense layer similar to the dense layer containing glass as a main component is formed on the surface and the outer peripheral surface. For this reason, since the dense layer formed on the surface of the opening of the porous ceramic base material functions as a bonding agent, for example, the sealing member that seals the opening is bonded. At this time, it is not necessary to apply a tightening force to the opening side end portion, and it is possible to prevent damage to the one-side sealed cylindrical ceramic substrate for the separation membrane. In addition, when the difference between the thermal expansion coefficient of the porous ceramic base material and the thermal expansion coefficient of the dense layer is small, the porous ceramic base material It is possible to suitably prevent cracking of a dense body that causes leakage of gas or liquid at the joint with the sealing member, and the separation performance of the separation membrane filter can be further improved.

また、好適には、前記多孔質セラミック基材の封止部とは反対側の端部に筒形状のセラミック緻密体が接合されている。このようにすれば、多孔質セラミック基材の開口の強度を損なうことなく、セラミック緻密体を介して封止部材を接合することができ、封止部材による封止の際に締付力を多孔質セラミック基材の開口側端部へ付与することが不要となりそれによる分離膜用片端封止型筒状セラミックス基材の破損を防ぐことができる。   Preferably, a cylindrical ceramic dense body is joined to an end of the porous ceramic base opposite to the sealing portion. In this way, the sealing member can be joined via the ceramic dense body without impairing the strength of the opening of the porous ceramic base material, and the tightening force can be increased when sealing with the sealing member. It becomes unnecessary to apply to the opening side end portion of the porous ceramic base material, thereby preventing the one-end sealed cylindrical ceramic base material for the separation membrane from being damaged.

本発明の一例の分離膜用片端封止型筒状セラミックス基材を示す斜示図である。It is a perspective view which shows the one end sealing type cylindrical ceramic base material for separation membranes of an example of this invention. 図1の分離膜用片端封止型筒状セラミックス基材の中心を通る平面上の断面図である。It is sectional drawing on the plane which passes along the center of the single-sided sealing type cylindrical ceramic base material for separation membranes of FIG. 図1の分離膜用片端封止型筒状セラミックス基材のプロセスチャートである。It is a process chart of the single-sided sealing type cylindrical ceramic base material for separation membranes of FIG. 図3の押出成形工程P2の成形素地充填工程を詳細に説明する押出成形機および成形素地の断面図である。FIG. 4 is a cross-sectional view of an extrusion molding machine and a molding substrate for explaining in detail a molding substrate filling process of the extrusion molding process P2 of FIG. 3. 図3の押出成形工程P2の外型脱離工程を詳細に説明する押出成形機の一部および成形素地の断面図である。FIG. 4 is a cross-sectional view of a part of an extrusion molding machine and a molding substrate for explaining in detail an outer mold detachment process of the extrusion molding process P2 of FIG. 3. 図3の押出成形工程P2の円筒部伸長工程を詳細に説明する押出成形機の一部および成形素地の断面図である。FIG. 4 is a cross-sectional view of a part of an extrusion molding machine and a molding base, which explain in detail a cylindrical portion extension step of the extrusion molding step P2 of FIG. 3. 図1の多孔質セラミック基材の円筒部の表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the cylindrical part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の突起以外の部分の表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of parts other than the protrusion of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の突起の表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the processus | protrusion of the sealing part of the porous ceramic base material of FIG. 図1および本発明の他の実施例における多孔質セラミック基材の封止部の外側表面に形成されるガラス層のガラス組成、ガラス層被覆時の焼成温度およびガラス層の線熱膨張係数である。FIG. 1 and the glass composition of the glass layer formed on the outer surface of the sealing portion of the porous ceramic substrate in another embodiment of the present invention, the firing temperature at the time of coating the glass layer, and the linear thermal expansion coefficient of the glass layer. . 図1および本発明の他の実施例における多孔質セラミック基材の線熱膨張係数を示す図である。It is a figure which shows the linear thermal expansion coefficient of the porous ceramic base material in FIG. 1 and the other Example of this invention. 図1および本発明の他の実施例における多孔質セラミック基材の封止部に形成されたガラス層の封止性評価試験を説明する図である。It is a figure explaining the sealing performance evaluation test of the glass layer formed in the sealing part of the porous ceramic base material in FIG. 1 and the other Example of this invention. 図1および本発明の他の実施例における多孔質セラミック基材に被覆されたガラス層の封止性評価試験の結果および多孔質セラミック基材とガラス層との線熱膨張係数の差を、実施例の多孔質セラミック基材に形成されたガラス層ごとに示した図である。The results of the sealing performance evaluation test of the glass layer coated on the porous ceramic substrate in FIG. 1 and other examples of the present invention and the difference in the linear thermal expansion coefficient between the porous ceramic substrate and the glass layer were carried out. It is the figure shown for every glass layer formed in the porous ceramic base material of an example. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Aの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer A formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Bの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer B formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Cの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer C formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Dの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer D formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Eの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer E formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Fの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer F formed in the surface of the sealing part of the porous ceramic base material of FIG. 図1の多孔質セラミック基材の封止部の表面に形成されたガラス層Gの表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the glass layer G formed in the surface of the sealing part of the porous ceramic base material of FIG. 封止部の表面にガラス層が形成されていない図1の多孔質セラミック基材上に成膜された分離膜の円筒部上における表面形状を示すSEM写真である。It is a SEM photograph which shows the surface shape on the cylindrical part of the separation membrane formed into a film on the porous ceramic base material of FIG. 1 in which the glass layer is not formed in the surface of the sealing part. 封止部の表面にガラス層が形成されていない図1の多孔質セラミック基材上に成膜されたゼオライト膜の突起上における表面形状を示すSEM写真である。It is a SEM photograph which shows the surface shape on the processus | protrusion of the zeolite membrane formed into a film on the porous ceramic base material of FIG. 1 in which the glass layer is not formed in the surface of the sealing part. 封止部の表面にガラス層Aが形成された図1の分離膜用片端封止型筒状セラミックス基材のガラス層Aの環状端面の境界におけるゼオライト膜の成膜状態を示すSEM写真である。It is a SEM photograph which shows the film-forming state of the zeolite membrane in the boundary of the cyclic | annular end surface of the glass layer A of the single-sided sealing type cylindrical ceramic base material for separation membranes of FIG. 1 in which the glass layer A was formed on the surface of the sealing part. . 本発明の他の実施例における二層構造の多孔質セラミック基材の中心を通る平面上の断面図である。It is sectional drawing on the plane which passes along the center of the porous ceramic base material of the two-layer structure in the other Example of this invention. 本発明の他の実施例における二層構造の多孔質セラミック基材の中心を通る平面上の断面図である。It is sectional drawing on the plane which passes along the center of the porous ceramic base material of the two-layer structure in the other Example of this invention. 図25の多孔質セラミック基材の押出成形工程を詳細に説明する押出成形機および成形素地の断面図である。FIG. 26 is a cross-sectional view of an extrusion molding machine and a molding substrate for explaining in detail an extrusion molding process of the porous ceramic substrate of FIG. 25. 本発明の他の実施例における多孔質セラミック基材の中心を通る平面上の断面図である。It is sectional drawing on the plane which passes along the center of the porous ceramic base material in the other Example of this invention. 図27の押出成形工程p2の成形素地充填工程を詳細に説明する押出成形機および成形素地の断面図である。FIG. 28 is a cross-sectional view of the extrusion molding machine and the molding substrate for explaining in detail the molding substrate filling process of the extrusion molding process p2 of FIG. 図27の押出成形工程p2の外型脱離工程を詳細に説明する押出成形機および成形素地の断面図である。FIG. 28 is a cross-sectional view of an extrusion molding machine and a molding substrate for explaining in detail an outer mold detachment process of the extrusion molding process p2 of FIG. 図27の押出成形工程p2の円筒部伸長工程を詳細に説明する押出成形機および成形素地の断面図である。FIG. 28 is a cross-sectional view of an extrusion molding machine and a molding substrate for explaining in detail a cylindrical portion extension step of the extrusion molding step p2 of FIG. 本発明の他の実施例における多孔質セラミック基材の開口側端部の表面にガラス層が形成された状態を示す断面図である。It is sectional drawing which shows the state in which the glass layer was formed in the surface of the opening side edge part of the porous ceramic base material in the other Example of this invention. 本発明の他の実施例における多孔質セラミック基材の開口側端部にセラミック緻密体が接合された状態を示す断面図である。It is sectional drawing which shows the state by which the ceramic dense body was joined to the opening side edge part of the porous ceramic base material in the other Example of this invention.

以下、本発明の分離膜フィルターに好適に用いられる片端封止型筒状セラミックス基材の一実施例について図面を参照して詳細に説明する。   Hereinafter, an example of a single-end-sealed cylindrical ceramic base material suitably used for the separation membrane filter of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一例である分離膜フィルター用片端封止型筒状セラミックス基材(以下、「筒状セラミックス」という。)10を示す斜示図である。図2は、筒状セラミックス10の幅方向の中心を通る平面上の断面図である。筒状セラミックス10は、断面が円形の円筒部12と、円筒部12の片側端部の開口を封止する半球状の外周面および内周面を有し、半球状内部空間を形成する封止部14とから成る多孔質セラミック基材16と、多孔質セラミック基材16の封止部14の外側表面を被覆する緻密層として機能するガラス層18とから構成されている。多孔質セラミック基材16の封止部14の先端には、表面粗さの小さい平滑な表面構造を有する円筒部12よりも表面粗さの大きい粗い表面構造を有する突起20が形成されている。多孔質セラミック基材16は、粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナ(Al)を主成分としており、円筒部12および封止部14が上記アルミナで形成された単層構造を有する。また、ガラス層18は、二酸化ケイ素(SiO)、Al、TiO、二酸化ジルコニウム(ZrO)、酸化亜鉛(ZnO)、三酸化二ホウ素(B)、Bi、アルカリ金属、アルカリ土類金属を主成分としている。また、ガラス層18の線熱膨張係数と多孔質セラミック基材16の線熱膨張係数との差の絶対値が2×10−6/K未満とされている。 FIG. 1 is a perspective view showing a single-end sealed tubular ceramic substrate (hereinafter referred to as “tubular ceramic”) 10 for a separation membrane filter as an example of the present invention. FIG. 2 is a cross-sectional view on a plane passing through the center of the cylindrical ceramic 10 in the width direction. The cylindrical ceramic 10 has a cylindrical portion 12 having a circular cross section, a hemispherical outer peripheral surface and an inner peripheral surface that seal the opening at one end of the cylindrical portion 12, and forms a hemispherical internal space. The porous ceramic base material 16 which consists of the part 14 and the glass layer 18 which functions as a dense layer which coat | covers the outer surface of the sealing part 14 of the porous ceramic base material 16 are comprised. A protrusion 20 having a rough surface structure with a larger surface roughness than that of the cylindrical portion 12 having a smooth surface structure with a small surface roughness is formed at the tip of the sealing portion 14 of the porous ceramic substrate 16. The porous ceramic base material 16 is mainly composed of alumina (Al 2 O 3 ) having a particle size of 0.2 to 4.5 μm (average particle size 0.7 μm), and the cylindrical portion 12 and the sealing portion 14 are made of the above alumina. It has a single layer structure formed by The glass layer 18 is made of silicon dioxide (SiO 2 ), Al 2 O 3 , TiO 2 , zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), diboron trioxide (B 2 O 3 ), Bi 2 O 3. The main component is alkali metal or alkaline earth metal. Further, the absolute value of the difference between the linear thermal expansion coefficient of the glass layer 18 and the linear thermal expansion coefficient of the porous ceramic substrate 16 is less than 2 × 10 −6 / K.

次に、筒状セラミックス10の製造工程の一例を図3のプロセスチャートを参照して説明する。混練工程P1では、多孔質セラミック基材16の主成分である粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナ(Al)粉末にたとえばメチルセルロース系バインダなどの成形助剤および水が加えられて混合され混練されることにより、成形素地が調整される。押出成形工程P2では、上記成形素地が押出成形機により押し出されて押出方向の片側が封止されるように成形された片端封止型グリーン成形体が得られる。乾燥、焼成工程P3では、上記片端封止型グリーン成形体が乾燥された後に1250℃で2時間焼成されることにより、平均細孔径0.15μm、気孔率38%の単層構造の多孔質セラミック基材16が得られる。次いで、工程P4から工程P7において、工程P3までで得られる多孔質セラミック基材16の封止部の外側表面に緻密なガラス層18が被覆される。先ず、ガラス層18と同組成となるように二酸化ケイ素などのガラス原料が混合された後、溶融、冷却されることにより、均一化されたガラスが得られる。混合工程P4では、このガラスを粉砕することにより得られる平均粒径1〜5μmのガラスフリットにトルエン、水などの溶媒と、必要に応じて有機バインダ、分散剤、消泡剤が添加され、撹拌混合されてガラススラリーが調整される。ディップ工程P5では、このガラススラリーに多孔質セラミック基材16の封止部14が10秒間浸漬(ディッピング)された後に引きあげられる。乾燥工程P6では、浸漬された多孔質セラミック基材16がたとえば1時間自然乾燥され、多孔質セラミック基材16の封止部の外周側表面がガラス層18を構成するガラスフリットにより被覆される。焼成工程P7では、工程P6を経た多孔質セラミック基材16が800℃〜950℃で1時間焼成され、多孔質セラミック基材16の封止部14の外周側表面が上記ガラスフリットが溶融したガラス層18により被覆された筒状セラミックス10が得られる。 Next, an example of the manufacturing process of the cylindrical ceramic 10 will be described with reference to the process chart of FIG. In the kneading step P1, an alumina (Al 2 O 3 ) powder having a particle size of 0.2 to 4.5 μm (average particle size of 0.7 μm), which is a main component of the porous ceramic base material 16, is molded, for example, with a methylcellulose binder. An auxiliary material and water are added, mixed and kneaded to adjust the molding substrate. In the extrusion molding step P2, a one-end sealed green molded body is obtained in which the molding base is extruded by an extruder and sealed on one side in the extrusion direction. In the drying and firing step P3, the single-end sealed green molded body is dried and then fired at 1250 ° C. for 2 hours, whereby a porous ceramic having a single layer structure having an average pore diameter of 0.15 μm and a porosity of 38% A substrate 16 is obtained. Next, in Step P4 to Step P7, a dense glass layer 18 is coated on the outer surface of the sealing portion of the porous ceramic base material 16 obtained in Step P3. First, a glass material such as silicon dioxide is mixed so as to have the same composition as the glass layer 18, and then melted and cooled to obtain a uniform glass. In the mixing step P4, a solvent such as toluene and water and, if necessary, an organic binder, a dispersant, and an antifoaming agent are added to a glass frit having an average particle diameter of 1 to 5 μm obtained by pulverizing the glass, followed by stirring. The glass slurry is adjusted by mixing. In the dipping step P5, the sealing portion 14 of the porous ceramic base material 16 is dipped in the glass slurry for 10 seconds and then pulled up. In the drying step P <b> 6, the immersed porous ceramic substrate 16 is naturally dried for 1 hour, for example, and the outer peripheral surface of the sealing portion of the porous ceramic substrate 16 is covered with the glass frit constituting the glass layer 18. In the firing step P7, the porous ceramic base material 16 that has undergone the process P6 is fired at 800 ° C. to 950 ° C. for 1 hour, and the outer peripheral surface of the sealing portion 14 of the porous ceramic base material 16 is melted with the glass frit. The cylindrical ceramics 10 covered with the layer 18 is obtained.

次に、焼成されて多孔質セラミック基材16となる片端封止型筒状グリーン成形体を成形するための押出成形工程P2中の成形素地充填工程、外型脱離工程および円筒部伸長工程を図4、図5および図6のそれぞれを用いて詳細に説明する。図4に示されるように、片端封止型筒状グリーン成形体を押出成形するための押出成形機22は、多孔質セラミック基材16の円筒部12の外周面形状を形成する口金24と、口金24の内部の所定位置に設置され、円筒部12の内周面形状を形成する芯金26と、封止部14の内周面形状を形成する半球状部28を先端に有し、芯金26内部に摺動可能に設けられたピストン30と、封止部14の外周面形状を形成する半球状の凹部32が口金24の開口に対抗するように口金24に対して着脱可能に設けられ、押し出された成形素地Pが封止部成形空間33から外部へ排出される貫通孔34を凹部32に有する外型36と、から構成される。ピストン30は、芯金26内部空間から空気圧が供給されるための空気孔40を備えており、芯金26内部から空気孔40を通じて空気圧が供給されてピストン30の半球状部28が芯金26から離隔する方向へ押し出されるように芯金26内部に摺動可能に設けられている。また、芯金26は、その口金24の開口側端部が芯金26内部方向へ突き出すように形成された段部42を備えており、ピストン30の半球状部28とは反対側の端部に設けられたストッパ44が段部42に当接されることによりピストン30の摺動を規制する。成形素地充填工程では、成形素地Pが、その一部が外型36の貫通孔34を通じて封止部成形空間33から押出成形機22外部に排出されるまで図の矢印方向に押出成形機22内部に押し出され、充填される。次に、図5に示される外型離脱工程では、外型36が口金24から取り外される。このとき、貫通孔34内部の成形素地Pがその一部を封止部14を形取る成形素地Pに残して物理的に破断されることにより封止部14の先端に破断面を有する突起20が形成される。なお、物理的な破断が起こる場所によっては突起29が形成されないこともあるが、いずれにしても封止部14の先端には円筒部12よりも粗い表面構造の破断面が形成されてしまう。最後に、図6に示される円筒部伸長工程では、芯金26内部から空気が供給されてピストン30の半球状部28が芯金26から離隔する方向へ摺動されて封止部14を形取る成形素地Pを押しだすことにより、円筒部12を形取る成形素地Pが伸長される。以上の押出成形工程P2により、多孔質セラミック基材16の円筒部12および封止部14が一体成形され、以後の工程において円筒部の片側の開口に一体的に固着されて開口を封止する封止部の外側表面にガラス層18が形成されて片端封止型筒状セラミックス10が構成される。   Next, a forming body filling step, an outer die detaching step, and a cylindrical portion extending step in the extrusion molding step P2 for forming a one-end sealed cylindrical green molded body that is fired to become the porous ceramic substrate 16 are performed. This will be described in detail with reference to FIGS. 4, 5, and 6. As shown in FIG. 4, an extrusion molding machine 22 for extruding a one-end sealed cylindrical green molded body includes a die 24 that forms the outer peripheral surface shape of the cylindrical portion 12 of the porous ceramic substrate 16, and A core metal 26 that is installed at a predetermined position inside the base 24 and forms the inner peripheral surface shape of the cylindrical portion 12, and a hemispherical portion 28 that forms the inner peripheral surface shape of the sealing portion 14 are provided at the tip. A piston 30 slidably provided inside the metal 26 and a hemispherical concave portion 32 forming the outer peripheral surface shape of the sealing part 14 are detachably provided on the base 24 so as to oppose the opening of the base 24. The molded body P thus extruded is constituted by an outer mold 36 having a through hole 34 in the recess 32 through which the molded body P is discharged from the sealing portion molding space 33 to the outside. The piston 30 includes an air hole 40 through which air pressure is supplied from the inner space of the core metal 26, and air pressure is supplied from the inside of the core metal 26 through the air hole 40, so that the hemispherical portion 28 of the piston 30 becomes the core metal 26. It is slidably provided inside the cored bar 26 so as to be pushed away from the core. The cored bar 26 includes a stepped part 42 formed so that the opening side end of the base 24 protrudes toward the inside of the cored bar 26, and the end of the piston 30 opposite to the hemispherical part 28. A stopper 44 provided on the piston 30 abuts against the step portion 42 to restrict the sliding of the piston 30. In the molding substrate filling process, the molding substrate P is moved in the direction of the arrow in the direction of the arrow until a part of the molding substrate P is discharged from the sealing portion molding space 33 to the outside of the extruder 22 through the through hole 34 of the outer mold 36. Extruded and filled. Next, in the outer mold removing step shown in FIG. 5, the outer mold 36 is removed from the base 24. At this time, the molding base P inside the through hole 34 is physically broken while leaving a part of the molding base P forming the sealing portion 14, whereby the projection 20 having a fracture surface at the tip of the sealing portion 14. Is formed. Note that the protrusion 29 may not be formed depending on the location where physical breakage occurs, but in any case, a fracture surface having a rougher surface structure than the cylindrical portion 12 is formed at the tip of the sealing portion 14. Finally, in the cylindrical portion extending step shown in FIG. 6, air is supplied from the inside of the core metal 26, and the hemispherical portion 28 of the piston 30 is slid away from the core metal 26 to form the sealing portion 14. By extruding the forming base P to be taken, the forming base P for forming the cylindrical portion 12 is extended. Through the extrusion process P2 described above, the cylindrical portion 12 and the sealing portion 14 of the porous ceramic base material 16 are integrally formed, and in the subsequent steps, are integrally fixed to the opening on one side of the cylindrical portion to seal the opening. A glass layer 18 is formed on the outer surface of the sealing portion to form a one-end sealed cylindrical ceramic 10.

このように押出成形機22により円筒部および封止部が一体成形され、乾燥、焼成工程P3を経て得られる多孔質セラミック基材16の表面構造を走査型電子顕微鏡(SEM)により倍率500倍で観察した。図7は、筒状セラミックス10の円筒部12の表面構造を示すSEM写真であり、図8は、筒状セラミックス10の封止部14の突起20以外の部分の表面構造を示すSEM写真であり、図9は、筒状セラミックス10の封止部14の突起20の表面構造を示すSEM写真である。図7および図8に示されるように、円筒部12および封止部14の突起20以外の部分の表面構造は平滑である。一方、図9に示されるように、封止部14の突起20は、外型36の貫通孔34から排出された成形素地Pが外型36が口金24から取り外される際に物理的に破断されて形成されるものであり、円筒部12と比較して平滑ではない。このため、多孔質セラミック基材16の封止部14の一部である突起20および突起20の表面構造の円筒部12と比較しての不平滑性から、多孔質セラミック基材16の外側表面へ分離膜を形成する際、突起20にて均一な膜形成が局部的に妨げられ、分離膜フィルターの基材として用いられる場合には分離性能の劣化を発生させる恐れがあった。このことから、筒状セラミックス10には、多孔質セラミック基材16の突起20を覆うように封止部14の外周側表面にガラス層18が形成されている。   In this way, the cylindrical portion and the sealing portion are integrally formed by the extruder 22 and the surface structure of the porous ceramic base material 16 obtained through the drying and firing step P3 is magnified 500 times with a scanning electron microscope (SEM). Observed. FIG. 7 is an SEM photograph showing the surface structure of the cylindrical portion 12 of the cylindrical ceramic 10, and FIG. 8 is an SEM photograph showing the surface structure of a portion other than the protrusion 20 of the sealing portion 14 of the cylindrical ceramic 10. FIG. 9 is an SEM photograph showing the surface structure of the protrusion 20 of the sealing portion 14 of the cylindrical ceramic 10. As shown in FIGS. 7 and 8, the surface structure of the cylindrical portion 12 and the portion other than the protrusion 20 of the sealing portion 14 is smooth. On the other hand, as shown in FIG. 9, the protrusion 20 of the sealing portion 14 is physically broken when the molding base P discharged from the through hole 34 of the outer mold 36 is removed from the base 24. Compared to the cylindrical portion 12, it is not smooth. For this reason, from the non-smoothness compared with the projection 20 which is a part of the sealing portion 14 of the porous ceramic substrate 16 and the cylindrical portion 12 of the surface structure of the projection 20, the outer surface of the porous ceramic substrate 16 When forming a separation membrane, uniform film formation is locally hindered by the protrusions 20, and when used as a base material for a separation membrane filter, there is a possibility that degradation of separation performance may occur. Therefore, a glass layer 18 is formed on the outer peripheral side surface of the sealing portion 14 in the cylindrical ceramic 10 so as to cover the protrusions 20 of the porous ceramic base material 16.

このように構成された筒状セラミックス10は、その封止部14の外周側表面に、たとえば図10に示す、二酸化ケイ素(SiO)、Al、TiO、二酸化ジルコニウム(ZrO)、酸化亜鉛(ZnO)、三酸化二ホウ素(B)、Bi、アルカリ金属、アルカリ土類金属を主成分とするガラス層18が形成されているため、筒状セラミックス10の表面に欠陥のない均一な分離膜を形成することが可能となり、局部的な分離膜のリークなどの発生による分離膜フィルターの著しい分離性能の劣化を抑制することが可能となる。また、多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差の絶対値が2×10−6/K未満であるため、800℃から950℃における焼成工程P7においても、ガラス層18のひび割れやガラス層18の多孔質セラミック基材16の内周側表面からの剥離が生じない。このため、分離膜フィルターの分離性能の低下が一層抑制される。 Cylindrical ceramics 10 configured in this manner has, for example, silicon dioxide (SiO 2 ), Al 2 O 3 , TiO 2 , zirconium dioxide (ZrO 2 ) shown in FIG. Since the glass layer 18 mainly composed of zinc oxide (ZnO), diboron trioxide (B 2 O 3 ), Bi 2 O 3 , alkali metal, and alkaline earth metal is formed, the cylindrical ceramic 10 It is possible to form a uniform separation membrane having no defects on the surface, and it is possible to suppress a significant deterioration in separation performance of the separation membrane filter due to occurrence of a local separation membrane leak or the like. Moreover, since the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layer 18 is less than 2 × 10 −6 / K, the firing step P7 at 800 ° C. to 950 ° C. In this case, the crack of the glass layer 18 and the peeling of the glass layer 18 from the inner peripheral surface of the porous ceramic substrate 16 do not occur. For this reason, the fall of the separation performance of a separation membrane filter is suppressed further.

続いて、筒状セラミックス10の封止部14の外周側表面に被覆されたガラス層18の効果を検証するために本発明者等が行った試験について図10から図23に基づいて詳細に説明する。   Subsequently, a test conducted by the present inventors in order to verify the effect of the glass layer 18 coated on the outer peripheral side surface of the sealing portion 14 of the cylindrical ceramic 10 will be described in detail with reference to FIGS. 10 to 23. To do.

先ず、多孔質セラミック基材16の封止部14の外側表面に形成されたガラス層18の封止性を評価するため、多孔質セラミック基材16の封止部14の外側表面を被覆するガラスの組成を種々変えて封止性評価試験に供する筒状セラミックスを以下のように準備した。先ず、多孔質セラミック基材16の封止部14の外側表面を被覆するガラスAからガラスGのガラスフリットを調整した。すなわち、図10に示されるようなガラスAからGの各ガラス組成となるように、予め各ガラス原料が混合、溶融されて均一化されたガラスを粉砕し、平均粒径1〜5μmのガラスAからガラスGの各組成を有するガラスフリットとした。このガラスフリットを用いて前記混合工程P4と同様の方法で調整したガラスAからGのガラススラリーに、前記ディップ工程P5において多孔質セラミック基材16の封止部14を10秒間浸漬した後に、前記乾燥工程P6、図10に示されるガラスAからGの各ガラスの被覆時の焼成温度により前記焼成工程P7を実行した。これらの工程により、ガラスAからGによりアルミナを主成分とする多孔質セラミック基材16の封止部14が被覆された、封止性試験に供する筒状セラミックスを作製した。   First, in order to evaluate the sealing performance of the glass layer 18 formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16, glass that covers the outer surface of the sealing portion 14 of the porous ceramic base material 16. Cylindrical ceramics to be subjected to a sealing property evaluation test with various compositions were prepared as follows. First, the glass frit of the glass G from the glass A which coat | covers the outer surface of the sealing part 14 of the porous ceramic base material 16 was adjusted. That is, the glass A having an average particle diameter of 1 to 5 μm is pulverized by mixing, melting, and homogenizing the glass raw materials in advance so that the glass compositions of glass A to G as shown in FIG. 10 are obtained. To glass frit having each composition of glass G. After immersing the sealing portion 14 of the porous ceramic base material 16 in the dip step P5 for 10 seconds in the glass slurry of glasses A to G prepared by the same method as the mixing step P4 using the glass frit, The said baking process P7 was performed by the drying process P6 and the baking temperature at the time of the coating of each glass of Glass A to G shown by FIG. Through these steps, cylindrical ceramics for use in a sealing test in which the sealing portion 14 of the porous ceramic base material 16 mainly composed of alumina was coated with the glasses A to G were produced.

作製した筒状セラミックスの多孔質セラミック基材16の封止部14の外側表面を被覆するガラスAからGのガラス層の線熱膨張係数を以下のように測定した。前記ガラスAからGの各ガラスのガラスフリットを直径約5mm、長さ10〜20mmの円柱状に成形した後に焼成し、ガラス試験片を形成した。この作製したガラス試験片を示差熱膨張計(TMA8310 Rigaku製)に供して、ガラス試験片の圧縮荷重法による30℃から500℃の平均線熱膨張係数を測定し、ガラスAからGの線熱膨張係数を図10のように評価した。   The linear thermal expansion coefficients of the glass layers A to G covering the outer surface of the sealing portion 14 of the produced porous ceramic substrate 16 of the cylindrical ceramic were measured as follows. The glass frit of each of the glasses A to G was formed into a cylindrical shape having a diameter of about 5 mm and a length of 10 to 20 mm and then baked to form a glass test piece. The produced glass test piece was subjected to a differential thermal dilatometer (manufactured by TMA8310 Rigaku), the average linear thermal expansion coefficient of 30 ° C. to 500 ° C. was measured by the compression load method of the glass test piece, and the linear heat from glass A to G The expansion coefficient was evaluated as shown in FIG.

また、作製した筒状セラミックスの多孔質セラミック基材16の線熱膨張係数を以下のように測定した。混練工程P1、押出成形工程P2および乾燥、焼成工程P3により、多孔質セラミック基材16が形成される粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナを主成分として、外径5mm、内径3mm、長さ10〜20mmの円筒状の多孔質セラミック試験片を作製した。作製した多孔質セラミック試験片を示差熱膨張計(TMA8310 Rigaku製)に供して、多孔質セラミック試験片の圧縮荷重法による30℃から500℃の平均線熱膨張係数を測定し、多孔質セラミック基材16の線熱膨張係数を図11のように評価した。   Moreover, the linear thermal expansion coefficient of the produced porous ceramic base material 16 of the cylindrical ceramic was measured as follows. The main component is alumina having a particle size of 0.2 to 4.5 μm (average particle size 0.7 μm) from which the porous ceramic substrate 16 is formed by the kneading step P1, the extrusion step P2 and the drying and firing step P3. Cylindrical porous ceramic test pieces having an outer diameter of 5 mm, an inner diameter of 3 mm, and a length of 10 to 20 mm were produced. The produced porous ceramic test piece is subjected to a differential thermal dilatometer (manufactured by TMA8310 Rigaku), and the average linear thermal expansion coefficient of the porous ceramic test piece is measured from 30 ° C. to 500 ° C. by the compression load method. The linear thermal expansion coefficient of the material 16 was evaluated as shown in FIG.

図12は、筒状セラミックスの多孔質セラミック基材16の封止部14に形成されたガラスAからGのガラス層の封止性評価試験を説明する図である。封止部14以外の外側表面がエポキシ樹脂で被覆されるとともに、封止部14と反対側の端部の開口がステンレス管46が挿し通されたステンレス製の治具48を用いてエポキシ樹脂50で封止された筒状セラミックスを、耐圧容器52内にステンレス管46の一端部の開口が耐圧容器52外部と練通された状態で、設置した。常温において、外圧との差圧が0.3MPaとなるように筒状セラミックスの外表面から窒素(N)ガスを0.4MPaで加圧し、ステンレス管46内部を通り、耐圧容器52外部へ抜けるNガスリーク量を測定することによる封止性評価を行った。 FIG. 12 is a diagram for explaining a sealing property evaluation test of glass layers A to G formed on the sealing portion 14 of the porous ceramic base material 16 made of cylindrical ceramics. The outer surface other than the sealing portion 14 is covered with an epoxy resin, and an epoxy resin 50 is used by using a stainless steel jig 48 into which an opening at the end opposite to the sealing portion 14 is inserted. The cylindrical ceramics sealed with was installed in the pressure vessel 52 in a state where the opening at one end of the stainless steel tube 46 was kneaded with the outside of the pressure vessel 52. At room temperature, nitrogen (N 2 ) gas is pressurized at 0.4 MPa from the outer surface of the cylindrical ceramic so that the differential pressure from the external pressure becomes 0.3 MPa, passes through the inside of the stainless steel tube 46, and goes out of the pressure vessel 52. The sealing performance was evaluated by measuring the amount of N 2 gas leak.

図13は、筒状セラミックスのガラスAからGのガラス層の上記封止性評価試験の結果および多孔質セラミック基材16とガラス層との線熱膨張係数の差を、筒状セラミックスに形成されたガラス層ごとに示した図である。下段は、多孔質セラミック基材16とガラスAからGにより構成される各ガラス層の500℃における線熱膨張係数(×10−6/K)の差の絶対値であり、すなわち図10のガラスAからGのガラス層の線熱膨張係数と図11の多孔質セラミック基材16の線熱膨張係数との差の絶対値を示している。また、上段における○印は、ガスリークが生じていないことを示し、それに対して、×印はガスリークが生じていることを示している。 FIG. 13 shows the result of the above-described sealing property evaluation test for the glass layers A to G of the cylindrical ceramics and the difference in the linear thermal expansion coefficient between the porous ceramic base material 16 and the glass layer. It is the figure shown for every glass layer. The lower row is the absolute value of the difference in linear thermal expansion coefficient (× 10 −6 / K) at 500 ° C. of each glass layer composed of the porous ceramic substrate 16 and the glasses A to G, that is, the glass of FIG. The absolute value of the difference of the linear thermal expansion coefficient of the glass layer of A to G and the linear thermal expansion coefficient of the porous ceramic base material 16 of FIG. 11 is shown. In the upper part, a circle indicates that no gas leak has occurred, while a cross indicates that a gas leak has occurred.

また、上記封止性評価試験に供した筒状セラミックスのガラスAからGのガラス層の表面状態をSEMにより観察した。図14は、封止部14の外側表面がガラスAのガラス層により被覆された筒状セラミックスのガラス層の表面状態を示すSEM写真である。また同様に、図15から図20の各図は、ガラスB、ガラスC、ガラスD、ガラスE、ガラスFおよびガラスGのそれぞれのガラス層により封止部14が被覆された筒状セラミックスのそれぞれのガラス層の表面状態を示すSEM写真である。   Moreover, the surface state of the glass layer of the cylindrical ceramics glass A to G used for the said sealing property evaluation test was observed by SEM. FIG. 14 is an SEM photograph showing the surface state of the glass layer of cylindrical ceramics in which the outer surface of the sealing portion 14 is covered with the glass layer of glass A. Similarly, each of FIGS. 15 to 20 shows the cylindrical ceramics in which the sealing portion 14 is covered with the glass layers of glass B, glass C, glass D, glass E, glass F, and glass G, respectively. It is a SEM photograph which shows the surface state of this glass layer.

図13において、筒状セラミックス10に求められる、500℃における線熱膨張係数が7.1×10−6/℃である多孔質セラミック基材16との線熱膨張係数の差の絶対値が2.0×10−6/℃よりも小さくなるような線熱膨張係数を有するガラスA、B、C、D、Fのガラス層18により多孔質セラミック基材16の封止部14の外側表面が被覆された筒状セラミックス10においては、ガスリークが観察されなかった。これらガスリークが観察されなかったガラスA、B、C、D、Fが封止部14の外側表面に形成された筒状セラミックス10のガラス層18の表面において、ガスリークの原因となるひびなどは観察されなかった。一方、筒状セラミックス10に求められる、500℃における線熱膨張係数が7.1×10−6/℃である多孔質セラミック基材16との線熱膨張係数の差の絶対値が2.0×10−6/℃よりも小さいという条件を満たさない線熱膨張係数を有するガラスEおよびGのガラス層により多孔質セラミック基材16の封止部14の外側表面が被覆された筒状セラミックスにおいては、ガスリークが観察された。これらガスリークが観察されたガラスEおよびGが封止部14の外側表面に形成された筒状セラミックスのガラス層の表面においては、ガスリークの原因となる無数のクラックが観察された。以上の結果から、800℃から950℃の焼成温度における焼成工程P7において、多孔質セラミック基材16の封止部14の外側表面に緻密層としてのガラス層を封止性を担保しつつ形成するためには、多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃よりも小さいことが必要であり、上記線熱膨張係数の差の絶対値が大きいほどガラス層に作用する、その表面にクラックを発生させる原因となる内部応力が大きくなることから、より好適には、多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差の絶対値が1.0×10−6/℃未満であることが望まれる。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficients required for the cylindrical ceramic 10 and the porous ceramic base material 16 having a linear thermal expansion coefficient at 500 ° C. of 7.1 × 10 −6 / ° C. is 2 The outer surface of the sealing portion 14 of the porous ceramic substrate 16 is formed by the glass layers 18 of glass A, B, C, D, and F having a linear thermal expansion coefficient that is smaller than 0.0 × 10 −6 / ° C. In the coated cylindrical ceramic 10, no gas leak was observed. On the surface of the glass layer 18 of the cylindrical ceramics 10 in which the glass A, B, C, D, and F in which no gas leak was observed were formed on the outer surface of the sealing portion 14, cracks and the like causing gas leak were observed. Was not. On the other hand, the absolute value of the difference in linear thermal expansion coefficient required for the cylindrical ceramic 10 and the porous ceramic substrate 16 having a linear thermal expansion coefficient at 500 ° C. of 7.1 × 10 −6 / ° C. is 2.0. In the cylindrical ceramic in which the outer surface of the sealing portion 14 of the porous ceramic substrate 16 is covered with a glass layer of glass E and G having a linear thermal expansion coefficient that does not satisfy the condition of less than × 10 −6 / ° C. A gas leak was observed. Innumerable cracks that cause gas leakage were observed on the surface of the glass layer of cylindrical ceramics on which the glass E and G in which these gas leaks were observed were formed on the outer surface of the sealing portion 14. From the above results, in the firing step P7 at a firing temperature of 800 ° C. to 950 ° C., a glass layer as a dense layer is formed on the outer surface of the sealing portion 14 of the porous ceramic substrate 16 while ensuring sealing properties. Therefore, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic base material 16 and the linear thermal expansion coefficient of the glass layer 18 needs to be smaller than 2.0 × 10 −6 / ° C. Since the internal stress that acts on the glass layer and causes cracks on the surface thereof increases as the absolute value of the difference in linear thermal expansion coefficient increases, more preferably, the linear heat of the porous ceramic substrate 16 It is desirable that the absolute value of the difference between the expansion coefficient and the linear thermal expansion coefficient of the glass layer 18 is less than 1.0 × 10 −6 / ° C.

続いて、多孔質セラミック基材16の封止部14の外側表面に形成されたガラス層18により筒状セラミックス10に分離膜が良好に成膜されるかを評価するために、筒状セラミックス10に分離膜が成膜されて構成される分離膜フィルターの分離性能を評価する試験を行った。先ず、分離膜が成膜される分離膜用基材として、封止部の外側表面にガラス層が形成された多孔質セラミック基材16、多孔質セラミック基材16の封止部14の外側表面にガラスAのガラス層18が形成された筒状セラミックス10、および一端側が封止部により封止されておらず両端が開口の円筒状セラミック多孔質基材を用意した。円筒状セラミック多孔質基材は、多孔質セラミック基材16と同様の原料である粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナを主成分とした混練物を押出成形機により円筒状に成形した後、乾燥、焼成させて作製した。次に、これら3種の分離膜用基材を、MOR型ゼオライト種結晶(HSZ−600H0A,東ソー製)を粉砕した懸濁液(1.8g/L)に浸漬した。ゼオライト種結晶を担持した分離膜用基材を20分間以上室温にて放置した後、70℃で20分間乾燥した。次に、これらの分離膜用基材を反応合成液(SiO:Al:NaO:HO=3600:15:1000:96000(mol組成))に浸漬した状態で、180℃で6時間水熱合成を行うことにより、多孔質セラミック基材16、筒状セラミックス10、および円筒状多孔質基材の外側表面にゼオライト膜を形成した。ゼオライト膜が成膜された上記3種の分離膜用基材を純水で煮沸洗浄した後に、110℃で3時間乾燥し、分離膜性能評価試験に供する分離膜フィルターとした。 Subsequently, in order to evaluate whether the separation membrane is satisfactorily formed on the cylindrical ceramic 10 by the glass layer 18 formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16, the cylindrical ceramic 10 A test was conducted to evaluate the separation performance of a separation membrane filter formed by forming a separation membrane. First, as a separation membrane substrate on which a separation membrane is formed, a porous ceramic substrate 16 having a glass layer formed on the outer surface of the sealing portion, and an outer surface of the sealing portion 14 of the porous ceramic substrate 16 A cylindrical ceramic 10 having a glass layer 18 of glass A formed thereon and a cylindrical ceramic porous substrate having both ends opened without being sealed by a sealing portion were prepared. The cylindrical ceramic porous substrate is formed by extrusion molding a kneaded material mainly composed of alumina having a particle size of 0.2 to 4.5 μm (average particle size of 0.7 μm), which is the same raw material as the porous ceramic substrate 16. After forming into a cylindrical shape by a machine, it was produced by drying and firing. Next, these three types of separation membrane substrates were immersed in a suspension (1.8 g / L) obtained by pulverizing MOR type zeolite seed crystals (HSZ-600H0A, manufactured by Tosoh Corporation). The separation membrane substrate carrying the zeolite seed crystals was allowed to stand for 20 minutes or more at room temperature, and then dried at 70 ° C. for 20 minutes. Next, these separation membrane substrates were immersed in a reaction synthesis solution (SiO 2 : Al 2 O 3 : Na 2 O: H 2 O = 3600: 15: 1000: 96000 (mol composition)), 180 By performing hydrothermal synthesis at 6 ° C. for 6 hours, a zeolite membrane was formed on the outer surface of the porous ceramic substrate 16, the cylindrical ceramic 10, and the cylindrical porous substrate. The above three kinds of separation membrane substrates on which zeolite membranes were formed were boiled and washed with pure water, and then dried at 110 ° C. for 3 hours to obtain a separation membrane filter for use in a separation membrane performance evaluation test.

上記分離膜フィルターを以下の条件の酢酸/水の蒸気透過試験(VP試験)に供して分離膜の性能を評価した。   The separation membrane filter was subjected to an acetic acid / water vapor permeation test (VP test) under the following conditions to evaluate the performance of the separation membrane.

[試験条件]
・膜面積:6.3×10−4
・酢酸/水=77wt%/23wt%
・反応温度:125℃
[Test conditions]
・ Membrane area: 6.3 × 10 −4 m 2
・ Acetic acid / water = 77wt% / 23wt%
-Reaction temperature: 125 ° C

また、分離係数を下記の式に従って求めた。(水/酢酸)分離係数=(透過側水濃度/透過側酢酸濃度)/(供給側水濃度/供給側酢酸濃度)。この分離係数が大きいほど、分離膜により酢酸が透過されず水のみが透過される、すなわちゼオライト分離膜の分離性能が高いことが示される。   Further, the separation factor was determined according to the following formula. (Water / acetic acid) separation factor = (permeate side water concentration / permeate side acetic acid concentration) / (supply side water concentration / supply side acetic acid concentration). It is shown that the larger the separation factor, the higher the separation performance of the zeolite separation membrane, that is, acetic acid is not permeated by the separation membrane and only water is permeated.

また、酢酸/水の蒸気透過試験に供した多孔質セラミック基材16に成膜されたゼオライト膜の表面状態をSEMにより倍率3000倍で観察した。図21は、円筒部12上に成膜されたゼオライト膜の表面形状を示すSEM写真であり、図22は、封止部14の先端に形成された突起20上のゼオライト膜の表面形状を示すSEM写真である。また、酢酸/水の蒸気透過試験に供した筒状セラミックス10のガラスAのガラス層18の境界付近のゼオライト膜の成膜状態をSEMにより観察した。図23は、酢酸/水の蒸気透過試験に供した筒状セラミックス10の多孔質セラミック基材16の外側表面に形成されたガラス層18の環状端面付近を多孔質セラミック基材16の長手方向に切断して示す断面図である。   In addition, the surface state of the zeolite membrane formed on the porous ceramic substrate 16 subjected to the acetic acid / water vapor permeation test was observed by SEM at a magnification of 3000 times. FIG. 21 is a SEM photograph showing the surface shape of the zeolite membrane formed on the cylindrical portion 12, and FIG. 22 shows the surface shape of the zeolite membrane on the protrusion 20 formed at the tip of the sealing portion 14. It is a SEM photograph. Moreover, the film formation state of the zeolite membrane near the boundary of the glass layer 18 of the glass A of the cylindrical ceramics 10 subjected to the acetic acid / water vapor permeation test was observed by SEM. FIG. 23 shows the vicinity of the annular end surface of the glass layer 18 formed on the outer surface of the porous ceramic substrate 16 of the cylindrical ceramic 10 subjected to the acetic acid / water vapor permeation test in the longitudinal direction of the porous ceramic substrate 16. It is sectional drawing cut | disconnected and shown.

酢酸/水の蒸気透過試験の結果、封止部14の外側表面にガラス層が形成されていない多孔質セラミック基材16にゼオライト膜が成膜された分離膜フィルターの分離係数は25、筒状セラミックス10にゼオライト膜が成膜された分離膜フィルターの分離係数は23000、両端の開口が封止されていない円筒状セラミック多孔質基材の分離係数は25000であった。分離係数の小さい多孔質セラミック基材16を分離膜用基材とした分離膜フィルターの円筒部12上のゼオライト膜は、図21に示されるように均一に成膜されている一方、封止部14の突起20上のゼオライト膜は、図22に示されるように均一に成膜されていない。このことから、封止部14の外側表面にガラス層が形成されていない多孔質セラミック基材16は、封止部14の先端に突起が形成されていること、および突起の表面構造が円筒部と比較して粗いため、均一なゼオライト膜を形成できず局部的な分離膜のリークなどの発生により分離膜フィルターの性能劣化を引き起こしている一方、筒状セラミックス10は、封止部14の突起20がガラスAのガラス層18により被覆されているため、ゼオライト膜が均一に成膜されて分離膜フィルターの分離性能の低下が抑制されたことが示された。また、図23に示されるようにガラスAのガラス層18の環状端面すなわちガラス層18と多孔質セラミック基材16の境界においても連続的に均一なゼオライト膜が形成されており、多孔質セラミック基材16の封止部14へのガラス層18の形成の、均一なゼオライト膜の成膜に及ぼす影響は小さいことが示された。   As a result of the acetic acid / water vapor permeation test, the separation factor of the separation membrane filter in which the zeolite membrane was formed on the porous ceramic base material 16 on which the glass layer was not formed on the outer surface of the sealing portion 14 was 25, cylindrical The separation factor of the separation membrane filter in which the zeolite membrane was formed on the ceramic 10 was 23000, and the separation factor of the cylindrical ceramic porous substrate in which the openings at both ends were not sealed was 25000. The zeolite membrane on the cylindrical portion 12 of the separation membrane filter using the porous ceramic substrate 16 having a small separation coefficient as the separation membrane substrate is uniformly formed as shown in FIG. The zeolite membrane on the 14 projections 20 is not uniformly formed as shown in FIG. Therefore, in the porous ceramic base material 16 in which the glass layer is not formed on the outer surface of the sealing portion 14, the protrusion is formed at the tip of the sealing portion 14, and the surface structure of the protrusion is a cylindrical portion. However, the cylindrical ceramic 10 has a protrusion of the sealing portion 14 while the uniform zeolite membrane cannot be formed, and the performance of the separation membrane filter is deteriorated due to local leakage of the separation membrane. Since 20 was covered with the glass layer 18 of glass A, it was shown that the zeolite membrane was uniformly formed and the decrease in the separation performance of the separation membrane filter was suppressed. Further, as shown in FIG. 23, a uniform zeolite membrane is continuously formed on the annular end face of the glass layer 18 of the glass A, that is, at the boundary between the glass layer 18 and the porous ceramic base material 16, and the porous ceramic base is formed. It was shown that the formation of the glass layer 18 on the sealing portion 14 of the material 16 has a small influence on the formation of a uniform zeolite film.

上述のように、本実施例の筒状セラミックス10によれば、多孔質セラミック基材16の円筒部12の片側の開口に固着されて開口を封止し、円筒部12に対して表面構造が異なる破断面を有する突起20が形成された封止部14の表面に緻密なガラス層18が形成されている。このため、筒状セラミックス10の表面に欠陥のない均一な分離膜を形成することが可能となり、局部的な分離膜のリークなどの発生による分離膜フィルターの著しい分離性能の劣化を抑制することが可能となる。   As described above, according to the cylindrical ceramic 10 of the present embodiment, the opening is sealed by being fixed to the opening on one side of the cylindrical portion 12 of the porous ceramic base material 16, and the surface structure has a surface structure with respect to the cylindrical portion 12. A dense glass layer 18 is formed on the surface of the sealing portion 14 on which the protrusions 20 having different fracture surfaces are formed. For this reason, it becomes possible to form a uniform separation membrane having no defects on the surface of the cylindrical ceramic 10, and to suppress a significant deterioration in separation performance of the separation membrane filter due to the occurrence of a local separation membrane leak or the like. It becomes possible.

また、本実施例によれば、多孔質セラミック基材16がアルミナを主成分として形成される。このため、分離膜フィルターの分離性能を担保するのに適切な多孔性を有するとともに分離膜が成膜されるのに十分な機械的強度を有する筒状セラミックス10を提供することができる。   Further, according to the present embodiment, the porous ceramic substrate 16 is formed with alumina as a main component. For this reason, it is possible to provide the cylindrical ceramics 10 having an appropriate porosity for ensuring the separation performance of the separation membrane filter and sufficient mechanical strength for forming the separation membrane.

また、本実施例によれば、筒状セラミックス10の封止部14の外側表面を被覆する緻密層はガラスを主成分とするガラス層18である。このため、ガラス層18の封止性、耐食性により、高酸性または高アルカリ性条件下でも使用可能な分離膜フィルターに適用できる片端封止型多孔質セラミック基材10を提供することができる。   Further, according to the present embodiment, the dense layer that covers the outer surface of the sealing portion 14 of the cylindrical ceramic 10 is the glass layer 18 mainly composed of glass. For this reason, the sealing property and corrosion resistance of the glass layer 18 can provide the one-end-sealed porous ceramic substrate 10 that can be applied to a separation membrane filter that can be used even under highly acidic or highly alkaline conditions.

また、本実施例によれば、多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差が、2×10−6/K未満、好ましくは1×10−6/K未満である。このため、多孔質セラミック基材16の封止部14の外側表面にガラス層18を形成するための焼成工程P7において、ガラス層18のひび割れや多孔質セラミック基材16からの剥離が抑制されることから、筒状セラミックス10に分離膜が成膜されて成る分離膜フィルターの性能劣化を一層抑制することができる。 Further, according to this example, the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layer 18 is less than 2 × 10 −6 / K, preferably 1 × 10 −6. / K. For this reason, in the firing step P7 for forming the glass layer 18 on the outer surface of the sealing portion 14 of the porous ceramic base material 16, cracking of the glass layer 18 and peeling from the porous ceramic base material 16 are suppressed. Therefore, it is possible to further suppress the performance deterioration of the separation membrane filter formed by forming the separation membrane on the cylindrical ceramic 10.

また、本実施例によれば、ガラス層18の組成は、SiO、Al、TiO、ZrO、ZnO、B、Bi、アルカリ金属、アルカリ土類金属を主成分とするものである。このような組成のガラス層18の線熱膨張率は、多孔質セラミック基材16の線熱膨張率との差が、2×10−6未満に調節され得るため、焼成工程P7においてガラス層18のひび割れや多孔質セラミック基材16からの剥離が抑制されて、分離膜フィルターの性能劣化を一層抑制する筒状セラミックス10を提供することができる。 In addition, according to the present embodiment, the composition of the glass layer 18 is SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , alkali metal, alkaline earth metal. The main component. The difference between the linear thermal expansion coefficient of the glass layer 18 having such a composition and the linear thermal expansion coefficient of the porous ceramic base material 16 can be adjusted to less than 2 × 10 −6 , and thus the glass layer 18 in the firing step P7. The cylindrical ceramics 10 can be provided in which cracking of the ceramics and peeling from the porous ceramic base material 16 are suppressed, and performance degradation of the separation membrane filter is further suppressed.

また、本実施例によれば、筒状セラミックス10は、多孔質セラミック基材16の円筒部12と封止部14とが押出成形によって一体成形される。このため、多孔質セラミック基材16の円筒部12と封止部14とを接合する工程が不要となる。これにより、円筒部12と封止部14との接合部分からの被処理流体の処理済み流体への漏れの発生をなくすことができ、また、円筒部12と封止部14との境界の強度を担保することができる。   Further, according to the present embodiment, the cylindrical ceramic 10 is formed by integrally forming the cylindrical portion 12 and the sealing portion 14 of the porous ceramic base material 16 by extrusion molding. For this reason, the process of joining the cylindrical part 12 and the sealing part 14 of the porous ceramic base material 16 becomes unnecessary. Thereby, it is possible to eliminate the occurrence of leakage of the fluid to be processed from the joint portion between the cylindrical portion 12 and the sealing portion 14 to the processed fluid, and the strength of the boundary between the cylindrical portion 12 and the sealing portion 14. Can be secured.

次に本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。   Next, another embodiment of the present invention will be described. In the following embodiments, parts that are substantially the same as those in the above embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施例の筒状セラミックス10は、用いられる原料の主成分であるアルミナの粒径および、押出成形後の焼成温度が異なる以外は、前述の実施例1の製造工程P1からP7と同様の工程で形成される。すなわち、粒径0.7〜1.4μm(平均粒径3.0μm)のアルミナにメチルセルロース系バインダなどの成形助剤および水が加えられて混合、混練されることにより調整される成形素地を押出成形機22に投入し、押し出して図2の多孔質セラミック基材16と同様の片端封止型筒状グリーン成形体を得た。この片端封止型筒状グリーン成形体を乾燥した後、1400℃で2時間焼成することにより、平均細孔径0.8μm、気孔率40%の単層構造の多孔質セラミック基材16が得られる。混合工程P4から焼成工程P7において、この多孔質セラミック基材16の封止部14の外側表面にガラス層18を形成して、本実施例の筒状セラミックス10が構成される。   The cylindrical ceramic 10 of this example is the same as the manufacturing steps P1 to P7 of Example 1 described above, except that the particle size of alumina, which is the main component of the raw material used, and the firing temperature after extrusion are different. Formed with. That is, a molding substrate prepared by adding a molding aid such as a methyl cellulose binder and water to alumina having a particle size of 0.7 to 1.4 μm (average particle size of 3.0 μm) and mixing and kneading is extruded. It was put into a molding machine 22 and extruded to obtain a single-end sealed cylindrical green molded body similar to the porous ceramic substrate 16 of FIG. The single-end-sealed cylindrical green molded body is dried and then fired at 1400 ° C. for 2 hours to obtain a porous ceramic substrate 16 having a single layer structure with an average pore diameter of 0.8 μm and a porosity of 40%. . In the mixing step P4 to the firing step P7, the glass layer 18 is formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 to constitute the cylindrical ceramic 10 of the present embodiment.

筒状セラミックス10の多孔質セラミック基材16の封止部14の外側表面に形成されたガラス層18の封止性を評価するため、前述の実施例と同様の方法でガラスAからGのガラス層で封止部14を被覆した筒状セラミックスを封止性評価試験に供した。また、多孔質セラミック基材16の30℃から500℃の線熱膨張係数を前述と同様の方法で測定した。多孔質セラミック基材16の線熱膨張係数を図11に、封止性評価試験の結果を図13にそれぞれ示す。   In order to evaluate the sealing performance of the glass layer 18 formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 of the cylindrical ceramic 10, the glass A to G glass is formed in the same manner as in the above-described embodiment. The cylindrical ceramics in which the sealing portion 14 was covered with a layer was subjected to a sealing property evaluation test. Further, the linear thermal expansion coefficient of the porous ceramic substrate 16 from 30 ° C. to 500 ° C. was measured by the same method as described above. The linear thermal expansion coefficient of the porous ceramic substrate 16 is shown in FIG. 11, and the results of the sealing evaluation test are shown in FIG.

図13において、多孔質セラミック基材16の線熱膨張係数とガラスA、B、C、DおよびFのガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃未満である筒状セラミックス10では、ガスリークが観察されず、ガラス層18の表面にはガスリークの原因となるクラックが観察されなかった(図示せず)。それに対して、多孔質セラミック基材16の線熱膨張係数とガラスEおよびGのガラス層の線熱膨張係数との差の絶対値が2.0×10−6/℃以上の筒状セラミックスでは、ガスリークが観察され、ガラス層の表面には無数のクラックが観察された(図示せず)。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layers 18 of the glass A, B, C, D and F is 2.0 × 10 −6 / In the cylindrical ceramic 10 having a temperature lower than 0 ° C., no gas leak was observed, and no cracks causing gas leak were observed on the surface of the glass layer 18 (not shown). On the other hand, in the case of cylindrical ceramics in which the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficients of the glass layers E and G is 2.0 × 10 −6 / ° C. or more. Gas leakage was observed, and numerous cracks were observed on the surface of the glass layer (not shown).

上述のように、本実施例の筒状セラミックス10によれば、前述の実施例1と同様の効果を得ることができる。   As described above, according to the cylindrical ceramic 10 of the present embodiment, the same effects as those of the first embodiment can be obtained.

また、本実施例によれば、多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差が、2×10−6/K未満、好ましくは1×10−6/K未満である。このため、多孔質セラミック基材16の封止部14の外側表面にガラス層18を形成するための焼成工程P7において、ガラス層18のひび割れや多孔質セラミック基材16からの剥離が抑制されることから、筒状セラミックス10に分離膜が成膜されて成る分離膜フィルターの性能劣化を一層抑制することができる。 Further, according to this example, the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layer 18 is less than 2 × 10 −6 / K, preferably 1 × 10 −6. / K. For this reason, in the firing step P7 for forming the glass layer 18 on the outer surface of the sealing portion 14 of the porous ceramic base material 16, cracking of the glass layer 18 and peeling from the porous ceramic base material 16 are suppressed. Therefore, it is possible to further suppress the performance deterioration of the separation membrane filter formed by forming the separation membrane on the cylindrical ceramic 10.

次に本発明の他の実施例を説明する。図24は、二層構造の筒状セラミックス54の中心を通る平面上の断面図である。筒状セラミックス54は、前述の実施例2の多孔質セラミック基材16と同様の内層56と、その外側表面に形成された平均細孔径が多孔質セラミック基材16よりも小さいアルミナを主成分とする外層58とから成る二層構造の多孔質セラミック基材60と、二層構造の多孔質セラミック基材60の内層56の封止部14の外側表面に形成された外層58の一部分にあたる外側表面に形成されたガラス層18とから構成される。筒状セラミックス54の多孔質セラミック基材60は、以下のようにして得られる。先ず、実施例2の平均細孔径0.8μm、気孔率40%の多孔質セラミック基材16を封止部14が下側になるように、粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナと有機バインダなどと水とを混合、撹拌することにより調整されるアルミナ粒子のスラリー中に30秒間浸漬した。その後、上記スラリーがケーク層として均一に被覆された多孔質セラミック基材16を乾燥させ、1250℃で2時間焼成することにより、平均細孔径0.15μm、気孔率38%のアルミナを主成分とする多孔質膜が外層58として形成された二層構造の多孔質セラミック基材60が得られる。混合工程P4から焼成工程P7おいて、この多孔質セラミック基材60の内層56の封止部14の外側表面にあたる外層58の一部分にガラス層18を形成して、筒状セラミックス54が構成される。   Next, another embodiment of the present invention will be described. FIG. 24 is a sectional view on a plane passing through the center of the two-layered cylindrical ceramic 54. The cylindrical ceramic 54 is mainly composed of an inner layer 56 similar to the porous ceramic base material 16 of the above-described Example 2, and alumina having an average pore diameter formed on the outer surface thereof smaller than that of the porous ceramic base material 16. An outer surface corresponding to a part of the outer layer 58 formed on the outer surface of the sealing portion 14 of the inner layer 56 of the porous ceramic substrate 60 of the two-layer structure. And a glass layer 18 formed on the substrate. The porous ceramic substrate 60 of the cylindrical ceramic 54 is obtained as follows. First, a particle size of 0.2 to 4.5 μm (average particle size) of the porous ceramic substrate 16 of Example 2 having an average pore size of 0.8 μm and a porosity of 40% so that the sealing portion 14 is on the lower side. 0.7 μm) of alumina, an organic binder, and water and water were mixed and stirred for 30 seconds in a slurry of alumina particles prepared by stirring. Thereafter, the porous ceramic substrate 16 in which the slurry is uniformly coated as a cake layer is dried and fired at 1250 ° C. for 2 hours, whereby alumina having an average pore diameter of 0.15 μm and a porosity of 38% is the main component. A porous ceramic substrate 60 having a two-layer structure in which the porous film to be formed is formed as the outer layer 58 is obtained. In the mixing step P4 to the firing step P7, the glass layer 18 is formed on a part of the outer layer 58 corresponding to the outer surface of the sealing portion 14 of the inner layer 56 of the porous ceramic base material 60, thereby forming the cylindrical ceramic 54. .

筒状セラミックス54の多孔質セラミック基材60の内層56の封止部14の外側表面にあたる外層58の外側表面に形成されたガラス層18の封止性を評価するため、前述の実施例1および2と同様の方法でガラスAからGのガラス層で外層58の外側表面を被覆した筒状セラミックス54を封止性評価試験に供した。また、二層構造の多孔質セラミック基材60の30℃から500℃の線熱膨張係数を以下の方法で測定した。すなわち、実施例2の多孔質セラミック基材16の原料である粒径0.7〜1.4μm(平均粒径3.0μm)のアルミナを主成分として、外径5mm、内径3mmの円筒状の多孔質セラミックスを作製し、粒径0.2〜4.5μm(平均粒径0.7μm)のアルミナを主成分とするスラリーに浸漬、乾燥、焼成することにより、外径5mm、内径3mm、長さ10〜20mmの二層の円筒状の試験片を作製し、得られた試験片を示唆熱膨張計に供することにより、多孔質セラミック基材60の線熱膨張係数を図11のように評価した。また、封止性評価試験の結果を図13に示す。   In order to evaluate the sealing performance of the glass layer 18 formed on the outer surface of the outer layer 58 corresponding to the outer surface of the sealing portion 14 of the inner layer 56 of the porous ceramic substrate 60 of the cylindrical ceramic 54, The cylindrical ceramics 54 in which the outer surface of the outer layer 58 was covered with glass layers A to G in the same manner as in No. 2 was subjected to a sealing performance evaluation test. Moreover, the linear thermal expansion coefficient of 30 to 500 ° C. of the porous ceramic substrate 60 having a two-layer structure was measured by the following method. That is, the main component is alumina having a particle size of 0.7 to 1.4 μm (average particle size of 3.0 μm), which is a raw material of the porous ceramic substrate 16 of Example 2, and a cylindrical shape having an outer diameter of 5 mm and an inner diameter of 3 mm. Porous ceramics are prepared and immersed in a slurry whose main component is alumina having a particle size of 0.2 to 4.5 μm (average particle size 0.7 μm), dried, and fired to obtain an outer diameter of 5 mm, an inner diameter of 3 mm, and a length. A two-layer cylindrical test piece having a thickness of 10 to 20 mm was prepared, and the obtained test piece was subjected to a suggested thermal dilatometer to evaluate the linear thermal expansion coefficient of the porous ceramic substrate 60 as shown in FIG. did. Moreover, the result of a sealing property evaluation test is shown in FIG.

図13において、多孔質セラミック基材60の線熱膨張係数とガラスA、B、C、DおよびFのガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃未満である筒状セラミックス54では、ガスリークが観察されず、ガラス層18の表面にはガスリークの原因となるクラックが観察されなかった(図示せず)。それに対して、多孔質セラミック基材60の線熱膨張係数とガラスEおよびGのガラス層の線熱膨張係数との差の絶対値が2.0×10−6/℃以上の筒状セラミックスでは、ガスリークが観察され、ガラス層の表面には無数のクラックが観察された(図示せず)。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 60 and the linear thermal expansion coefficient of the glass layers 18 of glass A, B, C, D, and F is 2.0 × 10 −6 / In the cylindrical ceramic 54 having a temperature lower than 0 ° C., no gas leak was observed, and no cracks causing gas leak were observed on the surface of the glass layer 18 (not shown). On the other hand, in the case of cylindrical ceramics in which the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 60 and the linear thermal expansion coefficients of the glass layers E and G is 2.0 × 10 −6 / ° C. or more. Gas leakage was observed, and numerous cracks were observed on the surface of the glass layer (not shown).

上述のように、本実施例の筒状セラミックス54によれば、前述の実施例1および実施例2と同様の効果を得ることができる。   As described above, according to the cylindrical ceramics 54 of the present embodiment, the same effects as those of the first and second embodiments can be obtained.

また、本実施例によれば、筒状セラミックス54の多孔質セラミック基材60が内層56と平均細孔径が内層よりも小さく緻密な外層58との二層構造である。このような筒状セラミックス54の内層56の封止部14の外側にあたる外層58の外側表面の一部分に緻密なガラス層18が形成されることより、単層構造の筒状セラミックスよりも分離性能が向上された筒状セラミックス54を得ることができる。   Further, according to the present embodiment, the porous ceramic substrate 60 of the cylindrical ceramic 54 has a two-layer structure of the inner layer 56 and the dense outer layer 58 having an average pore diameter smaller than that of the inner layer. Since the dense glass layer 18 is formed on a part of the outer surface of the outer layer 58 corresponding to the outer side of the sealing portion 14 of the inner layer 56 of the cylindrical ceramic 54, the separation performance is higher than that of the single-layered cylindrical ceramic. An improved cylindrical ceramic 54 can be obtained.

次に本発明の他の実施例を説明する。図25は、二層構造の筒状セラミックス62の幅方向の中心を通る平面上の断面図である。筒状セラミックス62は、円筒部64と、円筒部64の片側の開口を封止する封止部66とから成る、主成分がアルミナの多孔質セラミックスである内層70と、内層70と同様に円筒部72と封止部74と、主成分がアルミナの多孔質セラミックスである外層78と、を備える二層構造の多孔質セラミック基材80と、外層78の封止部74の外側表面に形成されたガラス層18とから構成されている。また、円筒部64および円筒部72に対して表面構造が異なる破断面を有し、内層70の封止部66の先端および外層78の封止部74の先端から内層70を内側にしてそれぞれ円筒部64および円筒部72から離隔する方向へ突き出すように突起81が外層78の封止部74の先端に形成されている。   Next, another embodiment of the present invention will be described. FIG. 25 is a sectional view on a plane passing through the center in the width direction of the cylindrical ceramics 62 having a two-layer structure. The cylindrical ceramic 62 includes a cylindrical portion 64 and a sealing portion 66 that seals an opening on one side of the cylindrical portion 64, and an inner layer 70 that is a porous ceramic whose main component is alumina, and a cylinder similar to the inner layer 70. Formed on the outer surface of the sealing portion 74 of the outer layer 78 and the porous ceramic base material 80 having a two-layer structure including a portion 72, a sealing portion 74, and an outer layer 78 whose main component is porous ceramics of alumina. And a glass layer 18. Further, the cylindrical portion 64 and the cylindrical portion 72 have a fractured surface having a different surface structure, and are respectively cylindrical with the inner layer 70 inward from the tip of the sealing portion 66 of the inner layer 70 and the tip of the sealing portion 74 of the outer layer 78. A protrusion 81 is formed at the tip of the sealing portion 74 of the outer layer 78 so as to protrude in a direction away from the portion 64 and the cylindrical portion 72.

筒状セラミックス62は、以下のように構成される。先ず、粒径15〜50μm(平均粒径35μm)のアルミナ(100mol%)に焼結助剤として平均粒径0.6μmのカオリナイト(AlSi(OH))(3.1mol%)および平均粒径0.5μmのイットリア(Y)(1.3mol%)を添加し混合するとともに、成形助剤としてメチルセルロース系バインダなどおよび水を加えてニーダーで混練し、成形素地Aを得た。同様に、平均粒径7.0μmのアルミナに焼結助剤を添加し混合するとともに、成形助剤としてメチルセルロース系バインダなどおよび水を加えてニーダーで混練し、成形素地Bを得た。次に、二層構造の多孔質セラミック基材を押出成形により一体成形する押出成形機82に、多孔質セラミック基材80の内層70用の成形素地Aおよび外層78用の成形素地Bを供給し、押し出して、二層構造片端封止型グリーン成形体を得た。得られた二層構造片端封止型グリーン成形体を乾燥し、1450℃で2時間焼成することにより、平均細孔径9.3μm、気孔率40%の内層70の外側表面に平均細孔径1.4μm、気孔率40%の外層78が形成された二層構造の多孔質セラミック基材80を構成した。混合工程P4から焼成工程P7において、この多孔質セラミック基材80の外層78の封止部74の外側表面にガラス層18を形成して、筒状セラミックス62が構成される。 The cylindrical ceramic 62 is configured as follows. First, alumina (100 mol%) having a particle size of 15 to 50 μm (average particle size 35 μm) and kaolinite (Al 2 Si 2 O 5 (OH) 4 ) (3.1 mol) having an average particle size of 0.6 μm as a sintering aid. %) And yttria (Y 2 O 3 ) (1.3 mol%) having an average particle diameter of 0.5 μm are added and mixed, and a methyl cellulose binder and water as a forming aid and water are added and kneaded in a kneader, A was obtained. Similarly, a sintering aid was added to and mixed with alumina having an average particle size of 7.0 μm, and methyl cellulose binder and water were added as a molding aid and kneaded with a kneader to obtain a molding base B. Next, a forming substrate A for the inner layer 70 and a forming substrate B for the outer layer 78 of the porous ceramic substrate 80 are supplied to an extruder 82 that integrally forms a porous ceramic substrate having a two-layer structure by extrusion. To obtain a two-layer structure single-end sealed green molded body. The obtained two-layer structure single-end sealed green molded body was dried and fired at 1450 ° C. for 2 hours, whereby an average pore diameter of 1. on the outer surface of the inner layer 70 having an average pore diameter of 9.3 μm and a porosity of 40%. A porous ceramic substrate 80 having a two-layer structure in which an outer layer 78 having a pore size of 4 μm and a porosity of 40% was formed. In the mixing step P4 to the firing step P7, the glass layer 18 is formed on the outer surface of the sealing portion 74 of the outer layer 78 of the porous ceramic base material 80, thereby forming the cylindrical ceramic 62.

図26は、筒状セラミックス62の多孔質セラミック基材80の押出成形工程を詳細に説明する押出成形機82および成形素地A、成形素地Bの断面図である。押出成形機82は、図26中の矢印で示される成形素地Aおよび成形素地Bの押出方向の上流側に設けられた、内筒内部に内層70を形成する成形素地Aおよび内筒と外筒との間に外層78を形成する成形素地Bのそれぞれが投入される内筒および外筒の図示しない二重管と、上記押出方向の下流側に設けられた、外層78の円筒部72の外側表面を形成する一重管とを備えた口金84と、内層70の円筒部64の内側表面および内層70の封止部66の内側表面を形成する、一端部に半球状部85を有する長手状部材であって、口金84の一重管内部に設定される芯金86と、外層78の封止部74の外側表面を形成する半球状の凹部32および押し出された成形素地Aおよび成形素地Bを押出成形機82外部へ排出する貫通孔34とを有し、上記凹部32が口金84の開口に対抗するように着脱可能に取り付けられた外型36とから構成される。この押出成形機82の口金84の二重管の内筒内部に成形素地Aが、内筒と外筒との間に成形素地Bが図26の矢印方向へ押し出されると、二重管により成形素地Bを外側にして二層構造とされた内層70と外層78の円筒部64、72が芯金86と口金84の一重管との間に形成される。更に成形素地Aおよび成形素地Bが押し出されると、芯金86の半球状部85と外型36の凹部32との間において成形素地Bを外側にして内層70の封止部66および外層78の封止部74が形成されて、そのまま外型36の貫通孔34を通じて成形素地Aおよび成形素地Bが押出成形機82外部へ排出される。この状態で外型36が口金84から取り外されると、貫通孔34内部に押し出されていた成形素地Aおよび成形素地Bがその途中で破断されて、外層78を形成する成形素地Bに対して内層70を形成する成形素地Aを内側にして内層70の封止部66および外層78の封止部74のそれぞれの先端から突き出す突起81が形成される。この突起81の破断面は成形素地Aおよび成形素地Bが表面に現れており、外層の円筒部78と比較して表面構造が粗く、平滑ではない。このように口金の二重管の内筒内部および内筒と外筒との間に異なる性質の成形素地Aおよび成形素地Bが各別に供給されて押し出され、押出成形機82中で合流一体化されることで二層構造を有する片端封止型筒状グリーン成形体が得られる。   FIG. 26 is a cross-sectional view of the extrusion molding machine 82, the molding base A, and the molding base B for explaining in detail the extrusion process of the porous ceramic substrate 80 of the cylindrical ceramic 62. The extrusion molding machine 82 is provided on the upstream side in the extrusion direction of the molding base A and the molding base B indicated by arrows in FIG. 26, and the molding base A and the inner and outer cylinders for forming the inner layer 70 inside the inner cylinder. And a double pipe (not shown) of the inner cylinder and the outer cylinder into which each of the molding base B forming the outer layer 78 is inserted, and the outer side of the cylindrical portion 72 of the outer layer 78 provided on the downstream side in the extrusion direction. A longitudinal member having a hemispherical portion 85 at one end, which forms a base 84 having a single tube forming the surface, and an inner surface of the cylindrical portion 64 of the inner layer 70 and an inner surface of the sealing portion 66 of the inner layer 70 The metal core 86 set inside the single tube of the base 84, the hemispherical concave portion 32 forming the outer surface of the sealing portion 74 of the outer layer 78, and the extruded molding base A and molding base B are extruded. A through hole 34 for discharging to the outside of the molding machine 82 , Composed of the outer mold 36. which the recess 32 is detachably attached so as to oppose to the opening of the mouthpiece 84. When the molding base A is extruded in the direction of the arrow in FIG. 26 between the inner cylinder and the outer cylinder, the molding base A is molded inside the inner cylinder of the double pipe of the base 84 of the extrusion machine 82. Cylindrical portions 64 and 72 of the inner layer 70 and the outer layer 78 having a double layer structure with the substrate B on the outside are formed between the core metal 86 and the single tube of the base 84. Further, when the molding base A and the molding base B are extruded, the sealing base 66 and the outer layer 78 of the inner layer 70 are formed with the molding base B facing outside between the hemispherical portion 85 of the core metal 86 and the concave portion 32 of the outer die 36. The sealing portion 74 is formed, and the molding base A and the molding base B are discharged to the outside of the extrusion molding machine 82 through the through hole 34 of the outer mold 36 as they are. When the outer mold 36 is removed from the base 84 in this state, the molding base A and the molding base B that have been pushed into the through-hole 34 are broken in the middle, and the inner layer with respect to the molding base B that forms the outer layer 78 is formed. Projections 81 projecting from the respective tips of the sealing portion 66 of the inner layer 70 and the sealing portion 74 of the outer layer 78 are formed with the molding base A forming the 70 inside. In the fracture surface of the protrusion 81, the molding base A and the molding base B appear on the surface, and the surface structure is rough and not smooth as compared with the cylindrical portion 78 of the outer layer. In this way, the molding base A and the molding base B having different properties are supplied to the inside of the inner cylinder of the double pipe of the base and between the inner cylinder and the outer cylinder, respectively, are extruded and merged and integrated in the extruder 82. As a result, a one-end sealed cylindrical green molded body having a two-layer structure is obtained.

筒状セラミックス62の多孔質セラミック基材80の外層78の封止部74の外側表面に形成されたガラス層18の封止性を評価するため、前述の実施例1から3と同様の方法でガラスAからGのガラス層で外層78の外側表面を被覆した筒状セラミックス62を封止性評価試験に供した。また、二層構造の多孔質セラミック基材80の30℃から500℃の線熱膨張係数を以下の方法で測定した。すなわち、成形素地Aを内層、成形素地Bを外層として、外径5mm、内径3mm、長さ10〜20mmの二層の円筒状の試験片を作製し、得られた試験片を示唆熱膨張計に供することにより、多孔質セラミック基材80の線熱膨張係数を図11のように評価した。また、封止性評価試験の結果を図13に示す。   In order to evaluate the sealing property of the glass layer 18 formed on the outer surface of the sealing portion 74 of the outer layer 78 of the porous ceramic base material 80 of the cylindrical ceramic 62, the same method as in Examples 1 to 3 described above was used. The cylindrical ceramics 62 in which the outer surface of the outer layer 78 was covered with the glass layers A to G was subjected to a sealing property evaluation test. Moreover, the linear thermal expansion coefficient of 30 to 500 ° C. of the porous ceramic substrate 80 having a two-layer structure was measured by the following method. That is, using a forming substrate A as an inner layer and a forming substrate B as an outer layer, a two-layer cylindrical test piece having an outer diameter of 5 mm, an inner diameter of 3 mm, and a length of 10 to 20 mm was produced, and the obtained test piece was suggested as a thermal dilatometer. The linear thermal expansion coefficient of the porous ceramic substrate 80 was evaluated as shown in FIG. Moreover, the result of a sealing property evaluation test is shown in FIG.

図13において、多孔質セラミック基材80の線熱膨張係数とガラスA、B、C、DおよびFのガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃未満である筒状セラミックス62では、ガスリークが観察されず、ガラス層18の表面にはガスリークの原因となるクラックが観察されなかった(図示せず)。それに対して、多孔質セラミック基材80の線熱膨張係数とガラスEおよびGのガラス層の線熱膨張係数との差の絶対値が2.0×10−6/℃以上の筒状セラミックスでは、ガスリークが観察され、ガラス層の表面には無数のクラックが観察された(図示せず)。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 80 and the linear thermal expansion coefficient of the glass layers 18 of glass A, B, C, D and F is 2.0 × 10 −6 / In the cylindrical ceramic 62 having a temperature lower than 0 ° C., no gas leak was observed, and no cracks causing gas leak were observed on the surface of the glass layer 18 (not shown). On the other hand, in the case of cylindrical ceramics in which the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 80 and the linear thermal expansion coefficients of the glass layers E and G is 2.0 × 10 −6 / ° C. or more. Gas leakage was observed, and numerous cracks were observed on the surface of the glass layer (not shown).

上述のように、本実施例の筒状セラミックス62によれば、前述の実施例1から実施例3と同様の効果を得ることができる。   As described above, according to the cylindrical ceramic 62 of the present embodiment, the same effects as those of the first to third embodiments can be obtained.

また、本実施例によれば、筒状セラミックス62の多孔質セラミック基材80が内層70と平均細孔径が内層よりも小さく緻密な外層78との二層構造である。このような筒状セラミックス62の外層78の封止部74の外側表面に緻密なガラス層18が形成されることより、外層78の円筒部72と比較して表面構造が粗く、外層78よりも平均細孔径の大きい内層70が表面に現れている破断面を有する突起81がガラス層18により覆われて、分離膜の良好な成膜が可能となることから、単層構造の筒状セラミックスよりも分離性能が向上された筒状セラミックス62を得ることができる。   Further, according to this embodiment, the porous ceramic substrate 80 of the cylindrical ceramic 62 has a two-layer structure of the inner layer 70 and the dense outer layer 78 having an average pore diameter smaller than that of the inner layer. Since the dense glass layer 18 is formed on the outer surface of the sealing portion 74 of the outer layer 78 of the cylindrical ceramic 62, the surface structure is rougher than that of the cylindrical portion 72 of the outer layer 78. Since the projection 81 having a fractured surface in which the inner layer 70 having a large average pore diameter appears on the surface is covered with the glass layer 18, a good separation film can be formed. Also, the cylindrical ceramic 62 with improved separation performance can be obtained.

また、本実施例によれば、筒状セラミックス62は、多孔質セラミック基材80の内層70の円筒部64および封止部66、外層78の円筒部72および封止部74とが、口金84の内筒および外筒を設けた二重管の内筒内部に成形素地Aを、内筒と外筒との間に成形素地Bを各別に供給して押出して、押出成形機82内で合流させることで一体成型された二層構造片端封止型筒状グリーン成形体を得る押出成形によって一体成形される。このように構成された筒状セラミックス62は、その二層構造の気孔率や平均細孔径が適切に調節されて、単層の筒状セラミックスよりも分離膜フィルターの分離性能を一層向上することができる。   Further, according to the present embodiment, the cylindrical ceramic 62 includes the cylindrical portion 64 and the sealing portion 66 of the inner layer 70 of the porous ceramic base material 80, and the cylindrical portion 72 and the sealing portion 74 of the outer layer 78. The molding base A is supplied into the inner cylinder of the double pipe provided with the inner cylinder and the outer cylinder, and the molding base B is separately supplied and extruded between the inner cylinder and the outer cylinder. Thus, the two-layer structure one-end-sealed cylindrical green molded body that is integrally molded is integrally molded by extrusion molding. The thus configured cylindrical ceramic 62 can be further improved in the separation performance of the separation membrane filter as compared with a single-layered cylindrical ceramic by appropriately adjusting the porosity and average pore diameter of the two-layer structure. it can.

次に本発明の他の実施例を図1を利用して説明する。本実施例の筒状セラミックス10は、用いられる原料および押出成形後の焼成温度が異なる以外は、前述の実施例1の筒状セラミックス10の製造工程P1からP7と同様の工程で形成される。すなわち、粒径0.5〜50μm(平均粒径17μm)のムライト(3Al・2SiO)にメチルセルロース系バインダなどの成形助剤および水が加えられて混合、混練されることにより調整される成形素地を押出成形機22に投入し、押し出して図2の多孔質セラミック基材16と同様の片端封止型筒状グリーン成形体を得た。この片端封止型筒状グリーン成形体を乾燥した後、1550℃で2時間焼成することにより、平均細孔径3.2μm、気孔率35%であり、ムライトを主成分とする単層構造の多孔質セラミック基材16が得られる。混合工程P4から焼成工程P7において、この多孔質セラミック基材16の封止部14の外側表面にガラス層18を形成して、本実施例の筒状セラミックス10が構成される。 Next, another embodiment of the present invention will be described with reference to FIG. The cylindrical ceramic 10 of this example is formed by the same steps as the manufacturing steps P1 to P7 of the cylindrical ceramic 10 of Example 1 described above, except that the raw materials used and the firing temperature after extrusion are different. In other words, mixing molding aids and water, such as methylcellulose binder was added to mullite particle size 0.5 to 50 [mu] m (average particle diameter 17μm) (3Al 2 O 3 · 2SiO 2), is adjusted by being kneaded 2 was put into an extrusion molding machine 22 and extruded to obtain a single-end sealed cylindrical green molded body similar to the porous ceramic substrate 16 of FIG. This one-end-sealed cylindrical green molded body was dried and then fired at 1550 ° C. for 2 hours, whereby an average pore diameter of 3.2 μm and a porosity of 35% were obtained. A quality ceramic substrate 16 is obtained. In the mixing step P4 to the firing step P7, the glass layer 18 is formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 to constitute the cylindrical ceramic 10 of the present embodiment.

筒状セラミックス10の多孔質セラミック基材16の封止部14の外側表面に形成されたガラス層18の封止性を評価するため、前述の実施例1と同様の方法でガラスAからGのガラス層で封止部14を被覆した筒状セラミックス10を封止性評価試験に供した。また、多孔質セラミック基材16の30℃から500℃の線熱膨張係数を前述の実施例1と同様の方法で測定した。多孔質セラミック基材16の線熱膨張係数を図11に、封止性評価試験の結果を図13にそれぞれ示す。   In order to evaluate the sealing performance of the glass layer 18 formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 of the cylindrical ceramics 10, the glass A to G are processed in the same manner as in Example 1 described above. The cylindrical ceramics 10 in which the sealing part 14 was covered with a glass layer was subjected to a sealing property evaluation test. Further, the linear thermal expansion coefficient of the porous ceramic substrate 16 from 30 ° C. to 500 ° C. was measured by the same method as in Example 1 described above. The linear thermal expansion coefficient of the porous ceramic substrate 16 is shown in FIG. 11, and the results of the sealing evaluation test are shown in FIG.

図13において、多孔質セラミック基材16の線熱膨張係数とガラスA、C、D、FおよびGのガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃未満である筒状セラミックス10では、ガスリークが観察されなかった。それに対して、多孔質セラミック基材16の線熱膨張係数とガラスBおよびEのガラス層の線熱膨張係数との差の絶対値が2.0×10−6/℃以上の筒状セラミックス10では、ガスリークが観察された。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layers 18 of glass A, C, D, F and G is 2.0 × 10 −6 / In the tubular ceramic 10 having a temperature lower than 0 ° C., no gas leak was observed. On the other hand, the cylindrical ceramics 10 whose absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficients of the glass layers of the glass B and E is 2.0 × 10 −6 / ° C. or more. Then, a gas leak was observed.

上述のように、本実施例の筒状セラミックス10によれば、前述の実施例1と同様の効果を得ることができる。   As described above, according to the cylindrical ceramic 10 of the present embodiment, the same effects as those of the first embodiment can be obtained.

次に本発明の他の実施例を図1を利用して説明する。本実施例の筒状セラミックス10は、用いられる原料および押出成形後の焼成温度が異なる以外は、前述の実施例1の筒状セラミックス10の製造工程P1からP7と同様の工程で形成される。すなわち、平均粒径10μmのイットリア安定化ジルコニア(100wt%)に平均粒径1μmのイットリア安定化ジルコニア(50wt%)が添加されて混合されるとともに、メチルセルロース系バインダなどの成形助剤および水が加えられて混合、混練されることにより調整される成形素地を押出成形機22に投入し、押し出して図2の多孔質セラミック基材16と同様の片端封止型筒状グリーン成形体を得た。この片端封止型筒状グリーン成形体を乾燥した後、1550℃で3時間焼成することにより、平均細孔径1.2μm、気孔率36%であり、イットリア安定化ジルコニアを主成分とする単層構造の多孔質セラミック基材16が得られる。混合工程P4から焼成工程P7において、この多孔質セラミック基材16の封止部14の外側表面にガラス層18を形成して、本実施例の筒状セラミックス10が構成される。   Next, another embodiment of the present invention will be described with reference to FIG. The cylindrical ceramic 10 of this example is formed by the same steps as the manufacturing steps P1 to P7 of the cylindrical ceramic 10 of Example 1 described above, except that the raw materials used and the firing temperature after extrusion are different. That is, yttria-stabilized zirconia (50 wt%) having an average particle diameter of 1 μm is added to and mixed with yttria-stabilized zirconia (100 wt%) having an average particle diameter of 10 μm, and a molding aid such as a methylcellulose binder and water are added. The formed green body adjusted by mixing and kneading was put into an extruder 22 and extruded to obtain a single-end-sealed cylindrical green molded body similar to the porous ceramic substrate 16 of FIG. This single-end-sealed cylindrical green molded body was dried and then fired at 1550 ° C. for 3 hours to obtain an average pore diameter of 1.2 μm, a porosity of 36%, and a single layer mainly composed of yttria-stabilized zirconia. A porous ceramic substrate 16 having a structure is obtained. In the mixing step P4 to the firing step P7, the glass layer 18 is formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 to constitute the cylindrical ceramic 10 of the present embodiment.

筒状セラミックス10の多孔質セラミック基材16の封止部14の外側表面に形成されたガラス層18の封止性を評価するため、前述の実施例1と同様の方法でガラスAからGのガラス層で封止部14を被覆した筒状セラミックス10を封止性評価試験に供した。また、多孔質セラミック基材16の30℃から500℃の線熱膨張係数を前述の実施例1と同様の方法で測定した。多孔質セラミック基材16の線熱膨張係数を図11に、封止性評価試験の結果を図13にそれぞれ示す。   In order to evaluate the sealing performance of the glass layer 18 formed on the outer surface of the sealing portion 14 of the porous ceramic base material 16 of the cylindrical ceramics 10, the glass A to G are processed in the same manner as in Example 1 described above. The cylindrical ceramics 10 in which the sealing part 14 was covered with a glass layer was subjected to a sealing property evaluation test. Further, the linear thermal expansion coefficient of the porous ceramic substrate 16 from 30 ° C. to 500 ° C. was measured by the same method as in Example 1 described above. The linear thermal expansion coefficient of the porous ceramic substrate 16 is shown in FIG. 11, and the results of the sealing evaluation test are shown in FIG.

図13において、多孔質セラミック基材16の線熱膨張係数とガラスA、B、C、DおよびEのガラス層18の線熱膨張係数との差の絶対値が2.0×10−6/℃未満である筒状セラミックス10では、ガスリークが観察されなかった。それに対して、多孔質セラミック基材16の線熱膨張係数とガラスFおよびGのガラス層の線熱膨張係数との差の絶対値が2.0×10−6/℃以上の筒状セラミックスでは、ガスリークが観察された。 In FIG. 13, the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficient of the glass layers 18 of glass A, B, C, D and E is 2.0 × 10 −6 / In the tubular ceramic 10 having a temperature lower than 0 ° C., no gas leak was observed. On the other hand, in the case of cylindrical ceramics in which the absolute value of the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 and the linear thermal expansion coefficients of the glass layers of the glass F and G is 2.0 × 10 −6 / ° C. or more. Gas leak was observed.

上述のように、本実施例の筒状セラミックス10によれば、前述の実施例1と同様の効果を得ることができる。   As described above, according to the cylindrical ceramic 10 of the present embodiment, the same effects as those of the first embodiment can be obtained.

次に本発明の他の実施例を説明する。図27は、筒状セラミックス88の幅方向の中心を通る平面上の断面図である。筒状セラミックス88は、円筒部90と、円筒部90の片側の開口を封止する封止部92とから成る、主成分がアルミナの単層構造の多孔質セラミック基材94と、封止部92の外側表面に形成されたガラス層18とから構成されている。封止部92は、円筒部90と比較してその細孔構造が緻密である。   Next, another embodiment of the present invention will be described. FIG. 27 is a cross-sectional view on a plane passing through the center of the cylindrical ceramics 88 in the width direction. The cylindrical ceramics 88 includes a cylindrical portion 90 and a sealing portion 92 that seals an opening on one side of the cylindrical portion 90, a porous ceramic base material 94 having a single-layer structure of alumina as a main component, and a sealing portion. And a glass layer 18 formed on the outer surface of 92. The sealing portion 92 has a finer pore structure than the cylindrical portion 90.

筒状セラミックス88は、多孔質セラミック基材94を成形する押出成形工程P2において用いられる押出成形機96およびその押出成形機96を用いた押出成形方法が異なる以外は、前述の実施例1の筒状セラミックス10の製造工程P1からP7と同様の工程で形成される。したがって、単層構造の多孔質セラミック基材94の押出成形工程P2を図28から図30を用いて詳細に説明する。   The cylindrical ceramic 88 is the same as that of Example 1 described above except that the extrusion molding machine 96 used in the extrusion molding step P2 for molding the porous ceramic substrate 94 and the extrusion molding method using the extrusion molding machine 96 are different. It is formed in the same process as the manufacturing process P1 to P7 of the glass ceramic 10. Therefore, the extrusion process P2 of the porous ceramic substrate 94 having a single layer structure will be described in detail with reference to FIGS.

図28は、押出成形工程p2の成形素地充填工程を詳細に説明する押出成形機96および成形素地Cの断面図である。押出成形機96は、円筒部90の外周面形状を形成する口金98と、円筒部90の内周面形状を形成する芯金100と、封止部92の内周面形状を形成する芯金100の先端に設けられた半球状の多孔体から形成された先端型102と、封止部92の外周面形状を形成する半球状の凹部104が口金98の開口に対抗するように設けられた多孔体から成る外型106と、外型106を口金98から着脱可能に収容する外型ホルダー108とから構成されている。芯金100の内部と外型ホルダー108にはそれぞれ空気孔110、112が設けられており、先端型102と外型106の凹部104により構成される封止部形成空間114には、芯金100内部の空気孔110および外型ホルダー108の空気孔112を通じて空気が吹き込み可能とされるとともに、封止部成形空間114から空気が吸引可能とされている。この押出成形機96において、先ず、矢印で示される封止部成形空間114から芯金100内部および外型ホルダー108外部方向へ空気が吸引された状態で、封止部成形空間114へ向けて成形素地Cが充填され押し出される。次に図29において矢印で示されるように、封止部成形空間114から芯金100内部への空気の吸引が維持されつつ、外型ホルダー108の外部方向から封止部成形空間114へ向けて空気が吹き込まれるように圧力がかけられた状態で外型106および外型ホルダー108が口金98から取り外される。最後に図30に示されるように、芯金100内部から先端型102を通じて封止部92を形成する成形素地C方向(矢印方向)へ空気が吹き込まれるように圧力がかけられて所望長さの円筒部90とされた多孔質セラミック基材94が得られる。このように押し出される際に押出方向に成形素地Cの逃げ場のない押出成形機96を用いて形成された多孔質セラミック基材94は、押出成形工程P2の成形素地充填工程において、成形素地Cが封止部成形空間114へ押し出される際に封止部92の先端付近を最高として局部的に高圧が加わるため、封止部92の先端はそれ以外のたとえば円筒部90と比較して緻密な細孔構造となっている。   FIG. 28 is a cross-sectional view of the extrusion molding machine 96 and the molding substrate C for explaining in detail the molding substrate filling step of the extrusion molding step p2. The extrusion machine 96 includes a base 98 that forms the outer peripheral surface shape of the cylindrical portion 90, a core metal 100 that forms the inner peripheral surface shape of the cylindrical portion 90, and a core metal that forms the inner peripheral surface shape of the sealing portion 92. A tip mold 102 formed of a hemispherical porous body provided at the tip of 100 and a hemispherical recess 104 forming the outer peripheral surface shape of the sealing portion 92 are provided so as to oppose the opening of the base 98. An outer mold 106 made of a porous body and an outer mold holder 108 that detachably accommodates the outer mold 106 from the base 98 are configured. Air holes 110 and 112 are provided in the inside of the core metal 100 and the outer mold holder 108, respectively, and the sealing metal forming space 114 formed by the recess 104 of the tip mold 102 and the outer mold 106 is provided in the core metal 100. Air can be blown through the internal air hole 110 and the air hole 112 of the outer mold holder 108, and air can be sucked from the sealing portion forming space 114. In this extrusion molding machine 96, first, molding is performed toward the sealing portion molding space 114 in a state where air is sucked from the sealing portion molding space 114 indicated by an arrow toward the inside of the core metal 100 and the outside of the outer mold holder 108. The substrate C is filled and extruded. Next, as indicated by an arrow in FIG. 29, air suction from the sealing portion molding space 114 to the inside of the core metal 100 is maintained, and from the outside of the outer mold holder 108 toward the sealing portion molding space 114. The outer mold 106 and the outer mold holder 108 are removed from the base 98 in a state where pressure is applied so that air is blown. Finally, as shown in FIG. 30, pressure is applied so that air is blown from the inside of the core metal 100 through the tip die 102 toward the forming substrate C that forms the sealing portion 92 (in the direction of the arrow), and the desired length is obtained. A porous ceramic substrate 94 having a cylindrical portion 90 is obtained. The porous ceramic base material 94 formed by using the extruder 96 in which the forming base C does not escape in the extruding direction when being extruded in this way is used in the forming base filling step of the extrusion forming step P2. When being pushed out into the sealing portion forming space 114, a high pressure is locally applied with the vicinity of the tip of the sealing portion 92 as the highest, so the tip of the sealing portion 92 is denser than other cylindrical portions 90, for example. It has a hole structure.

上述のように、本実施例の筒状セラミックス88によれば、多孔質セラミック基材94の円筒部90の片側の開口に固着されて開口を封止し、円筒部90に対して細孔構造が異なる部分を有する封止部92の表面に緻密なガラス層18が形成されている。このため、筒状セラミックス88の表面に欠陥のない均一な分離膜を形成することが可能となり、局部的な分離膜のリークなどの発生による分離膜フィルターの著しい分離性能の劣化を抑制することが可能となる。   As described above, according to the cylindrical ceramics 88 of the present embodiment, the porous ceramic base 94 is fixed to the opening on one side of the cylindrical portion 90 to seal the opening, and the pore structure with respect to the cylindrical portion 90 is determined. A dense glass layer 18 is formed on the surface of the sealing portion 92 having different portions. For this reason, it becomes possible to form a uniform separation membrane having no defects on the surface of the cylindrical ceramics 88, and to suppress the significant deterioration of the separation performance of the separation membrane filter due to the occurrence of local leakage of the separation membrane. It becomes possible.

また、本実施例の筒状セラミックス88によれば、前述の実施例1と同様の効果を得ることができる。   Moreover, according to the cylindrical ceramics 88 of the present embodiment, the same effects as those of the first embodiment can be obtained.

次に本発明の他の実施例を説明する。図31は、筒状セラミックス116の幅方向の中心を通る平面上の断面図である。筒状セラミックス88は、円筒部12と円筒部12の片側の開口を封止する封止部14とから成る、主成分がアルミナの単層構造の多孔質セラミック基材16と、封止部14の外側表面および封止部14とは反対側の開口の表面に形成されたガラス層18とから構成されている。また、封止部14の先端には、円筒部と比較して表面構造が粗い破断面を有する突起20が形成されている。   Next, another embodiment of the present invention will be described. FIG. 31 is a cross-sectional view on a plane passing through the center of the cylindrical ceramic 116 in the width direction. The cylindrical ceramics 88 includes a cylindrical portion 12 and a sealing portion 14 that seals an opening on one side of the cylindrical portion 12, and a porous ceramic base material 16 having a single-layer structure of alumina as a main component, and a sealing portion 14. And a glass layer 18 formed on the surface of the opening opposite to the sealing portion 14. Further, a protrusion 20 having a fracture surface whose surface structure is rougher than that of the cylindrical portion is formed at the tip of the sealing portion 14.

筒状セラミックス116は、ディップ工程P5において多孔質セラミック基材16の封止部14に加えて封止部14とは反対側の端部がガラス層18を構成するガラススラリーに浸漬される以外は、前述の実施例1の筒状セラミックス10の製造工程P1からP7と同様の工程で形成される。   The cylindrical ceramics 116 is not dipped in the glass slurry constituting the glass layer 18 at the end opposite to the sealing part 14 in addition to the sealing part 14 of the porous ceramic base material 16 in the dipping step P5. These are formed in the same steps as the manufacturing steps P1 to P7 of the cylindrical ceramic 10 of Example 1 described above.

上述のように、本実施例の筒状セラミックス116によれば、前述の実施例1と同様の効果を得ることができる。   As described above, according to the cylindrical ceramics 116 of the present embodiment, the same effects as those of the first embodiment can be obtained.

また、本実施例の筒状セラミックス116によれば、多孔質セラミック基材16の封止部14とは反対側の開口の表面にガラス層18が形成される。このようにすれば、筒状セラミックス116の開口の表面に形成されたガラス層18が接合剤として機能することにより、上記開口を封止する封止部材が接合されるため、封止部材による封止の際に開口側端部へ締付力を付与することが不要となりそれによる筒状セラミックス116の破損を防ぐことができる。また、筒状セラミックス116の多孔質セラミック基材16の線熱膨張係数とガラス層18の線熱膨張係数との差が2×10−6/K未満であるため、多孔質セラミック基材16の表面への分離膜形成工程における焼成時に、多孔質セラミック基材16と封止部材との接合部においてガスや液体などの漏れの原因となるガラス層18のひび割れなどを好適に防ぐことができ、分離膜フィルターの分離性能を一層向上することができる。 Moreover, according to the cylindrical ceramic 116 of the present embodiment, the glass layer 18 is formed on the surface of the opening on the opposite side of the sealing portion 14 of the porous ceramic substrate 16. In this case, since the glass layer 18 formed on the surface of the opening of the cylindrical ceramic 116 functions as a bonding agent, the sealing member that seals the opening is bonded. When stopping, it is not necessary to apply a tightening force to the opening side end portion, and damage to the cylindrical ceramics 116 due to this can be prevented. Further, since the difference between the linear thermal expansion coefficient of the porous ceramic substrate 16 of the cylindrical ceramic 116 and the linear thermal expansion coefficient of the glass layer 18 is less than 2 × 10 −6 / K, At the time of firing in the separation membrane forming step on the surface, it is possible to suitably prevent cracking of the glass layer 18 causing leakage of gas or liquid at the joint between the porous ceramic base material 16 and the sealing member, The separation performance of the separation membrane filter can be further improved.

次に本発明の他の実施例を説明する。図32は、筒状セラミックス118の幅方向の中心を通る平面上の断面図である。筒状セラミックス118は、円筒部12と円筒部12の片側の開口を封止する封止部14とから成る、主成分がアルミナの単層構造の多孔質セラミック基材16と、封止部14の外側表面に形成されたガラス層18と、封止部14とは反対側の端部に接合された円筒状のセラミック緻密体120から構成されている。また、封止部14の先端には、円筒部12と比較して表面構造が粗い破断面を有する突起20が形成されている。   Next, another embodiment of the present invention will be described. FIG. 32 is a cross-sectional view on a plane passing through the center of the cylindrical ceramic 118 in the width direction. The cylindrical ceramic 118 is composed of a cylindrical portion 12 and a sealing portion 14 that seals an opening on one side of the cylindrical portion 12, and a porous ceramic base material 16 having a single-layer structure whose main component is alumina, and a sealing portion 14. The glass layer 18 is formed on the outer surface of the cylindrical portion, and the cylindrical ceramic dense body 120 is joined to the end opposite to the sealing portion 14. Further, a protrusion 20 having a fracture surface whose surface structure is rougher than that of the cylindrical portion 12 is formed at the tip of the sealing portion 14.

筒状セラミックス116は、混合工程P4から焼成工程P7において多孔質セラミック基材16の封止部14の外側表面にガラス層18が形成されることに加えて、多孔質セラミック基材16の封止部14とは反対側の端部にセラミック緻密体が接合される以外は、前述の実施例1の筒状セラミックス10の製造工程P1からP7と同様の工程で形成される。したがって、多孔質セラミック基材16へのセラミック緻密体120の接合方法について、以下説明する。   In addition to the formation of the glass layer 18 on the outer surface of the sealing portion 14 of the porous ceramic base material 16 in the mixing process P4 to the firing process P7, the cylindrical ceramics 116 seals the porous ceramic base material 16 Except that the ceramic dense body is joined to the end opposite to the portion 14, it is formed by the same steps as the manufacturing steps P1 to P7 of the cylindrical ceramic 10 of Example 1 described above. Therefore, a method for joining the ceramic dense body 120 to the porous ceramic substrate 16 will be described below.

ディップ工程P5において、混合工程P4で調整された多孔質セラミック基材16の封止部14の外側表面がガラス層18と同組成のガラスフリットから成るガラススラリーに浸漬されるとともに、上記ガラスフリットに適切なバインダまたは溶剤を加えて混合し調整したガラスペーストが多孔質セラミック基材16の封止部14とは反対側の環状端面に付着(塗付)された後に、円筒状のセラミック緻密体120がその環状端面が多孔質セラミック基材16のガラスペーストの付着した環状端面と当接するように多孔質セラミック基材16と組み合わせられる。乾燥工程P6を経て、焼成工程P7において多孔質セラミック基材16とセラミック緻密体120とが組み合わせられた状態で800〜950℃で1時間焼成されて、多孔質セラミック基材16の封止部14の外周側表面が上記ガラスフリットの溶融したガラス層18により被覆されるとともに、多孔質セラミック基材16の環状端面に付着したガラスペーストが溶融、固着することにより多孔質セラミック基材16にセラミック緻密体120が一体に接合された筒状セラミックス118が得られる。   In the dip process P5, the outer surface of the sealing portion 14 of the porous ceramic base material 16 adjusted in the mixing process P4 is immersed in a glass slurry made of glass frit having the same composition as the glass layer 18, and the glass frit is immersed in the glass frit. After the glass paste prepared by adding and mixing an appropriate binder or solvent is attached (applied) to the annular end surface opposite to the sealing portion 14 of the porous ceramic substrate 16, the cylindrical ceramic dense body 120 is formed. Are combined with the porous ceramic substrate 16 so that the annular end surface thereof comes into contact with the annular end surface of the porous ceramic substrate 16 to which the glass paste is adhered. After the drying process P6, the porous ceramic base material 16 and the ceramic dense body 120 are combined in the firing process P7 and fired at 800 to 950 ° C. for 1 hour, so that the sealing portion 14 of the porous ceramic base material 16 is sealed. Is coated with the glass layer 18 in which the glass frit is melted, and the glass paste adhering to the annular end surface of the porous ceramic base material 16 is melted and fixed, so that the porous ceramic base material 16 is densely ceramic. A cylindrical ceramic 118 in which the body 120 is integrally bonded is obtained.

上述のように、本実施例の筒状セラミックス118によれば、前述の実施例1と同様の効果を得ることができる。   As described above, according to the cylindrical ceramics 118 of the present embodiment, the same effects as those of the first embodiment can be obtained.

また、本実施例の筒状セラミックス118によれば、多孔質セラミック基材16の封止部14の反対側の端部に円筒形状を呈するセラミック緻密体120が接合される。このようにすれば、多孔質セラミック基材16の開口の強度を損なうことなく、セラミック緻密体120を介して封止部材を接合することができ、封止部材による封止の際の締付力を多孔質セラミック基材16の開口側端部へ付与することが不要となりそれによる筒状セラミックス118の破損を防ぐことができる。これにより、分離膜フィルターの分離性能の低下を抑制することができる。   Further, according to the cylindrical ceramic 118 of the present embodiment, the ceramic dense body 120 having a cylindrical shape is joined to the end of the porous ceramic base material 16 opposite to the sealing portion 14. In this way, the sealing member can be joined via the ceramic dense body 120 without impairing the strength of the opening of the porous ceramic base material 16, and the tightening force at the time of sealing by the sealing member To the opening-side end portion of the porous ceramic base material 16 becomes unnecessary, and damage to the cylindrical ceramics 118 due to this can be prevented. Thereby, the fall of the separation performance of a separation membrane filter can be suppressed.

以上、本発明を表及び図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to the table | surface and drawing, this invention can be implemented in another aspect, and can be variously changed in the range which does not deviate from the main point.

たとえば、前述の実施例1、4、5の筒状セラミックス10の多孔質セラミック基材16はそれぞれ主成分がアルミナ、ムライト、イットリア安定化ジルコニアであったが、これに限定されるものではなく、たとえば、シリカ、チタニア、窒化珪素、炭化珪素を主成分として多孔質セラミック基材が形成されていてもよい。   For example, the porous ceramic base material 16 of the cylindrical ceramics 10 of Examples 1, 4, and 5 described above was mainly composed of alumina, mullite, and yttria-stabilized zirconia, but is not limited thereto. For example, a porous ceramic substrate may be formed using silica, titania, silicon nitride, or silicon carbide as the main component.

また、前述の筒状セラミックス10、54、62、88、116、118は、押出成形機により円筒部と封止部とが一体成形された多孔質セラミック基材の封止部の外側表面にガラス層18が形成されて成るものであったが、これに限定されるものではなく、たとえば、押出成形により円筒部のみを成形した後に封止部を手作業で成形する方法、プレス成形法により封止部を成形する方法、別途準備した封止部を接合剤により円筒部の片側端部に接合する方法などで構成された多孔質セラミック基材の封止部の外側表面にガラス層18が形成されても、分離膜を良好に成膜できるのに加えて、円筒部と封止部との接合部の接合強度を高めて接合部におけるリーク発生などを抑制することができる。   Further, the above-mentioned cylindrical ceramics 10, 54, 62, 88, 116, 118 are formed on the outer surface of the sealing portion of the porous ceramic base material in which the cylindrical portion and the sealing portion are integrally formed by an extruder. However, the present invention is not limited to this. For example, only the cylindrical portion is formed by extrusion molding, and then the sealing portion is molded manually or sealed by a press molding method. A glass layer 18 is formed on the outer surface of the sealing portion of the porous ceramic base material formed by a method of forming a stopper, a method of bonding a separately prepared sealing portion to one end of the cylindrical portion with a bonding agent, and the like. Even in this case, the separation membrane can be satisfactorily formed, and in addition, the joining strength of the joining portion between the cylindrical portion and the sealing portion can be increased to suppress the occurrence of leakage at the joining portion.

また、前述の円筒部12、64、72、90は、断面が円形であったが、断面が楕円や多面形であっても差支えない。   In addition, the cylindrical portions 12, 64, 72, and 90 described above have a circular cross section, but the cross section may be an ellipse or a polyhedron.

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。   It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention is implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.

10、54、62、88、116、118:分離膜用片端封止型筒状セラミックス基材
12、64、72、90:円筒部
14、66、74、92:封止部
16、60、80、94、:多孔質セラミック基材
18:ガラス層(緻密層)
20、81:突起
22、82、96:押出成形機
120:セラミック緻密体
A、B、C、P:成形素地(セラミックス成形原料)
10, 54, 62, 88, 116, 118: One-end sealed cylindrical ceramic substrate for separation membrane 12, 64, 72, 90: Cylindrical portion 14, 66, 74, 92: Sealing portion 16, 60, 80 94,: Porous ceramic substrate 18: Glass layer (dense layer)
20, 81: Protrusions 22, 82, 96: Extruder 120: Ceramic dense bodies A, B, C, P: Molding base (ceramic forming raw material)

Claims (9)

外側表面に分離膜が成膜される分離膜用片端封止型筒状セラミックス基材であって、
筒部と、該筒部の片側の開口に固着されて該開口を封止し、該筒部に対して表面構造または細孔構造が異なる部分を有する封止部とを備え、前記封止部の表面に破断面が局周的に形成されている多孔質セラミック基材と、
前記多孔質セラミック基材の熱膨張係数に対する熱膨張係数差が2×10−6/K未満である熱膨張係数を有するガラス層であって、前記封止部の表面に前記破断面を覆うように直接に又は平均細孔径が前記多孔質セラミック基材よりも小さいアルミナを主成分とする多孔質アルミナセラミック層を介して間接的に形成されたガラスを主成分とする緻密層と、を、
備えていることを特徴とする分離膜用片端封止型筒状セラミックス基材。
One-side-sealed cylindrical ceramic substrate for separation membrane in which a separation membrane is formed on the outer surface,
A cylindrical portion, and a sealing portion that is fixed to an opening on one side of the cylindrical portion to seal the opening, and has a portion having a surface structure or a pore structure different from the cylindrical portion, and the sealing portion A porous ceramic substrate having a fracture surface locally formed on the surface of
A glass layer having a thermal expansion coefficient that is less than 2 × 10 −6 / K in terms of a thermal expansion coefficient difference with respect to a thermal expansion coefficient of the porous ceramic base material, and covers the fracture surface on the surface of the sealing portion. A dense layer mainly composed of glass formed directly or indirectly via a porous alumina ceramic layer mainly composed of alumina having an average pore diameter smaller than that of the porous ceramic substrate,
A single-side-sealed cylindrical ceramic substrate for a separation membrane, comprising:
前記多孔質セラミック基材が、多層構造である
ことを特徴とする請求項1の分離膜用片端封止型筒状セラミックス基材。
The porous ceramic substrate has a multi-layer structure. The single-end sealed cylindrical ceramic substrate for a separation membrane according to claim 1.
前記多孔質セラミック基材が、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素のうちのいずれか1つを主成分として形成されている
ことを特徴とする請求項1または2の分離膜用片端封止型筒状セラミックス基材。
The separation according to claim 1 or 2, wherein the porous ceramic base material is formed mainly of any one of alumina, zirconia, mullite, silica, titania, silicon nitride, and silicon carbide. One-end sealed cylindrical ceramic substrate for membrane.
前記多孔質セラミック基材の熱膨張係数と前記ガラスを主成分とする前記緻密層の熱膨張係数との差が、1×10−6/K未満である
ことを特徴とする請求項1ないし3のいずれか1の分離膜用片端封止型筒状セラミックス基材。
4. The difference between the thermal expansion coefficient of the porous ceramic base material and the thermal expansion coefficient of the dense layer containing glass as a main component is less than 1 × 10 −6 / K. 5. One end sealing type cylindrical ceramic substrate for a separation membrane according to any one of the above.
前記ガラスの組成が、SiOを主成分とし、Al、TiO、ZrO、ZnO、B、Bi、アルカリ金属、アルカリ土類金属のいずれかを含む
ことを特徴とする請求項1ないし4のいずれか1の分離膜用片端封止型筒状セラミックス基材。
The composition of the glass contains SiO 2 as a main component and includes any one of Al 2 O 3 , TiO 2 , ZrO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , an alkali metal, and an alkaline earth metal. The single-side sealed cylindrical ceramic substrate for a separation membrane according to any one of claims 1 to 4.
押出成形機の口金の開口が貫通孔を有する外型によって閉じられた状態で、前記多孔質セラミック基材の前記筒部と前記封止部とが押出成形によって一体成形された後、前記外型が前記口金から取り外されることにより前記破断面が前記封止部の表面に局所的に形成される
ことを特徴とする請求項1ないし5のいずれか1の分離膜用片端封止型筒状セラミックス基材の製造方法。
After the opening of the die of the extrusion molding machine is closed by the outer mold having a through hole, the cylindrical portion and the sealing portion of the porous ceramic base material are integrally formed by extrusion molding, and then the outer mold The one end-sealed cylindrical ceramics for a separation membrane according to any one of claims 1 to 5, wherein the fracture surface is locally formed on the surface of the sealing portion by removing from the base. A method for producing a substrate.
押出成形機の口金の開口が貫通孔を有する外型によって閉じられた状態で、前記多孔質セラミック基材の前記筒部と前記封止部とが、内筒および外筒を設けた多重管の該内筒内部および該内筒と該外筒との間に、異なる性質のセラミックス成形原料を各別に供給して押出して、合流させることで一体成形されたセラミック多層構造体を得る押出成形によって一体成形された後、前記外型が前記口金から取り外されることにより前記破断面が前記封止部の表面に局所的に形成される
ことを特徴とする請求項1ないし5のいずれか1の分離膜用片端封止型筒状セラミックス基材の製造方法。
In the state where the opening of the die of the extrusion molding machine is closed by an outer mold having a through hole, the cylindrical portion and the sealing portion of the porous ceramic base material are a multiple tube provided with an inner cylinder and an outer cylinder. Integrated into the inner cylinder and between the inner cylinder and the outer cylinder by extrusion molding to obtain a ceramic multilayer structure integrally formed by separately supplying ceramic molding raw materials having different properties and extruding and joining them. 6. The separation membrane according to claim 1, wherein after the molding, the outer mold is removed from the base, whereby the fracture surface is locally formed on a surface of the sealing portion. For producing a single-end-sealed cylindrical ceramic base material.
前記多孔質セラミック基材の前記封止部とは反対側の端部には開口が形成され、
前記開口が形成された端部の端面、および前記端面に隣接する内周面および外周面に前記ガラスを主成分とする緻密層が形成されている
ことを特徴とする請求項1ないし5のいずれか1の分離膜用片端封止型筒状セラミックス基材。
An opening is formed at the end of the porous ceramic substrate opposite to the sealing portion,
6. A dense layer containing glass as a main component is formed on an end surface of the end portion where the opening is formed, and an inner peripheral surface and an outer peripheral surface adjacent to the end surface. 1. One-end sealed cylindrical ceramic substrate for separation membrane.
前記多孔質セラミック基材の封止部の反対側の端部に筒形状のセラミック緻密体が接合されている
ことを特徴とする請求項1ないし5のいずれか1の分離膜用片端封止型筒状セラミックス基材。
A single-sided sealing type for a separation membrane according to any one of claims 1 to 5, wherein a cylindrical ceramic dense body is joined to an end of the porous ceramic base opposite to the sealing part. Cylindrical ceramic substrate.
JP2018187688A 2018-10-02 2018-10-02 One-end sealed cylindrical ceramic base material for separation membrane and method for producing the same Active JP6653004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187688A JP6653004B2 (en) 2018-10-02 2018-10-02 One-end sealed cylindrical ceramic base material for separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187688A JP6653004B2 (en) 2018-10-02 2018-10-02 One-end sealed cylindrical ceramic base material for separation membrane and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014185684A Division JP6415200B2 (en) 2014-09-11 2014-09-11 Single-end sealed cylindrical ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2019005752A true JP2019005752A (en) 2019-01-17
JP6653004B2 JP6653004B2 (en) 2020-02-26

Family

ID=65026554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187688A Active JP6653004B2 (en) 2018-10-02 2018-10-02 One-end sealed cylindrical ceramic base material for separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6653004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024888A1 (en) * 2020-07-27 2022-02-03 京セラ株式会社 Probe guide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225506A (en) * 1988-03-04 1989-09-08 Ngk Insulators Ltd Manufacture of bag cylindrical tube and core bar structure used therefor
JPH0286408A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Extrusion-molding method of multilayer structure of ceramic and equipment therefor
JPH11226370A (en) * 1998-02-17 1999-08-24 Nok Corp Porous ceramic type hollow fiber membrane module
JP2001062241A (en) * 1999-08-31 2001-03-13 Kyocera Corp Filter for separating perfluorinated compound and its production
WO2007116634A1 (en) * 2006-03-22 2007-10-18 Ngk Insulators, Ltd. Bag tube shaped body with porous multilayer structure
JP2009066528A (en) * 2007-09-13 2009-04-02 Hitachi Zosen Corp Zeolite separation membrane, its manufacturing method, and sealant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225506A (en) * 1988-03-04 1989-09-08 Ngk Insulators Ltd Manufacture of bag cylindrical tube and core bar structure used therefor
JPH0286408A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Extrusion-molding method of multilayer structure of ceramic and equipment therefor
JPH11226370A (en) * 1998-02-17 1999-08-24 Nok Corp Porous ceramic type hollow fiber membrane module
JP2001062241A (en) * 1999-08-31 2001-03-13 Kyocera Corp Filter for separating perfluorinated compound and its production
WO2007116634A1 (en) * 2006-03-22 2007-10-18 Ngk Insulators, Ltd. Bag tube shaped body with porous multilayer structure
JP2009066528A (en) * 2007-09-13 2009-04-02 Hitachi Zosen Corp Zeolite separation membrane, its manufacturing method, and sealant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024888A1 (en) * 2020-07-27 2022-02-03 京セラ株式会社 Probe guide

Also Published As

Publication number Publication date
JP6653004B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
EP2832429B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
EP2832426A1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
EP2832430B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP5269583B2 (en) Method for producing ceramic porous membrane
JP2016052959A (en) Glass coating alumina structure, separation membrane element, and glass bonding agent
US10391454B2 (en) Monolithic separation membrane structure and method for producing monolithic separation membrane structure
JP6653004B2 (en) One-end sealed cylindrical ceramic base material for separation membrane and method for producing the same
JP2023011761A (en) ceramic membrane filter
US11402314B2 (en) Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
JP6415200B2 (en) Single-end sealed cylindrical ceramics and method for producing the same
US10449484B2 (en) Monolithic substrate, monolithic separation membrane structure, and method for producing monolithic substrate
JP2023021136A (en) ceramic filter
CN106999864B (en) Separation membrane structure and method for producing same
WO2016051910A1 (en) Process for producing separation membrane structure
JP6993921B2 (en) Porous structure and porous body with separation membrane using it
JP6636932B2 (en) Membrane structure and manufacturing method thereof
JP6479534B2 (en) Separation membrane structure and method for producing the same
JP2018034091A (en) Porous Filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200124

R150 Certificate of patent or registration of utility model

Ref document number: 6653004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250