JP2019002912A - 粒子状物質分析用のシステム及び方法 - Google Patents

粒子状物質分析用のシステム及び方法 Download PDF

Info

Publication number
JP2019002912A
JP2019002912A JP2018091931A JP2018091931A JP2019002912A JP 2019002912 A JP2019002912 A JP 2019002912A JP 2018091931 A JP2018091931 A JP 2018091931A JP 2018091931 A JP2018091931 A JP 2018091931A JP 2019002912 A JP2019002912 A JP 2019002912A
Authority
JP
Japan
Prior art keywords
resonator
electromagnetic radiation
output
sample
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018091931A
Other languages
English (en)
Inventor
ディー.エー.ハンセン アンソニー
D A Hansen Anthony
ディー.エー.ハンセン アンソニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magee Scientific Corp
Original Assignee
Magee Scientific Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magee Scientific Corp filed Critical Magee Scientific Corp
Publication of JP2019002912A publication Critical patent/JP2019002912A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】粒子状物質分析用のシステム及び方法を提供する。【解決手段】装置は、発振バランスの表面上116において微粒子を収集し、且つ、微粒子を有するバランスの固有共振周波数を微粒子を有していないバランスと比較する。これに加えて、収集された微粒子は、微粒子によって吸収される光によって照明される。この結果、バランスが加熱し、これにより、固有共振周波数が影響を受ける。固有共振周波数の比較により、収集された微粒子の光学プロパティが明らかとなり、これを使用することにより、微粒子を分類することができる。【選択図】図1

Description

関連出願の相互参照
本出願は、2017年5月12日付けで出願された米国仮特許出願第62/505,773号明細書の利益を主張するものであり、この特許文献の内容は、引用により、そのすべてが本明細書に包含される。
本発明は、浮遊する空気中の微粒子の識別用の装置に関する。
特定のタイプのバランス(balance)は、その上部において収集又は配置された物質の質量を判定するべく、音波共振器を利用している。このような装置においては、共振器は、重量計測対象の物質の質量を収集するためのセンサエリアを有する片持ち支持された要素である。このような共振器は、合計重量―即ち、片持ち支持された要素に、収集されたサンプルの重量を加えたもの―に部分的に依存する周波数(「固有共振周波数」)において発振する。共振器が電子発振器回路に接続された状態において、固有共振周波数を判定することができる。通常、固有共振周波数は、共振器の温度に依存しており、且つ、従って、通常は、計測に対する温度の影響を極小化するべく、温度が制御されている。
(特許文献1)(「292特許」)には、音波共振器を利用して質量を計測する1つの装置について記述されており、この特許文献の内容は、引用により、本明細書に包含される。「292特許」の装置においては、共振器は、水晶振動子マイクロバランス(QCM:Quartz Crystal Microbalance)であるか、或いは、その他の質量感知及び温度補償型の音波共振器である。共振器は、その固有周波数において発振器の発振を駆動する電子発振器回路に接続される。空気中の微粒子は、共振器近傍の加熱されたワイヤによって誘発される熱泳動を使用することにより、共振器上の収集表面に又は共振器上の電極に駆動される。
微粒子が水晶体上に堆積するのに伴って、機械的負荷により、QCMの固有共振周波数が低減される。この結果、サンプル収集水晶体の周波数を基準水晶体のものと比較することにより、差分又は「ビート」周波数信号が生成される。この2つの水晶体の固有共振周波数の差の変化を使用することにより、周囲の空気中の微粒子の質量濃度に関係する質量収集のレートを判定する。或いは、この代わりに、固有共振周波数は、その他の手段によって判定することもできる。周波数の変化レートは、空気中の微粒子の質量濃度の計測値を表す電子的手段により、容易に判定することができる。これらの共振器及び共振器回路については、当技術分野において既知である。
米国特許第7,168,292号明細書
「292特許」に記述されているものなどの装置は、収集された質量の合計値を判定する能力を有するが、これらは、収集された微粒子のタイプを判定する能力を有してはいない。微粒子のプロパティを判定しうる廉価な装置に対するニーズが存在している。
本発明の実施形態は、微粒子によって吸収される波長を含む光により、共振器上において収集された微粒子を照明する質量検出システムを提供する。収集された微粒子の一部分が光を吸収する場合には、これらは、エネルギーを吸収することになり、且つ、その温度が増大することになる。このエネルギーは、共振器に伝達されることになり、且つ、その結果、共振器の温度が上昇することになる。共振器の温度の変化は、その機械的弾性プロパティを変更することになり、且つ、その結果、共振器の発振周波数の変化をもたらすことになる。これらの共振器要素の固有発振周波数は、温度の影響を非常に受けやすいことが、周知であり、且つ、「292特許」にも記述されている。従って、照明による発振周波数の変化を計測することにより、微粒子の物理的特性に関する詳細な情報を取得することが可能であり、且つ、いくつかの状況においては、微粒子の量及びタイプを判定することができる。
特定の実施形態は、収集された質量の判定に加えて、収集された微粒子のサンプルのプロパティをも計測するシステムを提供している。システムは、収集された微粒子のサンプルの質量を計測する装置であって、発振する能力を有する要素の表面である、サンプルを収集するための表面及び収集要素の発振の周波数を判定する電子回路を含む装置と、表面上において電磁放射を導くように構成された電磁放射供給源と、導かれた電磁放射の波長を制御するように、且つ、発振の周波数の対応する変化を計測するように、プログラムされたプロセッサと、を含む。
特定の実施形態は、収集された微粒子のサンプルのプロパティを計測するシステムを提供している。システムは、サンプルを受け付けるように構成された第1表面及び第1共振器の第1固有共振周波数に比例した第1出力を有する第1電子発振器回路を含む第1共振器と、サンプルを受け付けないように構成された第2表面及び第2共振器の第2固有共振周波数に比例した第2出力を有する第2電子発振器回路を含む第2共振器と、光学被覆を有し、且つ、サンプルを受け付けないように構成された、第3表面及び第1共振器の第3固有共振周波数に比例した第3出力を有する第3電子発振器回路を含む第3共振器と、第1表面、第2表面、及び第3表面を照明するように構成された電磁放射供給源と、を含む。又、システムは、電磁放射供給源による第1表面、第2表面、及び第3表面の照明を制御するように、第1出力、第2出力、及び第3出力を受け付けるように、且つ、第1表面上において受け付けられたサンプルのプロパティを判定するように、プログラムされたプロセッサをも含む。
特定のその他の実施形態は、収集された微粒子のサンプルのプロパティを計測するシステムを提供している。システムは、表面と、共振器の固有共振周波数に比例した出力を有する電子発振器回路と、表面を照明するように構成された関連する電磁放射の供給源と、をそれぞれが含む2つ以上の共振器を含み、この場合に、2つ以上の共振器のうちの第1共振器は、サンプルを受け付けるように構成された第1表面を有する第1共振器を含み、且つ、この場合に、2つ以上の共振器のうちの第2共振器は、サンプルを受け付けないように構成された第2表面を有する第2共振器を含む。又、システムは、電磁放射の供給源による第1表面及び第2表面の照明を制御するように、第1共振器の電子回路からの出力及び第2共振器の電子回路からの出力を受け付けるように、且つ、第1表面上において受け付けられたサンプルのプロパティを判定するように、プログラムされたプロセッサをも含む。
更に別の実施形態は、コンピュータと、1つ又は複数の共振器と、共振器の固有共振周波数に比例した出力を有する1つ又は複数の電子発振器回路と、を含む装置により、収集された微粒子のサンプルのプロパティを計測する方法を提供している。方法は、電子発振器回路によって第1共振器の第1固有共振周波数を計測するステップであって、第1共振器は、収集された微粒子を有する表面を含み、計測ステップは、表面が、収集された微粒子によって少なくとも部分的に吸収される第1波長の電磁放射によって照明されている間に実行される、ステップと、電子発振器回路によって第2共振器の第2固有共振周波数を計測するステップであって、第2共振器は、収集された微粒子を有しておらず、計測ステップは、表面が、第1波長の電磁放射によって照明されている間に実行される、ステップと、電子発振器回路によって第3共振器の第3自然共振器周波数を計測するステップであって、第3共振器は、表面上において光学被覆を有し、且つ、収集された微粒子を含んでおらず、且つ、計測ステップは、表面が、第1波長の電磁放射によって照明されている間に実行される、ステップと、コンピュータのプログラミング及びこれらの出力の比較に従って、第1表面上において受け付けられたサンプルのプロパティを判定するステップと、を含む。
これらの特徴は、以下の詳細な説明から当業者に明らかとなる様々な補助的手段及び特徴と共に、本発明の微粒子を計測するシステム及び方法によって実現され、その好適な実施形態が、一例としてのみ、以下の添付図面を参照して示されている。
図1は、質量検出システムの第1及び第2実施形態の斜視図である。 図2は、図1の平面図2−2である。 図3は、図1の底面図3−3である。 図4は、図2の側面図4−4である。 図5は、図2の端面図5−5である。 図6は、質量検出システムの第3実施形態の平面図である。 図7は、図6の正面図7−7である。 図8は、図6の側面断面図8−8である。
図においては、図示されている特定のコンポーネント、側面、又は特徴を示すべく、参照符号が使用されている。参照符号は、複数の図において共通しており、これにより、それらの図に示されている同一のコンポーネント、側面、又は特徴を示している。
本明細書において記述されているように、実施形態は、微粒子を収集し、且つ、微粒子の物理的特性に関する詳細情報を取得し、且つ、いくつかの状況においては、微粒子を分類し且つ1つのタイプを別のタイプから弁別する、質量検出システムを含む。本明細書において更に記述されているように、質量検出システムは、相対的に大きな又は小さな程度に吸収されうる異なる波長の光により、共振器上において収集された微粒子を照明することによって動作している。結果的に得られる基礎をなす共振器の温度上昇は、波長依存性を有すると共に収集された微粒子を特徴付けるべく使用されうる応答を生成する。
質量検出システム100の第1実施形態のいくつかの図が示されており、図1は、質量検出システムの斜視図であり、図2は、図1の平面図2−2であり、図3は、図1の底面図3−3であり、図4は、図2の側面図4−4であり、且つ、図5は、図2の端面図5−5である。
質量検出システム100は、バランス110と、プログラム可能なコンピュータ120と、を含む。バランス110は、本体111と、共振器117と、基部118と、電極119と、電子発振器回路130と、を含む。
共振器117は、本明細書においては限定を伴うことなしに上部表面と呼称されている、表面116を有し、この一部又はすべては、微粒子を収集するべく使用することができる。一代替実施形態においては、表面116の一部又はすべてには、後述するように、被覆が提供されている。バランス110の任意選択のコンポーネントには、限定を伴うことなしに、光源301を有する光源支持部113と、その目的が、粒子を雰囲気から表面上に沈殿させることである熱泳動要素115用のヒーター支持部114と、を含む。
後述するように、電子発振器回路130は、共振器117の固有発振周波数を決定し、且つ、コンピュータ120は、すべての熱泳動要素115及び光源113を制御し、且つ、共振器からデータを取得し、且つ、そのデータから、且つ、或いは、その代わりに、光源301の動作に関する情報を使用することにより、収集された微粒子のプロパティを判定している。
共振器117は、特定の実施形態においては、ケイ素材料からなる曲がりやすい矩形のバーであり、その長さは、その幅を上回っており、且つ、その厚さは、長さ及び幅の寸法のいずれよりも格段に小さい。図2に示されているように、共振器117は、端部201において基材材料に装着されている一方で、他方の端部203は、自由浮遊状態にある。共振器117は、好適な実施形態において、通常はギガヘルツのレベルでありうる、機械的発振の固有共振周波数を有する。この発振は、電子発振器回路130から、端部203の近傍に位置する電極119に、発振電圧を印加することにより、誘発することができる。この電極に印加される電圧の周波数が共振器117の共振周波数を有する際には、発振が極大化する。電極119と端部203の組合せは、共振周波数において発振を維持するべく、電子発振器回路130に内蔵されるコンデンサを生成している。又、特定の実施形態においては、端部203は、電子発振器回路130の一部分として、電極をも含む。
一実施形態においては、共振器117は、粒子状物質堆積表面としても利用される、水晶振動子マイクロバランス(QCM)質量センサである。粒子状物質は、共振器117の表面116上において収集されるが、この表面は、本明細書においては、「収集器要素」とも呼称される。共振器は、電子発振器回路に接続されている。微粒子の質量が水晶体上に堆積するのに伴って、機械的負荷により、水晶体の固有共振周波数が低減される。この周波数が、後述するように検出され、且つ、収集された粒子状物質の品質を判定するべく使用される。周波数の変化レートは、当技術分野において既知の共振器及び共振器回路を使用することにより、電子手段によって容易に判定することができる。共振器の「表面」という用語は、共振器の電極でありうることを理解されたい。
本発明は、石英に加えて、その他の材料が圧電材料として使用されうるものと想定している。水晶振動子マイクロバランス表面の代わりに、表面材料は、ロッシェル塩、トルマリン、酒石酸エチレンジアミン(EDT)、酒石酸ジカリウム(DKT)、無水リン酸アンモニウム(ATP)などの合成水晶体、ポリフッ化ビニリデン(PVDF)などの強誘電性ポリマー、チタン酸ジルコン酸鉛(PbZrTiO)などの多結晶セラミック、並びに、酸化亜鉛(ZnO)、窒化アルミニウム(AlN)、チタン酸バリウム(BaTiO)、ニオブ酸リチウム(LiNbO)、及びタンタル酸リチウム(LiTaO)などのその他の結晶質構造であってもよい。
特定の実施形態においては、空気中の微粒子は、機械的固着、熱泳動、及びその他の方法を含む様々なメカニズムにより、表面116上において安着するように誘発することができる。これらの方法は、微粒子を空気ストリームから発振バー上に沈殿させ、そこで、これらの質量が検出される。本明細書においては、本発明者らは、限定を伴うことなしに、微粒子を沈殿させるべく、収集要素近傍の加熱された要素による熱泳動の使用を例示している。
特定の実施形態においては、熱泳動要素115を使用することにより、熱泳動を介して表面116上において堆積する微粒子の量を増大させている。又、熱泳動要素115は、本明細書においては、「収集ワイヤ」、「収集器ワイヤ」、「加熱ワイヤ」、「ワイヤ」、又は「熱泳動収集装置」とも呼称される。熱泳動要素は、共振器表面の近傍に位置することのみを必要としており、且つ、「近傍に」は、装置の動作の際に、すべての存在する粒子状物質の少なくとも一部分が共振器表面上に堆積することを意味するものと本発明が想定していることを理解されたい。本発明は、熱泳動要素又はその他の熱泳動加熱表面が、表面の上方、隣、又は下方に位置しうるものと想定している。この要素は、表面に対して、平行に、或いは、別の非直交角度において、配設することができる。
本発明の一実施形態においては、好ましくは、ワイヤ、一連のワイヤ、又はその他の熱泳動加熱表面である、加熱された熱泳動要素115と表面116の間に温度勾配が生成されている。例えば、熱泳動要素115は、矩形形状を有しうる、リボンなどの、金属ストリップを含むことができる。又、本発明は、熱泳動要素として、導電性被覆を有する光透過性金属フィルム又は基材も使用されるものと想定している。フィルムは、0.1ミクロン以上の任意の厚さを有することができる。被覆は、望ましい任意の厚さであってもよい。例えば、インジウムスズ酸化物(ITO:Indium Tin Oxide)被覆が、ガラス基材などの、基材上に存在していてもよい。この光透過性金属フィルムは、リソグラフィなどの当技術分野において既知の技法により、パターン化されてもよい。一実施形態においては、熱泳動要素は、共振器を有する要素内において、同軸状に、但し、熱泳動要素と共振器表面の間に適切な間隔を伴って、収容されてもよい。本発明の一実施形態においては、0.5mmの距離において水晶振動子表面に対して平行に延在する、直径が25μmであり、且つ、長さが15mmである、ニッケル合金ワイヤが、熱泳動要素として使用されている。この構成は、空気ストリームのポンピングに対するニーズを伴うことなしに、取り囲んでいる周囲の雰囲気から微粒子を直接的に沈殿させることになる。
熱泳動微粒子収集の効率は、熱泳動要素と収集表面の間の温度勾配の増大に伴って増大する。温度勾配は、装置構造に損傷を与えることなしに、或いは、微粒子サンプルを不適切に変更することなしに、可能な限り大きいことが好ましい。直径が10μmである熱電対によって実施された計測は、加熱ワイヤと水晶体表面の間の温度差がわずかに5℃であったことを示している。好ましくは、温度勾配は、5℃超である。本発明の一実施形態においては、好ましくは、フィンを有するアルミニウムブロックである、ヒートシンクに共振器を装着することにより、共振器の温度を減少させることが想定されている。但し、金属ブロックをいくつかの共振器タイプとの接触状態において配置すれば、その振動が減衰することになり、且つ、堆積した質量に対するその感度が大幅に減少することになろう。又、熱は、放射及び対流を介して伝達することもできるが、金属の間の伝導ほどには、効果的ではない。共振するその自由を妨げることなしに、高熱伝導性表面に堅固に取り付けられうる、但し、改善された熱伝達を許容する、共振器の選択が可能である。温度勾配は、音波共振器表面又は水晶振動子マイクロバランス表面の表面を冷却することにより、或いは、熱泳動要素を加熱することにより、増大させることができる。この加熱及び/又は冷却を実現する手段については、当技術分野において既知である。
特定の実施形態においては、光源301は、表面116上において微粒子を照明する、既知の波長の、電磁放射、又は光、を生成している。特定のタイプの微粒子は、光を吸収することができる一方で、雰囲気の霞中において生成されるその他の一般的なタイプの空気中の微粒子(埃、海の波しぶきの塩分、無機化合物(硫酸塩や硝酸塩など)など)は、光を吸収しない。相対的に重要なことは、光の異なる波長において試験を実行することにより、光を吸収しない微粒子の更なる弁別が提供されるという事実である。上述の種類の微粒子の吸収スペクトルは、様々であり、且つ、小型光源から入手可能である照明の波長のスペクトル範囲を表す(例えば)370nm(紫外)〜950nm(赤外)のスペクトルに跨って、形態が大幅に異なっている。
当技術分野において既知のように、共振器117の共振周波数は、共振器の温度に伴って変化することになる。後述するように、光源301に対する共振器117の応答は、微粒子の光吸収特性に依存することになる。後述するように、共振器117の応答は、微粒子によって吸収される光の光源301によって影響されることになり、且つ、従って、質量検出システム100は、微粒子のサンプルに対して複数回の計測を実行する能力を有しており、且つ、複数回の計測を使用することにより、収集されたサンプルの詳細を推定する。
熱泳動要素115、共振器117、電極119、及び電子発振器回路130の更なる詳細については、「292特許」において見出すことができる。
特定の実施形態は、バランスを動作させることによって特定のタイプの空気中の微粒子の識別を有利に提供しうる装置及び方法を提供している。微粒子を分類し且つ1つのタイプを別のタイプから弁別する能力は、データの価値を大幅に増大させることになる。本発明の装置によって識別されうる空気中の微粒子の例は、限定を伴うことなしに、以下の例示用の例を含む。
・高圧油圧システムにおいてピンホール漏洩によって生成される油滴の霧:これらのイベントの迅速な検出は、潜水艦や封止状態の軍事車両(戦車を含む)などのような封入された環境の管理者にとって有益である。
・上述の封入された環境においてバイオマスの燃焼によって生成される微粒子:具体的には、潜水艦において蔓延している(但し、禁止されている)タバコ喫煙の問題。
・封入された空間の居住者を関連する有毒成分から保護しなければならない環境においてバイオマスの燃焼によって生成される微粒子:例には、学校、病院、医療施設などへの森林火災の煙の侵入が含まれる。
・屋内及び屋外の両方において、且つ、封入された空間の環境において、化石燃料の燃焼によって生成される微粒子:例には、ディーゼル粒子状物質(DPM:Diesel Particulate Matter)、リストに記載された空気有毒物の検出が含まれる。
従って、例えば、以下のリストは、光学的プロパティによる分類のための基礎を形成しうる、異なるタイプの微粒子の間のいくつかの光学的相違点を提供している。例示を目的として、但し、排除又は限定を伴うことなしに、以下の一般的な種類の浮遊する微粒子は、上述のデータ出力によって登録されることになる以下のプロパティを有する。
・ディーゼル排気ガスの粒子状物質
○低質量
○すべての波長において等しく強力な光吸収
・木材の燃焼からの煙
○中程度の質量
○長い波長における小さな(但し、計測可能な)光吸収
○相対的に短い波長における滑らかに増大する光吸収
・無機物の埃
○大きな質量
○長い波長における小さな光吸収
○短い波長における非常に小さな光吸収
・タバコの煙
○中程度の質量
○中間及び長い波長におけるゼロの光吸収
○最も短い波長(青色、近UV)における非常に強力な光吸収
・油圧油の霧
○中程度の質量
○(恐らくは)組成に応じた長い波長における小さな光吸収
○中間波長における相対的に大きな光吸収
○短い波長における強力な光吸収
・海水のしぶきの霞
○大きな質量
○すべての波長におけるゼロの光吸収
・二次有機炭素煙霧質
○中程度の質量
○すべての波長におけるゼロの光吸収
・無機煙霧質(硫酸塩や硝酸塩など)
○中程度の質量
○すべての波長におけるゼロの光吸収
更に詳しくは、光源113を含む質量検出システム100は、光吸収微粒子が存在している場合には、照明の異なる波長における微粒子による光の吸収を利用することにより、質量検出器の検知要素の微細な且つ局所的な加熱を生成している。この加熱は、その波長における光吸収を有する材料の量に比例した状態で、検出器の応答を変更することになる。電力を1つの波長の1つの光源から別の波長の別の光源にスイッチングすることにより、照明の波長のシーケンスを使用し、短い期間において検出器上において収集された微粒子を調査することができる。異なる波長における応答の比較は、収集された材料の吸収スペクトルをもたらすことになる。この吸収スペクトル―又は、任意の吸収の欠如―は、収集された微粒子の特性に関する更なる情報を提供することになる。可能な微粒子材料の既知の吸収スペクトルとの間における計測された吸収スペクトルの比較は、計測された吸収スペクトルに基づいて材料のタイプを判定するための基礎を形成することができる。
(雰囲気の靄中において頻繁に見出される)硝酸−硫酸アンモニウム化合物などの光散乱性(反射性)微粒子が表面116上に堆積した場合には、共振器117の固有発振周波数は、質量の変化に起因して、低減されることになる。但し、表面116が照明された際に、微粒子は、入射光を吸収することにならず、且つ、従って、共振器の温度は、変化しない。その一方で、ディーゼル排気粒子状物質(DPM)などの光吸収性微粒子が、表面116上に堆積した場合には、質量の変化に起因して、共振器117の固有発振周波数が低減されることになる。表面116が照明された際には、表面が入射光の一部分を吸収し、これにより、共振器117の温度が増大することになる。
吸収された光エネルギーの熱への変換に基づいた光吸収性の浮遊する煙霧質微粒子の検出の原理は、浮遊する煙霧質微粒子の検出のための「光−音響法」において十分に発展している。上記方法においては、空気ストリーム中において浮遊する微粒子による光の吸収は、微粒子を取り囲んでいる空気の局所的な加熱をもたらす。照明の強度(通常は、オン−オフサイクル)が変調されている場合には、音響信号として検出しうる圧力波が生成される。
特定の実施形態においては、エネルギーの吸収は、検出器の共振器バーの表面に付着した微粒子の局所的な加熱をもたらす。このエネルギーの一部分は、バーの材料に伝導され、これにより、バーの温度の増大をもたらすことになる。そして、この温度の増大により、バーが製造されている材料の弾性が変化し、これにより、共振周波数の変化がもたらされることになる。微細製造された機械的共振器の発振周波数は、温度の影響を強力に受けることが周知である。この共振周波数の変化は、駆動電極に接続された発振器回路によって検出することができる。
表面116の照明が、例えば、光源の電力をオン−オフスイッチングすることによってオン−オフパターンを反復することにより、変調されている場合には、共振周波数の変化は、{照明−加熱−共振器弾性の変化}のパターンを踏襲することになる。システムの機械的な寸法が極めて小さいことから、共振周波数の変化は、照明及び加熱を迅速に踏襲することになる。従って、表面116の照明は、適切なレートにおいて変調(スイッチオン及びオフ)されてもよく、且つ、共振周波数の変化をこのレートにおいて同期状態において検出することができる。実施されうる計測の例については、質量検出システム500及び質量検出システム600に関する以下の説明において提示されている。
第2実施形態においては、図1に示されているように、質量検出システム500は、2つのその他の類似のシステムと共に利用されており、これらは、わずかに異なる方式によって動作すると共に、質量検出システムの性能を改善する検出器の光学応答の未知の側面を除去することにより、組合せにおいて、光学吸収分析の感度を大幅に改善している。
質量検出システム500は、1)コンピュータ120と、2)表面116を有する共振器117、光源301を有する光源支持部113、熱泳動要素115用のヒーター支持部114、及びコンピュータとの通信状態にある発振器回路130を含むものとして上述されているバランス110と、3)表面216を有する共振器217及びコンピュータとの通信状態にある電子発振器回路230を含むシステムベースライン基準検出器210と、4)表面316を有する共振器317含み、且つ、コンピュータとの通信状態にある電子発振器回路330を含む、システム強度基準検出器310と、を含む。これに加えて、バランス110、システムベースライン基準検出器210、及びシステム強度基準検出器310は、それぞれの発振器回路の一部分として、電極119などの電極を含む。
システムベースライン基準検出器210は、なんらの微粒子をも収集しないように構成されている。従って、システムベースライン基準検出器210は、熱泳動要素115を含んではおらず、或いは、熱泳動要素115に電力を提供していない。従って、質量検出システムバランス110及びシステムベースライン基準検出器210の発振周波数を比較することにより、表面216による光の吸収を解明又は補正することができる。システムベースライン基準検出器210の検出器の固有の材料が、光による照明に対する応答を有している場合には、システムベースライン基準検出器210は、質量検出システム100のものと同一の方式により、その応答を変更することになる。これら2つの応答の間の差は、システムのすべての可能な固有の応答を除去することになり、且つ、収集された微粒子に起因した効果のみを表すことになる。
システム強度基準検出器310は、なんらの微粒子をも収集しないように構成されており、且つ、質量検出システム100による浮遊する微粒子の収集のエリアと同一の場所において表面316上に堆積された光吸収材料(金属酸化物など)の非常に薄い層をも有する。従って、システム強度基準検出器310は、熱泳動要素115を含んでおらず、或いは、熱泳動要素115に電力を提供していない。システム強度基準検出器310は、すべての波長の光を吸収することになり、且つ、照明の強度に比例した応答を生成することになる。この結果、いくつかの供給源のそれぞれによって生成される照明の強度の変化について制御することができる。
上述の検出要素のアレイによって生成される信号から導出されうる複数のデータ出力が存在している。以下の計算は、コンピュータ120内のプログラミングに従って、電子発振器回路130、230、及び330の出力及び光源301の制御された周波数から実行される。
基本的な「質量」出力[M]は、質量検出システム100によって収集された浮遊する微粒子の合計質量を表している。
第1「光吸収」出力[OA1(L)]は、光による照明に対する検出システム自体のすべての応答と共に、質量検出システム100上において収集された微粒子の堆積の光吸収を表している。即ち、OA1(L)は、電子発振器回路130によって判定される共振器117の固有共振周波数であり、この場合に、添え字(L)は、この計測が、光波長(L)の供給源による照明下において得られることを示しており、この照明は、異なる波長(L)において光を放出する複数の光源を通じてシーケンシングされてもよい。
システムベースライン基準検出器210出力[OA2(L)]は、電子発振器回路230によって決定される共振器217の固有共振周波数であり、且つ、光による照明に対する検出システム自体の応答を表している。この出力[OA2]と収集検出器の出力[OA1]の間の差は、システム応答自体を除去した後の、収集された微粒子に帰されうる応答の値である。上述と同様に、添え字(L)は、この計測が、光波長(L)の供給源による照明下において得られることを示しており、この照明は、異なる波長(L)において光を放出する複数の光源を通じてシーケンシングされてもよい。
システム強度基準検出器310の出力[OA3(L)]は、電子発振器回路330によって決定される共振器317の固有共振周波数であり、且つ、照明の強度の尺度を表しており、これは、必ずしも常に一定ではない場合がある。上述と同様に、添え字(L)は,この計測が、光波長(L)の供給源による照明下において得られることを示しており、この照明は、異なる波長(L)において光を放出する複数の光源を通じてシーケンシングされてもよい。
光吸収の計測
差{OA2(L)−OA1(L)}は、質量検出システム100によって収集された微粒子による波長(L)の光の吸収に起因した信号を表している。微粒子が収集器要素上に存在していない場合には、或いは、存在する微粒子がゼロの光吸収を有していた場合には、照明に対するその応答は、「ベースライン基準」のものと同一となり、且つ、この差は、ゼロとなろう。
差{OA3(L)−OA2(L)}は、要素自体の固有の応答との関係における、システム強度基準検出器310による波長(L)の光の吸収に起因した信号を表しており、この場合に、光は、材料の固定された堆積によって吸収されている。供給源(L)の強度が正確に安定していない場合には、この信号は、強度の変化について補正するための正規化を提供する。
値{OA2(L)−OA1(L)}/{OA3(L)−OA2(L)}=A(L)は、照明に対するシステム自体の固有の応答についての補正後の、且つ、照明の強度の可能な変動に対して正規化済みの、質量検出システム100の収集要素上における微粒子の堆積に帰すことができる波長(L)における光の吸収の尺度である。これは、単位質量当たりのその吸収の強度と組み合わせられた、収集要素上の微粒子の量に比例した、収集要素上の微粒子の蓄積による光学吸収の基本的属性を判定する。
光吸収の複数の成分
以上において定義された値A(L)は、質量検出システム100の検出器要素上における微粒子の集合体による光吸収の尺度である。複数のタイプの微粒子が収集される場合には、且つ、異なる微粒子が、異なる波長において光吸収の異なる特性を有する場合には、まず最初に(光学吸収が飽和状態となる前に)、正味の合計計測光吸収A(L)は、光吸収A(L,1)+A(L,2)+A(L,3)...の合計となり、これは、ΣA(L,i)と表され、ここで、添え字(i)は、微粒子の異なる種(i)を表しており、これらの種は、異なる量において存在していてもよく、且つ、異なる波長Lにおいて異なる光吸収を有していてもよい。
光吸収の複数の成分の組合せ
波長Lにおける微粒子の種(i)の質量M(i)に起因した光吸収は、質量に波長固有吸収係数σ(i,L)を乗算したものに比例している。吸収係数σは、光学計測を対応する物理的又は化学的計測と比較することにより、先験的に判定される。多くの実際のケースにおいては、異なる種(i)は、高度に吸収する材料の小さな質量が、相対的に弱く吸収する材料の相対的に大きな質量よりも、大きな吸収信号を提供しうるように、広範に変化する吸収係数σ(i,L)を有することができる。但し、一般には、明らかに別個の種類の材料は、波長Lに対するその光吸収の非常に異なる依存性を有することが見出される。従って、組合せによって生成される吸収の波長依存性を判定することにより、材料の組合せの成分を分離することができる。
単一の種のケースにおける蓄積レートの計測
以上において定義された計測値A(L)は、特定の時点において計測されている。但し、動的な動作においては、検出器要素は、微粒子を継続的に蓄積し続けている。従って、A(L)は、一般に、蓄積が増大するのに伴って、時間tに伴って増大し、A(L,t)と表記される。
1つの時点から次の時点への信号の変化は、検出器上において蓄積された光吸収の量の変化に比例することになる。検出器が、有効な堆積に起因して、その微粒子の蓄積を増大させている場合には、(一般に)A(L,t)は、時間に伴って増大することになる。時間インターバルJにおける増大は、{A(L,[t+j])−A(L,t)}である。微粒子の堆積のレートが、サンプリングされた空気ストリーム中の上記微粒子の濃度に比例している場合には、且つ、比例する堆積レートが非選択的である場合には、即ち、サンプリングされている空気ストリーム中のすべての微粒子が、同一の収集確率を有している場合には、それぞれの波長Lにおける光吸収信号Aの増大レートは、サンプリングされている空気ストリーム中の微粒子の濃度に比例することになる。濃度は、C(L,t)=f*d/dt{A(L,t)}と表記され、ここで、係数fは、サンプリング、収集係数、光吸収係数σ、材料の質量、及びその他の係数の比例性を表しており、且つ、特定の波長Lにおいて明示的に計測される。
波長の関数としての蓄積レートの解釈
導出された値の上述の定義を拡張して、収集器上において堆積を照明するべく使用されている光の波長の範囲をカバーすることにより、実際の浮遊する煙霧質が、異なる光の波長において異なる光吸収係数を有する異なるタイプの微粒子の混合物から構成されている状況を表すことができる。光波長Lにおける種(i)の光吸収係数σ(i,L)の間の識別可能な差に応じて、種の混合物の成分を分離することが可能でありうる。
光吸収と質量計測の組合せ
質量検出システム100の検出器要素は、基本的に、その上部に蓄積された質量の値に対して応答する。異なる波長における光吸収に起因したその応答の変化は、更なる次元を計測に追加する。但し、これらの光吸収に起因した変化を微粒子質量の基本的計測と組み合わせることにより、更なる情報をもたらすことができる。{質量の蓄積レート}当たりの{波長L}における{光吸収の増大レート}は、収集された微粒子の特性のインジケータでありうる。
システムによって算出されるデータの次元
説明対象のシステムは、複数の同時計測を提供することができる。これらの計測を逆畳み込み又はエキスパートアルゴリズムによって組み合わせることにより、サンプリングされた空気ストリーム中の微粒子の種の存在の尺度又は推定を提供することができる。光吸収の分析によって更なる次元が検知システムのリアルタイムデータ出力に対して提供されることが本発明の主要な新機軸である。データ出力は、収集された微粒子の合計質量及び/又は複数の波長Lにおける収集された微粒子の光吸収を含む。
代替実施形態
図6の平面図、図7の正面図7−7、及び図8の側面断面図8−8には、第3実施形態の質量検出システム600が示されている。
質量検出システム600は、バランス610を含み、これは、それぞれ、質量検出システム110’、システムベースライン基準検出器210’、及びシステム強度基準検出器310’、並びに、電子発振器回路130、230、及び330を含む。バランス110’及び検出器210’及び310’は、これらが光源支持部113又は光源301を含んでいない点を除いて、バランス110及び検出器210及び310に類似している。この代わり、質量検出システム600は、照明組立体620を含み、これは、バランス110’及び検出器210’及び310’の共振器117を同時に照明するべく、使用されている。その個々の共振器上において、質量検出システムバランス110’は、表面116を有し、システムベースライン基準検出器210’は、表面216を有し、且つ、システム強度基準検出器310’は、表面316を有する。又、バランス110’及び検出器210’及び310’は、図6〜図8においては可視状態にはない、電極119などの、電極をも含む。
又、質量検出システム600は、電子発振器回路130、230、及び330から出力を受け取り、且つ、熱泳動要素115及び照明組立体610を制御する、コンピュータ120をも含む。質量検出システム600の動作は、一般に、明示的に記述されていることを除いて、質量検出システム500のものに類似している。
照明組立体620は、コンピュータ120によって制御された状態において、異なる波長の光を生成する、いくつかの表面実装されたLED放出チップダイ要素、或いは、LEDエミッタ621を含む。ダイ要素610は、適切な電気的接続により、ベースプレーン623に装着されている。その波長における照明が空間的に相対的に均一なものとなるように、L個の波長のそれぞれごとに、混在した複数のエミッタを有することが望ましい。
照明組立体620は、LEDエミッタ621の上方において、且つ、バランス610に隣接した状態において、設置された反射光ガイドエンクロージャ625を有する。反射光ガイドエンクロージャ625の光ガイドは、透明な材料から製造されており、且つ、内側表面上において、高度に反射性の材料により、外部被覆されている。この結果、LEDエミッタ621から放出された光は、複数反射及び均一化エンクロージャ内において閉じ込められる。このエンクロージャは、反射性被覆内において3つのウィンドウ701、703、及び705を有するように形成されており、このそれぞれは、それぞれ、バランス110及び検出器210及び310の端部203と緊密にアライメントされている。光ガイドエンクロージャ625の上部表面627は、光ガイドエンクロージャ内において閉じ込められている光強度が、それぞれ、ウィンドウ701、703、及び705を通じて表面116、216、及び316上に導かれるように、適切な角度において形成されている。
電力がLEDエミッタ621のそれぞれの組に印加された際に、これらの光出力は、反射光ガイドエンクロージャ625内において閉じ込められ、且つ、均一化される。この光エネルギーは、3つのウィンドウ701、703、及び705を通じて逃避し、表面116、216、及び316を照明することができる。LEDエミッタ621は、発振器上へのその光強度の変調の任意の効果が、照明パワーとの同期状態において周波数変化として検出されうるように、コンピュータ120により、迅速に、ターンオン及びオフすることができる。
LEDエミッタ621のチップダイセットは、望ましい様々な波長について別個の製造プロセスにおいて予め形成されてもよく、且つ、従来の半導体製造方法を使用することにより、発振器本体ブロックの表面に装着されてもよい。このLEDエミッタ621のグループ化の物理的なサイズは、(原則的に)照明組立体620の全体寸法を上回っていてもよく、このケースにおいては、反射光ガイドエンクロージャ625は、放出された光を収集すると共にこれをウィンドウ701、703、及び705に導くべく、テーパー化した形状を有することになる。反射光ガイドエンクロージャ625は、予め製造されてもよく、且つ、別個に設置されてもよい。
特定の実施形態においては、バーを貫通するすべての光が反射して表面116、216、及び316に戻ってくるように、表面116、216、及び316の反対側の表面が光反射材料の薄いフィルムによって被覆されている。照明は、LEDエミッタ621のアレイによって提供されてもよく、その光放出は、例えば、表面116、216、及び316を照明するべく、レンズ、ミラー、又はその他の手段によって導かれてもよい。
光照明の複数の波長を基本的な計測に結合する方法
機械的な共振器の組の照明は、光の異なる波長をそれぞれが放出する、且つ、その光が、レンズ又はミラーの適切なアレイにより、短い距離から質量検出システム600の機械的な共振器上に導かれる、LEDエミッタ621のアレイによって提供されてもよい。これらの要素は、図8に示されているように、共振器自体の製造に使用されているものに類似した技法により、微細製造されてもよく、且つ、従って、装置の製造に内蔵されてもよい。アレイ内のLEDエミッタ621は、別個の電力制御回路に接続されることになる。電力を1つ又は別のLEDに印加することにより、異なる波長の光を生成することができると共に機械的な共振器の組の上部に導くことができる。
「ベースライン基準」及び「光強度基準」計測を生成する方法
又、光をLED光源のアレイから機械的発振器まで導くレンズ又はミラーのシステムにより、その光の一部分をシステムベースライン基準検出器210’及びシステム強度基準検出器310’の2つの基準発振器要素上に導くこともできる。これら2つの基準要素は、互いに隣接していてもよいが、微粒子収集器要素とは別個であってもよい。この結果、微粒子収集器要素が、分析対象のサンプル空気ストリームからの微粒子の沈殿の影響を受けることができる一方で、基準要素を、この沈殿から離隔した状態とすることができる、或いは、これから遮蔽することができる。
照明の変調との同期状態における小さな周波数変化の検出
例えば、LEDエミッタ621に対するパワーをスイッチオン及びオフすることによってオン−オフパターンを反復することにより、照明が変調されている場合には、共振周波数の変化は、{照明−加熱−共振器弾性の変化}のパターンを踏襲することになる。システムの機械的寸法が極めて小さいことから、共振器周波数の変化は、照明及び加熱を迅速に踏襲することになる。従って、LED照明は、適切なレートにおいて変調(スイッチオン及びオフ)されてもよく、且つ、共振器周波数の変化をこのレートにおいて同期状態において検出することができる。
共振器要素は、光照明に対する電力の変調(オン−オフスイッチング)との同期状態において、発振周波数の変化の形態において、信号を生成することになる。光変調との同期状態においてこれらの信号を検出することにより、(空気の温度や相対湿度などのような)その他の環境パラメータの影響が極小化されることになり、その理由は、これらの影響が、LED照明との同期状態において変調されないからである。変調及び同期検出の技法は、大きなバックグラウンドの存在下において小さな信号を計測するべく、広く使用されている。
このシステムの特に有利な属性は、データ出力が、収集された微粒子又はその他の光吸収の存在又は不存在を除いて、緊密に同一である、「検知」要素(質量検出システムバランス110’)と「基準」要素(システムベースライン基準検出器210及びシステム強度基準検出器310’)の間の差であるという点にある。単一の要素の固有の応答は、空気圧、周辺温度、相対湿度などのような、全体的な環境パラメータの影響を受けうる。この結果、上述の環境パラメータの全体的な変化に起因した共振周波数の恐らくは相対的に大きな変化との関係において、微粒子の小さな蓄積の存在又はその光学吸収に起因した小さな共振周波数の変化の弁別が困難となりうる。但し、システムが「検知」要素と「基準」要素の間の差を判定する場合には、その大きさが、環境条件の変化に起因した応答のシフトよりも格段に小さくなりうる、相対的な変化を検出することができる。発振要素の共振周波数がギガヘルツのレベルである場合には、関連する電子回路自体が、10億分の1のレベルにおける周波数安定性を有していない限り、大きな精度により、これを計測することが困難である。このような程度の安定性は、高度に洗練された(且つ、その結果、嵩張り、高価であり、且つ、電力を消費する)外部電子システムを必要としている。その一方で、上述のシステムは、2つのほとんど類似した要素の間の周波数の差(「ビート周波数」)を判定している。これらの要素が、100万分の1だけ、共振周波数において異なっている場合には、これは、キロヘルツのレベルの周波数差(「ビート」)によって表されることになる。これは、一般的な消費者電子回路システムによって容易に計測される。一般的な消費者電子回路システムを使用して上述の発振器のギガヘルツ共振周波数の100万分の1の変化の正確な計測を提供することは、可能ではないであろうが、これらのシステムは、このような2つの要素の共振周波数の差から生成された1キロヘルツの「ビート周波数」信号を容易に計測することができる。この結果、第1には、微粒子の蓄積によって、且つ、第2には、上記微粒子による光の吸収によって、且つ、第3には、蓄積された微粒子の堆積の増大レートに起因した上記吸収の変化レートによって、誘発された小さな変化を分解する能力が大幅に改善される。
計測動作シーケンスの例
一例として、限定を伴うことなしに、以下の動作のシーケンスは、質量検出システム600を使用した空気中の微粒子の検出及び分類を許容することになろう。これらの動作は、後述のステップを実行するようにコンピュータ120内においてプログラムされた、適切にプログラムされたプロセッサによって実行される。
「時間の単位」は、任意であり、且つ、これは、シーケンシングの視覚化のためにのみ使用されている。「計測サイクル」は、同一のステップの反復の間の反復周期である。
ステップ1:熱泳動加熱要素115がターンオフされ、すべてのLEDエミッタ621がターンオフされる。3つのペアをなす「ビート周波数」が、3つの発振器の組合せの間の共振周波数の差として計測される。
ステップ2:熱泳動加熱要素115が、表面116上への微粒子の沈殿を開始するべく、スイッチオンされる。
ステップ3:3つのペアをなす「ビート周波数」が、3つの発振器の組合せの間の共振周波数の差として計測される。これらの周波数は、熱泳動ヒーターからの熱の伝達に起因して変化しうる。
ステップ4:熱泳動加熱要素115がスイッチオフされる。3つのペアをなす「ビート周波数」が、3つの発振器の組合せの間の共振周波数の差として計測される。(熱泳動要素から発振器への任意の熱伝達のケースにおいて)質量検出システム600が、正確な且つ既知の期間にわたって、周辺空気の温度まで冷却されることを許容する。システムが冷却するのに伴って、システムベースライン基準検出器210’とシステム強度基準検出器310’の間の「ビート周波数」は、ステップ1において計測されたものに近接した値に戻ることになる。
ステップ5:選択された数のLEDエミッタ621が、波長L1において光を生成するべく、ターンオンされる。3つのペアをなす「ビート周波数」が、3つの発振器の組合せの間の共振周波数の差として計測される。次いで、すべてのLEDエミッタ621がターンオフされ、且つ、3つのペアをなす「ビート周波数」が、3つの発振器の組合せの間の共振周波数の差として計測される。このステップは、波長L1における選択された数のLEDエミッタ621によって提供される照明に帰すことができるビート周波数のシフトを判定するべく、正確な且つ既知の期間にわたって反復される。
ステップ6:ステップ5が、微粒子による波長依存性の吸収を判定するべく、L(2)からL(N)まで、複数のLEDエミッタ621の異なるものについて、反復される。
ステップ7:すべてのLEDエミッタ621がターンオフされる。
ステップ8:ステップ1に戻る。ステップ5及び6のそれぞれの動作の間の時間インターバルが、1つの計測サイクルから次のものにかけて一定となるように、正確な且つ既知の期間にわたって、すべての動作を反復する。
記述されている方法のステップは、一実施形態においては、ストレージ内において保存されている命令(コードセグメント)を実行する処理(即ち、コンピュータ)システムの適切な1つの(又は、複数の)プロセッサによって実行されることを理解されたい。又、本発明は、任意の特定の実装又はプログラミング技法に限定されるものではなく、且つ、本発明は、本明細書において記述されている機能を実装する任意の適切な技法を使用することにより、実装されうることを理解されたい。本発明は、任意の特定のプログラミング言語又はオペレーティングシステムに限定されるものではない。
本明細書における「一実施形態(one embodiment)」又は「実施形態(an embodiment)」に対する参照は、その実施形態との関連において記述されている特定の特徴、構造、又は特性が、本発明の少なくとも1つの実施形態において含まれていることを意味している。従って、本明細書の全体を通じた様々な場所における「一実施形態において」又は「実施形態において」というフレーズの出現は、必ずしも、そのすべてが、同一の実施形態を参照しているものではない。更には、特定の特徴、構造、又は特性は、本開示から当業者には明らかとなるように、1つ又は複数の実施形態において、任意の適切な方式により、組み合わせることもできる。
同様に、本発明の例示用の実施形態の上述の説明においては、本発明の様々な特徴が、しばしば、開示を合理化すると共に様々な発明的側面のうちの1つ又は複数の理解を支援することを目的として、単一の実施形態、図、又はその説明において、1つにグループ化されていることを理解されたい。但し、この開示の方法は、特許請求されている発明がそれぞれの請求項において明示的に記述されているものよりも多くの特徴を必要としているという意図を反映したものであると解釈してはならない。むしろ、添付の請求項が反映しているように、発明の態様は、単一の上述の開示されている実施形態のすべての特徴よりも少ないものにおいて存在している。従って、本明細書に添付されている請求項は、それぞれの請求項が本発明の別個の一実施形態として独自に成立する状態において、この「発明を実施するための形態」に明示的に内蔵される。
従って、本発明の好適な実施形態であると考えられるものについて説明したが、当業者は、本発明の趣旨を逸脱することなしに、その他の且つ更なる変更がこれらに対して実施されうると共に、すべてのこのような変更及び変形が本発明の範囲に含まれることを主張するべく意図されていることを認識するであろう。例えば、任意の以上において付与されている式は、使用されうる手順を表すものに過ぎない。機能がブロックダイアグラムに追加又は削除されてもよく、且つ、動作が機能ブロックの間において相互交換されてもよい。ステップが、本発明の範囲内において、記述されている方法に追加又は削除されてもよい。
100 システム
120 コンピュータ
117 共振器
130 電子発振器回路
116 表面
301 光源
115 熱泳動要素

Claims (22)

  1. 収集された微粒子のサンプルのプロパティを計測するシステムにおいて、
    前記サンプルを受け付けるように構成された第1表面を含む第1共振器であって、前記第1共振器の第1固有共振周波数に比例した第1出力を有する第1電子発振器回路を含む第1共振器と、
    前記サンプルを受け付けないように構成された第2表面を含む第2共振器であって、前記第2共振器の第2固有共振周波数に比例した第2出力を有する第2電子発振器回路を含む第2共振器と、
    光学被覆を有し、且つ、前記サンプルを受け付けないように構成された第3表面を含む第3共振器であって、前記第1共振器の第3固有共振周波数に比例した第3出力を有する第3電子発振器回路を含む第3共振器と、
    前記第1表面、前記第2表面、及び前記第3表面を照明するように構成された電磁放射供給源と、
    前記電磁放射供給源による前記第1表面、前記第2表面、及び前記第3表面の前記照明を制御し、
    前記第1出力、前記第2出力、及び前記第3出力を受け付け、且つ、
    前記第1表面上において受け付けられた前記サンプルのプロパティを判定する、
    ようにプログラムされたプロセッサと、
    を有することを特徴とするシステム。
  2. 請求項1に記載のシステムにおいて、
    前記電磁放射供給源は、
    前記第1表面を照明するための第1電磁放射供給源と、
    前記第2表面を照明するための第2電磁放射供給源と、
    前記第3表面を照明するための第3電磁放射供給源と、
    を含むことを特徴とするシステム。
  3. 請求項1に記載のシステムにおいて、
    前記電磁放射供給源は、前記第1表面、前記第2表面、及び前記第3表面を同時に照明することを特徴とするシステム。
  4. 請求項1に記載のシステムにおいて、
    前記プロセッサは、前記第1出力と前記第2出力の間の第1差、前記第1出力と前記第2出力の間の第2差、及び前記第2出力と前記第3出力の間の第3差を演算するように、且つ、前記第1差、前記第2差、及び前記第3差から前記第1表面上において受け付けられた前記サンプルの前記プロパティを判定するように、プログラムされていることを特徴とするシステム。
  5. 請求項1に記載のシステムにおいて、
    前記プロセッサは、波長の時間的シーケンス内において前記電磁放射の前記波長を制御するように、且つ、前記波長の時間的シーケンスのそれぞれの波長において前記第1表面上において受け付けられた前記サンプルのプロパティを判定するように、プログラムされていることを特徴とするシステム。
  6. 請求項1に記載のシステムにおいて、
    前記プロセッサは、前記第1表面上において受け付けられた前記サンプルを分類するようにプログラムされていることを特徴とするシステム。
  7. 請求項1に記載のシステムにおいて、
    前記第1共振器は、前記第1表面が前記サンプルを受け付けるレートを増大させるべく、熱泳動要素を含むことを特徴とするシステム。
  8. 収集された微粒子のサンプルのプロパティを計測するシステムにおいて、
    2つ以上の共振器であって、表面と、前記共振器の固有共振周波数に比例した出力を有する電子発振器回路と、前記表面を照明するように構成された関連する電磁放射供給源と、をそれぞれが含む共振器であって、
    前記2つ以上の共振器のうちの第1共振器は、前記サンプルを受け付けるように構成された第1表面を有する第1共振器を含み、且つ、
    前記2つ以上の共振器のうちの第2共振器は、前記サンプルを受け付けないように構成された第2表面を有する第2共振器を含む、共振器と
    前記電磁放射供給源による前記第1表面及び前記第2表面の前記照明を制御し、
    前記第1共振器の前記電子回路からの前記出力及び前記第2共振器の前記電子回路からの前記出力を受け付け、且つ、
    前記第1表面上において受け付けられた前記サンプルのプロパティを判定する、
    ようにプログラムされたプロセッサと、
    を有することを特徴とするシステム。
  9. 請求項8に記載のシステムにおいて、
    前記第2共振器の前記表面は、光学被覆を含むことを特徴とするシステム。
  10. 請求項8に記載のシステムにおいて、
    前記電磁放射供給源は、
    前記第1表面を照明するための第1電磁放射供給源と、
    前記第2表面を照明するための第2電磁放射供給源と、
    を含むことを特徴とするシステム。
  11. 請求項8に記載のシステムにおいて、
    前記電磁放射供給源は、前記第1共振器の前記表面及び前記第2共振器の前記表面を同時に照明することを特徴とするシステム。
  12. 請求項8に記載のシステムにおいて、
    前記プロセッサは、前記第1出力と前記第2出力の間の差を演算するように、且つ、前記差から前記第1表面上において受け付けられた前記サンプルの前記プロパティを判定するように、プログラムされていることを特徴とするシステム。
  13. 請求項8に記載のシステムにおいて、
    前記プロセッサは、波長の時間的シーケンスにおいて前記電磁放射の前記波長を制御するように、且つ、前記波長の時間的シーケンスのそれぞれの波長において前記第1表面上において受け付けられた前記サンプルのプロパティを判定するように、プログラムされていることを特徴とするシステム。
  14. 請求項8に記載のシステムにおいて、
    前記プロセッサは、前記第1表面上において受け付けられた前記サンプルを分類するようにプログラムされていることを特徴とするシステム。
  15. 請求項8に記載のシステムにおいて、
    前記第1共振器は、前記第1表面が前記サンプルを受け付けるレートを増大させるべく、熱泳動要素を含むことを特徴とするシステム。
  16. コンピュータと、1つ又は複数の共振器と、前記共振器の固有共振周波数に比例した出力を有する1つ又は複数の電子発振器回路と、を含む装置により、収集された微粒子のサンプルのプロパティを計測する方法において、
    電子発振器回路によって第1共振器の第1固有共振周波数を計測するステップであって、前記第1共振器は、収集された微粒子を有する表面を含み、前記計測ステップは、前記表面が、前記収集された微粒子によって少なくとも部分的に吸収される第1波長の電磁放射によって照明されている間に実行される、ステップと、
    電子発振器回路によって第2共振器の第2固有共振周波数を計測するステップであって、前記第2共振器は、収集された微粒子を有しており、前記計測ステップは、前記表面が、前記第1波長の電磁放射によって照明されている間に実行される、ステップと、
    電子発振器回路によって第3共振器の第3固有共振周波数を計測するステップであって、前記第3共振器は、前記表面上において光学被覆を有し、且つ、収集された微粒子を含んでおらず、且つ、前記計測ステップは、前記表面が、前記第1波長において電子放射によって照明されている間に実行される、ステップと、
    前記コンピュータのプログラミングに従って、前記第1表面上において受け付けられた前記サンプルのプロパティを判定するステップと、
    を有することを特徴とする方法。
  17. 請求項16に記載の方法において、
    前記第1固有共振周波数、前記第2固有共振周波数、前記第3固有共振周波数を計測する前記ステップは、同一の共振器上において実行されることを特徴とする方法。
  18. 請求項16に記載の方法において、
    前記計測ステップは、電磁放射の2つ以上の異なる波長において実行され、且つ、前記判定ステップは、波長依存性のプロパティを判定することを特徴とする方法。
  19. 請求項16に記載の方法において、
    前記プロセッサは、前記第1固有共振周波数と前記第2固有共振周波数の間の第1差、前記第1固有共振周波数と前記第2固有共振周波数の間の第2差、及び前記第2固有共振周波数と前記第3固有共振周波数の間の第3差を演算するように、且つ、前記第1差、前記第2差、及び前記第3差から前記第1表面上において受け付けられた前記サンプルの前記プロパティを判定するように、プログラムされていることを特徴とする方法。
  20. 請求項16に記載の方法において、
    前記プロセッサは、波長の時間的シーケンス内において前記第1波長を変更するように、且つ、前記波長の時間的シーケンスのそれぞれの波長において前記第1表面上において受け付けられた前記サンプルのプロパティを判定するように、プログラムされていることを特徴とする方法。
  21. 請求項16に記載の方法において、
    前記プロセッサは、前記第1表面上において受け付けられた前記サンプルを分類するようにプログラムされていることを特徴とする方法。
  22. 請求項16に記載の方法において、
    前記第1共振器は、前記第1表面が前記サンプルを受け付けるレートを増大させるべく、熱泳動要素を含むことを特徴とする方法。
JP2018091931A 2017-05-12 2018-05-11 粒子状物質分析用のシステム及び方法 Pending JP2019002912A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762505773P 2017-05-12 2017-05-12
US62/505,773 2017-05-12

Publications (1)

Publication Number Publication Date
JP2019002912A true JP2019002912A (ja) 2019-01-10

Family

ID=64097774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091931A Pending JP2019002912A (ja) 2017-05-12 2018-05-11 粒子状物質分析用のシステム及び方法

Country Status (2)

Country Link
US (1) US10746700B2 (ja)
JP (1) JP2019002912A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830128A (zh) * 2019-04-23 2020-10-27 帕尔公司 飞机空气污染物分析仪和使用方法
CN111830129A (zh) * 2019-04-23 2020-10-27 帕尔公司 飞机空气污染物分析仪及其使用方法
JP2020187112A (ja) * 2019-04-23 2020-11-19 ポール・コーポレーションPall Corporation 航空機空気汚染物質分析装置及び使用方法
DE112019006642T5 (de) 2019-01-10 2021-11-11 Denso Corporation Biologische-Informationen-Detektionsvorrichtung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3724633A1 (en) * 2017-12-15 2020-10-21 Ams Ag Integrated thermophoretic particulate matter sensors
TWI647435B (zh) * 2018-01-19 2019-01-11 國立清華大學 熱致動振盪式懸浮微粒感測裝置及懸浮微粒感測方法
EP3715826B1 (en) * 2019-03-26 2024-03-06 Infineon Technologies AG Sensor device, particle sensor device and method for detecting a particulate matter density
US20220260474A1 (en) * 2019-06-26 2022-08-18 The Board Of Trustees Of The University Of Illinois Mass-Sensing Instrument
SI3783336T1 (sl) * 2019-08-23 2024-02-29 Aerosol D.O.O. Metoda za kvantifikacijo mineralnega prahu v zraku zasnovana na optični absorpciji delcev koncentriranih z virtualnim impaktorjem in naprava za izvajanje omenjene metode
CN112697633A (zh) * 2021-01-22 2021-04-23 武汉天虹环保产业股份有限公司 一种便携式振荡天平法颗粒标准监测仪及监测方法
CN117169070B (zh) * 2023-09-11 2024-04-05 中国矿业大学 一种自校准粉尘浓度在线检测仪及工作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111512A (en) * 1997-03-13 2000-08-29 Nippon Telegraph And Telephone Corporation Fire detection method and fire detection apparatus
US7168292B2 (en) * 2003-05-15 2007-01-30 The Regents Of The University Of California Apparatus for particulate matter analysis
WO2014063712A1 (en) * 2012-10-26 2014-05-01 Danmarks Tekniske Universitet Photothermal resonance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006642T5 (de) 2019-01-10 2021-11-11 Denso Corporation Biologische-Informationen-Detektionsvorrichtung
CN111830128A (zh) * 2019-04-23 2020-10-27 帕尔公司 飞机空气污染物分析仪和使用方法
CN111830129A (zh) * 2019-04-23 2020-10-27 帕尔公司 飞机空气污染物分析仪及其使用方法
JP2020187111A (ja) * 2019-04-23 2020-11-19 ポール・コーポレーションPall Corporation 航空機空気汚染物質分析装置及び使用方法
JP2020187112A (ja) * 2019-04-23 2020-11-19 ポール・コーポレーションPall Corporation 航空機空気汚染物質分析装置及び使用方法
JP2020187113A (ja) * 2019-04-23 2020-11-19 ポール・コーポレーションPall Corporation 航空機空気汚染物質分析装置及び使用方法
US11243145B2 (en) 2019-04-23 2022-02-08 Pall Corporation Aircraft air contaminant analyzer and method of use
US11460444B2 (en) 2019-04-23 2022-10-04 Pall Corporation Aircraft air contaminant analyzer and method of use
US11668677B2 (en) 2019-04-23 2023-06-06 Pall Corporation Aircraft air contaminant analyzer and method of use

Also Published As

Publication number Publication date
US10746700B2 (en) 2020-08-18
US20180328889A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP2019002912A (ja) 粒子状物質分析用のシステム及び方法
US7168292B2 (en) Apparatus for particulate matter analysis
US6955787B1 (en) Integrated biological and chemical sensors
CN111788482B (zh) 用于分析物质的装置和方法
US20150355084A1 (en) Optimizing analysis and identification of particulate matter
Bozóki et al. Photoacoustic instruments for practical applications: present, potentials, and future challenges
US7154595B2 (en) Cavity enhanced optical detector
Holthoff et al. Development of a MEMS-scale photoacoustic chemical sensor using a quantum cascade laser
CA2638053A1 (en) Method and gas sensor for performing quartz-enhanced photoacoustic spectroscopy
AU2011263615B2 (en) Method and device for detecting biological material
US6943884B2 (en) Laser system for detection and identification of chemical and biological agents and method therefor
CN104089862A (zh) 用于检测空气中颗粒的装置和方法以及包括该装置的可穿戴设备
CN1987423A (zh) 光学检查方法以及使用它的光学检查装置
US7262414B1 (en) Thermal luminescence surface contamination detection system
CN110087544A (zh) 生物体物质测定装置以及生物体物质测定方法
Haisch et al. Light and sound-photoacoustic spectroscopy
ES2950768T3 (es) Sistema de detección por resonancia de plasmones de superficie
CN110799823B (zh) 用于确定大气中的包括炭黑在内的物质的光吸收的仪器和校准方法
WO2013128707A1 (ja) 被測定物の特性を測定するための測定装置
CN116645803B (zh) 基于物联网实现气体防爆的设备管理方法及装置
Wyatt et al. Discrimination of phytoplankton via light‐scattering properties
Reidl-Leuthner et al. Quasi-simultaneous in-line flue gas monitoring of NO and NO2 emissions at a caloric power plant employing mid-IR laser spectroscopy
Santos et al. Sensitivity and noise evaluation of an optoelectronic sensor for mosquitoes monitoring
WO2018115052A1 (en) Particle sensor and sensing method
JP2015021818A (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515