JP2019002894A - Concentration detection device and machine tool system - Google Patents

Concentration detection device and machine tool system Download PDF

Info

Publication number
JP2019002894A
JP2019002894A JP2017120347A JP2017120347A JP2019002894A JP 2019002894 A JP2019002894 A JP 2019002894A JP 2017120347 A JP2017120347 A JP 2017120347A JP 2017120347 A JP2017120347 A JP 2017120347A JP 2019002894 A JP2019002894 A JP 2019002894A
Authority
JP
Japan
Prior art keywords
water
soluble cutting
concentration
cutting fluid
liquid temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017120347A
Other languages
Japanese (ja)
Other versions
JP6955751B2 (en
Inventor
員充 植野
Kazumitsu Ueno
員充 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyu Co Ltd
Taiyu KK
Original Assignee
Taiyu Co Ltd
Taiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyu Co Ltd, Taiyu KK filed Critical Taiyu Co Ltd
Priority to JP2017120347A priority Critical patent/JP6955751B2/en
Publication of JP2019002894A publication Critical patent/JP2019002894A/en
Application granted granted Critical
Publication of JP6955751B2 publication Critical patent/JP6955751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

To provide a concentration detection device capable of accurately calculating concentration of the water-soluble cutting fluid stored in a fluid storage tank.SOLUTION: Liquid temperature detecting means 51 detects a liquid temperature Tg of the water-soluble cutting fluid WO stored in a fluid storage tank 26. Conductivity detecting means 52 detects an electric conductivity σg of the water-soluble cutting fluid WO stored in the fluid storage tank 26. Arithmetic control means 55 (controller 57) simultaneously inputs and acquires the liquid temperature Tg detected by the liquid temperature detecting means 51 and the electric conductivity σg detected by the conductivity detecting means 52. The controller 57 calculates concentration α of the water-soluble cutting fluid WO stored in the fluid storage tank 26 on the basis of a calibration formula F(Tg) of a linear function indicating the relationship between the concentration of the water-soluble cutting fluid and electric conductivity corresponding to the liquid temperature input from the liquid temperature detecting means 51 and the electric conductivity σg input from the conductivity detection means 52.SELECTED DRAWING: Figure 7

Description

本発明は、貯留した水溶性切削液の濃度を検出する濃度検出装置、及び濃度検出装置を備える工作機システムに関する。   The present invention relates to a concentration detection device that detects the concentration of stored water-soluble cutting fluid, and a machine tool system including the concentration detection device.

水溶性切削油の濃度を検出する技術として、特許文献1は水溶性切削油の自動管理装置を開示する。水溶性切削油の自動管理装置は、水溶性切削油を貯留する液貯留槽(クーラントタンク)、及び液貯留槽に貯留した水溶性切削油の電気伝導率を測定する濃度センサを備える。
特許文献1は、水溶性切削油の濃度(希釈倍率)と電気伝導率の関係を示す関係式を記憶し、濃度センサの測定した電気導電率、及び記憶した関係式に基づいて、水溶性切削油の濃度を算出している。
As a technique for detecting the concentration of water-soluble cutting oil, Patent Document 1 discloses an automatic management device for water-soluble cutting oil. The automatic management apparatus for water-soluble cutting oil includes a liquid storage tank (coolant tank) that stores the water-soluble cutting oil, and a concentration sensor that measures the electrical conductivity of the water-soluble cutting oil stored in the liquid storage tank.
Patent Document 1 stores a relational expression indicating the relationship between the concentration (dilution ratio) of water-soluble cutting oil and electrical conductivity, and based on the electrical conductivity measured by the concentration sensor and the stored relational expression, water-soluble cutting. The oil concentration is calculated.

特開平9−85577号公報Japanese Patent Laid-Open No. 9-85577

特許文献1では、濃度センサの測定した電気伝導率から、水溶性切削油の濃度を算出しているが、水溶性切削油の温度変化による電気伝導率の変動を加味して、水溶性切削油の濃度を算出するものでない。
従って、特許文献1では、液貯留槽に貯留した水溶性切削油の濃度を精度良く、算出することができない。
In Patent Document 1, the concentration of the water-soluble cutting oil is calculated from the electrical conductivity measured by the concentration sensor, but the water-soluble cutting oil is taken into account by taking into account the variation in the electrical conductivity due to the temperature change of the water-soluble cutting oil. It does not calculate the concentration of.
Therefore, in patent document 1, the density | concentration of the water-soluble cutting oil stored in the liquid storage tank cannot be calculated accurately.

本発明は、貯留した水溶性切削液の濃度を精度良く、算出できる濃度検出装置、及び濃度検出装置を備える工作機システムを提供することにある。   An object of the present invention is to provide a concentration detection device that can accurately calculate the concentration of stored water-soluble cutting fluid, and a machine tool system including the concentration detection device.

発明に係る請求項1は、貯留した水溶性切削液の濃度を検出する濃度検出装置であって、貯留した水溶性切削液の液体温度を検出する液体温度検出手段と、貯留した水溶性切削液に浸漬され、貯留した水溶性切削液の電気伝導率を検出する導電率検出手段と、前記液体温度検出手段の検出した液体温度、及び前記導電率検出手段の検出した電気伝導率を同時に入力する演算制御手段と、を備え、前記演算制御手段は、前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、前記導電率検出手段から入力した電気伝導率とに基づいて、貯留した水溶性切削液の濃度を算出することを特徴とする濃度検出装置である。   A first aspect of the present invention is a concentration detection device for detecting the concentration of the stored water-soluble cutting fluid, the liquid temperature detecting means for detecting the liquid temperature of the stored water-soluble cutting fluid, and the stored water-soluble cutting fluid. The conductivity detection means for detecting the electrical conductivity of the stored water-soluble cutting fluid immersed in the liquid, the liquid temperature detected by the liquid temperature detection means, and the electrical conductivity detected by the conductivity detection means are simultaneously input. Calculation control means, wherein the calculation control means corresponds to the liquid temperature input from the liquid temperature detection means, a calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and electrical conductivity, and the conductivity detection The concentration detecting device calculates the concentration of the stored water-soluble cutting fluid based on the electrical conductivity input from the means.

本発明に係る請求項2は、濃度の相異する複数の濃度データと、貯留した水溶性切削液と同一成分であって、前記各濃度データに対応する各濃度の水溶性切削液について、当該各濃度の水溶性切削液に対応する、水溶性切削液の液体温度及び電気伝導率の関係を示す一次関数式と、を記憶する記憶手段を備え、前記演算制御手段は、前記各濃度データと、前記各濃度の水溶性切削液に対応する一次関数式を前記記憶手段から読出し、前記液体温度検出手段から入力した液体温度と、前記各濃度の水溶性切削液に対応する一次関数式に基づいて、前記各濃度の水溶性切削液の電気伝導率を算出し、前記各濃度データと、前記各濃度の水溶性切削液の電気伝導率に基づいて、前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線を算出し、前記導電率検出手段から入力した電気伝導率と、算出した前記検量線とに基づいて、貯留した水溶性切削液の濃度を算出することを特徴とする請求項1に記載の濃度検出装置である。   A second aspect of the present invention relates to a plurality of concentration data having different concentrations and the same component as the stored water-soluble cutting fluid, and the water-soluble cutting fluid of each concentration corresponding to each concentration data Storage means for storing a relationship between the liquid temperature of the water-soluble cutting fluid and the electrical conductivity corresponding to each concentration of water-soluble cutting fluid, and the arithmetic control means includes the concentration data and A linear function equation corresponding to each concentration of water-soluble cutting fluid is read from the storage unit, and based on a liquid temperature input from the liquid temperature detection unit and a linear function equation corresponding to each concentration of water-soluble cutting fluid. Calculating the electrical conductivity of the water-soluble cutting fluid of each concentration, and the liquid temperature input from the liquid temperature detecting means based on the concentration data and the electrical conductivity of the water-soluble cutting fluid of each concentration. Water-soluble cutting fluid corresponding to Calculate a calibration curve indicating the relationship between concentration and electrical conductivity, and calculate the concentration of the stored water-soluble cutting fluid based on the electrical conductivity input from the conductivity detection means and the calculated calibration curve. The concentration detection apparatus according to claim 1, wherein:

本発明に係る請求項3は、前記液体温度検出手段の検出できる複数の各液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線を記憶する記憶手段を備え、前記演算制御手段は、前記液体温度検出手段から入力した液体温度に基づいて、当該液体温度に対応する検量線を前記記憶手段から読出し、前記導電率検出手段から入力した電気伝導率と、前記記憶手段から読出した前記検量線に基づいて、貯留した水溶性切削液の濃度を算出することを特徴とする請求項1に記載の濃度検出装置である。   A third aspect of the present invention includes storage means for storing a calibration curve indicating a relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to each of a plurality of liquid temperatures that can be detected by the liquid temperature detection means, The arithmetic control unit reads out a calibration curve corresponding to the liquid temperature from the storage unit based on the liquid temperature input from the liquid temperature detection unit, and the electrical conductivity input from the conductivity detection unit and the storage 2. The concentration detecting apparatus according to claim 1, wherein the concentration of the stored water-soluble cutting fluid is calculated based on the calibration curve read from the means.

本発明に係る請求項4は、水溶性切削液を貯留した液貯留槽を有し、前記液貯留槽に貯留した水溶性切削液を被加工体に供給しつつ加工し、前記被加工体に供給した水溶性切削液を前記液貯留槽に回収する工作機と、前記液貯留槽に貯留した水溶性切削液の濃度を検出する濃度検出装置と含んで構成され、前記濃度検出装置は、前記液貯留槽に貯留した水溶性切削液の液体温度を検出する液体温度検出手段と、前記液貯留槽に貯留した水溶性切削液に浸漬され、前記液貯留槽に貯留した水溶性切削液の電気伝導率を検出する導電率検出手段と、前記液体温度検出手段の検出した液体温度、及び前記導電率検出手段の検出した電気伝導率を同時に入力する演算制御手段と、を備え、前記演算制御手段は、前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、前記導電率検出手段から入力した電気伝導率とに基づいて、前記液貯留槽に貯留した水溶性切削液の濃度を算出することを特徴とする工作機システムである。   According to a fourth aspect of the present invention, there is provided a liquid storage tank storing a water-soluble cutting fluid, the water-soluble cutting fluid stored in the liquid storage tank is processed while being supplied to the workpiece, and the workpiece is processed. A machine tool that collects the supplied water-soluble cutting fluid in the liquid storage tank and a concentration detection device that detects the concentration of the water-soluble cutting fluid stored in the liquid storage tank, Liquid temperature detection means for detecting the liquid temperature of the water-soluble cutting fluid stored in the liquid storage tank, and the electricity of the water-soluble cutting liquid stored in the liquid storage tank that is immersed in the water-soluble cutting liquid stored in the liquid storage tank Conductivity detecting means for detecting conductivity, and arithmetic control means for simultaneously inputting the liquid temperature detected by the liquid temperature detecting means and the electric conductivity detected by the conductivity detecting means, and the arithmetic control means Is the liquid input from the liquid temperature detecting means The water-soluble cutting fluid stored in the liquid storage tank based on the calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the degree and the electrical conductivity input from the conductivity detecting means It is a machine tool system characterized by calculating the density | concentration of.

本発明に係る請求項1では、液体温度検出手段は、貯留した水溶性切削液の液体温度を検出し、導電率検出手段は、貯留した水溶性切削液の電気伝導率を検出する。演算制御手段は、液体温度検出手段の検出した液体温度、及び導電率検出手段の検出した電気伝導率を同時に入力して、液体温度と、液体温度検出手段から入力した液体温度に対応する電気伝導率(液体温度時の電気伝導率)を同時に取得する。演算制御手段は、液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、導電率検出手段から入力した電気導電率とに基づいて、貯留した水溶性切削液の濃度を算出する。
これにより、液体温度検出手段から入力した液体温度、及び導電率検出手段から入力した電気伝導率から、貯留した水溶性切削液に対して、液体温度時における濃度を算出でき、水溶性切削液の濃度を精度良く算出できる。
In claim 1 according to the present invention, the liquid temperature detecting means detects the liquid temperature of the stored water-soluble cutting fluid, and the conductivity detecting means detects the electrical conductivity of the stored water-soluble cutting fluid. The arithmetic control means inputs the liquid temperature detected by the liquid temperature detecting means and the electric conductivity detected by the conductivity detecting means at the same time, and the electric conductivity corresponding to the liquid temperature and the liquid temperature inputted from the liquid temperature detecting means. The rate (electric conductivity at liquid temperature) is acquired at the same time. The calculation control means is based on a calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the liquid temperature input from the liquid temperature detection means, and the electrical conductivity input from the conductivity detection means. The concentration of the stored water-soluble cutting fluid is calculated.
Accordingly, the concentration at the liquid temperature can be calculated for the stored water-soluble cutting fluid from the liquid temperature input from the liquid temperature detection means and the electric conductivity input from the conductivity detection means, and the water-soluble cutting fluid The concentration can be calculated with high accuracy.

本発明に係る請求項2では、液体温度検出手段から入力した液体温度、各濃度の水溶性切削液に対する一次関数式から、各濃度の水溶性切削液の電気伝導率を算出し、各濃度データと、各濃度の水溶性切削液の電気伝導率から、液体温度検出手段から入力した液体温度に対応する検量線を算出し、及び導電率検出手段から入力した電気伝導率と、算出した検量線から、貯留した水溶性切削液の濃度を算出できる。
請求項2では、貯留した水溶性切削液の検出前において、液体温度検出手段は、貯留した水溶性切削液と同一成分であって、各濃度データに対応する各濃度の水溶性切削液毎に、
実測前液体温度(サンプル液体温度)を検出し、導電率検出手段は、前記各濃度の水溶性切削液毎に、実測前電気伝導率(サンプル電気伝導率)を検出し、演算制御手段(制御手段)は、各濃度の水溶性切削液毎に、前記液体検出手段の検出した実測前液体温度、及び前記導電率検出手段の検出した実測前電気伝導率を一定の時間毎に入力して、温度の相異する複数の液体温度、及び当該各液体温度に対応する電気伝導率を取得し、各濃度の水溶性切削液毎に、液体温度検出手段及び導電率検出手段から入力した各実測前液体温度及び各実測前電気伝導率とに基づいて、各濃度の水溶性切削液に対応する、水溶性切削液の実測前液体温度及び実測前電気伝導率の関係を示す一次関数式を算出し、算出した各濃度の水溶性切削液に対応する一次関数式を記憶手段に記憶する構成も採用できる。
貯留した水溶性切削液の液体温度(実測液体温度)及び電気伝導率(実測電気伝導率)を検出する前において、貯留した水溶性切削液と同一成分であって、各濃度データに対応する各濃度の水溶性切削液毎に、温度の相異する複数の実測前液体温度、及び当該各実測前液体温度に対応する実測前電気伝導率(当該各実測前液体温度時の実測前電気伝導率)を取得し、各濃度の水溶性切削液毎に、各実測前液体温度、及び各実測前電気伝導率とに基づいて、各濃度の水溶性切削液に対する一次関数式を算出できる。
According to the second aspect of the present invention, the electrical conductivity of the water-soluble cutting fluid of each concentration is calculated from the liquid temperature input from the liquid temperature detecting means and the linear function equation for the water-soluble cutting fluid of each concentration, and each concentration data And a calibration curve corresponding to the liquid temperature input from the liquid temperature detection means from the electrical conductivity of the water-soluble cutting fluid of each concentration, and the electrical conductivity input from the conductivity detection means and the calculated calibration curve. From this, the concentration of the stored water-soluble cutting fluid can be calculated.
In claim 2, before the detection of the stored water-soluble cutting fluid, the liquid temperature detection means is the same component as the stored water-soluble cutting fluid, and for each water-soluble cutting fluid of each concentration corresponding to each concentration data ,
The pre-measurement liquid temperature (sample liquid temperature) is detected, and the conductivity detecting means detects the pre-measurement electrical conductivity (sample electrical conductivity) for each of the water-soluble cutting fluids of the respective concentrations, and the calculation control means (control) Means) for each concentration of water-soluble cutting fluid, the pre-measurement liquid temperature detected by the liquid detection means and the pre-measurement electrical conductivity detected by the conductivity detection means are input at regular intervals, Acquire a plurality of liquid temperatures with different temperatures, and electrical conductivity corresponding to each liquid temperature, and input each of the water-soluble cutting fluids of each concentration from the liquid temperature detection means and the conductivity detection means before each measurement. Based on the liquid temperature and the pre-measurement electrical conductivity, a linear function equation indicating the relationship between the pre-measurement liquid temperature and the pre-measurement electrical conductivity of the water-soluble cutting fluid corresponding to each concentration of water-soluble cutting fluid is calculated. Primary corresponding to each calculated concentration of water-soluble cutting fluid Configured to store a formula in the storage means it can be employed.
Before detecting the liquid temperature (measured liquid temperature) and electrical conductivity (measured electrical conductivity) of the stored water-soluble cutting fluid, each component corresponding to each concentration data is the same component as the stored water-soluble cutting fluid. For each concentration of water-soluble cutting fluid, a plurality of pre-measurement liquid temperatures having different temperatures, and pre-measurement electrical conductivities corresponding to the respective pre-measurement liquid temperatures (pre-measurement electrical conductivity at the respective pre-measurement liquid temperatures ) And a linear function equation for each concentration of water-soluble cutting fluid can be calculated for each concentration of water-soluble cutting fluid based on the pre-measurement liquid temperature and each pre-measurement electrical conductivity.

本発明に係る請求項3では、演算制御手段は、液体温度検出手段から入力した液体温度に基づいて、当該液体温度に対応する検量線を記憶手段から読出し、読出した検量線と、導電率検出手段から入力した電気伝導率に基づいて、貯留した水溶性切削液の濃度を算出できる。
請求項3では、液体温度検出手段の検出できる温度範囲の複数の温度について、当該各温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線(一次関数の検量式)を記憶する記憶手段を備える構成も採用できる。
According to a third aspect of the present invention, the calculation control means reads out a calibration curve corresponding to the liquid temperature from the storage means based on the liquid temperature input from the liquid temperature detection means, and reads the calibration curve and the conductivity detection. Based on the electrical conductivity input from the means, the concentration of the stored water-soluble cutting fluid can be calculated.
According to claim 3, for a plurality of temperatures in the temperature range that can be detected by the liquid temperature detecting means, a calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to each temperature (a calibration function of a linear function) It is also possible to employ a configuration including storage means for storing.

本発明に係る請求項4では、液体温度検出手段は、液貯留槽に貯留した水溶性切削液の液体温度を検出し、導電率検出手段は、液貯留槽に貯留した水溶性切削液の電気伝導率を検出する。演算制御手段は、液体温度検出手段の検出した液体温度、及び導電率検出手段の検出した電気伝導率を同時に入力して、液体温度と、液体温度検出手段から入力した液体温度に対応する電気伝導率(液体温度時の電気伝導率)を同時に取得する。演算制御手段は、液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、導電率検出手段から入力した電気伝導率とに基づいて、貯留した水溶性切削液の濃度を算出する。
これにより、液体温度検出手段から入力した液体温度、及び導電率検出手段から入力した電気伝導率から、液貯留槽に貯留した水溶性切削液に対して、液体温度時における濃度を算出でき、水溶性切削液の濃度を精度良く算出できる。
According to a fourth aspect of the present invention, the liquid temperature detecting means detects the liquid temperature of the water-soluble cutting fluid stored in the liquid storage tank, and the conductivity detecting means is the electric power of the water-soluble cutting liquid stored in the liquid storage tank. Detect conductivity. The arithmetic control means inputs the liquid temperature detected by the liquid temperature detecting means and the electric conductivity detected by the conductivity detecting means at the same time, and the electric conductivity corresponding to the liquid temperature and the liquid temperature inputted from the liquid temperature detecting means. The rate (electric conductivity at liquid temperature) is acquired at the same time. The calculation control means is based on a calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the liquid temperature input from the liquid temperature detection means, and the electrical conductivity input from the conductivity detection means. The concentration of the stored water-soluble cutting fluid is calculated.
Thus, the concentration at the liquid temperature can be calculated for the water-soluble cutting fluid stored in the liquid storage tank from the liquid temperature input from the liquid temperature detection means and the electrical conductivity input from the conductivity detection means. The concentration of the neutral cutting fluid can be calculated with high accuracy.

工作機システムの工作機、第1及び第2実施形態の濃度検出装置を示す正面図である。It is a front view which shows the machine tool of a machine tool system, and the density | concentration detection apparatus of 1st and 2nd embodiment. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG. 図2のC−C断面図である。It is CC sectional drawing of FIG. 図2のD−D断面図である。It is DD sectional drawing of FIG. 図2のE−E断面図である。It is EE sectional drawing of FIG. 第1及び第2実施形態の濃度検出装置を示すブロック図である。It is a block diagram which shows the density | concentration detection apparatus of 1st and 2nd embodiment. 各濃度の水溶性切削液に対する、水溶性切削液の実測前液体温度及び水溶性切削液の実測前電気伝導率の関係を示す一次関数式のグラフ図である。It is a graph of the linear function formula which shows the relation between the water temperature before the measurement of the water-soluble cutting fluid and the electric conductivity before the measurement of the water-soluble cutting fluid with respect to the water-soluble cutting fluid of each concentration. 液体温度検出手段から入力した液体温度に対する、水溶性切削液の濃度及び水溶性切削液の算出電気伝導率の関係を示す検量線(一次関数の検量式)のグラフ図である。It is a graph of a calibration curve (a calibration function of a linear function) showing the relationship between the concentration of the water-soluble cutting fluid and the calculated electrical conductivity of the water-soluble cutting fluid with respect to the liquid temperature input from the liquid temperature detecting means. 第1実施形態の濃度検出装置の実行する実測処理1を示すフローチャート図(その1)である。It is a flowchart figure (the 1) which shows the measurement process 1 which the density | concentration detection apparatus of 1st Embodiment performs. 第1実施形態の濃度検出装置の実行する実測処理1を示すフローチャート図(その2)である。It is a flowchart figure (the 2) which shows the measurement process 1 which the density | concentration detection apparatus of 1st Embodiment performs. 第1実施形態の濃度検出装置の実行する実測処理1を示すフローチャート図(その3)である。It is a flowchart figure (the 3) which shows the measurement process 1 which the density | concentration detection apparatus of 1st Embodiment performs. 第2実施形態の濃度検出装置の実行する実測処理2を示すフローチャート図(その1)である。It is a flowchart figure (the 1) which shows the measurement process 2 which the density | concentration detection apparatus of 2nd Embodiment performs. 第2実施形態の濃度検出装置の実行する実測処理2を示すフローチャート図(その2)である。It is a flowchart figure (the 2) which shows the measurement process 2 which the density | concentration detection apparatus of 2nd Embodiment performs.

本発明に係る工作機システム、第1及び第2実施形態の濃度検出装置について、図1乃至図14を参照して説明する。
以下、第1及び第2実施形態の濃度検出装置を、工作機システムに適用した例について説明する。
The machine tool system according to the present invention and the concentration detection apparatuses of the first and second embodiments will be described with reference to FIGS.
Hereinafter, an example in which the concentration detection devices of the first and second embodiments are applied to a machine tool system will be described.

<工作機システムX>
図1乃至図7において、工作機システムXは、工作機Y、及び濃検出装置Zを含んで構成される。
<Machine tool system X>
1 to 7, the machine tool system X includes a machine tool Y and a darkness detection device Z.

<工作機Y>
図1において、工作機Yは、例えば、マシニングセンタ(以下、「マシニングセンタY」という)でなる。工作機Yとしては、旋盤、フライス盤、NC旋盤(数値制御旋盤)、研削盤及びNC研削盤(数値制御研削盤)であっても良い。
<Machine tool Y>
In FIG. 1, the machine tool Y is, for example, a machining center (hereinafter referred to as “machining center Y”). The machine tool Y may be a lathe, a milling machine, an NC lathe (numerically controlled lathe), a grinder, and an NC grinder (numerically controlled grinder).

マシニングセンタY(工作機)は、数値制御されるフライス盤であって、被加工体1を加工する。
マシニングセンタYは、図1に示すように、主軸頭2、主軸3、刃工具4、工具ホルダ5を備える。
The machining center Y (machine tool) is a numerically controlled milling machine that processes the workpiece 1.
As shown in FIG. 1, the machining center Y includes a spindle head 2, a spindle 3, a blade tool 4, and a tool holder 5.

マシニングセンタYにおいて、主軸頭2は、図1に示すように、上下方向A(送り方向)に移動自在に配置される。
主軸3は、図1に示すように、主軸頭2に回転自在に配置される。主軸3は、駆動モータ9に連結され、駆動モータ9の駆動にて回転される。
In the machining center Y, the spindle head 2 is disposed so as to be movable in the vertical direction A (feed direction) as shown in FIG.
As shown in FIG. 1, the spindle 3 is rotatably disposed on the spindle head 2. The main shaft 3 is connected to a drive motor 9 and is rotated by driving of the drive motor 9.

刃工具4は、超硬ドリル、超硬エンドミル等でなる。   The blade tool 4 is made of a carbide drill, a carbide end mill, or the like.

工具ホルダ5は、図1に示すように、ホルダ本体7、及びハウジング8を備える。ホルダ本体7は、軸心線を主軸3の軸心線に一致して、主軸3に外嵌される。ホルダ本体7は、主軸頭2に固定される。
ハウジング8は、ホルダ本体7に回転自在に外嵌され、ホルダ本体7に保持される。ハウジング8は、軸心線を主軸3の軸心線に一致して、主軸3に連結される。
これにより、工具ホルダ5(ホルダ本体7及びハウジング8)は、主軸頭2の移動に伴って、上下方向A(送り方向)に移動される。
また、工具ホルダ5において、ハウジング8は、主軸3の回転に伴って回転される。
As shown in FIG. 1, the tool holder 5 includes a holder body 7 and a housing 8. The holder body 7 is externally fitted to the main shaft 3 with the axial center line coinciding with the axial center line of the main shaft 3. The holder body 7 is fixed to the spindle head 2.
The housing 8 is rotatably fitted to the holder body 7 and is held by the holder body 7. The housing 8 is coupled to the main shaft 3 such that the axis line coincides with the axis line of the main shaft 3.
Thereby, the tool holder 5 (the holder main body 7 and the housing 8) is moved in the vertical direction A (feeding direction) as the spindle head 2 moves.
In the tool holder 5, the housing 8 is rotated with the rotation of the main shaft 3.

ハウジング8は、コレット10を有する。コレット10は、刃工具4(超硬ドリル、超硬エンドミル等)を把持するチャック機構(図示しない)を有する。   The housing 8 has a collet 10. The collet 10 has a chuck mechanism (not shown) that holds the blade tool 4 (a carbide drill, a carbide end mill, etc.).

工具ホルダ5は、図1に示すように、刃工具4をコレット10内に装着して、コレット10にて刃工具4を固定する。
これにより、刃工具4(超硬ドリル)は、コレット10(ハウジング8)に固定され、ハウジング8(主軸3)の回転に伴って回転する。刃工具4は、主軸頭2の移動に伴って、上下方向A(送り方向)に移動される。
As shown in FIG. 1, the tool holder 5 mounts the blade tool 4 in the collet 10 and fixes the blade tool 4 with the collet 10.
Thereby, the blade tool 4 (carbide drill) is fixed to the collet 10 (housing 8), and rotates with the rotation of the housing 8 (main shaft 3). The blade tool 4 is moved in the vertical direction A (feed direction) with the movement of the spindle head 2.

マシニングセンタY(工作機Y)は、図1に示すように、複数の噴射ノズル23,24、加工テーブル25、液貯留槽26、液供給管27、及びポンプ28を備える。   As shown in FIG. 1, the machining center Y (machine tool Y) includes a plurality of injection nozzles 23 and 24, a processing table 25, a liquid storage tank 26, a liquid supply pipe 27, and a pump 28.

各噴射ノズル23,24は、図1に示すように、刃工具4(超硬ドリル、超硬エンドミル等)の外側に位置して、刃工具4に対峙して配置される。各噴射ノズル23,24は、ノズル管23A,24Aに接続される。各ノズル管23A,24Aは、主軸頭2に固定される。
これにより、各噴射ノズル23,24は、主軸頭2の移動に伴って、上下方向A(送り方向)に移動される。
As shown in FIG. 1, each of the injection nozzles 23 and 24 is disposed outside the blade tool 4 (a carbide drill, a carbide end mill, etc.) and is opposed to the blade tool 4. Each injection nozzle 23, 24 is connected to a nozzle tube 23A, 24A. Each nozzle tube 23A, 24A is fixed to the spindle head 2.
Thereby, each injection nozzle 23 and 24 is moved to the up-down direction A (feeding direction) with the movement of the spindle head 2.

加工テーブル25は、図1に示すように、上下方向Aにおいて、刃工具4(各噴射ノズル23,24)に間隔を隔てて下方側に配置される。加工テーブル25は、刃工具4に対峙して設置される。
加工テーブル25は、被加工体1を固定するバイス(図示しない)を有する。
As shown in FIG. 1, the processing table 25 is arranged on the lower side in the up-down direction A with an interval from the blade tool 4 (each injection nozzle 23, 24). The processing table 25 is installed facing the blade tool 4.
The processing table 25 has a vise (not shown) that fixes the workpiece 1.

液貯留槽26は、図1乃至図6に示すように、水溶性切削液(水溶性切削油)WOを貯留する。
水溶性切削液WOは、アルカリ性の液であって、水溶性切削原液を水で希釈した濃度αの水溶性切削液である。水溶性切削原液(水溶性切削液WO)は、例えば、防錆添加剤(アルカリ成分を含有)、界面活性剤、精製鉱物油(硫化物を含有)、その他の成分、及び水等の成分でなる。
水溶性切削液の濃度は、水溶性切削原液、及び水溶性切削原液を希釈する水との関係において、体積濃度(容積濃度)又は重量濃度(質量濃度)を意味する(以下、同様)。
As shown in FIGS. 1 to 6, the liquid storage tank 26 stores a water-soluble cutting fluid (water-soluble cutting oil) WO.
The water-soluble cutting fluid WO is an alkaline fluid and is a water-soluble cutting fluid having a concentration α obtained by diluting a water-soluble cutting stock solution with water. The water-soluble cutting stock solution (water-soluble cutting fluid WO) is, for example, a component such as a rust preventive additive (containing an alkali component), a surfactant, a refined mineral oil (containing a sulfide), other components, and water. Become.
The concentration of the water-soluble cutting fluid means volume concentration (volume concentration) or weight concentration (mass concentration) in the relationship with the water-soluble cutting stock solution and water for diluting the water-soluble cutting stock solution (hereinafter the same).

液貯留槽26は、前後壁板26A,26B、左右壁板26C,26D及び底壁板26Eを有し、各壁板26A〜26Eにて直方体に形成される。
液貯留槽26は、各壁板26A〜26Eにて区画される貯留空間21を有し、貯留空間21は上方に開口される。
The liquid storage tank 26 includes front and rear wall plates 26A and 26B, left and right wall plates 26C and 26D, and a bottom wall plate 26E, and is formed in a rectangular parallelepiped shape by the wall plates 26A to 26E.
The liquid storage tank 26 has a storage space 21 partitioned by the wall plates 26A to 26E, and the storage space 21 is opened upward.

液貯留槽26は、図1及び図2に示すように、隔壁板29、及び前後蓋板30,31を有する。
液貯留槽26において、隔壁板29は、貯留空間21内に配置される。隔壁板29は、液貯留槽26の前壁板26A側に位置して配置される。隔壁板29は、前後方向Bにおいて、前壁板26Aに間隔を隔てて平行に配置され、底壁板26Eに立設して固定される。隔壁板29は、液貯留槽26の右壁板26Dに取付けられ、左右方向Cの左壁板26C側に延在される。隔壁板29は、図2に示すように、左右方向Cにおいて、左壁板26Cに隙間δを形成して配置される。
As shown in FIGS. 1 and 2, the liquid storage tank 26 includes a partition plate 29 and front and rear cover plates 30 and 31.
In the liquid storage tank 26, the partition plate 29 is disposed in the storage space 21. The partition plate 29 is disposed on the front wall plate 26 </ b> A side of the liquid storage tank 26. In the front-rear direction B, the partition plate 29 is disposed parallel to the front wall plate 26A with a space therebetween, and is erected and fixed to the bottom wall plate 26E. The partition plate 29 is attached to the right wall plate 26D of the liquid storage tank 26 and extends to the left wall plate 26C side in the left-right direction C. As shown in FIG. 2, the partition plate 29 is arranged in the left-right direction C so as to form a gap δ in the left wall plate 26C.

液貯留槽26において、前蓋板30は、図1及び図2に示すように、液貯留槽26の前方側に配置される。前蓋板30は、前後方向Bにおいて、前壁板26A及び隔壁板29間に延在して配置される。前蓋板30は、左右方向Cにおいて、左壁板26C及び右壁板26D間に延在して配置される。前蓋板30は、貯留空間21の前方側(貯留空間21の一部)を覆って、前壁板26A上、隔壁板29上及び左右壁板26C,26D上に載置される。前蓋板30は、液貯留槽26の前壁板26A、隔壁板29及び左右壁板26C,26Dに取付けられる。前蓋板30は、図1及び図2に示すように、液回収口32を有し、液回収口32は、左右方向Cの右壁板26D側に形成される。液回収口32は、上下方向Aにおいて、前蓋板30を貫通して、貯留空間21を外部に連通する。   In the liquid storage tank 26, the front lid plate 30 is disposed on the front side of the liquid storage tank 26 as shown in FIGS. 1 and 2. The front lid plate 30 is disposed so as to extend between the front wall plate 26 </ b> A and the partition plate 29 in the front-rear direction B. The front lid plate 30 is disposed so as to extend between the left wall plate 26C and the right wall plate 26D in the left-right direction C. The front lid plate 30 covers the front side of the storage space 21 (a part of the storage space 21) and is placed on the front wall plate 26A, the partition plate 29, and the left and right wall plates 26C and 26D. The front lid plate 30 is attached to the front wall plate 26A, the partition plate 29, and the left and right wall plates 26C and 26D of the liquid storage tank 26. As shown in FIGS. 1 and 2, the front lid plate 30 has a liquid recovery port 32, and the liquid recovery port 32 is formed on the right wall plate 26 </ b> D side in the left-right direction C. In the vertical direction A, the liquid recovery port 32 penetrates the front lid plate 30 and communicates the storage space 21 to the outside.

液貯留槽26において、後蓋板31は、図1及び図2に示すように、液貯留槽26の後方側に配置される。後蓋板31は、左右方向Cにおいて、左壁板26C及び右壁板26D間に延在して配置される。後蓋板31は、貯留空間21の後方側(貯留空間21の一部)を覆って、後壁板26B上、及び左右壁板26C,26D上に載置される。後蓋板31は、液貯留槽26の後壁板26B、及び左右壁板26C,26Dに取付けられる。
これにより、液貯留槽26において、貯留空間21は、前蓋板30及び後蓋板31間において、上方向に開口される。
In the liquid storage tank 26, the rear cover plate 31 is disposed on the rear side of the liquid storage tank 26 as shown in FIGS. 1 and 2. The rear cover plate 31 is disposed so as to extend between the left wall plate 26C and the right wall plate 26D in the left-right direction C. The rear cover plate 31 covers the rear side of the storage space 21 (a part of the storage space 21) and is placed on the rear wall plate 26B and the left and right wall plates 26C and 26D. The rear cover plate 31 is attached to the rear wall plate 26B and the left and right wall plates 26C and 26D of the liquid storage tank 26.
Thereby, in the liquid storage tank 26, the storage space 21 is opened upward between the front lid plate 30 and the rear lid plate 31.

液貯留槽26は、図1に示すように、加工テーブル25(被加工体1)の下方に配置される。液貯留槽26は、液回収口32を加工テーブル25(被加工体1)に対峙して配置される。液貯留槽26は、上下方向Aにおいて、加工テーブル25に間隔を隔てて設置される。   As shown in FIG. 1, the liquid storage tank 26 is disposed below the processing table 25 (workpiece 1). The liquid storage tank 26 is disposed with the liquid recovery port 32 facing the processing table 25 (workpiece 1). The liquid storage tank 26 is installed in the processing table 25 at intervals in the vertical direction A.

液供給管27は、図1に示すように、各噴射ノズル23,24及びポンプ28の間に配置される。液供給管27の一方管端は、ポンプ28に接続される。液供給管27の他方管端は、噴射ノズル24のノズル管24Aに接続される。液供給管27は、噴射ノズル23のノズル管23Aに接続される。
これにより、液供給管27は、各噴射ノズル23,24及びポンプ28に連通される。
As shown in FIG. 1, the liquid supply pipe 27 is disposed between the injection nozzles 23 and 24 and the pump 28. One end of the liquid supply pipe 27 is connected to a pump 28. The other pipe end of the liquid supply pipe 27 is connected to the nozzle pipe 24 </ b> A of the injection nozzle 24. The liquid supply pipe 27 is connected to the nozzle pipe 23 </ b> A of the injection nozzle 23.
As a result, the liquid supply pipe 27 communicates with each of the injection nozzles 23 and 24 and the pump 28.

ポンプ28(電動ポンプ)は、図1、図2及び図6に示すように、液貯留槽26に配置される。ポンプ28は、図2及び図6に示すように、左右方向Cにおいて、左壁板26C側に配置される。ポンプ28は、液貯留槽26の後蓋板31上に載置され、後蓋板31に取付けられる。ポンプ28は、貯留空間21の水溶性切削液WOに浸漬される。ポンプ28は、液供給管27の一方管端に接続される。ポンプ28は、液供給管27、各ノズル管23A,24Aを通して各噴射ノズル23,24に連通される。
ポンプ28は、マシニングセンタY(工作機)の制御手段(図示しない)に接続され、制御手段の駆動指令(駆動信号)に基づいて、吸引/吐出駆動される。
ポンプ28は、マシニングセンタYの制御手段の駆動指令に基づいて、液貯留槽26に貯留した水溶性切削液WOを吸引して、液供給管27に水溶性切削液WOを吐出する。
これにより、各噴射ノズル23,24は、図1に示すように、水溶性切削液WOを刃工具4及び被加工体1に噴射する。
各噴射ノズル23,24から噴射した水溶性切削液WOは、加工テーブル25から液回収口32を通して、液貯留槽26内に流入して回収される。
液貯留槽26に回収した水溶性切削液WOは、図2に示すように、前壁板26A及び隔壁板29にて案内されて液回収口32から左壁板26Cに流れて、左壁板26C及び隔壁板29間の隙間δから貯留空間21のポンプ28側に流出される。
The pump 28 (electric pump) is arrange | positioned at the liquid storage tank 26, as shown in FIG.1, FIG2 and FIG.6. The pump 28 is disposed on the left wall plate 26C side in the left-right direction C as shown in FIGS. The pump 28 is mounted on the rear cover plate 31 of the liquid storage tank 26 and attached to the rear cover plate 31. The pump 28 is immersed in the water-soluble cutting fluid WO in the storage space 21. The pump 28 is connected to one end of the liquid supply pipe 27. The pump 28 communicates with the injection nozzles 23 and 24 through the liquid supply pipe 27 and the nozzle pipes 23A and 24A.
The pump 28 is connected to control means (not shown) of the machining center Y (machine tool), and is driven for suction / discharge based on a drive command (drive signal) of the control means.
The pump 28 sucks the water-soluble cutting fluid WO stored in the liquid storage tank 26 based on the drive command of the control means of the machining center Y, and discharges the water-soluble cutting fluid WO to the liquid supply pipe 27.
Thereby, each injection nozzle 23 and 24 injects the water-soluble cutting fluid WO to the blade tool 4 and the to-be-processed body 1, as shown in FIG.
The water-soluble cutting fluid WO sprayed from the spray nozzles 23 and 24 flows into the liquid storage tank 26 through the liquid recovery port 32 from the processing table 25 and is recovered.
As shown in FIG. 2, the water-soluble cutting fluid WO recovered in the liquid storage tank 26 is guided by the front wall plate 26A and the partition plate 29, flows from the liquid recovery port 32 to the left wall plate 26C, and the left wall plate. It flows out from the gap δ between 26C and the partition plate 29 to the pump 28 side of the storage space 21.

<第1実施形態の濃度検出装置Z(液体状態測定装置)>
第1実施形態の濃度検出装置Zは、図1乃至図7に示すように、液貯留槽26に貯留した水溶性切削液WOの液体状態を検出する液体状態検出装置であって、液貯留槽26に貯留した水溶性切削液WOの濃度を算出(演算)する。
第1実施形態の濃度測定装置Zは、液貯留槽26に貯留した水溶性切削液WOの硫化物ガス濃度(臭気)、及び水溶性切削液WOの水素イオン濃度指数(pH)を検出する。
<Concentration Detection Device Z (Liquid State Measurement Device) of First Embodiment>
The concentration detection device Z of the first embodiment is a liquid state detection device that detects the liquid state of the water-soluble cutting fluid WO stored in the liquid storage tank 26 as shown in FIGS. The concentration of the water-soluble cutting fluid WO stored in 26 is calculated (calculated).
The concentration measuring device Z of the first embodiment detects the sulfide gas concentration (odor) of the water-soluble cutting fluid WO stored in the liquid storage tank 26 and the hydrogen ion concentration index (pH) of the water-soluble cutting fluid WO.

第1実施形態の濃度測定装置Zは、図1乃至図5、及び図7に示すように、液体温度検出手段51、導電率検出手段52、臭気検出手段53、水素イオン濃度指数検出手段54、演算制御手段55、及び記憶手段56を備える。   As shown in FIGS. 1 to 5 and FIG. 7, the concentration measuring apparatus Z of the first embodiment includes a liquid temperature detecting means 51, a conductivity detecting means 52, an odor detecting means 53, a hydrogen ion concentration index detecting means 54, Arithmetic control means 55 and storage means 56 are provided.

液体温度検出手段51は、貯留した水溶性切削液WOの液体温度Tg(℃)を検出する。液体温度検出手段51は、接触式温度センサ(熱電対、白金測定抵抗体、サーミスタ)でなる。
液体温度検出手段51は、図1乃至図5に示すように、液貯留槽26の後蓋板31に配置される。液体温度検出手段51は、左右方向Cにおいて、ポンプ28に間隔を隔てて右壁板26D側に配置される。
液体温度検出手段51は、液貯留槽26の後蓋板31に固定され、液貯留槽26に貯留した水溶性切削液WOに浸漬される。
液体温度検出手段51は、液貯留槽26に貯留した水溶性切削液WOの液体温度Tg[以下、「実測液体温度Tg(℃)」という]を検出して、実測液体温度信号として出力する。
なお、液体温度検出手段51は、非接触式温度センサ(放射温度計、サーモグラフィー)であっても良い。非接触式温度センサは、液貯留槽26(貯留空間21)の開口から水溶性切削液WOに対峙して配置する。
The liquid temperature detection means 51 detects the liquid temperature Tg (° C.) of the stored water-soluble cutting fluid WO. The liquid temperature detecting means 51 is a contact temperature sensor (thermocouple, platinum measuring resistor, thermistor).
The liquid temperature detection means 51 is arrange | positioned at the rear cover plate 31 of the liquid storage tank 26, as shown in FIG. 1 thru | or FIG. The liquid temperature detection means 51 is disposed on the right wall plate 26D side in the left-right direction C with a space from the pump 28.
The liquid temperature detecting means 51 is fixed to the rear cover plate 31 of the liquid storage tank 26 and immersed in the water-soluble cutting liquid WO stored in the liquid storage tank 26.
The liquid temperature detection means 51 detects the liquid temperature Tg of the water-soluble cutting fluid WO stored in the liquid storage tank 26 [hereinafter referred to as “measured liquid temperature Tg (° C.)” and outputs it as the measured liquid temperature signal.
The liquid temperature detecting means 51 may be a non-contact temperature sensor (radiation thermometer, thermography). The non-contact temperature sensor is disposed so as to face the water-soluble cutting fluid WO from the opening of the liquid storage tank 26 (storage space 21).

導電率検出手段52は、貯留した水溶性切削液WOの電気伝導率σg(マイクロジーメンス毎センチメートル:μS/cm)を検出する。導電率検出手段52は、導電率センサ[電気伝導率センサ(2電極式導電率センサ等)]でなる。電気伝導率は、導電率である。
導電率検出手段52は、図1乃至図5に示すように、液貯留槽26の後蓋板31に配置される。導電率検出手段52は、左右方向Cにおいて、ポンプ28に間隔を隔てて右壁板26D側に配置される。
導電率検出手段52は、図1乃至図5に示すように、前後方向Bにおいて、液体温度検出手段51に並設されて、液体温度検出手段51及び後壁板26B間に配置される。
導電率検出手段52は、液貯留槽26の後蓋板31に固定され、液貯留槽26に貯留した水溶性切削液WOに浸漬される。
導電率検出手段52は、液貯留槽26に貯留した水溶性切削液WO(アルカリイオン)の電気伝導率σg[以下、「実測電気伝導率σg(μS/cm)」という]を検出して、実測電気伝導率信号として出力する。
The conductivity detection means 52 detects the electrical conductivity σg (micro Siemens per centimeter: μS / cm) of the stored water-soluble cutting fluid WO. The conductivity detector 52 is a conductivity sensor [electric conductivity sensor (two-electrode conductivity sensor or the like)]. Electrical conductivity is electrical conductivity.
The conductivity detecting means 52 is disposed on the rear cover plate 31 of the liquid storage tank 26 as shown in FIGS. The conductivity detecting means 52 is arranged on the right wall plate 26D side in the left-right direction C with a spacing from the pump 28.
As shown in FIGS. 1 to 5, the conductivity detecting means 52 is arranged in parallel with the liquid temperature detecting means 51 in the front-rear direction B, and is disposed between the liquid temperature detecting means 51 and the rear wall plate 26B.
The conductivity detecting means 52 is fixed to the rear cover plate 31 of the liquid storage tank 26 and is immersed in the water-soluble cutting fluid WO stored in the liquid storage tank 26.
The conductivity detecting means 52 detects the electrical conductivity σg of the water-soluble cutting fluid WO (alkali ions) stored in the liquid storage tank 26 (hereinafter referred to as “measured electrical conductivity σg (μS / cm)”), Output as measured electrical conductivity signal.

臭気検出手段53は、貯留した水溶性切削液WOの発する硫化物ガス濃度γgを検出する。臭気検出手段53は、ガスセンサ(半導体式ガスセンサ、有機半導体式ガスセンサ、水晶振子式ガスセンサ、固定電解質ガスセンサ等)でなる。
臭気検出手段53は、図1、図2及び図5に示すように、液貯留槽26の後蓋板31に配置される。臭気検出手段53は、左右方向Cにおいて、ポンプ28に間隔を隔てて右壁板26D側に配置される。
臭気検出手段53は、前後方向Bにおいて、液体温度検出手段51に間隔を隔てて前壁板26A側に並設され、液貯留槽26の後蓋板31に固定される。
臭気検出手段53は、液貯留槽26に貯留した水溶性切削液WOの発する硫化物ガス濃度γgを検出して、硫化物ガス濃度信号として出力する。
The odor detection means 53 detects the sulfide gas concentration γg emitted from the stored water-soluble cutting fluid WO. The odor detecting means 53 is a gas sensor (semiconductor gas sensor, organic semiconductor gas sensor, quartz pendulum gas sensor, fixed electrolyte gas sensor, etc.).
The odor detection means 53 is disposed on the rear cover plate 31 of the liquid storage tank 26 as shown in FIGS. The odor detection means 53 is arranged on the right wall plate 26D side in the left-right direction C with a space from the pump 28.
The odor detection means 53 is juxtaposed on the front wall plate 26 </ b> A side with an interval from the liquid temperature detection means 51 in the front-rear direction B, and is fixed to the rear cover plate 31 of the liquid storage tank 26.
The odor detection means 53 detects the sulfide gas concentration γg emitted from the water-soluble cutting fluid WO stored in the liquid storage tank 26 and outputs it as a sulfide gas concentration signal.

水素イオン濃度指数検出手段54は、貯留した水溶性切削液WOの水素イオン濃度指数εg(pH)を検出する(以下、「pH検出手段54」という)。pH検出手段54は、pHセンサでなる。
pH検出手段54は、図2及び図6に示すように、液貯留槽26の後蓋板31に配置される。pH検出手段54は、左右方向Cにおいて、ポンプ28に間隔を隔てて右壁板26D側に配置される。
pH検出手段54は、左右方向Cにおいて、臭気検出手段53に間隔を隔てて並設される。pH検出手段54は、液貯留槽26の後蓋板31に固定され、液貯留槽26に貯留した水溶性切削液WOに浸漬される。
pH検出手段54は、液貯留槽26に貯留した水溶性切削液WOの水素イオン濃度指数εgを検出して、水素イオン濃度指数信号として出力する。
The hydrogen ion concentration index detecting means 54 detects the hydrogen ion concentration index εg (pH) of the stored water-soluble cutting fluid WO (hereinafter referred to as “pH detecting means 54”). The pH detection means 54 is a pH sensor.
The pH detection means 54 is disposed on the rear cover plate 31 of the liquid storage tank 26 as shown in FIGS. The pH detection means 54 is disposed on the right wall plate 26D side in the left-right direction C with a space from the pump 28.
The pH detection means 54 is juxtaposed with the odor detection means 53 at intervals in the left-right direction C. The pH detection means 54 is fixed to the rear cover plate 31 of the liquid storage tank 26 and is immersed in the water-soluble cutting fluid WO stored in the liquid storage tank 26.
The pH detection means 54 detects the hydrogen ion concentration index εg of the water-soluble cutting fluid WO stored in the liquid storage tank 26 and outputs it as a hydrogen ion concentration index signal.

演算制御手段55は、図7に示すように、液体温度検出手段51、導電率検出手段52、臭気検出手段53、及びpH検出手段54に接続される。
演算制御手段55は、液体温度検出手段51の検出した実測液体温度Tg(実測液体温度信号)、導電率検出手段52の検出した実測電気伝導率σg(実測電気伝導率信号)、臭気検出手段53の検出した硫化物ガス濃度γg(硫化物ガス濃度信号)、及びpH検出手段54の検出した水素ガス濃度指数εg(水素イオン濃度指数信号)を同時に入力する。
The calculation control means 55 is connected to the liquid temperature detection means 51, the conductivity detection means 52, the odor detection means 53, and the pH detection means 54 as shown in FIG.
The arithmetic control unit 55 includes an actually measured liquid temperature Tg (measured liquid temperature signal) detected by the liquid temperature detecting unit 51, an actually measured electrical conductivity σg (measured electrical conductivity signal) detected by the conductivity detecting unit 52, and an odor detecting unit 53. And the hydrogen gas concentration index εg (hydrogen ion concentration index signal) detected by the pH detecting means 54 are simultaneously input.

演算制御手段55は、図7に示すように、制御器57、増幅器58及びタイマ59(計時器)を有する。
増幅器58は、導電率検出手段52に接続される。増幅器58は、導電率検出手段52の検出した実測電気伝導率σg(実測電気伝導率信号)を入力し、実測電気伝導率σg(実測電気伝導率信号)を増幅(例えば、実測電気伝導率信号を4倍に増幅)して出力する。
As shown in FIG. 7, the arithmetic control means 55 includes a controller 57, an amplifier 58, and a timer 59 (timer).
The amplifier 58 is connected to the conductivity detecting means 52. The amplifier 58 receives the measured electrical conductivity σg (measured electrical conductivity signal) detected by the conductivity detector 52 and amplifies the measured electrical conductivity σg (measured electrical conductivity signal) (for example, the measured electrical conductivity signal). Is amplified 4 times) and output.

制御器57は、例えば、CPU(Central Processing Unit/中央演算処理装置)であって、増幅器58及びタイマ59に接続される。
制御器57は、増幅器58で増幅された実測電気伝導率σg(μS/cm)を入力する。制御器57は、検出信号をタイマ59に出力する。タイマ59は、検出信号の入力により検出時間tを計時する。
The controller 57 is, for example, a CPU (Central Processing Unit) and is connected to the amplifier 58 and the timer 59.
The controller 57 inputs the measured electrical conductivity σg (μS / cm) amplified by the amplifier 58. The controller 57 outputs a detection signal to the timer 59. The timer 59 measures the detection time t by inputting the detection signal.

記憶手段56は、濃度の相異する複数の濃度データαa1,αa2,…,αanを記憶する(但し、n=1,2,3,…,i,…,n:自然数である。以下、同様)。
なお、各濃度データαa1,αa2,…,αanは、例えば、濃度2%〜10%の範囲の値である。
The storage means 56 stores a plurality of density data αa1, αa2,..., Αan having different densities (where n = 1, 2, 3,..., I,..., N: natural numbers. Hereinafter, the same applies). ).
Each density data αa1, αa2,..., Αan is a value in the range of density 2% to 10%, for example.

記憶手段56は、濃度判別範囲値αxを記憶する。濃度判別範囲値αxは、水溶性切削液WOの濃度を示す範囲値であって、濃度最小値αmin〜濃度最大値αmaxの範囲値を取る値である。濃度判別範囲値αxにおいて、濃度最小値αminは、例えば、濃度3%であり、濃度最大値αmaxは、例えば、濃度7%である。   The storage unit 56 stores the density determination range value αx. The concentration determination range value αx is a range value indicating the concentration of the water-soluble cutting fluid WO, and is a value that takes a range value between the minimum concentration value αmin and the maximum concentration value αmax. In the density determination range value αx, the minimum density value αmin is, for example, 3% density, and the maximum density value αmax is, for example, 7% density.

記憶手段56は、臭気判別値γxを記憶する。臭気判別値γxは、硫化物ガス濃度を示す値である。   The storage means 56 stores the odor discrimination value γx. The odor discrimination value γx is a value indicating the sulfide gas concentration.

記憶手段56は、水素ガス濃度指数判別値εxを記憶する。水素ガス濃度指数判別値εxは、水溶性切削液WOの水素ガス濃度指数を示す値である。水素ガス濃度指数判別値εxは、例えば、εx=8.9である。   The storage means 56 stores the hydrogen gas concentration index discrimination value εx. The hydrogen gas concentration index discrimination value εx is a value indicating the hydrogen gas concentration index of the water-soluble cutting fluid WO. The hydrogen gas concentration index discrimination value εx is, for example, εx = 8.9.

記憶手段56は、液貯留槽26に貯留した水溶性切削液WOと同一成分であって、各濃度データαa1,αa2,…,αanに対応する各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnについて、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…fnを記憶する。
各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fnは、図8に示すように、水溶性切削液の実測前液体温度(℃)及び実測前電気伝導率(μS/cm)の関係を示す関数式である。
各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,f3とは、水溶性切削液の実測前液体温度(液体温度)及び水溶性切削液の実測前電気伝導率(電気伝導率)を示す各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの一次関数式f1,f2,…,fnである。
各濃度α1,α2,…,αnは、各濃度データαa1,αa2,…,αanと同一濃度であって、α1=αa1,α2=αa2,…,αn=αanの関係である。各濃度α1,α2,…,αnは、例えば、濃度2%〜10%の範囲の値である。
The storage means 56 is the same component as the water-soluble cutting fluid WO stored in the liquid storage tank 26, and is water-soluble cutting of each concentration α1, α2,..., Αn corresponding to each concentration data αa1, αa2,. For the liquids WO1, WO2,..., WOn, the linear function equations f1, f2,... Fn corresponding to the water-soluble cutting fluids WO1, WO2,.
The linear function equations f1, f2,..., Fn corresponding to the water-soluble cutting fluids WO1, WO2,. It is a functional equation showing the relationship between the liquid temperature (° C.) and the electric conductivity before measurement (μS / cm).
The linear function equations f1, f2,..., F3 corresponding to the water-soluble cutting fluids WO1, WO2,. And water-soluble cutting fluids WO1, WO2,..., WOn having the respective concentrations α1, α2,..., Αn indicating the electrical conductivity (electrical conductivity) before measurement of the water-soluble cutting fluids, f1, f2,. It is.
Each of the concentrations α1, α2,..., Αn is the same concentration as the respective concentration data αa1, αa2,..., Αan, and α1 = αa1, α2 = αa2,. Each concentration α1, α2,..., Αn is, for example, a value in the range of 2% to 10%.

濃度検出装置Zは、液貯留槽26の貯留した水溶性切削液WOの検出前において、各濃度a1,a2,…,anの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fn:f(i)=y(αi%)=Ax+Bを算出する。   The concentration detector Z is a linear function equation corresponding to the water-soluble cutting fluids WO1, WO2,..., WOn of the respective concentrations a1, a2,. f1, f2,..., fn: f (i) = y (αi%) = Ax + B is calculated.

<一次関数式f1,f2,…,fnの算出>
濃度検出装置Zにおいて、液体温度検出手段51は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…WOn毎に、水溶性切削液の液体温度(℃)[以下、「実測前液体温度(サンプル液体温度)」という]を検出する。
導電率検出手段52は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOn毎に、水溶性切削液の電気伝導率(μS/cm)[以下、「実測前液体温度(サンプル電気導電率)」という]を検出する。
演算制御手段55(制御器57)は、液体温度検出手段51の検出した実測前液体温度(℃)、及び導電率検出手段52の検出した実測前電気伝導率(μS/cm)を、一定の検出時間毎(例えば、1分毎)に入力して、温度の相異する複数(多数)の実測前液体温度T、及び複数(多数)の実測前電気伝導率を取得する。
これにより、演算制御手段55は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOn毎に、複数(多数)の実測前液体温度、及び複数(多数)の実測前電気伝導率を取得する。なお、各実測前電気伝導率は、各実測前液体温度に対応する電気伝導率(各実測前液体温度時の実測前電気伝導率)である。
濃度α1の水溶切削液WO1において、複数(多数)の実測前液体温度T11,T12,…,T1n、及び複数(多数)の実測前電気伝導率σ11,σ12,…,σ1nを取得し、濃度α2の水溶性切削液WO2において、複数(多数)の実測前液体温度T21,T22,…,T2n、及び複数(多数)の実測前電気伝導率σ21,σ22,…,σ2nを取得する。濃度αnの水溶性切削液WOnにおいて、複数(多数)の実測前液体温度Tn1,Tn2,…,Tnn、及び複数(多数)の実測前電気伝導率σn1,σn2,…,σnnを取得する。
<Calculation of linear function equations f1, f2,..., Fn>
In the concentration detection device Z, the liquid temperature detection means 51 uses the liquid temperature (° C.) of the water-soluble cutting fluid for each of the water-soluble cutting fluids WO1, WO2,. The pre-measurement liquid temperature (sample liquid temperature) ”is detected.
The conductivity detecting means 52 determines the electrical conductivity (μS / cm) of the water-soluble cutting fluid for each of the water-soluble cutting fluids WO1, WO2,. Liquid temperature (sample electrical conductivity) ”.
The arithmetic control means 55 (controller 57) sets the pre-measurement liquid temperature (° C.) detected by the liquid temperature detection means 51 and the pre-measurement electrical conductivity (μS / cm) detected by the conductivity detection means 52 to a certain level. Input at every detection time (for example, every minute) to obtain a plurality (many) of pre-measurement liquid temperatures T having different temperatures and a plurality (many) of pre-measurement electrical conductivity.
As a result, the arithmetic control means 55 makes plural (many) pre-measurement liquid temperatures and plural (many) actual measurements for each of the water-soluble cutting fluids WO1, WO2,. Get the previous electrical conductivity. Each electric conductivity before measurement is electric conductivity corresponding to each liquid temperature before measurement (electric conductivity before measurement at each liquid temperature before measurement).
In the aqueous cutting fluid WO1 having the concentration α1, a plurality (large number) of pre-measurement liquid temperatures T11, T12,..., T1n and a plurality (multiple) pre-measurement electrical conductivities σ11, σ12,. , T2n and plural (many) pre-measurement electrical conductivities σ21, σ22,..., Σ2n are obtained. In the water-soluble cutting fluid WOn having the concentration αn, a plurality (large number) of pre-measurement liquid temperatures Tn1, Tn2,..., Tnn and a plurality (large number) of pre-measurement electrical conductivities σn1, σn2,.

演算制御手段55は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOn毎に、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…fnを算出する。
図8は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する、「水溶性切削液の実測前液体温度(℃)」及び「水溶性切削液の実測前電気伝導率(μS/cm)」の関係を示す一次関数式f1,f2,…,fnのグラフ図である。
図8は、横軸(x座標軸)に「実測前液体温度(℃)」を取り、縦軸(y座標軸)に「実測前電気伝導率(μS/cm)を取る。
図8では、「実測前液体温度(液体温度)」を「x座標値(xi)」とし、「実測前電気伝導率(電気伝導率)」を「y座標値(yi)」としている。図8において、座標値は、(x,y)=(実測前液体温度,実測前電気伝導率)となる。
濃度α1の水溶性切削液WO1では、座標値データ個数Mは、M=n、各座標値は、(x1,y1)=(T11,σ11),(x2,y2)=(T12,σ12),…,(xn,xn)=(T1n,σ1n)となり、濃度αnの水溶性切削液WOnでは、座標値データ個数は、M=n、各座標値は、(x1,y1)=(Tn1,σn1),(x2,y2)=(Tn2,σn2),…,(xn,xn)=(Tnn,σnn)となる。
演算制御手段55(制御器57)は、例えば、「最小二乗法」を用いて、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f(i)=y(αi)=Ax+Bを算出する。
「最小二乗法」によれば、「実測前液体温度―実測前電気伝導率」に関する座標値データ個数M=n、i番目の座標値(xi,yi)=(実測前液体温度,実測前電気伝導率)とすると、一次関数式f(i)=y(αi)=Ax+Bの「A値(傾き)」は、式(1)により算出される。
一次関数f(i)=y(αi)=Ax+Bの「B値(切片)」は、式(2)により算出される。
The calculation control means 55 is provided with water-soluble cutting fluids WO1, WO2,..., Αn having respective concentrations α1, α2,. Linear function equations f1, f2,... Fn corresponding to WOn are calculated.
FIG. 8 shows “water temperature before measurement of water-soluble cutting fluid (° C.)” and “water-soluble cutting fluid” corresponding to the water-soluble cutting fluids WO1, WO2,. It is a graph of linear function formulas f1, f2,..., Fn showing the relationship of “electric conductivity before measurement (μS / cm)”.
In FIG. 8, the horizontal axis (x coordinate axis) represents “liquid temperature before measurement (° C.)”, and the vertical axis (y coordinate axis) represents “electric conductivity before measurement (μS / cm)”.
In FIG. 8, “liquid temperature before measurement (liquid temperature)” is “x coordinate value (xi)”, and “electric conductivity before measurement (electric conductivity)” is “y coordinate value (yi)”. In FIG. 8, the coordinate values are (x, y) = (liquid temperature before measurement, electrical conductivity before measurement).
In the water-soluble cutting fluid WO1 having a concentration α1, the coordinate value data number M is M = n, and the coordinate values are (x1, y1) = (T11, σ11), (x2, y2) = (T12, σ12), ..., (xn, xn) = (T1n, σ1n), and in the water-soluble cutting fluid WOn having a concentration αn, the number of coordinate value data is M = n, and each coordinate value is (x1, y1) = (Tn1, σn1) ), (X2, y2) = (Tn2, σn2),..., (Xn, xn) = (Tnn, σnn).
The arithmetic control means 55 (controller 57) uses, for example, a “least square method” to calculate a linear function equation f corresponding to the water-soluble cutting fluids WO1, WO2,. (I) = y (αi) = Ax + B is calculated.
According to the “least-squares method”, the number of coordinate value data M relating to “liquid temperature before measurement−electric conductivity before measurement”, i-th coordinate value (xi, yi) = (liquid temperature before measurement, electricity before measurement) (Conductivity), the “A value (gradient)” of the linear function formula f (i) = y (αi) = Ax + B is calculated by the formula (1).
The “B value (intercept)” of the linear function f (i) = y (αi) = Ax + B is calculated by the equation (2).

Figure 2019002894
Figure 2019002894

演算制御手段55は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…WOn毎に、座標値データ個数M=n、及び各座標値(xi,yi)=(実測前液体温度,実測前電気伝導率)を、式(1)及び式(2)に代入して、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…WOnに対応する一次関数式f(i)=y(αi)=Ax+Bの「A値(傾き)」及び「B値」を算出する。
演算制御手段55は、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fnを記憶手段56に記憶する。
The calculation control means 55 determines the number of coordinate value data M = n and each coordinate value (xi, yi) = (before measurement) for each of the water-soluble cutting fluids WO1, WO2,. Substituting the liquid temperature and the electrical conductivity before measurement) into the equations (1) and (2), the linear functions corresponding to the water-soluble cutting fluids WO1, WO2,. “A value (slope)” and “B value” of the formula f (i) = y (αi) = Ax + B are calculated.
The arithmetic control means 55 stores the linear function equations f1, f2,..., Fn corresponding to the water-soluble cutting fluids WO1, WO2,.

演算制御手段55(制御器57)は、液貯留槽26に貯留した水溶性切削液WOの検出において、液体温度検出手段51から入力した実測液体温度Tg(℃)に対応する、「水溶性切削液の濃度α」及び「算出電気伝導率(μS/cm)」の関係を示す検量線F(Tg)を算出する。
検量線F(Tg)は、例えば、一次関数の検量式F(Tg)=y(Tg)=Ax+Bでなる。
The calculation control means 55 (controller 57) corresponds to the measured water temperature Tg (° C.) input from the liquid temperature detection means 51 in the detection of the water-soluble cutting liquid WO stored in the liquid storage tank 26. A calibration curve F (Tg) indicating the relationship between “liquid concentration α” and “calculated electrical conductivity (μS / cm)” is calculated.
The calibration curve F (Tg) is, for example, a linear function calibration formula F (Tg) = y (Tg) = Ax + B.

<検量線F(Tg)の算出>
演算制御手段55(制御器57)は、液体温度検出手段51から入力した実測液体温度Tg(℃)と、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…WOnに対応する一次関数式f1,f2,…,fnとに基づいて、各濃度α1,α2,…αnの水溶性切削液WO1,WO2,…WOnの電気伝導率σb(以下、「算出電気伝導率σb」という)を算出する。
演算制御手段55(制御器57)は、液体温度検出手段51から入力した実測液体温度Tg(℃)を、各水溶性切削液WO1,WO2,…WOnの一次関数式f1,f2,…,fnの「x(x座標値)」に代入して、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σb1,σb2,…,σbnを算出する。
演算制御手段55(制御器57)は、各濃度データαa1,αa2,…,αanと、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σb1,σb2,…,σbnとに基づいて、液体温度検出手段51から入力した実測液体温度Tg(℃)に対応する、検量線F(T)[一次関数の検量方式F(T)]を算出する。
図9は、液体温度検出手段51から入力した実測液体温度Tg(℃)に対応する、「水溶性切削液の濃度」及び「水溶性切削液の算出電気伝導率(μS/cm)」の関係を示す検量線F(Tg)[一次関数の検量式F(Tg)]のグラフ図である。
図9は、横軸(x座標軸)に「水溶性切削液の算出電気伝導率」を取り、縦軸(y座標軸)に「水溶性切削液の濃度」を取る。
図9では、「水溶性切削液の算出電気伝導率(電気伝導率)」を「x座標値」とし、及び「水溶性切削液の濃度」を「y座標値」としている。図9において、各座標値は、(xi,yi)=(算出電気伝導率,濃度)となる。
各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの算出電気導電率σb1,σb2,…,σbn、及び各濃度データαa1,αa2,…,αanについて、「濃度―算出電気伝導率」に関する座標値データ個数M=n、各座標値は、(x1,y1)=(σb1,αa1),(x2,y2)=(σb2,αa2),…,(xn,yn)=(σbn,αan)となる。
演算制御手段55(制御器57)は、例えば、「最小二乗法」を用いて、一次関数の検量線F(Tg)=y(Tg)=Ax+Bを算出する。
演算制御手段55は、「濃度−算出電気伝導率」に関する座標値データ個数M=n、各座標値(x1,y1)=(σb1,αa1),(x2,y2)=(σb2,αa2),…,(xn,yn)=(σbn,αan)を、式(1)に代入して、検量線F(Tg)=y(Tg)=Ax+Bの「A値(傾き)」を算出する。
演算制御手段55(制御器57)は、座標値データ個数M=n,各座標値(x1,y1)=(σb1,αa1),(x2,y2)=(σb2,αa2),…,(xn,yn)=(σbn,αan)を、式(2)に代入して、検量線F(Tg)=y(Tg)=Ax+Bの「B値(切片)」を算出する。
<Calculation of calibration curve F (Tg)>
The arithmetic control means 55 (controller 57) corresponds to the measured liquid temperature Tg (° C.) input from the liquid temperature detection means 51 and the water-soluble cutting fluids WO1, WO2,. .., Fn based on the linear function equations f1, f2,..., Fn, and the electric conductivity σb of each of the water-soluble cutting fluids WO1, WO2,. Calculated).
The calculation control means 55 (controller 57) uses the measured liquid temperature Tg (° C.) input from the liquid temperature detection means 51 as the linear function equations f1, f2,..., Fn of the water-soluble cutting fluids WO1, WO2,. .., Bn of the water-soluble cutting fluids WO1, WO2,..., WOn of the respective concentrations α1, α2,. .
The calculation control means 55 (controller 57) is configured to calculate the electrical conductivity σb1 of each concentration data αa1, αa2,..., Αan and the water-soluble cutting fluids WO1, WO2,. , Σb2,..., Σbn, a calibration curve F (T) [linear function calibration method F (T)] corresponding to the actually measured liquid temperature Tg (° C.) input from the liquid temperature detecting means 51 is calculated. .
FIG. 9 shows the relationship between “the concentration of the water-soluble cutting fluid” and “the calculated electrical conductivity (μS / cm) of the water-soluble cutting fluid” corresponding to the actually measured liquid temperature Tg (° C.) input from the liquid temperature detecting means 51. Is a graph of a calibration curve F (Tg) [a calibration function F (Tg) of a linear function].
In FIG. 9, the horizontal axis (x coordinate axis) represents “calculated electrical conductivity of water-soluble cutting fluid”, and the vertical axis (y coordinate axis) represents “concentration of water-soluble cutting fluid”.
In FIG. 9, “calculated electrical conductivity (electric conductivity) of water-soluble cutting fluid” is “x coordinate value”, and “water-soluble cutting fluid concentration” is “y coordinate value”. In FIG. 9, each coordinate value is (xi, yi) = (calculated electrical conductivity, concentration).
.., Αn water-soluble cutting fluids WO1, WO2,..., WOn calculated electrical conductivity σb1, σb2,..., Σbn and each concentration data αa1, αa2,. Coordinate value data number M = n regarding “calculated electrical conductivity”, each coordinate value is (x1, y1) = (σb1, αa1), (x2, y2) = (σb2, αa2),..., (Xn, yn) = (Σbn, αan).
The arithmetic control means 55 (controller 57) calculates the linear function calibration curve F (Tg) = y (Tg) = Ax + B using, for example, the “least square method”.
The calculation control means 55 has a coordinate value data number M = n regarding “concentration−calculated electrical conductivity”, each coordinate value (x1, y1) = (σb1, αa1), (x2, y2) = (σb2, αa2), .., (Xn, yn) = (σbn, αan) are substituted into the equation (1) to calculate the “A value (slope)” of the calibration curve F (Tg) = y (Tg) = Ax + B.
The arithmetic control means 55 (controller 57) is provided with the number of coordinate value data M = n, each coordinate value (x1, y1) = (σb1, αa1), (x2, y2) = (σb2, αa2),. , Yn) = (σbn, αan) is substituted into equation (2) to calculate the “B value (intercept)” of the calibration curve F (Tg) = y (Tg) = Ax + B.

これにより、液体温度検出手段51から入力した実測液体温度(Tg)に対応する検量線F(Tg)は、
y(Tg)=Ax+B・・・・・・・式(3)
となる。
式(3)において、y(Tg)は、実測液体温度(Tg)時の水溶性切削液WOの濃度α、xは、実測液体温度(Tg)時の水溶性切削液WOの実測前電気伝導率(μS/cm)である。
Thereby, the calibration curve F (Tg) corresponding to the actually measured liquid temperature (Tg) input from the liquid temperature detecting means 51 is
y (Tg) = Ax + B ... Formula (3)
It becomes.
In equation (3), y (Tg) is the concentration α of the water-soluble cutting fluid WO at the measured liquid temperature (Tg), and x is the electric conduction before the measurement of the water-soluble cutting fluid WO at the measured liquid temperature (Tg). Rate (μS / cm).

演算制御手段55(制御器57)は、導電率検出手段52から入力(取得)した実測電気伝導率σg(μS/cm)と、実測液体温度Tg(℃)に対応する検量線F(Tg)に基づいて、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する。   The calculation control means 55 (controller 57) is a calibration curve F (Tg) corresponding to the measured electrical conductivity σg (μS / cm) input (acquired) from the conductivity detection means 52 and the measured liquid temperature Tg (° C.). Based on the above, the concentration α of the water-soluble cutting fluid WO stored in the liquid storage tank 26 is calculated.

演算制御手段55(制御器57)は、導電率検出手段52から入力(取得)した実測電気伝導率σg(μS/cm)を、式(3)の「x(x座標値)」に代入して、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する。   The calculation control means 55 (controller 57) substitutes the measured electrical conductivity σg (μS / cm) input (acquired) from the conductivity detection means 52 for “x (x coordinate value)” in the equation (3). Thus, the concentration α of the water-soluble cutting fluid WO stored in the liquid storage tank 26 is calculated.

第1実施形態の濃度検出装置Zは、図7に示すように、表示手段65及び警報手段66を備える。   As shown in FIG. 7, the concentration detection device Z of the first embodiment includes a display unit 65 and an alarm unit 66.

表示手段65は、例えば、液晶表示器である。表示手段65は、制御器57に接続される。
警報手段66は、警報音等の警報を発する警報器であって、制御器57に接続される。
The display means 65 is, for example, a liquid crystal display. The display means 65 is connected to the controller 57.
The alarm means 66 is an alarm device for generating an alarm such as an alarm sound, and is connected to the controller 57.

工作機システムXにおいて、工作機Yは、被加工体1を加工し、及び第1実施形態の濃度検出装置Zは、液貯留槽26に貯留した水溶性切削液WOの検出において、図10乃至図12に示す実測処理1を実行して、液貯留槽26に貯留した水溶性切削液WO(濃度αが未知の水溶性切削液WO)の液体状態を検出し、及び水溶性切削液WOの濃度αを算出する。
以下、工作機Yにおける被加工体1の加工、及び第1実施形態の濃度検出装置Zの実測処理1について、図1乃至図12を参照して説明する。
In the machine tool system X, the machine tool Y processes the workpiece 1, and the concentration detection device Z according to the first embodiment detects the water-soluble cutting fluid WO stored in the liquid storage tank 26 as shown in FIG. The actual measurement process 1 shown in FIG. 12 is executed to detect the liquid state of the water-soluble cutting fluid WO (water-soluble cutting fluid WO whose concentration α is unknown) stored in the liquid storage tank 26, and the water-soluble cutting fluid WO The concentration α is calculated.
Hereinafter, processing of the workpiece 1 in the machine tool Y and measurement processing 1 of the concentration detection device Z of the first embodiment will be described with reference to FIGS. 1 to 12.

工作機Y(制御手段)は、図1に示すように、ポンプ28を吸引/吐出駆動する。ポンプ28は、吸引/吐出駆動に伴って、液貯留槽26に貯留した水溶性切削液WOを吸引して、液供給管27に水溶性切削液WOを吐出する。
これにより、液供給管27に吐出された水溶性切削液WOは、液供給管27、及び各ノズル管23A,24Aを通して、各噴射ノズル23,24から刃工具4及び被加工体1に噴射(供給)される。
The machine tool Y (control means) drives the pump 28 for suction / discharge, as shown in FIG. The pump 28 sucks the water-soluble cutting fluid WO stored in the liquid storage tank 26 along with the suction / discharge driving, and discharges the water-soluble cutting fluid WO to the liquid supply pipe 27.
Thereby, the water-soluble cutting fluid WO discharged to the liquid supply pipe 27 is jetted from the jet nozzles 23 and 24 to the blade tool 4 and the workpiece 1 through the liquid feed pipe 27 and the nozzle pipes 23A and 24A ( Supply).

工作機Yは、駆動モータ9を駆動して、刃工具4(ハウジング8、コレット10)を回転し、及び主軸頭2を移動して、刃工具4を被加工体1に送る。
これにより、工作機Yは、液貯留槽26に貯留した水溶性切削液WOを、刃工具4及び被加工体1に供給しつつ刃工具4にて被加工体1を加工する。
刃工具4及び被加工体1に噴射(供給)された水溶性切削液WOは、図1に示すように、加工テーブル25から液回収口32を通して液貯留槽26(貯留空間21)に回収される。
このように、工作機Yは、水溶性切削液WOを刃工具4(被加工体1)及び液貯留槽26間にて循環しつつ、刃工具4にて被加工体1を加工する。
The machine tool Y drives the drive motor 9 to rotate the blade tool 4 (housing 8, collet 10) and move the spindle head 2 to send the blade tool 4 to the workpiece 1.
Thereby, the machine tool Y processes the workpiece 1 with the blade tool 4 while supplying the water-soluble cutting fluid WO stored in the liquid storage tank 26 to the blade tool 4 and the workpiece 1.
As shown in FIG. 1, the water-soluble cutting fluid WO sprayed (supplied) to the blade tool 4 and the workpiece 1 is recovered from the processing table 25 into the liquid storage tank 26 (storage space 21) through the liquid recovery port 32. The
In this way, the machine tool Y processes the workpiece 1 with the blade tool 4 while circulating the water-soluble cutting fluid WO between the blade tool 4 (workpiece 1) and the liquid storage tank 26.

<実測処理1>
液貯留槽26に貯留した水溶性切削液WOの検出において、制御器57(演算制御手段55)は、工作機Yが加工(水溶性切削液WOの循環)を開始すると、タイマ59の検出時間tを「零セット(t→0)」する(図10:ST01)。
<Measurement process 1>
In the detection of the water-soluble cutting fluid WO stored in the liquid storage tank 26, the controller 57 (calculation control means 55) detects the detection time of the timer 59 when the machine tool Y starts processing (circulation of the water-soluble cutting fluid WO). t is “zero set (t → 0)” (FIG. 10: ST01).

続いて、制御器57は、検出信号をタイマ59に出力する。タイマ59は、検出信号を入力すると、検出時間tを計時する。
制御器57は、タイマ59の検出時間tが時間tk(検出時間t=tk)になると(図10:ST02,Yes)、液体温度検出手段51の検出した実測液体温度Tg(℃)、及び導電率検出手段52の検出した実測電気伝導率σg(μS/cm)を同時に入力(取得)する(図10:ST03)。
制御器57の入力する実測電気伝導率σgは、実測液体温度Tg(℃)に対応する電気伝導率[実測液体温度Tg(℃)時の電気伝導率]である。
また、制御器57は、臭気検出手段53の検出した硫化物ガス濃度γg、及びpH検出手段54の検出した水素イオン濃度指数εgを同時に入力する(図10:ST03)。
一方、制御器57は、検出時間tが時間tkでなく(図10:ST02,No)、検出終了でないと(図10:ST16,No)、タイマ59の計時を継続する。
制御器57は、検出終了であると(図10:ST16,Yes)、実測液体温度Tg、実測電気伝導率Tg、硫化物ガス濃度γg及び水素イオン濃度指数εgの検出を終了し、及び水溶性切削液WOの濃度αの算出(演算)を終了する。
Subsequently, the controller 57 outputs a detection signal to the timer 59. The timer 59 measures the detection time t when the detection signal is input.
When the detection time t of the timer 59 reaches the time tk (detection time t = tk) (FIG. 10: ST02, Yes), the controller 57 detects the measured liquid temperature Tg (° C.) detected by the liquid temperature detection means 51, and the conductivity. The measured electrical conductivity σg (μS / cm) detected by the rate detecting means 52 is simultaneously input (acquired) (FIG. 10: ST03).
The measured electrical conductivity σg input by the controller 57 is an electrical conductivity corresponding to the measured liquid temperature Tg (° C.) [the electrical conductivity at the measured liquid temperature Tg (° C.)].
The controller 57 simultaneously inputs the sulfide gas concentration γg detected by the odor detecting means 53 and the hydrogen ion concentration index εg detected by the pH detecting means 54 (FIG. 10: ST03).
On the other hand, if the detection time t is not the time tk (FIG. 10: ST02, No) and the detection is not completed (FIG. 10: ST16, No), the controller 57 continues to count the timer 59.
When the detection is completed (FIG. 10: Yes, ST16), the controller 57 ends the detection of the measured liquid temperature Tg, the measured electrical conductivity Tg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg, and is water-soluble. The calculation (calculation) of the concentration α of the cutting fluid WO is completed.

演算制御手段55において、制御器57は、実測液体温度Tg(℃)、実測電気伝導率σg(μS/cm)、硫化物ガス濃度γg及び水素イオン濃度指数εgを入力すると(図10:ST03)、各濃度データαa1,αa2,…,αanと、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fnを記憶手段56から読出す(図10:ST04)。   In the arithmetic control means 55, the controller 57 inputs the measured liquid temperature Tg (° C.), the measured electrical conductivity σg (μS / cm), the sulfide gas concentration γg, and the hydrogen ion concentration index εg (FIG. 10: ST03). , Αan and the linear function equations f1, f2,..., Fn corresponding to the water-soluble cutting fluids WO1, WO2,. 56 is read out (FIG. 10: ST04).

続いて、制御器57は、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)と、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fnとに基づいて、各水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σb(μS/cm)を算出する(図10:ST05)。
制御器57は、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)を、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnに対応する一次関数式f1,f2,…,fn:y(αi%)=Ax+Bの「x(x座標値)」に代入して、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,WO3,…,WOnの算出電気伝導率σb(μS/cm)を算出する。
Subsequently, the controller 57 converts the measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detecting means 51 and the water-soluble cutting fluids WO1, WO2,. Based on the corresponding linear function equations f1, f2,..., Fn, the calculated electrical conductivity σb (μS / cm) of each water-soluble cutting fluid WO1, WO2,..., WOn is calculated (FIG. 10: ST05).
The controller 57 uses the measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detecting means 51 as the primary corresponding to the water-soluble cutting fluids WO1, WO2,. .., Fn: y (αi%) = Ax + B is substituted for “x (x coordinate value)”, and water-soluble cutting fluids WO1, WO2, WO3 having respective concentrations α1, α2,. ,..., WOn calculated electric conductivity σb (μS / cm) is calculated.

演算制御手段55において、制御器57は、各濃度データαa1,αa2,…,αan、と、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σb(μS/cm)とに基づいて、実測液体温度Tg(℃)に対する検量線F(Tg)[一次関数の検量式F(Tg)]を算出する(図10:ST06)。
制御器57は、上記<検量線F(Tg)の算出>で説明したと同様に、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)に対応する検量線F(Tg)を算出する。
In the arithmetic control means 55, the controller 57 includes the calculated electrical conductivity of each concentration data αa1, αa2,..., Αan and the water-soluble cutting fluids WO1, WO2,. Based on σb (μS / cm), a calibration curve F (Tg) [calibration formula F (Tg) of a linear function] with respect to the actually measured liquid temperature Tg (° C.) is calculated (FIG. 10: ST06).
The controller 57 uses the calibration curve F (Tg) corresponding to the measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detection means 51 in the same manner as described above in <Calculation of calibration curve F (Tg)>. Is calculated.

続いて、制御器57は、導電率検出手段52から入力(取得)した実測電気伝導率σg(μS/cm)と、算出した実測液体温度Tg(℃)に対応する検量線F(Tg)とに基づいて、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する(図11:ST07)。
制御器57は、導電率検出手段52から入力(取得)した実測電気伝導率σgを、式(3)の「x(x座標値)」に代入して、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する。
Subsequently, the controller 57 inputs the measured electrical conductivity σg (μS / cm) input (acquired) from the conductivity detecting means 52 and the calibration curve F (Tg) corresponding to the calculated measured liquid temperature Tg (° C.). Based on the above, the concentration α of the water-soluble cutting fluid WO stored in the liquid storage tank 26 is calculated (FIG. 11: ST07).
The controller 57 substitutes the measured electrical conductivity σg input (acquired) from the conductivity detecting means 52 for “x (x coordinate value)” in the equation (3), and stores the water-soluble property stored in the liquid storage tank 26. The concentration α of the cutting fluid WO is calculated.

演算制御手段55において、制御器57は、実測液体温度Tg(実測液体温度信号)、実測電気伝導率σg(実測電気伝導率信号)、算出した濃度α(濃度信号)、硫化物ガス濃度γg(硫化物ガス濃度信号)、及び水素イオン濃度指数εg(水素ガス濃度指数信号)を表示手段65に出力する(図11:ST08)。
これにより、表示手段65は、水溶性切削液WOの実測液体温度Tg及び実測液体温度Tg時の実測電気伝導率σg、水溶性切削液WOの濃度α、水溶性切削液WOの硫化物ガス濃度γg、及び水溶性切削液WOの水素イオン濃度指数εgを表示する。
In the calculation control means 55, the controller 57 includes an actual liquid temperature Tg (actual liquid temperature signal), an actual electric conductivity σg (an actual electric conductivity signal), a calculated concentration α (concentration signal), and a sulfide gas concentration γg ( The sulfide gas concentration signal) and the hydrogen ion concentration index εg (hydrogen gas concentration index signal) are output to the display means 65 (FIG. 11: ST08).
Thereby, the display means 65 displays the measured liquid temperature Tg of the water-soluble cutting fluid WO, the measured electrical conductivity σg at the measured liquid temperature Tg, the concentration α of the water-soluble cutting fluid WO, and the sulfide gas concentration of the water-soluble cutting fluid WO. γg and the hydrogen ion concentration index εg of the water-soluble cutting fluid WO are displayed.

続いて、制御器57は、濃度判別値αxを記憶手段56から読出し(図11:ST09)、水溶性切削液WOの濃度α及び濃度判別値αx(αmin<α<αmax)を比較する。
制御器57は、水溶性切削液WOの濃度αが濃度判別値αx外である(濃度αが濃度最小値αmin未満、又は濃度最大値αmaxを超える)と(図11:ST10,No)、警報信号を警報手段66に出力する(図11:ST15)。
これにより、警報手段66は、警報音等の警報を発する。
Subsequently, the controller 57 reads the concentration determination value αx from the storage means 56 (FIG. 11: ST09), and compares the concentration α of the water-soluble cutting fluid WO with the concentration determination value αx (αmin <α <αmax).
When the concentration α of the water-soluble cutting fluid WO is outside the concentration discrimination value αx (the concentration α is less than the minimum concentration value αmin or exceeds the maximum concentration value αmax) (FIG. 11: ST10, No), an alarm is issued. A signal is output to the alarm means 66 (FIG. 11: ST15).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

制御器57は、水溶性切削液WOの濃度αが濃度判別値αx内であると(図11:ST10,Yes)、臭気判別値γxを記憶手段56から読出す(図11:ST11)。
制御器57は、硫化物ガス濃度γg及び臭気判別値γxを比較する。
制御器57は、硫化物ガス濃度γgが臭気判別値γxを超えていると(図11:ST12,Yes)、警報信号を警報手段66に出力する(図11:ST15)。
これにより、警報手段66は、警報音等の警報を発する。
When the concentration α of the water-soluble cutting fluid WO is within the concentration determination value αx (FIG. 11: Yes at ST10), the controller 57 reads the odor determination value γx from the storage means 56 (FIG. 11: ST11).
The controller 57 compares the sulfide gas concentration γg and the odor discrimination value γx.
When the sulfide gas concentration γg exceeds the odor discrimination value γx (FIG. 11: Yes at ST12), the controller 57 outputs an alarm signal to the alarm means 66 (FIG. 11: ST15).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

制御器57は、硫化物ガス濃度γgが臭気判別値γxを超えていないと(図11:ST12,No)、水素イオン濃度指数判別値εxを記憶手段56から読出す(図11:ST13)。
制御器57は、水素イオン濃度指数εg及び水素イオン濃度指数判別値εxを比較する。
制御器57は、水素イオン濃度指数εgが水素イオン濃度指数判別値εxを超えていると(図11:ST14,Yes)、警報信号を警報手段66に出力する(図11:ST15)。
これにより、警報手段66は、警報音等の警報を発する。
If the sulfide gas concentration γg does not exceed the odor discrimination value γx (FIG. 11: ST12, No), the controller 57 reads the hydrogen ion concentration index discrimination value εx from the storage means 56 (FIG. 11: ST13).
The controller 57 compares the hydrogen ion concentration index εg and the hydrogen ion concentration index discrimination value εx.
When the hydrogen ion concentration index εg exceeds the hydrogen ion concentration index discrimination value εx (FIG. 11: Yes at ST14), the controller 57 outputs an alarm signal to the alarm means 66 (FIG. 11: ST15).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

演算制御手段55において、制御器57は、水素イオン濃度指数εgが水素イオン濃度指数判別値εxを超えておらず(図11:ST14,No)、又は警報信号を出力しており(図11:ST15)、及び検出終了でないと(図12:ST17,No)、ST01〜ST16を繰返して実行する。
これにより、制御器57は、一定の検出時間tk毎(単位時間毎)に、実測液体温度Tg、実測電気伝導率σg、硫化物ガス濃度γg及び水素イオン濃度指数εgを入力(取得)し、及び単位時間毎に水溶性切削液WOの濃度αを算出する。
In the calculation control means 55, the controller 57 does not exceed the hydrogen ion concentration index εg (FIG. 11: ST14, No) or outputs an alarm signal (FIG. 11: If it is not the end of detection (ST15) and ST17 (No in FIG. 12), ST01 to ST16 are repeatedly executed.
As a result, the controller 57 inputs (acquires) the measured liquid temperature Tg, the measured electrical conductivity σg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg every fixed detection time tk (every unit time). In addition, the concentration α of the water-soluble cutting fluid WO is calculated every unit time.

制御器57は、検出終了であると(図12:ST17,Yes)、実測液体温度Tg、実測電気伝導率Tg、硫化物ガス濃度γg及び水素イオン濃度指数εgの検出を終了し、及び水溶性切削液WOの濃度αの算出(演算)を終了する。   When the detection is completed (FIG. 12: ST17, Yes), the controller 57 ends the detection of the measured liquid temperature Tg, the measured electrical conductivity Tg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg, and is water soluble. The calculation (calculation) of the concentration α of the cutting fluid WO is completed.

<第2実施形態の濃度検出装置Z(液体状態測定装置)>
第2実施形態の濃度検出装置Zは、図1乃至図7で説明したと同様に、液体温度検出手段51、導電率検出手段52、臭気検出手段53、水素イオン濃度指数検出手段54、演算制御手段55、記憶手段56、表示手段65及び警報手段66を備える。
<Concentration Detection Device Z (Liquid State Measurement Device) of Second Embodiment>
The concentration detection device Z of the second embodiment is similar to that described with reference to FIGS. 1 to 7. The liquid temperature detection means 51, conductivity detection means 52, odor detection means 53, hydrogen ion concentration index detection means 54, calculation control Means 55, storage means 56, display means 65, and alarm means 66 are provided.

第2実施形態の濃度検出装置Zにおいて、記憶手段56は、液体温度検出手段51の検出できる複数(多数)の各液体温度Tg1,Tg2,…,Tgnに対応する、検量線[一次関数の検量式F(Tg)]F1,F2,…,Fnを記憶する。
なお、液体温度検出手段51の検出できる複数の各液体温度とは、液体温度検出手段51の検出できる温度範囲の複数の温度であって、各温度に対応する検量線(Fg)を記憶手段56に記憶する。
演算制御手段55において、制御器57は、上記<検量線F(Tg)の算出>で説明したと同様に、各液体温度Tg1,Tg2,Tg3,…,Tgnを、各濃度α1,α2,α3,…,αnの水溶性切削液WO1,WO2,WO3,…,WOnに対応する一次関数式f1,f2,…,fnの「x(x座標値)」に代入して、各液体温度Tg1,Tg2,…,Tgn毎に、各濃度α1,α2,…,αnの水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σbを算出する。
制御器57は、上記<検量線F(T)の算出>で説明したと同様に、各濃度データαa1,αa2,…,αanと、各液体温度Tg1,Tg2,…,Tgnに対応する各水溶性切削液WO1,WO2,…,WOnの算出電気伝導率σbとに基づいて、各液体温度Tg1,Tg2,…,Tgに対応する検量線F1,F2,…,Fn[一次関数の検量式F(Tg)]を算出する。
制御器57は、液貯留槽26に貯留した水溶性切削液WOの検出前に、各液体温度Tg1,Tg2,…,Tgnに対応する検量線F1,F2,…,Fnを記憶手段56に記憶する。
In the concentration detection device Z of the second embodiment, the storage means 56 is a calibration curve [linear function calibration corresponding to a plurality (large number) of liquid temperatures Tg1, Tg2,..., Tgn that can be detected by the liquid temperature detection means 51. Formula F (Tg)] F1, F2,..., Fn are stored.
The plurality of liquid temperatures that can be detected by the liquid temperature detection means 51 are a plurality of temperatures in a temperature range that can be detected by the liquid temperature detection means 51, and a calibration curve (Fg) corresponding to each temperature is stored in the storage means 56. To remember.
In the arithmetic control means 55, the controller 57 controls the liquid temperatures Tg1, Tg2, Tg3,..., Tgn to the respective concentrations α1, α2, α3 in the same manner as described above in <Calculation of calibration curve F (Tg)>. ,..., Αn water-soluble cutting fluids WO1, WO2, WO3,..., WOn are substituted into “x (x coordinate value)” of linear function equations f1, f2,. The calculated electrical conductivity σb of the water-soluble cutting fluids WO1, WO2,..., WOn of the respective concentrations α1, α2,.
As described in the above <Calculation of calibration curve F (T)>, the controller 57 sets each concentration data αa1, αa2,..., Αan and each water temperature corresponding to each liquid temperature Tg1, Tg2,. , Fn [calibration formula F of linear function corresponding to each liquid temperature Tg1, Tg2,..., Tg based on the calculated electrical conductivity σb of the cutting fluids WO1, WO2,. (Tg)] is calculated.
The controller 57 stores the calibration curves F1, F2,..., Fn corresponding to the liquid temperatures Tg1, Tg2,..., Tgn in the storage means 56 before detecting the water-soluble cutting fluid WO stored in the liquid storage tank 26. To do.

第2実施形態の濃度検出装置Zは、液貯留槽26に貯留した水溶性切削液WOの検出において、図13及び図14に示す実測処理2を実行して、液貯留槽26に貯留した水溶性切削液WO(濃度αが未知の水溶性切削液WO)の液体状態を検出し、及び水溶性切削液WOの濃度αを算出する。   In the detection of the water-soluble cutting fluid WO stored in the liquid storage tank 26, the concentration detection device Z of the second embodiment executes the actual measurement process 2 shown in FIGS. The liquid state of the water-soluble cutting fluid WO (water-soluble cutting fluid WO whose concentration α is unknown) is detected, and the concentration α of the water-soluble cutting fluid WO is calculated.

<実測処理2>
液貯留槽26に貯留した水溶性切削液WOの検出において、制御器57(演算制御手段55)は、工作機Yが加工(水溶性切削液WOの循環)を開始すると、タイマ59の検出時間tを「零セット(t→0)」する(図13:ST51)。
<Measurement process 2>
In the detection of the water-soluble cutting fluid WO stored in the liquid storage tank 26, the controller 57 (calculation control means 55) detects the detection time of the timer 59 when the machine tool Y starts processing (circulation of the water-soluble cutting fluid WO). t is “zero set (t → 0)” (FIG. 13: ST51).

続いて、制御器57は、検出信号をタイマ59に出力する。タイマ59は、検出信号を入力すると、検出時間tkを計時する。
制御器57は、タイマ59の検出時間tが時間tk(検出時間t=tk)になると(図13:ST52,Yes)、液体温度検出手段51の検出した実測液体温度Tg(℃)、及び導電率検出手段52の検出した実測電気伝導率σg(μS/cm)を同時に入力(取得)する(図13:ST53)。
また、制御器57は、臭気検出手段53の検出した硫化物ガス濃度γg、及びpH検出手段54の検出した水素イオン濃度指数εgを同時に入力する(図13:ST53)。
一方、制御器57は、検出時間tが時間tkでなく(図13:ST52,No)、検出終了でないと(図13:ST64,No)、タイマ59の計時を継続する。
制御器57は、検出終了であると(図13:ST64,Yes)、実測液体温度Tg、実測電気伝導率σg、硫化物ガス濃度γg及び水素イオン濃度指数εgの検出を終了し、及び水溶性切削液WOの濃度αの算出(演算)を終了する。
Subsequently, the controller 57 outputs a detection signal to the timer 59. When the detection signal is input, the timer 59 measures the detection time tk.
When the detection time t of the timer 59 reaches time tk (detection time t = tk) (FIG. 13: Yes at ST52), the controller 57 detects the measured liquid temperature Tg (° C.) detected by the liquid temperature detection means 51 and the conductivity. The measured electrical conductivity σg (μS / cm) detected by the rate detecting means 52 is simultaneously input (acquired) (FIG. 13: ST53).
The controller 57 simultaneously inputs the sulfide gas concentration γg detected by the odor detecting means 53 and the hydrogen ion concentration index εg detected by the pH detecting means 54 (FIG. 13: ST53).
On the other hand, if the detection time t is not the time tk (FIG. 13: ST52, No) and the detection is not completed (FIG. 13: ST64, No), the controller 57 continues to count the timer 59.
When the detection is finished (FIG. 13: ST64, Yes), the controller 57 finishes the detection of the measured liquid temperature Tg, the measured electrical conductivity σg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg, and is water-soluble. The calculation (calculation) of the concentration α of the cutting fluid WO is completed.

制御器57は、液体温度検出手段51から入力(取得)した実測液体温度Tgに基づいて、この実測液体温度Tgに対応する検量線F(Tg)を記憶手段56から読出す(図13:ST54)。   Based on the measured liquid temperature Tg input (acquired) from the liquid temperature detecting means 51, the controller 57 reads a calibration curve F (Tg) corresponding to the measured liquid temperature Tg from the storage means 56 (FIG. 13: ST54). ).

続いて、制御器57は、導電率検出手段52から入力(取得)した実測電気伝導率σg(μS/cm)と、記憶手段56から読出した実測液体温度Tg(℃)に対する検量線F(Tg)とに基づいて、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する(図13:ST55)。
制御器57は、導電率検出手段52から入力(取得)した実測電気伝導率σgを、式(3)の「x(x座標値)」に代入して、液貯留槽26に貯留した水溶性切削液WOの濃度αを算出する。
Subsequently, the controller 57 sets the calibration curve F (Tg) for the measured electrical conductivity σg (μS / cm) input (acquired) from the conductivity detecting means 52 and the measured liquid temperature Tg (° C.) read from the storage means 56. ), The concentration α of the water-soluble cutting fluid WO stored in the liquid storage tank 26 is calculated (FIG. 13: ST55).
The controller 57 substitutes the measured electrical conductivity σg input (acquired) from the conductivity detecting means 52 for “x (x coordinate value)” in the equation (3), and stores the water-soluble property stored in the liquid storage tank 26. The concentration α of the cutting fluid WO is calculated.

演算制御手段55において、制御器57は、実測液体温度Tg(実測液体温度信号)、実測電気伝導率σg(実測電気伝導率信号)、算出した濃度α(濃度信号)、硫化物ガス濃度γg(硫化物ガス濃度信号)、及び水素イオン濃度指数εg(水素ガス濃度指数信号)を表示手段65に出力する(図13:ST56)。
これにより、表示手段65は、水溶性切削液WOの実測液体温度Tg及び実測電気伝導率σg、水溶性切削液WOの濃度α、水溶性切削液WOの硫化物ガス濃度γg、及び水溶性切削液WOの水素イオン濃度指数εgを表示する。
In the calculation control means 55, the controller 57 includes an actual liquid temperature Tg (actual liquid temperature signal), an actual electric conductivity σg (an actual electric conductivity signal), a calculated concentration α (concentration signal), and a sulfide gas concentration γg ( The sulfide gas concentration signal) and the hydrogen ion concentration index εg (hydrogen gas concentration index signal) are output to the display means 65 (FIG. 13: ST56).
Thereby, the display means 65 displays the measured liquid temperature Tg and measured electrical conductivity σg of the water-soluble cutting fluid WO, the concentration α of the water-soluble cutting fluid WO, the sulfide gas concentration γg of the water-soluble cutting fluid WO, and the water-soluble cutting. The hydrogen ion concentration index εg of the liquid WO is displayed.

続いて、制御器57は、濃度判別値αxを記憶手段56から読出し(図13:ST57)、水溶性切削液WOの濃度α及び濃度判別値αx(αmin<α<αmax)を比較する。
制御器57は、水溶性切削液WOの濃度αが濃度判別値αx外である(濃度αが濃度最小値αmin未満、又は濃度最大値αmaxを超える)と(図14:ST58,No)、警報信号を警報手段66に出力する(図14:ST63)。
これにより、警報手段66は、警報音等の警報を発する。
Subsequently, the controller 57 reads the concentration determination value αx from the storage means 56 (FIG. 13: ST57), and compares the concentration α of the water-soluble cutting fluid WO with the concentration determination value αx (αmin <α <αmax).
When the concentration α of the water-soluble cutting fluid WO is outside the concentration discrimination value αx (the concentration α is less than the minimum concentration value αmin or exceeds the maximum concentration value αmax) (FIG. 14: ST58, No), the controller 57 issues an alarm. A signal is output to the alarm means 66 (FIG. 14: ST63).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

制御器57は、水溶性切削液WOの濃度αが濃度判別値αx内であると(図14:ST58,Yes)、臭気判別値γxを記憶手段56から読出す(図14:ST59)。
制御器57は、硫化物ガス濃度γg及び臭気判別値γxを比較する。
制御器57は、硫化物ガス濃度γgが臭気判別値γxを超えていると(図14:ST60,Yes)、警報信号を警報手段66に出力する(図14:ST63)。
これにより、警報手段66は、警報音等の警報を発する。
When the concentration α of the water-soluble cutting fluid WO is within the concentration determination value αx (FIG. 14: Yes at ST58), the controller 57 reads the odor determination value γx from the storage means 56 (FIG. 14: ST59).
The controller 57 compares the sulfide gas concentration γg and the odor discrimination value γx.
When the sulfide gas concentration γg exceeds the odor discrimination value γx (FIG. 14: Yes at ST60), the controller 57 outputs an alarm signal to the alarm means 66 (FIG. 14: ST63).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

制御器57は、硫化物ガス濃度γgが臭気判別値γxを超えていないと(図14:ST60,No)、水素イオン濃度指数判別値εxを記憶手段56から読出す(図14:ST61)。
制御器57は、水素イオン濃度指数εg及び水素イオン濃度指数判別値εxを比較する。
制御器57は、水素イオン濃度指数εgが水素イオン濃度指数判別値εxを超えていると(図14:ST62,Yes)、警報信号を警報手段66に出力する(図14:ST63)。
これにより、警報手段66は、警報音等の警報を発する。
If the sulfide gas concentration γg does not exceed the odor discrimination value γx (FIG. 14: ST60, No), the controller 57 reads the hydrogen ion concentration index discrimination value εx from the storage means 56 (FIG. 14: ST61).
The controller 57 compares the hydrogen ion concentration index εg and the hydrogen ion concentration index discrimination value εx.
When the hydrogen ion concentration index εg exceeds the hydrogen ion concentration index discriminating value εx (FIG. 14: Yes at ST62), the controller 57 outputs an alarm signal to the alarm means 66 (FIG. 14: ST63).
Thereby, the alarm means 66 issues an alarm such as an alarm sound.

演算制御手段55において、制御器57は、水素イオン濃度指数εgが水素イオン濃度指数判別値εxを超えておらず(図14:ST62,No)、又は警報信号を出力しており(図14:ST63)、及び検出終了でないと(図14:ST65,No)、ST51〜ST64を繰返して実行する。
これにより、制御器57は、一定の検出時間tk毎(単位時間毎)に、実測液体温度Tg、実測電気伝導率σg、硫化物ガス濃度γg及び水素イオン濃度指数εgを入力(取得)し、及び単位時間毎に水溶性切削液WOの濃度αを算出する。
In the calculation control means 55, the controller 57 does not exceed the hydrogen ion concentration index εg (FIG. 14: ST62, No) or outputs an alarm signal (FIG. 14: If the detection is not finished (ST63) (FIG. 14: ST65, No), ST51 to ST64 are repeated.
As a result, the controller 57 inputs (acquires) the measured liquid temperature Tg, the measured electrical conductivity σg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg every fixed detection time tk (every unit time). In addition, the concentration α of the water-soluble cutting fluid WO is calculated every unit time.

制御器57は、検出終了であると(図14:ST65,Yes)、実測液体温度Tg、実測電気伝導率Tg、硫化物ガス濃度γg及び水素イオン濃度指数εgの検出を終了し、及び水溶性切削液WOの濃度αの算出(演算)を終了する。   When the detection is completed (FIG. 14: ST65, Yes), the controller 57 ends the detection of the measured liquid temperature Tg, the measured electrical conductivity Tg, the sulfide gas concentration γg, and the hydrogen ion concentration index εg, and is water-soluble. The calculation (calculation) of the concentration α of the cutting fluid WO is completed.

第1及び第2実施形態の濃度検出装置Zでは、工作機システムX(工作機Y)に適用した例について説明したが、これに限定されない。   In the concentration detection device Z of the first and second embodiments, the example applied to the machine tool system X (machine tool Y) has been described, but the present invention is not limited to this.

次に、液貯留槽26に貯留した水溶性切削液WOの実測液体温度Tg(℃)及び実測電気伝導率σg(μS/cm)を検出する前において、濃度の相異する複数の水溶性切削液(濃度が既知の水溶性切削液)について、水溶性切削液の液体温度及び電気伝導率を検出した検出試験(液体温度−電気伝導率検出試験)について説明する。
また、液体温度−電気伝導率検出試験の検出結果から、各濃度の水溶性切削液に対応する一次関数式f(i)を算出し、及び検量線F(Tg)[一次関数の検量式F(Tg)]を算出(演算)することについて説明する。
Next, before detecting the measured liquid temperature Tg (° C.) and the measured electrical conductivity σg (μS / cm) of the water-soluble cutting fluid WO stored in the liquid storage tank 26, a plurality of water-soluble cuttings having different concentrations are detected. A detection test (liquid temperature-electric conductivity detection test) for detecting the liquid temperature and electrical conductivity of the water-soluble cutting fluid will be described for the liquid (water-soluble cutting fluid having a known concentration).
Further, from the detection result of the liquid temperature-electric conductivity detection test, a linear function formula f (i) corresponding to each concentration of water-soluble cutting fluid is calculated, and a calibration curve F (Tg) [linear function calibration formula F (Tg)] is calculated (calculated).

1:液体温度−電気伝導率検出試験
液体温度−電気伝導率検出試験は、「実施例1」、「実施例2」及び「実施例3」について実施した。
1: Liquid temperature-electric conductivity detection test The liquid temperature-electric conductivity detection test was implemented about "Example 1", "Example 2", and "Example 3".

<水溶性切削液>
液体温度−電気伝導率試験では、液貯留槽に貯留する水溶性切削液と同一成分であって、濃度2%,5%,10%の各水溶性切削液WO1,WO2,WO3を使用した。
各水溶性切削液WO1〜WO3は、アルカリ性の液であって、水溶性切削原液を水で希釈して濃度を調整し、液全体の体積(容量)を100ミリリットル(mL)とした。
水溶性切削原液は、株式会社タイユの「SX−557S」を使用した。
株式会社タイユの「SX−557S(水溶性切削原液)」の成分は、含有率20%以下の防錆添加剤(アルカリ成分を含有)、含有率40%以下の界面活性剤、含有率20%以下の精製鉱物油、含有率60%以下の水、及び含有率1%以下のその他成分を含有し、原液全体として含有率100%となるように各成分含有率を調整する。
(実施例1)
実施例1は、濃度2%(体積濃度2%)の水溶性切削液WO1を使用した(水:98mL、水溶性切削原液:2mLとすると、体積濃度α=2/100=2%となる)。
(実施例2)
実施例2は、濃度5%(体積濃度5%)の水溶性切削液WO2を使用した(水:95mL、水溶性切削原液;5mLとすると、体積濃度α=5/100=5%となる)。
(実施例3)
実施例3は、濃度10%(体積濃度10%)の水溶性切削液WO3を使用した(水:90mL、水溶性切削原液:10mLとすると、体積濃度α=10/100=10%となる)。
<Water-soluble cutting fluid>
In the liquid temperature-electric conductivity test, water-soluble cutting fluids WO1, WO2, and WO3 having the same components as the water-soluble cutting fluid stored in the liquid storage tank and having concentrations of 2%, 5%, and 10% were used.
Each of the water-soluble cutting fluids WO1 to WO3 was an alkaline fluid, and the concentration was adjusted by diluting the water-soluble cutting stock solution with water, so that the total volume (capacity) of the liquid was 100 milliliters (mL).
As the water-soluble cutting stock solution, “SX-557S” manufactured by Taiyu Co., Ltd. was used.
The ingredients of Taiyu Co., Ltd. “SX-557S (water-soluble cutting stock solution)” are 20% or less rust preventive additive (containing alkali component), 40% or less surfactant, and 20% content. The following refined mineral oil, water with a content of 60% or less, and other components with a content of 1% or less are contained, and the content of each component is adjusted so that the total concentration of the stock solution is 100%.
Example 1
Example 1 used a water-soluble cutting fluid WO1 having a concentration of 2% (volume concentration of 2%) (when water: 98 mL, water-soluble cutting stock solution: 2 mL, the volume concentration α = 2/100 = 2%) .
(Example 2)
Example 2 used a water-soluble cutting fluid WO2 having a concentration of 5% (volume concentration 5%) (water: 95 mL, water-soluble cutting stock solution; assuming 5 mL, the volume concentration α = 5/100 = 5%) .
Example 3
In Example 3, a water-soluble cutting fluid WO3 having a concentration of 10% (volume concentration of 10%) was used (when water: 90 mL, water-soluble cutting stock solution: 10 mL, the volume concentration α = 10/100 = 10%). .

<液体温度検出手段>
液体温度検出手段は、熱電対温度センサ(汎用品)を使用した。
<Liquid temperature detection means>
As the liquid temperature detecting means, a thermocouple temperature sensor (general-purpose product) was used.

<導電率検出手段>
導電率検出手段は、2電極式導電率センサ(汎用品)を使用した。
<Conductivity detection means>
As the conductivity detection means, a two-electrode conductivity sensor (general-purpose product) was used.

<検出条件>
(1)実施例1乃至実施例3の各水溶性切削液WO1〜WO3を、別々の容器(ビーカー)に入れた。
(2)実施例1乃至実施例3の各水溶性切削液WO1〜WO3を、容器と共に冷凍庫で冷却した後に常温に置いた。
実施例1乃至実施例3では、各水溶性切削液WO1〜WO3を常温で自然に温度上昇させた。
(3)実施例1乃至実施例3各水溶性切削液WO1〜WO3毎に、熱電対温度センサと2電極式導電率センサを浸漬して、熱電対温度センサにて各水溶性切削液WO1,WO2,WO3の実測前液体温度(サンプル液体温度)T1,T2,T3(℃)を検出し、及び2電極式導電率センサにて各水溶性切削液WO1,WO2,WO3の実測前電気伝導率(サンプル電気伝導率)σ1,σ2,σ3(μS/cm)を検出した。
(4)実施例1乃至実施例3において、各水溶性切削液WO1,WO2,WO3の実測前液体温度T1,T2,T3(℃)、及び水溶性切削液WO1,WO2,WO3の実測前電気伝導率σ1,σ2,σ3(μS/cm)は、同時に検出して、一定の検出時間:1分毎に複数検出(多数検出)した。
各水溶性切削液WO1〜WO3毎に、熱電対温度センサの検出した実測前液体温度T1〜T3、及び2電極式導電率センサの検出した実測前電気伝導率σ1〜σ3を一定の検出時間毎(1分毎)に取得して、温度の相異する複数(多数)の実測前液体温度(℃)と、各実測前液体温度(℃)時の複数(多数)の実測前電気伝導率(μS/cm)を得た。
<Detection conditions>
(1) The water-soluble cutting fluids WO1 to WO3 of Examples 1 to 3 were put in separate containers (beakers).
(2) The water-soluble cutting fluids WO1 to WO3 of Examples 1 to 3 were placed in a room temperature after being cooled in a freezer together with the container.
In Examples 1 to 3, the water-soluble cutting fluids WO1 to WO3 were naturally raised at room temperature.
(3) Example 1 to Example 3 For each water-soluble cutting fluid WO1 to WO3, a thermocouple temperature sensor and a two-electrode conductivity sensor are immersed, and each water-soluble cutting fluid WO1, using a thermocouple temperature sensor. The liquid temperature before measurement of WO2 and WO3 (sample liquid temperature) T1, T2 and T3 (° C.) is detected, and the electrical conductivity before measurement of each water-soluble cutting fluid WO1, WO2 and WO3 is detected by a two-electrode conductivity sensor. (Sample electrical conductivity) σ1, σ2, and σ3 (μS / cm) were detected.
(4) In Examples 1 to 3, the liquid temperatures T1, T2, and T3 (° C.) before the measurement of the water-soluble cutting fluids WO1, WO2, and WO3 and the electricity before the measurement of the water-soluble cutting fluids WO1, WO2, and WO3 Conductivities σ1, σ2, and σ3 (μS / cm) were detected at the same time, and a plurality of detections (a large number of detections) were made every constant detection time: 1 minute.
For each of the water-soluble cutting fluids WO1 to WO3, the pre-measurement liquid temperatures T1 to T3 detected by the thermocouple temperature sensor and the pre-measurement electrical conductivities σ1 to σ3 detected by the two-electrode conductivity sensor are set at regular detection times. (Every minute), a plurality of (many) pre-measurement liquid temperatures (° C.) with different temperatures, and a plurality (many) pre-measurement electrical conductivities at each pre-measurement liquid temperature (° C.) μS / cm) was obtained.

<検出結果>
(実施例1)
実施例1の検出結果として、濃度2%の水溶性切削液WO1の実測前液体温度T1(℃)及び実測前電気伝導率σ1(μS/cm)を「表1」〜「表11」に示す。
実施例1の検出データ個数は、642(検出No.1〜検出No.642)である。
「表1」〜「表11」の検出No.1〜検出No.642は、実測前液体温度T1(℃)に対応する実測前電気伝導率σ1(μS/cm)を示し、例えば、検出No.1では、実測前液体温度T1:6.0000(℃)時の実測前電気伝導率σ1は、σ1=708.1156(μS/cm)となる。
なお、検出No.1〜検出No.642の実測前電気伝導率σ1は、2電極式導電率センサで検出した検出値を4倍に増幅した値である(以下、実施例2及び実施例3においても同様)。
<Detection result>
Example 1
As the detection results of Example 1, the pre-measurement liquid temperature T1 (° C.) and the pre-measurement electrical conductivity σ1 (μS / cm) of the water-soluble cutting fluid WO1 having a concentration of 2% are shown in “Table 1” to “Table 11”. .
The number of detected data in Example 1 is 642 (detection No. 1 to detection No. 642).
The detection numbers of “Table 1” to “Table 11”. 1 to detection No. 1 642 indicates a pre-measurement electric conductivity σ1 (μS / cm) corresponding to the pre-measurement liquid temperature T1 (° C.). 1, the pre-measurement electrical conductivity σ1 at the pre-measurement liquid temperature T1: 6.0000 (° C.) is σ1 = 708.156 (μS / cm).
The detection No. 1 to detection No. 1 The pre-measurement electric conductivity σ1 of 642 is a value obtained by amplifying the detection value detected by the two-electrode conductivity sensor four times (hereinafter, the same applies to the second and third embodiments).

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

(実施例2)
実施例2の検出結果について、水溶性切削液WO2(濃度5%)の実測前液体温度T2(℃)及び実測前電気伝導率σ2(μS/cm)を「表12」〜「表28」に示す。
実施例2の検出データ個数は、1019(検出No.1〜検出No.1019)である。
「表12」〜「表28」の検出No.1〜検出No.1019は、実測前液体温度T2(℃)に対応する実測前電気伝導率σ2(μS/cm)を示し、例えば、検出No.18では、実測前液体温度T2:7.1875(℃)時の実測前電気伝導率σ2は、σ2=830.6390(μS/cm)となる。
(Example 2)
Regarding the detection results of Example 2, the pre-measurement liquid temperature T2 (° C.) and the pre-measurement electrical conductivity σ2 (μS / cm) of the water-soluble cutting fluid WO2 (concentration 5%) are shown in “Table 12” to “Table 28”. Show.
The number of detected data in Example 2 is 1019 (detection No. 1 to detection No. 1019).
The detection numbers of “Table 12” to “Table 28”. 1 to detection No. 1 Reference numeral 1019 denotes a pre-measurement electric conductivity σ2 (μS / cm) corresponding to the pre-measurement liquid temperature T2 (° C.). 18, the electric conductivity σ2 before the measurement when the liquid temperature T2 before the measurement is 7.1875 (° C.) is σ2 = 830.6390 (μS / cm).

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

(実施例3)
実施例3の検出結果ついて、水溶性切削液WO3(濃度10%)の実測前液体温度T3(℃)及び実測前電気伝導率σ3(μS/cm)を「表29」〜「表62」に示す。
実施例3の検出データ個数は、2027(検出No.1〜検出No.2027)である。
「表29」〜「表62」の検出No.1〜検出No.2027は、実測前液体温度T3(℃)に対応する実測前電気伝導率σ3(μS/cm)を示し、例えば、検出No.121では、実測前液体温度T3:11.8750(℃)時の実測前電気伝導率σ3は、σ3=1178.8634(μS/cm)となる。
Example 3
Regarding the detection results of Example 3, the liquid temperature T3 (° C.) before measurement and the electric conductivity σ3 (μS / cm) before measurement of the water-soluble cutting fluid WO3 (concentration 10%) are shown in “Table 29” to “Table 62”. Show.
The number of detected data in Example 3 is 2027 (detection No. 1 to detection No. 2027).
The detection numbers of “Table 29” to “Table 62”. 1 to detection No. Reference numeral 2027 denotes a pre-measurement electric conductivity σ3 (μS / cm) corresponding to the pre-measurement liquid temperature T3 (° C.). In 121, the electrical conductivity before measurement σ3 at the time of liquid temperature T3 before measurement: 11.8750 (° C.) is σ3 = 11788.8634 (μS / cm).

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

Figure 2019002894
Figure 2019002894

実施例1乃至実施例3は、「表1」〜「表62」に示すように、各水溶性切削液WO1〜WO3の実測前液体温度T1〜T3(℃)の上昇に伴って、各水溶性切削液WO1〜WO3の実測前電気伝導率σ1〜σ3(μS/cm)も上昇して高い値になると言える。   As shown in "Table 1" to "Table 62", Examples 1 to 3 show that each water-soluble cutting fluid WO1 to WO3 increases in water temperature T1 to T3 (° C.) before the measurement, It can be said that the electrical conductivity σ1 to σ3 (μS / cm) before actual measurement of the neutral cutting fluids WO1 to WO3 also rises to a high value.

実施例1の検出No.201は、「表4」に示すように、水溶性切削液WO1の実測液体温度T1:14.1875(℃)、及び水溶性切削液WO1の実測前電気伝導率σ1:758.0074(μS/cm)である。
実施例1の検出No.285は、「表5」に示すように、水溶性切削液WO1の実測前液体温度T1:16.5000(℃)、及び水溶性切削液WO1の実測前電気伝導率σ1:769.5470(μS/cm)である。
実施例2の検出No.211は、「表15」に示すように、水溶性切削液WO2の実測前液体温度T2:14.1875(℃)、及び水溶性切削液WO2の実測前電気伝導率σ2:901.2342(μS/cm)である。
実施例2の検出No.299は、「表16」に示すように、水溶性切削液WO2の実測前液体温度T2:16.5000(℃)、及び水溶性切削液WO2の実測前電気伝導率σ2:919.5618(μS/cm)である。
実施例3の検出No.189は、「表32」に示すように、水溶性切削液WO3の実測前液体温度T3:14.1875(℃)、及び水溶性切削液WO3の実測前電気伝導率σ3:1226.0400(μS/cm)である。
実施例3の検出No.273は、「表33」に示すように、水溶性切削液WO3の実測前液体温度T3:16.5000(℃)、及び水溶性切削液WO3の実測前電気伝導率σ3:1271.5196(μS/cm)である。
これにより、実施例1乃至実施例3において、同一温度の実測前液体温度T1〜T3に対応する実測前電気伝導率σ1〜σ3は、濃度2%の水溶性切削液WO1(実施例1)<濃度5%の水溶性切削液WO2(実施例2)<濃度10%の水溶性切削液WO3(実施例3)の関係になる。
このように、各濃度2%,5%,10%の水溶性切削液WO1〜WO3において、同一温度の実測前液体温度(液体温度)では、水溶性切削液の濃度が高くなるに従って、水溶性切削液の実測前電気伝導率(電気伝導率)は高い値になる。
Detection No. of Example 1 201, as shown in “Table 4”, the measured liquid temperature T1: 14.1875 (° C.) of the water-soluble cutting fluid WO1 and the electrical conductivity σ1: 758.0074 (μS / cm).
Detection No. of Example 1 285, as shown in “Table 5”, the pre-measurement liquid temperature T1: 16.5000 (° C.) of the water-soluble cutting fluid WO1 and the pre-measurement electrical conductivity σ1: 769.5470 (μS of the water-soluble cutting fluid WO1. / Cm).
Detection No. of Example 2 211, as shown in “Table 15”, the liquid temperature T2 before measurement of the water-soluble cutting fluid WO2: 14.1875 (° C.) and the electric conductivity before measurement of the water-soluble cutting fluid WO2 σ2: 901.2342 (μS / Cm).
Detection No. of Example 2 299, as shown in “Table 16”, the liquid temperature T2 before measurement of the water-soluble cutting fluid WO2: 16.5000 (° C.) and the electric conductivity before measurement of the water-soluble cutting fluid WO2 σ2: 1959.5618 (μS / Cm).
Detection No. in Example 3 189, as shown in “Table 32”, the liquid temperature T3 before measurement of the water-soluble cutting fluid WO3: 14.1875 (° C.) and the electric conductivity before measurement of the water-soluble cutting fluid WO3 σ3: 1226.0400 (μS). / Cm).
Detection No. in Example 3 273, as shown in “Table 33”, the liquid temperature T3 before measurement of the water-soluble cutting fluid WO3: 16.5000 (° C.), and the electric conductivity before measurement of the water-soluble cutting fluid WO3 σ3: 1271.5196 (μS). / Cm).
Thereby, in Example 1 thru | or Example 3, before-measurement electric conductivity (sigma) 1- (sigma) 3 corresponding to the liquid temperature T1-T3 before measurement of the same temperature is water-soluble cutting fluid WO1 (Example 1) <2% of density | concentration < The relationship is 5% water-soluble cutting fluid WO2 (Example 2) <10% water-soluble cutting fluid WO3 (Example 3).
As described above, in each of the water-soluble cutting fluids WO1 to WO3 having a concentration of 2%, 5%, and 10%, the water-soluble cutting fluid increases as the concentration of the water-soluble cutting fluid increases at the same liquid temperature (liquid temperature) before the measurement. The electrical conductivity (electrical conductivity) before actual measurement of the cutting fluid becomes a high value.

2:一次関数式の算出(演算)
液体温度−電気伝導率検出試験の検出結果(実施例1乃至実施例3の検出結果)から、各濃度2%,5%,10%の水溶性切削液WO1,WO2,WO3に対応する一次関数式f1,f2,f3を算出する。
2: Calculation of linear function formula (calculation)
From the detection results of the liquid temperature-electric conductivity detection test (detection results of Examples 1 to 3), linear functions corresponding to the water-soluble cutting fluids WO1, WO2, and WO3 having concentrations of 2%, 5%, and 10%, respectively. Formulas f1, f2, and f3 are calculated.

(1)グラフ図(図8)
図8は、各濃度2%,5%,10%n水溶性切削液WO1,WO2,WO3に対応する、「水溶性切削液の実測前液体温度(℃)」と「水溶性切削液の実測前電気伝導率(μS/cm)」の関係(関連)を示す一次関数式f1,f2,f3のグラフ図である。
図8は、横軸(x座標軸)に「実測前液体温度(℃)」を取り、縦軸(y座標軸)に「実測前電気伝導率(μS/cm)」を取る。
図8では、「実測前液体温度(液体温度)」を「x座標値(xi)」、及び「実測前電気伝導率(電気伝導率)」を「y座標値(yi)」としている。
図8において、座標値は、(xi,yi)=(実測前液体温度,実測前電気伝導率)となる。
(1) Graph (Figure 8)
FIG. 8 shows the “liquid temperature before measurement of water-soluble cutting fluid (° C.)” and “measurement of water-soluble cutting fluid” corresponding to the water-soluble cutting fluids WO1, WO2, and WO3 having concentrations of 2%, 5%, and 10%, respectively. It is a graph of linear function formula f1, f2, f3 which shows the relationship (relevance) of "pre-electrical conductivity (microS / cm)".
In FIG. 8, the horizontal axis (x coordinate axis) is “liquid temperature before measurement (° C.)” and the vertical axis (y coordinate axis) is “electric conductivity before measurement (μS / cm)”.
In FIG. 8, “liquid temperature before measurement (liquid temperature)” is “x coordinate value (xi)”, and “electric conductivity before measurement (electric conductivity)” is “y coordinate value (yi)”.
In FIG. 8, the coordinate values are (xi, yi) = (liquid temperature before actual measurement, electrical conductivity before actual measurement).

(実施例1)
実施例1では、熱電対温度センサから取得した複数の実測前液体温度T1(℃)、及び2電極式導電率センサから取得した複数の実測前電気伝導率σ1(μS/cm)に基づいて、濃度2%の水溶性切削液WO1に対する一次関数式f1を算出した。
濃度2%の水溶性切削液WO1に対応する一次関数式f1は、例えば、「最小二乗法」を用いて、y(2%)=Ax+Bを算出した。
「最小二乗法」によれば、データ個数M(検出データ個数)、i番目の座標値(xi,yi)=(実測前液体温度,実測前電気伝導率)とすると、一次関数式f1:y(2%)=Ax+Bの「A値(傾き)」は、式(1)により算出される。
一次関数式f1:y(2%)=Ax+Bの「B値(切片)」は、式(2)により算出される。
Example 1
In Example 1, based on the plurality of pre-measurement liquid temperatures T1 (° C.) acquired from the thermocouple temperature sensor and the plurality of pre-measurement electrical conductivities σ1 (μS / cm) acquired from the two-electrode conductivity sensor, A linear function formula f1 for a water-soluble cutting fluid WO1 having a concentration of 2% was calculated.
For the linear function formula f1 corresponding to the water-soluble cutting fluid WO1 having a concentration of 2%, for example, “(2%) = Ax + B” was calculated using the “least square method”.
According to the “least square method”, when the number of data M (the number of detected data) and the i-th coordinate value (xi, yi) = (liquid temperature before measurement, electrical conductivity before measurement), the linear function formula f1: y The “A value (slope)” of (2%) = Ax + B is calculated by the equation (1).
The “B value (intercept)” of the linear function formula f1: y (2%) = Ax + B is calculated by the formula (2).

「実施例1」では、「表1」〜「表11」の検出No.1〜検出No.642について、座標値データ個数M(検出データ個数)=642、及び各座標値(x1,y1)=(6.0000,708.1156)、(x2,y2)=(6.0625,708.7944)、…、(x383,y383)=(18.6250,780.4078)、…、(x641,y641)=(22.0625,794.6626)、(x642,y642)=(22.0625,795.0020)となる。
「実施例1」の座標値データ個数M=642、及び各座標値(x1,y1)=(6.0000,708.1156)、(x2,y2)=(6.0625,708.7944)、…、(x383,y383)=(18.6250,780.4078)、…、(x641,y641)=(22.0625,794.6626)、(x642,y642)=(22.0625,795.0020)を式(1)及び式(2)に代入して、一次関数式f1:y(2%)=Ax+Bの「A値(傾き)」及び「B値(切片)」を算出する。
一次関数式f1の「A値(傾き)」は、式(1)により、A=5.0979となり、及び一次関数式f1の「B値(切片)」は、式(2)により、B=684.17となる。
In “Example 1”, the detection numbers “Table 1” to “Table 11”. 1 to detection No. 1 For 642, the coordinate value data number M (detection data number) = 642, and each coordinate value (x1, y1) = (6.0000, 708.1156), (x2, y2) = (6.0625, 708.7944),..., (X383, y383 ) = (18.6250, 780.4078),... (X641, y641) = (22.0625, 794.6626), (x642, y642) = (22.0625, 795.0020).
The coordinate value data number M = 642 of “Example 1”, and each coordinate value (x1, y1) = (6.0000, 708.1156), (x2, y2) = (6.0625, 708.7944),..., (X383, y383) = (18.6250, 780.4078), ..., (x641, y641) = (22.0625, 794.6626), (x642, y642) = (22.0625, 795.0020) are substituted into the equations (1) and (2), and the linear function equation f1 : “A value (slope)” and “B value (intercept)” of y (2%) = Ax + B are calculated.
The “A value (slope)” of the linear function equation f1 is A = 5.0979 according to the equation (1), and the “B value (intercept)” of the linear function equation f1 is B = 684.17.

これにより、一次関数式f1は、
y(2%)=5.0979x+684.17・・・・・式(4)
となる。
式(4)において、「y(2%)」は実測前電気伝導率σ1(μS/cm)、「x」は実測前液体温度T1(℃)である。
Thus, the linear function formula f1 is
y (2%) = 5.0979x + 684.17 Formula (4)
It becomes.
In equation (4), “y (2%)” is the electrical conductivity before measurement σ1 (μS / cm), and “x” is the liquid temperature T1 (° C.) before measurement.

(実施例2)
実施例2では、熱電対温度センサから取得した複数の実測前液体温度T2(℃)、及び2電極式導電率センサから取得した複数の実測前電気伝導率σ2(μS/cm)に基づいて、濃度5%の水溶性切削液WO2に対応する一次関数式f2を算出した。
濃度5%の水溶性切削液WO2に対応する一次関数式f2は、実施例1(一次関数式f1)と同様に、「最小二乗法」を用いて、y(5%)=Ax+Bを算出した。
「実施例2」では、「表12」〜「表28」の検出No.1〜検出No.1019について、座標値は、(x1,y1)=(6.5000,819.7782)、(x2,y2)=(6.5625,820.7964)、…、(x556,y556)=(20.81250,965,0414)、…、(x1018,y1018)=(24.1250,1001.3572)、(x1019,y1019)=(24.1250,1001.0178)となる。
「実施例2」の座標値データ個数M(検出データ個数)=1019、及び各座標値(x1,y1)=(6.5000,819.7782)、(x2,y2)=(6.5625,820.7964)、…、(x556,y556)=(20.81250,965,0414)、…、(x1018,y1018)=(24.1250,1001.3572)、(x1019,y1019)=(24.1250,1001.0178)を式(1)及び式(2)に代入して、一次関数式f2:y(5%)=Ax+Bの「A(傾き)」及び「B値(切片)」を算出する。
一次関数式f2の「A値(傾き)」は、式(1)により、A=10.003となり、及び一次関数式f2の「B値(切片)」は、式(2)により、B=757.33となる。
(Example 2)
In Example 2, based on the plurality of pre-measurement liquid temperatures T2 (° C.) acquired from the thermocouple temperature sensor and the plurality of pre-measurement electrical conductivities σ2 (μS / cm) acquired from the two-electrode conductivity sensor, A linear function formula f2 corresponding to a water-soluble cutting fluid WO2 having a concentration of 5% was calculated.
As for the linear function equation f2 corresponding to the water-soluble cutting fluid WO2 having a concentration of 5%, y (5%) = Ax + B was calculated using the “least square method” in the same manner as in Example 1 (linear function equation f1). .
In “Example 2”, the detection numbers of “Table 12” to “Table 28”. 1 to detection No. 1 For 1019, the coordinate values are (x1, y1) = (6.5000,819.7782), (x2, y2) = (6.5625,820.7964),..., (X556, y556) = (20.81250,965,0414),. x1018, y1018) = (24.1250, 1001.3572), (x1019, y1019) = (24.1250, 1001.0178).
Coordinate value data number M (detection data number) = 1019 and coordinate values (x1, y1) = (6.5000,819.7782), (x2, y2) = (6.5625,820.7964),. x556, y556) = (20.81250,965,0414),..., (x1018, y1018) = (24.1250,1001.3572), (x1019, y1019) = (24.1250,1001.0178) are substituted into equations (1) and (2) Then, “A (slope)” and “B value (intercept)” of the linear function formula f2: y (5%) = Ax + B are calculated.
The “A value (slope)” of the linear function equation f2 is A = 10.003 by the equation (1), and the “B value (intercept)” of the linear function equation f2 is B = 757.33.

一次関数式f2は、
y(5%)=10.003x+757.33・・・・式(5)
となる。
式(5)において、「y(5%)」は実測前電気伝導率σ2(μS/cm)、「x」は実測前液体温度T2(℃)である。
The linear function formula f2 is
y (5%) = 10.003x + 757.33 (5)
It becomes.
In the equation (5), “y (5%)” is the electric conductivity before measurement σ2 (μS / cm), and “x” is the liquid temperature T2 (° C.) before measurement.

(実施例3)
実施例3では、熱電対温度センサから取得した複数の実測前液体温度T3(℃)、及び2電極式導電率センサから入取得した複数の実測前電気伝導率σ3(μS/cm)に基づいて、濃度10%の水溶性切削液WO3に対応する一次関数式f3を算出した。
濃度10%の水溶性切削液WO3に対応する一次関数式f3は、実施例1(一次関数式f1)と同様に、「最小二乗法」を用いて、y(10%)=Ax+Bを算出した。
「実施例3」では、「表29」〜「表62」の検出No.1〜検出No.2027について、座標値は、(x1,y1)=(7.1875,1052.6066)、(x2,y2)=(7.2500,1054.3036)、…、(x1005,y1005)=(24.0625,1402.8674)、…、(x2025,y2025)=(25.1250,1424.9284)、(x2027,y2027)=(25.1250,1424.2496)となる。
「実施例3」の座標値データ個数M(検出データ個数)=2027、及び各座標値(x1,y1)=(7.1875,1052.6066)、(x2,y2)=(7.2500,1054.3036)、…、(x1005,y1005)=(24.0625,1402.8674)、…、(x2025,y2025)=(25.1250,1424.9284)、(x2027,y2027)=(25.1250,1424.2496)を式(1)及び式(2)に代入して、一次関数式f3:y(10%)=Ax+Bの「A値(傾き)」及び「B値(切片)」を算出する。
一次関数式f3の「A値(傾き)」は、式(1)により、A=18.973となり、及び一次関数式f3の「B値(切片)」は、式(2)により、B=949.48となる。
Example 3
In Example 3, based on the plurality of pre-measurement liquid temperatures T3 (° C.) obtained from the thermocouple temperature sensor and the plurality of pre-measurement electrical conductivities σ3 (μS / cm) obtained from the two-electrode conductivity sensor. The linear function formula f3 corresponding to the water-soluble cutting fluid WO3 having a concentration of 10% was calculated.
As for the linear function formula f3 corresponding to the water-soluble cutting fluid WO3 having a concentration of 10%, y (10%) = Ax + B was calculated using the “least square method” in the same manner as in Example 1 (linear function formula f1). .
In “Example 3”, the detection numbers of “Table 29” to “Table 62”. 1 to detection No. 1 For 2027, the coordinate values are (x1, y1) = (7.1875,1052.6066), (x2, y2) = (7.2500,1054.3036), ..., (x1005, y1005) = (24.0625,1402.8674), ..., (x2025, y2025) = (25.1250, 1424.9284), (x2027, y2027) = (25.1250, 1424.2496).
The coordinate value data number M (detection data number) = 2027 and coordinate values (x1, y1) = (7.1875,1052.6066), (x2, y2) = (7.2500,1054.3036),. x1005, y1005) = (24.0625,1402.8674), ..., (x2025, y2025) = (25.1250,1424.9284), (x2027, y2027) = (25.1250,1424.2496) are substituted into formula (1) and formula (2) , “A value (slope)” and “B value (intercept)” of linear function formula f3: y (10%) = Ax + B are calculated.
The “A value (slope)” of the linear function equation f3 is A = 18.973 by the equation (1), and the “B value (intercept)” of the linear function equation f3 is B = 949.48.

一次関数式f3は、
y(10%)=18.973x+949.48・・・・式(6)
となる。
式(6)において、「y(10%)」は実測前電気伝導率σ3(μS/cm)、「x」は実測前液体温度T3(℃)である。
The linear function formula f3 is
y (10%) = 18.973x + 949.48 (6)
It becomes.
In equation (6), “y (10%)” is the electrical conductivity before measurement σ3 (μS / cm), and “x” is the liquid temperature T3 (° C.) before measurement.

このように、液貯留槽26に貯留した水溶性切削液WO(濃度が未知の水溶性切削液)の実測液体温度Tg(℃)及び実測電気伝導率σg(μS/cm)を検出する前において、液貯留槽26に貯留した水溶性切削液WOと同一成分であって、各濃度2%、5%、10%の水溶性切削液WO1〜WO3(濃度が既知の水溶性切削液)を使用して、液体温度−電気伝導率試験を実施した。
液体温度−電気伝導率試験では、熱電対温度センサ及び2電極式導電率センサを、各濃度2%、5%、10%の水溶性切削液WO1〜WO3に浸漬して、各水溶性切削液WO1〜WO3の実測前液体温度T1〜T3(℃)及び実測前電気伝導率σ1〜σ3(μS/cm)を検出した(「表1」〜「表62」参照)。
濃度2%,5%,10%の各水溶性切削液WO1〜WO3に対応する一次関数式f1〜f3は、各実測前液体温度T1〜T3と各実測前電気伝導率σ1〜σ3とに基づいて、例えば、「最小二乗法」を用いて算出(演算)した。
図8に示すように、濃度2%,5%,10%の各水溶性切削液WO1〜WO3に対応する一次関数式f1,f2,f3は、各座標値(xi,yi)=(実測前液体温度,実測前電気伝導率)に一致又は近似した一次関数になると言える。
これにより、各濃度の水溶性切削液(濃度が既知の水溶性切削液)に対して、複数(多数)の実測前液体温度(℃)及び複数(多数)の実測前電気伝導率(μS/cm)を検出し、各実測前液体温度(℃)と各実測電気伝導率(μS/cm)とに基づいて、各濃度の水溶性切削液の一次関数式f(i):y(α%)=Ax+Bを算出しても、一次関数式f(i)は各実測前液体温度(x座標値)及び各実測前電気伝導率(y座標値)に一致又は近似した一次関数として得ることができる。
Thus, before detecting the measured liquid temperature Tg (° C.) and the measured electrical conductivity σg (μS / cm) of the water-soluble cutting fluid WO (water-soluble cutting fluid whose concentration is unknown) stored in the liquid storage tank 26. The same components as the water-soluble cutting fluid WO stored in the liquid storage tank 26 are used, and the water-soluble cutting fluids WO1 to WO3 (water-soluble cutting fluids having known concentrations) having concentrations of 2%, 5%, and 10% are used. Then, a liquid temperature-electric conductivity test was performed.
In the liquid temperature-electric conductivity test, a thermocouple temperature sensor and a two-electrode conductivity sensor are immersed in water-soluble cutting fluids WO1 to WO3 having concentrations of 2%, 5%, and 10%, respectively. The liquid temperatures T1 to T3 (° C.) before measurement and the electrical conductivity σ1 to σ3 (μS / cm) before measurement of WO1 to WO3 were detected (see “Table 1” to “Table 62”).
The linear function equations f1 to f3 corresponding to the water-soluble cutting fluids WO1 to WO3 having a concentration of 2%, 5%, and 10% are based on the pre-measurement liquid temperatures T1 to T3 and the pre-measurement electrical conductivities σ1 to σ3, respectively. For example, the calculation (calculation) was performed using the “least square method”.
As shown in FIG. 8, the linear function equations f1, f2, and f3 corresponding to the water-soluble cutting fluids WO1 to WO3 having a concentration of 2%, 5%, and 10% are represented by coordinate values (xi, yi) = (before measurement). It can be said that this is a linear function that matches or approximates (liquid temperature, electrical conductivity before measurement).
Thus, for each concentration of water-soluble cutting fluid (water-soluble cutting fluid having a known concentration), a plurality (many) of pre-measurement liquid temperatures (° C.) and a plurality (many) of pre-measurement electrical conductivity (μS / cm), and based on each pre-measurement liquid temperature (° C.) and each measured electrical conductivity (μS / cm), a linear function formula f (i): y (α%) of each concentration of water-soluble cutting fluid ) = Ax + B, the linear function equation f (i) can be obtained as a linear function that matches or approximates each pre-measurement liquid temperature (x coordinate value) and each pre-measurement electrical conductivity (y coordinate value). it can.

3:検量線(一次関数の検量式)の算出
濃度検出装置Zの制御器57は、液貯留槽26に貯留した水溶性切削液WO(濃度αが未知の水溶性切削液)の検出において、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)、各濃度データ2%,5%,10%と、各水溶性切削液WO1〜WO3に対応する一次関数式f1〜f3に基づいて、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)に対応する検量線F(Tg)[一次関数の検量式F(Tg)]を算出(演算)する。
以下、検量線F(Tg)[一次関数の検量式F(Tg)]の算出(演算)を説明する。
3: Calculation of calibration curve (calibration formula of linear function) The controller 57 of the concentration detector Z detects the water-soluble cutting fluid WO (water-soluble cutting fluid whose concentration α is unknown) stored in the liquid storage tank 26. Measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detecting means 51, concentration data 2%, 5%, 10%, and linear function equations f1 to f3 corresponding to the water-soluble cutting fluids WO1 to WO3. Based on this, a calibration curve F (Tg) [a calibration function F (Tg) of a linear function] corresponding to the actually measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detection means 51 is calculated (calculated).
Hereinafter, calculation (calculation) of the calibration curve F (Tg) [calibration formula F (Tg) of a linear function] will be described.

<1>濃度の相異する各水溶性切削液の算出電気伝導率(μS/cm)の算出
制御器57は、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)を、式(4)〜式(6)の一次関数式f1,f2,f3の「x(x座標値)」に代入して、液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)に対応する各水溶性切削液WO1〜WO3の算出電気伝導率σb1,σb2,σb3を算出する。
例えば、液体温度検出手段51から入力(取得)した実測液体温度Tg=20(℃)とし、各一次関数式f1〜f3の「x(x座標値)」に代入する。濃度2%の水溶性切削液WO1の算出電気伝導率σb1は、式(4)により、σb1=786.128(μS/cm)となる。濃度5%の水溶性切削液WO2の算出電気伝導率σb2は、式(5)により、σb2=957.390(μS/cm)となり、濃度10%の水溶性切削液WO3の算出電気伝導率σb3は、式(6)により、σb3=1328.940(μS/cm)となる。
濃度2%の水溶性切削液WO1の算出電気伝導率σb1=786.128(μS/cm)、濃度5%の水溶性切削液WO2の算出電気伝導率σb2=957.390(μS/cm)及び濃度10%の水溶性切削液WO3の算出電気伝導率σb3=1328.940(μS/cm)は、同一温度の実測液体温度T=20(℃)に対応する電気伝導率である。
<1> Calculation of Calculated Electrical Conductivity (μS / cm) of Water-soluble Cutting Fluids with Different Concentrations Controller 57 inputs measured liquid temperature Tg (° C.) input (acquired) from liquid temperature detecting means 51. The measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detecting means 51 by substituting it into “x (x coordinate value)” of the linear function expressions f1, f2, and f3 of Expressions (4) to (6). The calculated electrical conductivities σb1, σb2, and σb3 of the water-soluble cutting fluids WO1 to WO3 corresponding to the above are calculated.
For example, the measured liquid temperature Tg = 20 (° C.) input (acquired) from the liquid temperature detection means 51 is substituted into “x (x coordinate value)” of each of the linear function equations f1 to f3. The calculated electrical conductivity σb1 of the water-soluble cutting fluid WO1 having a concentration of 2% is σb1 = 786.128 (μS / cm) according to the equation (4). The calculated electrical conductivity σb2 of the water-soluble cutting fluid WO2 having a concentration of 5% is σb2 = 957.390 (μS / cm) according to the equation (5), and the calculated electrical conductivity σb3 of the water-soluble cutting fluid WO3 having a concentration of 10% is obtained. Is σb3 = 1328.940 (μS / cm) from Equation (6).
Calculated electrical conductivity σb1 = 786.128 (μS / cm) of water-soluble cutting fluid WO1 having a concentration of 2%, calculated electrical conductivity σb2 = 957.390 (μS / cm) of water-soluble cutting fluid WO2 having a concentration of 5%, and The calculated electric conductivity σb3 = 1328.940 (μS / cm) of the water-soluble cutting fluid WO3 having a concentration of 10% is an electric conductivity corresponding to the actually measured liquid temperature T = 20 (° C.) at the same temperature.

<2>検量線F(Tg)[一次関数の検量式F(Tg)]
図9は、液体温度検出手段51から入力した実測液体温度Tgに対応する「水溶性切削液の濃度(%)」と「水溶性切削液の算出電気伝導率(μS/cm)」の関係(関連)を示す検量線F(Tg)のグラフ図である。
図9は、横軸(x座標軸)に「水溶性切削液の算出電気伝導率(μS/cm)」を取り、縦軸(y座標軸)に「水溶性切削液の濃度(%)」を取る。
図9では、「水溶性切削液の算出電気伝導率(電気伝導率)」を「x座標値(xi)」とし、及び「水溶性切削液の濃度(%)」を「y座標値(yi)」としている。図9において、座標値は、(xi,yi)=(算出電気伝導率,濃度)となる。
<2> Calibration curve F (Tg) [Calibration formula F (Tg) of linear function]
FIG. 9 shows a relationship between “concentration (%) of water-soluble cutting fluid” and “calculated electrical conductivity (μS / cm) of water-soluble cutting fluid” corresponding to the actually measured liquid temperature Tg input from the liquid temperature detecting means 51 ( It is a graph of a calibration curve F (Tg) showing (related).
FIG. 9 shows “calculated electrical conductivity of water-soluble cutting fluid (μS / cm)” on the horizontal axis (x coordinate axis) and “concentration (%) of water-soluble cutting fluid” on the vertical axis (y coordinate axis). .
In FIG. 9, “calculated electrical conductivity (electric conductivity) of water-soluble cutting fluid” is “x coordinate value (xi)”, and “water-soluble cutting fluid concentration (%)” is “y coordinate value (yi). ) ”. In FIG. 9, the coordinate values are (xi, yi) = (calculated electrical conductivity, concentration).

濃度2%,5%,10%の水溶性切削液WO1〜WO3の算出電気伝導率σb1〜σb3と、各濃度データ2%,5%,10%とについて、座標値は、(x1,y1)=(σb1,0.02),(x2,y2)=(σb2,0.05),(x3,y3)=(σb3,0.10)となる。
例えば、水溶性切削液WOの実測液体温度Tg=20(℃)について、座標値は、(x1,y1)=(786.128,0.02)、(x2,y2)=(957.390,0.05)、(x3,y3)=(1328.940,0.10)となる。
液体温度検出手段51から入力した実測液体温度Tgに対応する検量線F(Tg)は、例えば、一次関数式(一次関数の検量式)であって、「最小二乗法」を用いて、検量線F(Tg):y(Tg)=Ax+Bを算出した。
座標値データ個数M=3、及び座標値(x1,y1)=(σb1,0.02),(x2,y2)=(σb2,0.05),(x3,y3)=(σb3,0.10)を式(1)及び式(2)に代入して、一次関数の検量線F(Tg):y(Tg)=Ax+Bの「A値(傾き)」及び「B値(切片)」を算出する。
For the calculated electrical conductivities σb1 to σb3 of the water-soluble cutting fluids WO1 to WO3 having concentrations of 2%, 5%, and 10% and the concentration data of 2%, 5%, and 10%, the coordinate values are (x1, y1) = (Σb1, 0.02), (x2, y2) = (σb2, 0.05), (x3, y3) = (σb3, 0.10).
For example, for the measured liquid temperature Tg = 20 (° C.) of the water-soluble cutting fluid WO, the coordinate values are (x1, y1) = (786.128, 0.02), (x2, y2) = (957.390, 0.05), (x3, y3) = (1328.940, 0.10).
The calibration curve F (Tg) corresponding to the actually measured liquid temperature Tg input from the liquid temperature detection means 51 is, for example, a linear function equation (linear function calibration equation), and uses the “least square method” to calculate the calibration curve. F (Tg): y (Tg) = Ax + B was calculated.
The number of coordinate value data M = 3 and the coordinate values (x1, y1) = (σb1, 0.02), (x2, y2) = (σb2, 0.05), (x3, y3) = (σb3, 0.10) ) And Equation (2), the “A value (slope)” and “B value (intercept)” of the calibration curve F (Tg): y (Tg) = Ax + B of the linear function are calculated.

液体温度検出手段51から入力(取得)した実測液体温度Tgに対応する検量線F(Tg)は、
y(Tg)=Ax+B・・・・式(7)
となる。
式(7)において、「(Tg)」は実測液体温度Tg時の水溶性切削液WOの濃度α、「x」は実測液体温度Tg時の水溶性切削液WOの実測電気伝導率σgである。
A calibration curve F (Tg) corresponding to the actually measured liquid temperature Tg input (acquired) from the liquid temperature detecting means 51 is:
y (Tg) = Ax + B (7)
It becomes.
In equation (7), “(Tg)” is the concentration α of the water-soluble cutting fluid WO at the measured liquid temperature Tg, and “x” is the measured electrical conductivity σg of the water-soluble cutting fluid WO at the measured liquid temperature Tg. .

例えば、液体温度検出手段51から入力(取得)した実測液体温度Tg=20(℃)では、座標値データ個数M=3、座標値(x1,y1)=(786.128,0.02)、(x2,y2)=(957.390,0.05)、(x3,y3)=(1328.940,0.10)を式(1)及び式(2)に代入すると、検量線F(20)の「A値(傾き)」は、式(1)により、A=0.000145となり、及び検量線F(30)の「B値(切片)」は、式(2)より、B=−0.09216となる。   For example, at the measured liquid temperature Tg = 20 (° C.) input (acquired) from the liquid temperature detecting means 51, the number of coordinate value data M = 3, the coordinate value (x1, y1) = (786.128, 0.02), (x2, y2) ) = (957.390,0.05) and (x3, y3) = (1328.940,0.10) are substituted into the equations (1) and (2), the “A value (slope)” of the calibration curve F (20) is According to (1), A = 0.000145, and the “B value (intercept)” of the calibration curve F (30) is B = −0.09216 from the equation (2).

液体温度検出手段51から入力(取得)した実測液体温度Tg=20(℃)に対する検量線F(20)は、
y(20)=0.000145x−0.09216・・・・式(8)
となる。
The calibration curve F (20) for the measured liquid temperature Tg = 20 (° C.) input (acquired) from the liquid temperature detecting means 51 is:
y (20) = 0.000145x-0.09216 ... Formula (8)
It becomes.

このように、制御器57は、液貯留槽26に貯留した水溶性切削液WO(濃度が未知の水溶性切削液)について、液体温度検出手段51から実測液体温度Tg(℃)を入力(取得)し、この実測液体温度Tgを式(4)〜式(6)の各一次関数式f1〜f3に代入して、各濃度2%,5%,10%の水溶性切削液WO1〜WO3の算出電気伝導率σb1〜σb3を算出する。
液体温度検出手段51から入力(取得)した実測液体温度Tg(℃)に対応する検量線F(Tg)[一次関数の検量式F(Tg)]は、各濃度データ2%,5%,10%と、濃度2%,5%,10%の各水溶性切削液WO1〜WO3の算出電気伝導率σb1,σb2,σb3に基づいて算出する。
濃度測定装置Zの演算制御手段55(制御器57)では、液貯留槽26に貯留した水溶性切削液WO(濃度が未知の水溶性切削液)について、導電率検出手段52から実測電気伝導率σgを入力(取得)し、導電率検出手段52から入力(取得)した実測電気伝導率σgを、式(7)の検量線F(Tg)[一次関数の検量式F(Tg)]の「x(x座標値)」に代入することにより、液貯留槽26に貯留した水溶性切削液WOの未知の濃度を算出する。
Thus, the controller 57 inputs (acquires) the measured liquid temperature Tg (° C.) from the liquid temperature detection means 51 for the water-soluble cutting liquid WO (water-soluble cutting liquid with an unknown concentration) stored in the liquid storage tank 26. The measured liquid temperature Tg is substituted into the linear function equations f1 to f3 of the equations (4) to (6), and the water-soluble cutting fluids WO1 to WO3 having the respective concentrations of 2%, 5%, and 10%. Calculate electric conductivity σb1 to σb3.
A calibration curve F (Tg) [a calibration function F (Tg) of a linear function] corresponding to the actually measured liquid temperature Tg (° C.) input (acquired) from the liquid temperature detecting means 51 is the concentration data 2%, 5%, 10 % And the calculated electrical conductivities σb1, σb2, and σb3 of the water-soluble cutting fluids WO1 to WO3 having concentrations of 2%, 5%, and 10%.
In the calculation control means 55 (controller 57) of the concentration measuring apparatus Z, the measured electrical conductivity of the water-soluble cutting fluid WO (water-soluble cutting fluid whose concentration is unknown) stored in the liquid storage tank 26 is measured from the conductivity detecting means 52. σg is input (acquired), and the measured electrical conductivity σg input (acquired) from the conductivity detection means 52 is expressed by the calibration curve F (Tg) of the equation (7) [calibration formula F (Tg) of the linear function]. By substituting for “x (x coordinate value)”, an unknown concentration of the water-soluble cutting fluid WO stored in the liquid storage tank 26 is calculated.

本発明は、貯留された水溶性切削液の濃度を検出するのに最適である。   The present invention is optimal for detecting the concentration of stored water-soluble cutting fluid.

X 工作機システム
Y 工作機
Z 濃度検出装置(第1及び第2実施形態の濃度検出装置)
F(Tg) 検量線(一次関数の検量式)
f(i) 一次関数式
Tg 実測液体温度(液体温度)
σg 実測電気伝導率(電気伝導率)
26 液貯留槽
51 液体温度検出手段
52 導電率検出手段
55 演算制御手段(農度演算制御手段)
56 記憶手段
X machine tool system Y machine tool Z concentration detector (concentration detector of the first and second embodiments)
F (Tg) calibration curve (calibration formula of linear function)
f (i) Linear function equation Tg Measured liquid temperature (liquid temperature)
σg Measured electrical conductivity (electrical conductivity)
26 Liquid storage tank 51 Liquid temperature detection means 52 Conductivity detection means 55 Calculation control means (farming degree calculation control means)
56 Memory means

Claims (4)

貯留した水溶性切削液の濃度を検出する濃度検出装置であって、
貯留した水溶性切削液の液体温度を検出する液体温度検出手段と、
貯留した水溶性切削液に浸漬され、貯留した水溶性切削液の電気伝導率を検出する導電率検出手段と、
前記液体温度検出手段の検出した液体温度、及び前記導電率検出手段の検出した電気伝導率を同時に入力する演算制御手段と、
を備え、
前記演算制御手段は、
前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、
前記導電率検出手段から入力した電気伝導率とに基づいて、貯留した水溶性切削液の濃度を算出する
ことを特徴とする濃度検出装置。
A concentration detection device for detecting the concentration of stored water-soluble cutting fluid,
Liquid temperature detecting means for detecting the liquid temperature of the stored water-soluble cutting fluid;
A conductivity detecting means for detecting electrical conductivity of the stored water-soluble cutting fluid, immersed in the stored water-soluble cutting fluid;
Calculation control means for simultaneously inputting the liquid temperature detected by the liquid temperature detection means and the electrical conductivity detected by the conductivity detection means;
With
The arithmetic control means includes
A calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the liquid temperature input from the liquid temperature detecting means;
A concentration detection apparatus that calculates the concentration of the stored water-soluble cutting fluid based on the electrical conductivity input from the conductivity detection means.
濃度の相異する複数の濃度データと、
貯留した水溶性切削液と同一成分であって、前記各濃度データに対応する各濃度の水溶性切削液について、当該各濃度の水溶性切削液に対応する、水溶性切削液の液体温度及び電気伝導率の関係を示す一次関数式と、を記憶する記憶手段を備え、
前記演算制御手段は、
前記各濃度データと、前記各濃度の水溶性切削液に対応する一次関数式を前記記憶手段から読出し、
前記液体温度検出手段から入力した液体温度と、前記各濃度の水溶性切削液に対応する一次関数式に基づいて、前記各濃度の水溶性切削液の電気伝導率を算出し、
前記各濃度データと、前記各濃度の水溶性切削液の電気伝導率に基づいて、前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線を算出し、
前記導電率検出手段から入力した電気伝導率と、算出した前記検量線に基づいて、貯留した水溶性切削液の濃度を算出する
ことを特徴とする請求項1に記載の濃度検出装置。
Multiple concentration data with different concentrations,
For the water-soluble cutting fluid having the same components as the stored water-soluble cutting fluid and corresponding to the concentration data, the liquid temperature and the electric power of the water-soluble cutting fluid corresponding to the water-soluble cutting fluid of the respective concentrations A storage unit for storing a linear function equation indicating a relationship of conductivity;
The arithmetic control means includes
Read each concentration data and a linear function expression corresponding to the water-soluble cutting fluid of each concentration from the storage means,
Based on the liquid temperature input from the liquid temperature detecting means and a linear function equation corresponding to the water soluble cutting fluid of each concentration, the electrical conductivity of the water soluble cutting fluid of each concentration is calculated,
Based on the concentration data and the electrical conductivity of the water-soluble cutting fluid at each concentration, the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the liquid temperature input from the liquid temperature detecting means is shown. Calculate the calibration curve,
The concentration detection apparatus according to claim 1, wherein the concentration of the stored water-soluble cutting fluid is calculated based on the electrical conductivity input from the conductivity detection means and the calculated calibration curve.
前記液体温度検出手段の検出できる複数の各液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線を記憶する記憶手段を備え、
前記演算制御手段は、
前記液体温度検出手段から入力した液体温度に基づいて、当該液体温度に対応する検量線を前記記憶手段から読出し、
前記導電率検出手段から入力した電気伝導率と、前記記憶手段から読出した前記検量線とに基づいて、貯留した水溶性切削液の濃度を算出する
ことを特徴とする請求項1に記載の濃度検出装置。
Storage means for storing a calibration curve indicating the relationship between the concentration of water-soluble cutting fluid and electrical conductivity corresponding to each of a plurality of liquid temperatures that can be detected by the liquid temperature detection means;
The arithmetic control means includes
Based on the liquid temperature input from the liquid temperature detection means, a calibration curve corresponding to the liquid temperature is read from the storage means,
2. The concentration according to claim 1, wherein the concentration of the stored water-soluble cutting fluid is calculated based on the electrical conductivity input from the conductivity detection unit and the calibration curve read from the storage unit. Detection device.
水溶性切削液を貯留した液貯留槽を有し、前記液貯留槽に貯留した前記水溶性切削液を被加工体に供給しつつ加工し、前記被加工体に供給した前記水溶性切削液を前記液貯留槽に回収する工作機と、
前記液貯留槽に貯留した水溶性切削液の濃度を検出する濃度検出装置と、
を含んで構成され、
前記濃度検出装置は、
前記液貯留槽に貯留した水溶性切削液の液体温度を検出する液体温度検出手段と、
前記液貯留槽に貯留した水溶性切削液に浸漬され、前記液貯留槽に貯留した水溶性切削液の電気伝導率を検出する導電率検出手段と、
前記液体温度検出手段の検出した液体温度、及び前記導電率検出手段の検出した電気伝導率を同時に入力する演算制御手段と、
を備え、
前記演算制御手段は、
前記液体温度検出手段から入力した液体温度に対応する、水溶性切削液の濃度及び電気伝導率の関係を示す検量線と、
前記導電率検出手段から入力した電気伝導率とに基づいて、前記液貯留槽に貯留した水溶性切削液の濃度を算出する
ことを特徴する工作機システム。
A liquid storage tank storing water-soluble cutting fluid; processing while supplying the water-soluble cutting fluid stored in the liquid storage tank to the workpiece; and supplying the water-soluble cutting fluid supplied to the workpiece A machine tool to be collected in the liquid storage tank;
A concentration detector for detecting the concentration of the water-soluble cutting fluid stored in the liquid storage tank;
Comprising
The concentration detector is
Liquid temperature detecting means for detecting the liquid temperature of the water-soluble cutting fluid stored in the liquid storage tank;
Conductivity detection means for detecting the electrical conductivity of the water-soluble cutting fluid stored in the liquid storage tank, immersed in the water-soluble cutting liquid stored in the liquid storage tank;
Calculation control means for simultaneously inputting the liquid temperature detected by the liquid temperature detection means and the electrical conductivity detected by the conductivity detection means;
With
The arithmetic control means includes
A calibration curve indicating the relationship between the concentration of the water-soluble cutting fluid and the electrical conductivity corresponding to the liquid temperature input from the liquid temperature detecting means;
A machine tool system, wherein the concentration of the water-soluble cutting fluid stored in the liquid storage tank is calculated based on the electrical conductivity input from the conductivity detection means.
JP2017120347A 2017-06-20 2017-06-20 Concentration detector and machine tool system Active JP6955751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120347A JP6955751B2 (en) 2017-06-20 2017-06-20 Concentration detector and machine tool system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120347A JP6955751B2 (en) 2017-06-20 2017-06-20 Concentration detector and machine tool system

Publications (2)

Publication Number Publication Date
JP2019002894A true JP2019002894A (en) 2019-01-10
JP6955751B2 JP6955751B2 (en) 2021-10-27

Family

ID=65007771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120347A Active JP6955751B2 (en) 2017-06-20 2017-06-20 Concentration detector and machine tool system

Country Status (1)

Country Link
JP (1) JP6955751B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110450293A (en) * 2019-09-12 2019-11-15 内蒙古中环光伏材料有限公司 A kind of large-sized silicon wafers cutting liquid silicon powder concentration detection apparatus and control method
US20200246930A1 (en) * 2019-01-31 2020-08-06 Fanuc Corporation Foreign matter detection device which detects penetration of foreign matter into interior of electric motor arranged in machine tool
WO2023171601A1 (en) * 2022-03-08 2023-09-14 株式会社Srt Machine tool system, and hydraulic liquid and processing liquid for machine tools
WO2023210799A1 (en) * 2022-04-28 2023-11-02 株式会社プラムピーチ Quality management system for machining process, lubricating liquid for machine tool, and alkaline electrolyzed water generation device for generating lubricating liquid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190827A (en) * 1976-05-18 1980-02-26 Mcnab, Incorporated Multichannel salinity meter
JPH0985577A (en) * 1995-09-20 1997-03-31 Exedy Corp Automatic management device for water soluble cutting oil
JPH10197469A (en) * 1997-01-09 1998-07-31 Toyo Tanso Kk Electric conductivity measuring apparatus
JPH11270787A (en) * 1998-03-19 1999-10-05 Tennex Corp Degradation determination system for engine oil
JP2001264277A (en) * 2000-03-15 2001-09-26 Kanto Chem Co Inc Method and device for detecting concentration and chemical diluting dispensing device
JP2003082392A (en) * 2001-09-11 2003-03-19 Asahi Kasei Corp Method for controlling detergent solution
JP2016080597A (en) * 2014-10-20 2016-05-16 Jx日鉱日石エネルギー株式会社 Management method of w/o micro emulsion type detergent, and management device of w/o micro emulsion type detergent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190827A (en) * 1976-05-18 1980-02-26 Mcnab, Incorporated Multichannel salinity meter
JPH0985577A (en) * 1995-09-20 1997-03-31 Exedy Corp Automatic management device for water soluble cutting oil
JPH10197469A (en) * 1997-01-09 1998-07-31 Toyo Tanso Kk Electric conductivity measuring apparatus
JPH11270787A (en) * 1998-03-19 1999-10-05 Tennex Corp Degradation determination system for engine oil
JP2001264277A (en) * 2000-03-15 2001-09-26 Kanto Chem Co Inc Method and device for detecting concentration and chemical diluting dispensing device
JP2003082392A (en) * 2001-09-11 2003-03-19 Asahi Kasei Corp Method for controlling detergent solution
JP2016080597A (en) * 2014-10-20 2016-05-16 Jx日鉱日石エネルギー株式会社 Management method of w/o micro emulsion type detergent, and management device of w/o micro emulsion type detergent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200246930A1 (en) * 2019-01-31 2020-08-06 Fanuc Corporation Foreign matter detection device which detects penetration of foreign matter into interior of electric motor arranged in machine tool
JP2020122751A (en) * 2019-01-31 2020-08-13 ファナック株式会社 Foreign matter detection device detecting entering of foreign matters into inside of electric motor arranged in machine tool
JP7068206B2 (en) 2019-01-31 2022-05-16 ファナック株式会社 Foreign matter detection device that detects the intrusion of foreign matter into the inside of the motor installed in the machine tool
US11801578B2 (en) 2019-01-31 2023-10-31 Fanuc Corporation Foreign matter detection device which detects penetration of foreign matter into interior of electric motor arranged in machine tool
CN110450293A (en) * 2019-09-12 2019-11-15 内蒙古中环光伏材料有限公司 A kind of large-sized silicon wafers cutting liquid silicon powder concentration detection apparatus and control method
WO2023171601A1 (en) * 2022-03-08 2023-09-14 株式会社Srt Machine tool system, and hydraulic liquid and processing liquid for machine tools
WO2023210799A1 (en) * 2022-04-28 2023-11-02 株式会社プラムピーチ Quality management system for machining process, lubricating liquid for machine tool, and alkaline electrolyzed water generation device for generating lubricating liquid

Also Published As

Publication number Publication date
JP6955751B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6955751B2 (en) Concentration detector and machine tool system
US4757307A (en) Tool condition sensing by measuring heat generation rate at the cutting edge
US20140271002A1 (en) Cutting fluid control device for machine tool
CN105364236B (en) Ultrasonic modulation PET microfiber experimental provision
CN102156152B (en) Online detection method and device for total organic carbon of power plant water supply
CN107807616B (en) Oil mist concentration management device, oil mist management system, and oil mist management method
CN105527215A (en) State monitoring device of cutting fluid using odor sensor
CN107052378B (en) The cellular adaptive lathe tool temperature-adjusting device of Two-way Cycle and working method
Lee et al. Prospects for in-process diagnosis of metal cutting by monitoring vibration signals
BRPI0707311A2 (en) process for conducting cleaning operations on a fluid housing device of a food handling apparatus as well as fluid housing device and corresponding food handling apparatus
US4251219A (en) Apparatus for and method of determining contaminants on low pressure condensate
JP5792928B2 (en) Tool cleaning method and apparatus
CN109357826B (en) Research method for coupling characteristics of turning tool-workpiece nonlinear vibration system
US20070246405A1 (en) Flushing agent conditioning device for a hard material-tipped cutting machine
CN109939458B (en) Chemical industry evaporimeter convenient to in time wash
CN104634723B (en) Metal erosion speed detection method and detection device
Nishimoto et al. Development of tool edge temperature measurement method in wet cutting (Application for CBN and Poly Crystalline Diamond Tools)
CN201034871Y (en) Micro-miniature vapor bubble and spume eliminating device with platinum resistor temperature measurement
Tellinghuisen Effect of background on the least-squares estimation of exponential decay parameters
CN212977020U (en) Precision machining numerical control turning device
JP4738111B2 (en) Test apparatus for evaluating scale adhesion prevention effect and method for evaluating scale adhesion prevention effect
Shcherbakov et al. Electrolytical properties of solutions of lithium hydroxide at high temperatures and pressures
JPH07140057A (en) Method and apparatus for measuring density of crystal suspension within can in crystallizer for salt manufacture
CN111962101B (en) Method for measuring and calculating aluminum electrolyte temperature, primary crystal temperature and superheat degree
DIXIT et al. REVIEW ON DEVELOPMENTS IN VARIOUS TECHNIQUES FOR FLATNESS TOLERANCE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6955751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250