JP2019002824A - Method and apparatus for compressing and molding radioactive waste - Google Patents

Method and apparatus for compressing and molding radioactive waste Download PDF

Info

Publication number
JP2019002824A
JP2019002824A JP2017118483A JP2017118483A JP2019002824A JP 2019002824 A JP2019002824 A JP 2019002824A JP 2017118483 A JP2017118483 A JP 2017118483A JP 2017118483 A JP2017118483 A JP 2017118483A JP 2019002824 A JP2019002824 A JP 2019002824A
Authority
JP
Japan
Prior art keywords
radioactive waste
mixed powder
storage container
mass
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017118483A
Other languages
Japanese (ja)
Other versions
JP6871078B2 (en
Inventor
佐藤 龍明
Tatsuaki Sato
龍明 佐藤
新一 牧野
Shinichi Makino
新一 牧野
宏和 宇都宮
Hirokazu Utsunomiya
宏和 宇都宮
寛史 岡部
Hiroshi Okabe
寛史 岡部
敏幸 若松
Toshiyuki Wakamatsu
敏幸 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Toshiba Energy Systems and Solutions Corp
Original Assignee
Japan Nuclear Fuel Co Ltd
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Fuel Co Ltd, Toshiba Energy Systems and Solutions Corp filed Critical Japan Nuclear Fuel Co Ltd
Priority to JP2017118483A priority Critical patent/JP6871078B2/en
Publication of JP2019002824A publication Critical patent/JP2019002824A/en
Application granted granted Critical
Publication of JP6871078B2 publication Critical patent/JP6871078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

To provide a method and apparatus for compressing and molding radioactive waste, capable of forming a molding having a radioactive waste content of 75 mass% or more at low pressure force and normal temperature.SOLUTION: A method for compressing and molding radioactive waste comprises: a mixing step S2 of mixing powdery radioactive waste 1 of 75 mass% or more and a hydraulic inorganic solidifying material 2 and water 3 of 25 mass% or less in total with a mixed powder 4 of 100 mass% in an amount of 0.9:1.1 to 1.1:0.9 at a mass ratio represented by the hydraulic inorganic solidifying material 2:the water 3; a storage step S3 of storing the mixed powder 4 in a storage container 17; a temporary compression step S4 of temporarily compressing the mixed powder 4 in the storage container 17 in the state of holding the storage container 17 by a storage container retainer 19; and a compressing and molding step S5 of finally compressing the mixed powder 4 in the storage container 17 in the state of holding the storage container 17 by the storage container retainer 19.SELECTED DRAWING: Figure 1

Description

本発明は、放射性廃棄物の圧縮成型方法及び圧縮成型装置に関する。   The present invention relates to a radioactive waste compression molding method and compression molding apparatus.

原子力発電所等の施設で発生する放射性廃棄物を、各種処理によって減容及び安定化することが行われている。放射性廃棄物のうち、可燃性廃棄物は専用の焼却炉で焼却して減容し、発生した焼却灰を、セメントを用いて固化するセメント固化方法が実用化されている。   Radioactive waste generated in facilities such as nuclear power plants is reduced and stabilized by various treatments. Among radioactive wastes, combustible wastes are incinerated in a dedicated incinerator to reduce the volume, and a cement solidification method in which the generated incineration ash is solidified using cement has been put into practical use.

セメント固化方法によれば、焼却灰等の放射性廃棄物を安定に固定化できる利点がある一方で、セメントペーストと放射性廃棄物の混合物を混練するに適した流動性に調節する必要があるため、セメント固化体中の放射性廃棄物の含有量は低く、15質量%程度にとどまる。   According to the cement solidification method, there is an advantage that radioactive waste such as incineration ash can be stably fixed, but it is necessary to adjust the fluidity suitable for kneading the mixture of cement paste and radioactive waste. The content of radioactive waste in the cement solid body is low and is only about 15% by mass.

また、セメント固化方法としては、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩等のセシウム吸着材と焼却灰を混合してセメント固化する方法が提案されており、水酸化カルシウムや水酸化ナトリウム等のアルカリを併用して反応を早めることや、必要に応じて水/セメント比を低減した配合条件を用いて圧縮成型することも提案されている(例えば、特許文献1参照。)。この方法によれば、セメント固化体中の廃棄物含有量は、増量され得るが、20質量%程度である。   In addition, as a cement solidification method, a method of solidifying cement by mixing cesium adsorbent such as zeolite, ferrocyanide salt, manganese compound, silicotitanate and incineration ash has been proposed, and calcium hydroxide or sodium hydroxide is proposed. It has also been proposed to accelerate the reaction by using an alkali such as, or to perform compression molding using a blending condition with a reduced water / cement ratio if necessary (see, for example, Patent Document 1). According to this method, the waste content in the cement solidified body can be increased, but is about 20% by mass.

また、放射性の焼却灰に放射性物質を吸着する吸着材、セメント系固化材及び水膨張性粘土を加えて放射性の焼却灰を圧縮成型してセメント固化体とする方法が提案されている(例えば、特許文献2参照。)。この方法では、セメント固化体中の廃棄物含有量を70質量%以上まで高めているが、圧縮成形に際しての加圧力は15MPa以上、又は4t/cm(連続ロール式)であり、比較的高圧である。   In addition, a method has been proposed in which radioactive incineration ash is compression-molded into a cement solidified body by adding an adsorbent that adsorbs radioactive substances to radioactive incinerated ash, cement-based solidifying material, and water-expandable clay (for example, (See Patent Document 2). In this method, the waste content in the cement solidified body is increased to 70% by mass or more. However, the pressure applied during compression molding is 15 MPa or more, or 4 t / cm (continuous roll type), and the pressure is relatively high. is there.

特開2013−234881号公報JP 2013-234881 A 特開2013−79810号公報JP2013-79810A

本発明は、上述した問題を解決するためになされたものであって、放射性廃棄物の含有量が75質量%以上の成型体を、低加圧力、常温で形成することができる放射性廃棄物の圧縮成型方法及び圧縮成型装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a radioactive waste that can form a molded body having a radioactive waste content of 75% by mass or more at a low pressure and normal temperature. An object is to provide a compression molding method and a compression molding apparatus.

本発明の放射性廃棄物の圧縮成型方法の一態様は、粉末状の放射性廃棄物の圧縮成型方法であって、前記放射性廃棄物と水硬性無機固化材と水とを混合して混合粉体を得る工程であり、前記混合粉体の100質量%に対して、前記放射性廃棄物を75質量%以上、前記水硬性無機固化材と水を、合計で25質量%以下、かつ水硬性無機固化材:水で表わされる質量比で0.9:1.1〜1.1:0.9となる量で混合する混合工程と、前記混合粉体を収容容器内に収容する収容工程と、前記収容容器を収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を仮圧縮する仮圧縮工程と、前記収容容器を前記収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を、前記仮圧縮工程より長時間で本圧縮して成型体を得る圧縮成型工程とを有する。   One aspect of the method for compressing and molding radioactive waste according to the present invention is a method for compressing and molding powdered radioactive waste, wherein the radioactive waste, a hydraulic inorganic solidifying material, and water are mixed to obtain a mixed powder. And 75% by mass or more of the radioactive waste, and 25% by mass or less of the hydraulic inorganic solidified material and water, and 100% by mass of the mixed powder and 100% by mass of the mixed powder. A mixing step of mixing in an amount of 0.9: 1.1 to 1.1: 0.9 in a mass ratio represented by water, a storing step of storing the mixed powder in a storing container, and the storing A temporary compression step of temporarily compressing the mixed powder in the storage container in a state where the container is held by the storage container holding device; and a state in which the storage container is held in the storage container by the storage container holding device. The mixed powder is subjected to main compression in a longer time than the temporary compression step. And a compression molding step of obtaining a molded body Te.

本発明の放射性廃棄物の圧縮成型装置の一態様は粉末状の放射性廃棄物と、水硬性無機固化材と、水とを混合して混合粉体を生成する混合機と、前記混合機に、前記混合粉体の100質量%に対して75質量%以上となる量の前記放射性廃棄物を供給する放射性廃棄物供給装置と、前記混合機に、前記混合粉体の100質量%に対して前記水硬性無機固化材と水が合計で25質量%以下、かつ前記水硬性無機固化材:水で表わされる質量比が0.9:1.1〜1.1:0.9となる量の、前記水硬性無機固化材を供給する水硬性無機固化材供給装置及び前記水を供給する水供給装置と、前記混合機内の混合粉体を移送して収容容器に収容する混合粉体移送装置と、前記収容容器を保持する収容容器保持装置と、前記収容容器内の混合粉体を、加圧力10MPa以上13MPa以下で加圧する圧縮装置とを有する。   One aspect of the compression molding apparatus of the radioactive waste of the present invention is a mixer for producing a mixed powder by mixing powdered radioactive waste, a hydraulic inorganic solidifying material, and water, and the mixer. The radioactive waste supply device for supplying the radioactive waste in an amount of 75% by mass or more with respect to 100% by mass of the mixed powder, and the mixer with respect to 100% by mass of the mixed powder. The total amount of the hydraulic inorganic solidified material and water is 25% by mass or less, and the mass ratio represented by the hydraulic inorganic solidified material: water is 0.9: 1.1 to 1.1: 0.9, A hydraulic inorganic solidified material supply device that supplies the hydraulic inorganic solidified material, a water supply device that supplies the water, a mixed powder transfer device that transfers the mixed powder in the mixer and stores it in a storage container; A storage container holding device that holds the storage container, and a mixed powder in the storage container, Having a compression device for pressurizing the following more pressure 10 MPa 13 MPa.

本発明によれば、放射性廃棄物の含有量が75質量%以上の成型体を、低加圧力、常温で形成することができる放射性廃棄物の圧縮成型方法及び圧縮成型装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the compression molding method and compression molding apparatus of a radioactive waste which can form the molded object whose content of a radioactive waste is 75 mass% or more at low pressure and normal temperature can be provided. .

実施形態の圧縮成型方法に用いられる放射性廃棄物の圧縮成型装置を模式的に示す図である。It is a figure which shows typically the compression molding apparatus of the radioactive waste used for the compression molding method of embodiment. 実施形態の圧縮成型方法を示すフロー図である。It is a flowchart which shows the compression molding method of embodiment. 実施形態の収容容器保持装置を模式的に示す断面図である。It is sectional drawing which shows typically the storage container holding | maintenance apparatus of embodiment. 収容容器のクリアランスを説明するための図である。It is a figure for demonstrating the clearance of a storage container. 仮押しを行わない場合の、ポルトランドセメント:水質量比と成型体の圧縮強度の関係を表すグラフである。It is a graph showing the relationship between Portland cement: water mass ratio and the compression strength of a molded object when not performing temporary pressing.

以下、図面を参照して、実施形態を詳細に説明する。
図1は、本実施形態に用いられる放射性廃棄物の圧縮成型装置10を模式的に示す図である。圧縮成型装置10は、粉末状の放射性廃棄物1、水硬性無機固化材2、水3を混合して混合粉体を生成する混合機15と、混合機15に接続され、粉末状の放射性廃棄物1の所定量を計量して混合機15に供給する放射性廃棄物供給装置11と、混合機15に接続され、水硬性無機固化材2の所定量を計量して混合機15に供給する水硬性無機固化材供給装置12と、混合機15に接続され、水3の所定量を計量して混合機15に供給する水供給装置13とを備えている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a radioactive waste compression molding apparatus 10 used in the present embodiment. The compression molding apparatus 10 is connected to a mixer 15 that mixes the powdered radioactive waste 1, the hydraulic inorganic solidified material 2, and the water 3 to produce a mixed powder, and is connected to the mixer 15, and is in the form of powdered radioactive waste. A radioactive waste supply device 11 that measures a predetermined amount of the product 1 and supplies it to the mixer 15, and water that is connected to the mixer 15 and measures a predetermined amount of the hydraulic inorganic solidifying material 2 to be supplied to the mixer 15. A hard inorganic solidifying material supply device 12 and a water supply device 13 connected to the mixer 15 and measuring a predetermined amount of water 3 and supplying the water 3 to the mixer 15 are provided.

また、圧縮成型装置10は、混合機15内の混合粉体を外部に移送して収容容器17に収容する混合粉体移送装置18と、収容容器17の内容物を加圧する圧縮装置16と、収容容器17を保持する収容容器保持装置19とを備えている。また、圧縮装置16は、収容容器17の内容物を加圧する加圧ピストン21を備えている。収容容器17は圧縮装置16内に配置されている。   In addition, the compression molding apparatus 10 includes a mixed powder transfer device 18 that transfers the mixed powder in the mixer 15 to the outside and stores it in the storage container 17, a compression device 16 that pressurizes the contents of the storage container 17, A storage container holding device 19 that holds the storage container 17 is provided. The compression device 16 includes a pressurizing piston 21 that pressurizes the contents of the storage container 17. The container 17 is disposed in the compression device 16.

図2は、本実施形態の圧縮成型方法を示すフロー図である。図2に示す圧縮成型方法は、粉末状の放射性廃棄物1と、固化材としての水硬性無機固化材2と、水3とをそれぞれ所定の量で計量する計量工程S1と、計量された放射性廃棄物1、水硬性無機固化材2及び水3を混合して混合粉体4を得る混合工程S2と、混合粉体4を収容容器17に収容する収容工程S3とを有している。本実施形態の圧縮成型方法はさらに、収容容器17内の混合粉体4を仮圧縮する仮圧縮工程S4と、仮圧縮された混合粉体4を本圧縮して成型体5を得る圧縮成型工程S5とを有している。   FIG. 2 is a flowchart showing the compression molding method of the present embodiment. The compression molding method shown in FIG. 2 includes a measuring step S1 for measuring powdered radioactive waste 1, a hydraulic inorganic solidified material 2 as a solidified material, and water 3 in a predetermined amount, and a measured radioactive content. There are a mixing step S2 for obtaining the mixed powder 4 by mixing the waste 1, the hydraulic inorganic solidifying material 2 and the water 3, and a storage step S3 for storing the mixed powder 4 in the storage container 17. The compression molding method of the present embodiment further includes a temporary compression step S4 for temporarily compressing the mixed powder 4 in the container 17 and a compression molding step for obtaining a molded body 5 by subjecting the temporarily compressed mixed powder 4 to main compression. S5.

処理対象物である放射性廃棄物1は、粉末状の放射性廃棄物であり、例えば原子力施設などから発生する放射性廃棄物や、可燃性の放射性廃棄物を焼却処理ないし加熱処理して得られる焼却灰や焼却飛灰等である。ここでいう「粉末」は、例えば、ふるい分け法による粒子径が2.5mm以下程度の大きさである。放射性廃棄物1は、焼却灰や焼却飛灰以外にも、例えば、砂や土壌、また、酸性又はアルカリ性の放射性薬剤を中和反応により処理することで生成する無機塩等であってもよい。また、放射性廃棄物1は、本発明の効果を損なわない限り、粉末状以外の放射性廃棄物1、例えば粉末状の焼却灰が凝集した凝集物や焼却時の燃え残り等の粒子径が2.5mm以上の粗大物、が含まれていてもよい。また、放射性廃棄物1は、少なくとも一部が放射性を有していれば良く、非放射性の廃棄物を含んでいてもよい。   The radioactive waste 1 to be treated is powdered radioactive waste, for example, radioactive waste generated from nuclear facilities or incinerated ash obtained by incineration or heat treatment of combustible radioactive waste. Or incineration fly ash. The “powder” here is, for example, a particle size of about 2.5 mm or less by a sieving method. In addition to the incineration ash and incineration fly ash, the radioactive waste 1 may be, for example, sand or soil, or an inorganic salt generated by treating an acidic or alkaline radioactive chemical by a neutralization reaction. In addition, the radioactive waste 1 has a particle size of 2.1, as long as it does not impair the effects of the present invention, such as radioactive waste 1 other than powder, such as agglomerated aggregates of powdered incineration ash and unburned residue during incineration. Coarse material of 5 mm or more may be included. Moreover, the radioactive waste 1 should just have radioactive at least one part, and may contain the non-radioactive waste.

本実施形態の圧縮成型方法は、放射性廃棄物1を75質量%以上含有する成型体5を形成する。放射性廃棄物1の量が75質量%より少なく、例えば70質量%でも、良好な強度の成型体5を得ることができるが、水3の量が多くなって、混合粉体4の流動性が低下し、設備の安定運転に支障を起こすことがあり、また、放射性廃棄物1の量が75質量%より少ないと、放射性廃棄物の減容性に劣るためである。   In the compression molding method of the present embodiment, the molded body 5 containing 75% by mass or more of the radioactive waste 1 is formed. Even if the amount of radioactive waste 1 is less than 75% by mass, for example, 70% by mass, a molded body 5 with good strength can be obtained. However, the amount of water 3 increases, and the fluidity of the mixed powder 4 increases. If the amount of the radioactive waste 1 is less than 75% by mass, the volume reduction of the radioactive waste is inferior.

計量工程S1では、混合粉体4の全量(100質量%)に対して75質量%以上の放射性廃棄物1を計量する。放射性廃棄物1の量は、好ましくは77〜85質量%である。放射性廃棄物1の量は多くするほど高減容化が可能であるが、多すぎると十分な強度が得られないことがある。   In the weighing step S1, 75% by mass or more of the radioactive waste 1 is weighed with respect to the total amount (100% by mass) of the mixed powder 4. The amount of the radioactive waste 1 is preferably 77 to 85% by mass. As the amount of radioactive waste 1 is increased, the volume can be reduced. However, if the amount is too large, sufficient strength may not be obtained.

また、計量工程S1において、成型体5の成分のうち、放射性廃棄物1以外の成分である水硬性無機固化材2と水3をそれぞれ計量する。水硬性無機固化材2と水3の合計量は、混合粉体4中の放射性廃棄物1以外の残分、すなわち、混合粉体4の全量に対して25質量%以下である。また、水硬性無機固化材2と水3の量の比は、水硬性無機固化材2:水3で示される質量比で0.9:1.1〜1.1:0.9である。水硬性無機固化材2と水3の質量比が上記範囲であることで、成型体5が十分な強度を有するものとなる。   Moreover, in the measurement process S1, the hydraulic inorganic solidified material 2 and the water 3 which are components other than the radioactive waste 1 among the components of the molded object 5 are respectively measured. The total amount of the hydraulic inorganic solidifying material 2 and the water 3 is 25% by mass or less with respect to the remainder of the mixed powder 4 other than the radioactive waste 1, that is, the total amount of the mixed powder 4. Moreover, the ratio of the quantity of the hydraulic inorganic solidification material 2 and the water 3 is 0.9: 1.1-1.1: 0.9 in mass ratio shown by the hydraulic inorganic solidification material 2: water3. When the mass ratio of the hydraulic inorganic solidifying material 2 and the water 3 is within the above range, the molded body 5 has sufficient strength.

次いで、計量された放射性廃棄物1、水硬性無機固化材2、水3を、図1に示す混合機15に供給して、混合機15によって混合し、混合粉体4を得る(混合工程S2)。放射性廃棄物1、水硬性無機固化材2、水3が上記配合量であることで、混合粉体4は、例えば、流動性が高い粉体となる。そのため、作業性に優れるとともに、成型体5に十分な強度を付与することができる。   Next, the weighed radioactive waste 1, the hydraulic inorganic solidified material 2, and the water 3 are supplied to the mixer 15 shown in FIG. 1 and mixed by the mixer 15 to obtain a mixed powder 4 (mixing step S2). ). When the radioactive waste 1, the hydraulic inorganic solidifying material 2, and the water 3 are in the above amounts, the mixed powder 4 becomes, for example, a powder having high fluidity. Therefore, workability is excellent and sufficient strength can be imparted to the molded body 5.

水硬性無機固化材2としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメント、高炉セメント、フライアッシュセメント等の各種混合セメント、アルミナセメント等の各種セメントを用いることができる。水硬性無機固化材2は1種を単独で用いてもよく、2種以上を混合してもよい。   As the hydraulic inorganic solidifying material 2, various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement, low heat portland cement, various mixed cements such as blast furnace cement and fly ash cement, various cements such as alumina cement Can be used. The hydraulic inorganic solidifying material 2 may be used alone or in combination of two or more.

水3は、特に限定されず、本発明の効果を損なわない限り、アルカリ性や酸性の薬剤や添加剤を含んでいてもよい。   The water 3 is not particularly limited, and may contain an alkaline or acidic drug or additive as long as the effects of the present invention are not impaired.

次いで、混合粉体4は、振動フィーダー、スクリューフィーダー等の混合粉体移送装置18によって、混合機15から圧縮装置16に移送され、圧縮装置16内に配置された収容容器17内に収容される(収容工程S3)。   Next, the mixed powder 4 is transferred from the mixer 15 to the compression device 16 by a mixed powder transfer device 18 such as a vibration feeder or a screw feeder, and is stored in a storage container 17 disposed in the compression device 16. (Accommodating step S3).

収容容器17は、例えば、金属板等で構成された内径が250mm〜300mm程度の円筒形の容器である。混合粉体4は収容容器17内で圧縮成型されて、成型体5が形成される。   The container 17 is, for example, a cylindrical container having an inner diameter of about 250 mm to 300 mm made of a metal plate or the like. The mixed powder 4 is compression molded in the container 17 to form a molded body 5.

次いで、収容容器17内の混合粉体4を、続く本圧縮の時間よりも短い時間で仮圧縮(仮押し)する仮圧縮工程S4を行う。仮圧縮工程S4を経ることで、常温かつ低加圧力でも、強度に優れた成型体5を得ることができる。   Next, a temporary compression step S <b> 4 is performed in which the mixed powder 4 in the container 17 is temporarily compressed (temporarily pressed) in a time shorter than the subsequent main compression time. By passing through temporary compression process S4, the molded object 5 excellent in intensity | strength can be obtained even at normal temperature and low pressurization force.

仮圧縮工程S4は、複数回行ってもよい。この場合、収容工程S3は、仮圧縮工程S4に合わせて複数回行う。すなわち、所定量の混合粉体4を複数回に分けて収容容器17内に収容するように、収容工程S3を複数回行う。各々の収容工程S3の後に仮圧縮工程S4を行い、次の収容工程3を行う。このようにして仮押しをした回数を「仮押し回数」とも称する。   The temporary compression step S4 may be performed a plurality of times. In this case, the accommodation step S3 is performed a plurality of times in accordance with the temporary compression step S4. That is, the accommodating step S3 is performed a plurality of times so that the predetermined amount of the mixed powder 4 is accommodated in the accommodating container 17 in a plurality of times. The temporary compression process S4 is performed after each accommodation process S3, and the next accommodation process 3 is performed. The number of times of temporary pressing in this way is also referred to as “temporary pressing number”.

例えば、仮押し回数を3回とする場合、最初の収容工程S3において、所定量の3分の1の放射性廃棄物1を収容容器17内に収容し、その後、仮押しする。この操作を2回行った後、残部(所定量の3分の1)を収容容器17内に収容して、仮押しする。本実施形態の放射性廃棄物の圧縮成型方法によれば、複数回の仮圧縮工程S4を経ることで、常温かつ低加圧力でも、より強度に優れた成型体5を得ることができる。   For example, when the number of temporary pressing is three, in the first storing step S3, a predetermined amount of one-third of the radioactive waste 1 is stored in the storage container 17, and then temporarily pressed. After this operation is performed twice, the remaining portion (one third of the predetermined amount) is accommodated in the accommodating container 17 and temporarily pressed. According to the method for compressing and molding radioactive waste according to the present embodiment, the molded body 5 having higher strength can be obtained even at a normal temperature and a low applied pressure by performing a plurality of temporary compression steps S4.

仮圧縮工程S4では、仮押しを、低圧、例えば、加圧力10MPa〜13MPa、好ましくは11MPa〜12MPaで行うことができる。仮押し時間は、続く本圧縮の時間よりも短く、瞬時(0.1〜5秒程度)である。仮押し時の温度は特に調整せず、常温(5〜40℃)でよい。仮押し回数は、1回以上で、常温かつ低加圧力でも、強度に優れた成型体5を得ることができる。また、成型効率の点では、仮押し回数は、15回以下程度が好ましく、成型体5の優れた強度を得つつ成型効率を高める点で、3回であることがさらに好ましい。   In the temporary compression step S4, the temporary pressing can be performed at a low pressure, for example, a pressure of 10 MPa to 13 MPa, preferably 11 MPa to 12 MPa. The temporary pressing time is shorter (approximately 0.1 to 5 seconds) than the subsequent main compression time. The temperature at the time of temporary pressing is not particularly adjusted, and may be room temperature (5 to 40 ° C.). The number of temporary pressings is one or more, and a molded body 5 having excellent strength can be obtained even at room temperature and low pressure. In terms of molding efficiency, the number of temporary pressings is preferably about 15 times or less, and more preferably 3 times in terms of increasing molding efficiency while obtaining the excellent strength of the molded body 5.

仮圧縮工程S4後、収容容器17内の混合粉体4を本圧縮(本押し)する圧縮成型工程S5を行う。圧縮成型工程S5では仮圧縮工程S4で得られた成型体5の前駆体を十分に押し固めるために、仮押し時間よりも長時間加圧する。圧縮成型工程S5における本押し時間は、例えば1時間以上である。本押し時間は、放射性廃棄物1の種類や混合粉体4の配合等によって、成型体5を形成するのに十分な時間行えばよい。本押しは、仮押しと同様に、低圧かつ常温で行うことができる。   After the temporary compression step S4, a compression molding step S5 is performed in which the mixed powder 4 in the container 17 is subjected to main compression (main pressing). In the compression molding step S5, in order to sufficiently compress the precursor of the molded body 5 obtained in the temporary compression step S4, pressurization is performed for a longer time than the temporary pressing time. The main pressing time in the compression molding step S5 is, for example, 1 hour or more. The main pressing time may be a time sufficient to form the molded body 5 depending on the type of the radioactive waste 1 or the blended powder 4. The main pressing can be performed at a low pressure and at a normal temperature, similarly to the temporary pressing.

また、本実施形態の圧縮成型方法において、仮圧縮工程S4、圧縮成型工程S5を通じて、収容容器17を収容容器保持装置19によって保持する。図3(a)〜(c)は、収容容器保持装置19と収容容器17を模式的に示す断面図である。図3(a)は、収容容器保持装置19によって収容容器17を保持した状態を表す図である。図3(b)は、図3(a)の状態で、圧縮装置16に備えられる加圧ピストン21により、収容容器17の内容物を加圧する状態を表す図である。図3(c)は、収容容器保持装置19から収容容器17を取り外す状態を表す図である。   In the compression molding method of the present embodiment, the storage container 17 is held by the storage container holding device 19 through the temporary compression step S4 and the compression molding step S5. 3A to 3C are cross-sectional views schematically showing the container holding device 19 and the container 17. FIG. 3A is a diagram illustrating a state in which the storage container 17 is held by the storage container holding device 19. FIG. 3B is a diagram illustrating a state in which the contents of the storage container 17 are pressurized by the pressurizing piston 21 provided in the compression device 16 in the state of FIG. FIG. 3C is a diagram illustrating a state in which the storage container 17 is removed from the storage container holding device 19.

例えば、図3(a)、(b)に示すように、仮圧縮工程S4及び圧縮成型工程S5において、収容容器17の内容物を、加圧ピストン21によって加圧する場合、収容容器17を構成する金属板が薄いと、収容容器17の強度や加圧ピストンの加圧力によっては、収容容器17が変形したり、変形によって破損して内容物が飛散したりするおそれがある。   For example, as shown in FIGS. 3A and 3B, in the temporary compression step S <b> 4 and the compression molding step S <b> 5, when the contents of the storage container 17 are pressurized by the pressurizing piston 21, the storage container 17 is configured. If the metal plate is thin, depending on the strength of the storage container 17 and the pressure applied by the pressure piston, the storage container 17 may be deformed or may be damaged by the deformation and the contents may be scattered.

そのため、本実施形態では、収容容器17の変形を抑制するようにその外周を取り囲んで保持する収容容器保持装置19を用いる。また、収容容器保持装置19は、収容容器17内部に加圧ピストン21が挿入されるように、収容容器17と加圧ピストン21との位置を合わせ、収容容器17の上部を固定する。これにより、収容容器17が変形したり、変形によって破損したりするのを防止することができる。さらに、図3(c)に示すように、収容容器保持装置19は、収容容器17を取り外し可能に構成することで、圧縮成型装置10によって複数の成型体5を繰り返し作製する際に成型効率を高めることができる。なお、収容容器保持装置19は、例えば、金属板等で構成することができる。   Therefore, in this embodiment, the storage container holding device 19 that surrounds and holds the outer periphery so as to suppress deformation of the storage container 17 is used. Further, the container holding device 19 aligns the positions of the container 17 and the pressure piston 21 so that the pressurizing piston 21 is inserted into the container 17 and fixes the upper part of the container 17. Thereby, it can prevent that the storage container 17 deform | transforms or is damaged by a deformation | transformation. Further, as shown in FIG. 3C, the storage container holding device 19 is configured so that the storage container 17 can be removed, so that the molding efficiency can be improved when the compression molding apparatus 10 repeatedly produces a plurality of molded bodies 5. Can be increased. In addition, the container holding device 19 can be composed of, for example, a metal plate.

図4は、仮圧縮工程S4及び圧縮成型工程S5における収容容器17のクリアランスを説明するための図であり、収容容器保持装置19に保持された収容容器17の水平断面を表す図である。図4に示すように、仮圧縮工程S4及び圧縮成型工程S5において、収容容器17の内容物を圧縮装置16の加圧ピストン21によって加圧する場合、収容容器17の内壁と、加圧ピストン21の外周の間に、クリアランス(隙間)Cを設けることが好ましい。クリアランスCを設けることで、圧縮時に混合粉体4中に含まれる空気が外部に抜けやすい。そのため、成型体5中に空気が残留しにくいため、成型体5の強度を向上させることができる。   FIG. 4 is a view for explaining the clearance of the storage container 17 in the temporary compression step S4 and the compression molding step S5, and is a diagram showing a horizontal section of the storage container 17 held by the storage container holding device 19. As shown in FIG. 4, in the temporary compression step S <b> 4 and the compression molding step S <b> 5, when the contents of the storage container 17 are pressurized by the pressurization piston 21 of the compression device 16, the inner wall of the storage container 17 and the pressurization piston 21. It is preferable to provide a clearance (gap) C between the outer circumferences. By providing the clearance C, the air contained in the mixed powder 4 is likely to escape to the outside during compression. For this reason, since air hardly remains in the molded body 5, the strength of the molded body 5 can be improved.

クリアランスCの幅は、0.5mm〜3mm程度が好ましく1mm〜2mm程度がより好ましい。クリアランスの幅が0.5mm以上であると、圧縮時に混合粉体4中に含まれる空気が十分に外部に抜け易く、3mm以下であると、内容物が外部にはみ出しにくく、付着物の形成を抑え易い。なお、収容容器17の内壁及び加圧ピストン21の外周が円筒である場合、クリアランスCの幅は、収容容器17の内径と加圧ピストン21の外周径の差の2分の1の値として算出することができる。   The width of the clearance C is preferably about 0.5 mm to 3 mm, and more preferably about 1 mm to 2 mm. When the clearance width is 0.5 mm or more, the air contained in the mixed powder 4 is easily extracted to the outside at the time of compression. When the clearance width is 3 mm or less, the contents are not easily protruded to the outside, and the deposit is formed. Easy to suppress. When the inner wall of the container 17 and the outer periphery of the pressure piston 21 are cylindrical, the width of the clearance C is calculated as a half value of the difference between the inner diameter of the container 17 and the outer diameter of the pressure piston 21. can do.

このようにして、収容容器17で混合粉体4が圧縮成型されて成型体5を得る。成型体5の直径Dに対する高さLの比L/Dは1.5以下であることが好ましい。L/Dは、1.5以下で成型体5の強度の低下を抑制しやすい。L/Dは、収容容器17の内径と、放射性廃棄物1、水硬性無機固化剤2、水3の量で調整することができる。得られた成型体5は、容容器17ごと圧縮装置16外部に搬出されて養生されるか、保管される。   In this way, the mixed powder 4 is compression molded in the storage container 17 to obtain a molded body 5. The ratio L / D of the height L to the diameter D of the molded body 5 is preferably 1.5 or less. L / D is 1.5 or less and it is easy to suppress a decrease in strength of the molded body 5. L / D can be adjusted by the amount of the inner diameter of the container 17, the radioactive waste 1, the hydraulic inorganic solidifying agent 2, and the water 3. The obtained molded body 5 is taken out of the compression device 16 together with the container 17 and cured or stored.

以上説明した本実施形態の放射性廃棄物の圧縮成型方法によれば、熱を加えることなく常温で、かつ比較的低い加圧力で優れた強度の成型体を形成することができる。   According to the method for compressing and molding radioactive waste according to the present embodiment described above, a molded body having excellent strength can be formed at room temperature and with a relatively low pressure without applying heat.

次に、実施例を用いて本発明をより詳細に説明する。   Next, the present invention will be described in more detail using examples.

(実施例1、2)
実施例では、模擬放射性廃棄物として都市ごみ焼却炉の焼却灰(以下、単に「焼却灰」ともいう。)を用いた。焼却灰75質量%、ポルトランドセメント(OPC)12.5質量%及び水12.5質量%を計量し、その後、これらを混合して混合粉体を得た。焼却灰は、レーザー回折散乱法による体積基準の平均粒子径が100μm程度である。
(Examples 1 and 2)
In the examples, incineration ash (hereinafter also simply referred to as “incineration ash”) of municipal waste incinerators was used as simulated radioactive waste. 75% by mass of incinerated ash, 12.5% by mass of Portland cement (OPC) and 12.5% by mass of water were weighed, and then mixed to obtain a mixed powder. Incinerated ash has a volume-based average particle diameter of about 100 μm by laser diffraction scattering.

次いで、得られた混合粉体の一部を採取して内径250mmφの金属の円筒形の容器に収容した。このとき、使用する混合粉体の量は、最終的に得られる成型体の高さが375mm、すなわちL/Dが概ね1.5になる量に調整した。   Next, a part of the obtained mixed powder was collected and accommodated in a metal cylindrical container having an inner diameter of 250 mmφ. At this time, the amount of the mixed powder to be used was adjusted so that the finally obtained molded body had a height of 375 mm, that is, L / D was about 1.5.

実施例1では、混合粉体の全量を容器内に収容した後、仮押しをして、その後、本押しをした(仮押し回数1回)。実施例2では、混合粉体を3分割して、それぞれ順に容器に収容し、各収容後に仮押しをして、合計3回の仮押しを経た後、本押しをした(仮押し回数3回)。   In Example 1, the entire amount of the mixed powder was accommodated in a container, then temporarily pressed, and then pressed (temporary pressing once). In Example 2, the mixed powder was divided into three parts and each was sequentially accommodated in a container. After each accommodation, the mixed powder was temporarily pressed, and after a total of three temporary pressings, the main pressing was performed (the number of temporary pressings was 3 times). ).

仮押し時間は瞬時(約0.5秒)、本押し時間は、実施例1では6時間、実施例2では4時間とした。加圧力はいずれも10MPaで、いずれも温度は調節せず常温で行った。また、仮押し及び本押しを行うときには容器の外周及び上部を金属厚板で保持して、変形を防止した。クリアランスは1mmとした。得られた成型体を7日間養生した後、圧縮強度を測定した。結果を、混合粉体中の各成分の配合、圧縮条件と併せて表1に示す。   The temporary pressing time was instantaneous (about 0.5 seconds), and the main pressing time was 6 hours in Example 1 and 4 hours in Example 2. The applied pressure was 10 MPa for all, and the temperature was not adjusted for all, and the test was performed at room temperature. Moreover, when performing temporary pressing and main pressing, the outer periphery and upper part of the container were held with a thick metal plate to prevent deformation. The clearance was 1 mm. After the resulting molded body was cured for 7 days, the compressive strength was measured. The results are shown in Table 1 together with the blending of each component in the mixed powder and the compression conditions.

(実施例3、4)
実施例3、4では、混合粉体中の各成分の配合と、成型体の圧縮強度の関係について調べた。焼却灰の量を実施例3では80質量%、実施例4では85質量%とし、残部をいずれもポルトランドセメント及び水の質量比を1:1として混合し、混合粉体を得た。その他は実施例2と同様の操作及び条件で成型体を得た。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Examples 3 and 4)
In Examples 3 and 4, the relationship between the blending of each component in the mixed powder and the compression strength of the molded body was examined. The amount of incinerated ash was 80% by mass in Example 3, 85% by mass in Example 4, and the remainder was mixed at a Portland cement / water mass ratio of 1: 1 to obtain a mixed powder. Otherwise, a molded body was obtained under the same operation and conditions as in Example 2. The results are shown in Table 1 together with the blended powder and compression conditions.

(実施例5〜7)
実施例5〜7では、クリアランスの幅と、成型体の圧縮強度の関係について調べた。実施例1において、異なる径の杵(加圧ピストン)を用い、クリアランスを、実施例5では0.5mm、実施例6では1mm、実施例7では2mmとして、その他は実施例1と同様の操作及び条件で成型体を得た。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Examples 5-7)
In Examples 5 to 7, the relationship between the clearance width and the compression strength of the molded body was examined. In Example 1, a rod having a different diameter (pressure piston) is used, and the clearance is 0.5 mm in Example 5, 1 mm in Example 6, 2 mm in Example 7, and the other operations are the same as in Example 1. And the molding was obtained on condition. The results are shown in Table 1 together with the blended powder and compression conditions.

(実験例1、2)
実験例1、2では、L/Dの値を変更した際の成型体の圧縮強度への影響について調べた。L/Dを、実験例1では1、実験例2では1.5として、実施例1と同様の操作及び条件で仮押しをした。仮押し1回後の成型体前駆体の圧縮強度を測定した。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Experimental Examples 1 and 2)
In Experimental Examples 1 and 2, the influence on the compression strength of the molded body when the value of L / D was changed was examined. L / D was set to 1 in Experimental Example 1 and 1.5 in Experimental Example 2, and was temporarily pressed under the same operation and conditions as in Example 1. The compressive strength of the molded body precursor after one temporary pressing was measured. The results are shown in Table 1 together with the blended powder and compression conditions.

(比較例1〜3)
模擬放射性廃棄物として、比較例1、3では焼却灰を、比較例2ではりん酸カルシウム主成分の無機質粉体を使用した。それぞれ、放射性廃棄物75質量%、残部をポルトランドセメント及び水を1:1の質量比として混合して混合粉体を得た。焼却灰及び無機質粉体は、レーザー回折散乱法による体積基準の平均粒子径が100μm程度である。その後、仮押しを行わず比較例1、2では、加圧力10MPaで1時間、比較例3では、加圧力10MPaで6時間、温度は調節せずに常温で圧縮して成型体を得た。比較例1〜3において、クリアランスは1mmm、L/Dは概ね1.5である。得られた成型体を7日間養生して、その後、圧縮強度を測定した。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Comparative Examples 1-3)
As simulated radioactive waste, incinerated ash was used in Comparative Examples 1 and 3, and inorganic powder mainly composed of calcium phosphate was used in Comparative Example 2. In each case, 75% by mass of radioactive waste and the remainder were mixed with Portland cement and water at a mass ratio of 1: 1 to obtain mixed powders. The incinerated ash and the inorganic powder have a volume-based average particle diameter of about 100 μm by a laser diffraction scattering method. Thereafter, without pressing, in Comparative Examples 1 and 2, the pressure was 10 MPa for 1 hour, and in Comparative Example 3 the pressure was 10 MPa for 6 hours and the temperature was not adjusted to obtain a molded body. In Comparative Examples 1 to 3, the clearance is 1 mm and L / D is approximately 1.5. The obtained molded body was cured for 7 days, and then the compressive strength was measured. The results are shown in Table 1 together with the blended powder and compression conditions.

Figure 2019002824
Figure 2019002824

表1より、仮押しを1回以上行った実施例1、2では、仮押しを行わない比較例1〜3に比べて、成型体強度を4倍以上高められたことが分かる。例えば、成型体強度の目安値を、低レベル放射性廃棄物処分基準の1.47MPa以上とした場合、仮押しなしでは裕度が無かったが、仮押しの効果によって目安値の強度を十分満足する良好な成型体が得られた。これは、L/Dの小さな成型体を重ね打ちすることと同様の作用による効果と考えられる。しかし、仮押し毎の成型体接着部が剥離するようなことはなく、成型体として一体であった。   From Table 1, it can be seen that in Examples 1 and 2 where the temporary pressing was performed once or more, compared to Comparative Examples 1 to 3 where the temporary pressing was not performed, the strength of the molded body was increased four times or more. For example, when the standard value of the strength of the molded body is 1.47 MPa or more of the low-level radioactive waste disposal standard, there is no tolerance without temporary pressing, but the standard strength is sufficiently satisfied by the effect of temporary pressing. A good molded body was obtained. This is considered to be the effect by the same effect | action as overprinting a molded object with small L / D. However, the molded body adhesion portion for each temporary pressing was not peeled off, and was integrated as a molded body.

また、実施例3、4より、放射性廃棄物の配合比75質量%以上において、仮押しを行うことで、優れた強度の成型体を得られることが分かる。   Moreover, from Examples 3 and 4, it can be seen that a molded body with excellent strength can be obtained by temporary pressing at a radioactive waste mixing ratio of 75% by mass or more.

また、実験例1、2より、L/Dが小さいほど、仮押し後の成型体前駆体の圧縮強度が高く、強度の高い成型体を得られることが分かる。   In addition, it can be seen from Experimental Examples 1 and 2 that the smaller the L / D, the higher the compression strength of the molded body precursor after temporary pressing and the higher the strength of the molded body.

(参考例1〜3)
参考例では、仮押しを行わない場合について、ポルトランドセメント(OPC)及び水の量の比を変更した場合の、成型体の圧縮強度への影響を調べた。模擬放射性廃棄物として、比較例1、2と同様の焼却灰及び無機質粉体を用い、混合粉体100質量%に対して模擬放射性廃棄物の量を75質量%とした。混合粉体の100質量%に対して、(OPC質量%,水質量%)を、(19.6,5.4)、(13.75,11.25)、(12.5,12.5)、(11.25,13.75)、(7.5,17.5)、(0,25)とした。それぞれの配合で混合粉体を作成し、L/Dが概ね1.5となるように上記同様の容器に収容し、クリアランス1mmで、10MPa、1時間本押しをした。得られた成型体について、実施例1と同様に養生した後、圧縮強度を測定した。結果を図5に示す。
(Reference Examples 1-3)
In the reference example, the influence on the compressive strength of the molded product when the ratio of the amount of Portland cement (OPC) and water was changed was examined for the case where temporary pressing was not performed. As simulated radioactive waste, the same incinerated ash and inorganic powder as in Comparative Examples 1 and 2 were used, and the amount of simulated radioactive waste was 75% by mass with respect to 100% by mass of the mixed powder. (OPC mass%, water mass%) is (19.6, 5.4), (13.75, 11.25), (12.5, 12.5) with respect to 100 mass% of the mixed powder. ), (11.25, 13.75), (7.5, 17.5), (0, 25). Mixed powders were prepared with the respective blends, accommodated in a container similar to the above so that the L / D was approximately 1.5, and pressed at 10 MPa for 1 hour with a clearance of 1 mm. About the obtained molded object, after curing like Example 1, compressive strength was measured. The results are shown in FIG.

図5より、仮押しを行わない場合、OPCの量が、7.5〜13.75質量%で、焼却灰及び無機質粉体のいずれを用いた場合も成型体の圧縮強度の目安値を満たしたことが分かる。仮押しを行った場合にも、OPCと水の質量比と成型体の圧縮強度の関係は、仮押しを行わない場合と同様の傾向を示すと考えられる。そのため、仮押しを行う場合のOPCと水の質量比は、上記目安値を満たした中央値のOPC:水=1:1(12.5質量%:12.5質量%)から、測定誤差範囲が含まれる±10%の範囲を採用した。   From FIG. 5, when the temporary pressing is not performed, the amount of OPC is 7.5 to 13.75% by mass, and any of incinerated ash and inorganic powder is used, which satisfies the standard value of the compression strength of the molded body. I understand that. Even when temporary pressing is performed, it is considered that the relationship between the mass ratio of OPC and water and the compression strength of the molded body shows the same tendency as when temporary pressing is not performed. Therefore, the mass ratio of OPC to water in the case of temporary pressing is the measurement error range from the median OPC: water = 1: 1 (12.5 mass%: 12.5 mass%) satisfying the above-mentioned standard value. A range of ± 10% in which is included was adopted.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…放射性廃棄物、2…水硬性無機固化材、3…水、4…混合粉体、5…成型体、10…圧縮成型装置、11…放射性廃棄物供給装置、12…水硬性無機固化材供給装置、13…水供給装置、15…混合機、16…圧縮装置、17…収容容器、18…混合粉体移送装置、19…収容容器保持装置、21…加圧ピストン、S1…計量工程、S2…混合工程、S3…収容工程、S4…仮圧縮工程、S5…圧縮成型工程、C…クリアランス。   DESCRIPTION OF SYMBOLS 1 ... Radioactive waste, 2 ... Hydraulic inorganic solidification material, 3 ... Water, 4 ... Mixed powder, 5 ... Molded object, 10 ... Compression molding apparatus, 11 ... Radioactive waste supply apparatus, 12 ... Hydraulic inorganic solidification material Supply device, 13 ... water supply device, 15 ... mixer, 16 ... compression device, 17 ... accommodating container, 18 ... mixed powder transfer device, 19 ... accommodating container holding device, 21 ... pressurizing piston, S1 ... metering step, S2 ... Mixing step, S3 ... Housing step, S4 ... Temporary compression step, S5 ... Compression molding step, C ... Clearance.

Claims (7)

粉末状の放射性廃棄物の圧縮成型方法であって、
前記放射性廃棄物と水硬性無機固化材と水とを混合して混合粉体を得る工程であり、前記混合粉体の100質量%に対して、前記放射性廃棄物を75質量%以上、前記水硬性無機固化材と水を、合計で25質量%以下、かつ水硬性無機固化材:水で表わされる質量比で0.9:1.1〜1.1:0.9となる量で混合する混合工程と、
前記混合粉体を収容容器内に収容する収容工程と、
前記収容容器を収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を仮圧縮する仮圧縮工程と、
前記収容容器を前記収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を、前記仮圧縮工程より長時間で本圧縮して成型体を得る圧縮成型工程と
を有することを特徴とする放射性廃棄物の圧縮成型方法。
A method for compression molding powdered radioactive waste,
A step of mixing the radioactive waste, a hydraulic inorganic solidifying material, and water to obtain a mixed powder, wherein the radioactive waste is 75% by mass or more with respect to 100% by mass of the mixed powder; The hard inorganic solidified material and water are mixed in an amount of 25% by mass or less in total and 0.9: 1.1 to 1.1: 0.9 in terms of mass ratio represented by the hydraulic inorganic solidified material: water. A mixing step;
A storage step of storing the mixed powder in a storage container;
A temporary compression step of temporarily compressing the mixed powder in the storage container in a state where the storage container is held by a storage container holding device;
A compression molding step of obtaining a molded body by subjecting the mixed powder in the storage container to a main compression in a longer time than the temporary compression step in a state where the storage container is held by the storage container holding device. A feature of a compression molding method for radioactive waste.
前記水硬性無機固化材は、ポルトランドセメントであることを特徴とする請求項1記載の放射性廃棄物の圧縮成型方法。   The method for compression molding radioactive waste according to claim 1, wherein the hydraulic inorganic solidifying material is Portland cement. 前記仮圧縮工程及び前記圧縮成型工程において、加圧ピストンによって前記収容容器の内容物を加圧し、前記収容容器の内壁と、加圧ピストンの外周の間に、幅が0.5mm以上3mm以下のクリアランスを設けることを特徴とする請求項1又は2に記載の放射性廃棄物の圧縮成型方法。   In the temporary compression step and the compression molding step, the contents of the container are pressurized by a pressure piston, and the width is 0.5 mm or more and 3 mm or less between the inner wall of the container and the outer periphery of the pressure piston. The method for compression molding radioactive waste according to claim 1 or 2, wherein a clearance is provided. 前記成型体の直径Dに対する高さLの比L/Dが1.5以下であることを特徴とする請求項1乃至3のいずれか1項に記載の放射性廃棄物の圧縮成型方法。   The ratio L / D of the height L with respect to the diameter D of the said molded object is 1.5 or less, The compression molding method of the radioactive waste of any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記仮圧縮工程における加圧時間は瞬時であり、
前記圧縮成型工程における加圧時間は1時間以上であり、
前記仮圧縮工程及び前記圧縮成型工程における加圧力が、10MPa以上13MPa以下であることを特徴とする請求項1乃至4のいずれか1項に記載の放射性廃棄物の圧縮成型方法。
The pressurization time in the temporary compression step is instantaneous,
The pressurization time in the compression molding step is 1 hour or more,
The method for compressing and molding radioactive waste according to any one of claims 1 to 4, wherein the applied pressure in the temporary compression step and the compression molding step is 10 MPa or more and 13 MPa or less.
粉末状の放射性廃棄物と、水硬性無機固化材と、水とを混合して混合粉体を生成する混合機と、
前記混合機に、前記混合粉体の100質量%に対して75質量%以上となる量の前記放射性廃棄物を供給する放射性廃棄物供給装置と、
前記混合機に、前記混合粉体の100質量%に対して前記水硬性無機固化材と水が合計で25質量%以下、かつ前記水硬性無機固化材:水で表わされる質量比が0.9:1.1〜1.1:0.9となる量の、前記水硬性無機固化材を供給する水硬性無機固化材供給装置及び前記水を供給する水供給装置と、
前記混合機内の混合粉体を移送して収容容器に収容する混合粉体移送装置と、
前記収容容器を保持する収容容器保持装置と、
前記収容容器内の混合粉体を、加圧力10MPa以上13MPa以下で加圧する圧縮装置と
を有することを特徴とする放射性廃棄物の圧縮成型装置。
A mixer for producing a powder mixture by mixing powdered radioactive waste, a hydraulic inorganic solidifying material, and water;
A radioactive waste supply device for supplying the radioactive waste in an amount of 75% by mass or more with respect to 100% by mass of the mixed powder to the mixer;
In the mixer, the total amount of the hydraulic inorganic solidified material and water is 25% by mass or less with respect to 100% by mass of the mixed powder, and the mass ratio of the hydraulic inorganic solidified material: water is 0.9. : 1.1 to 1.1: 0.9, a hydraulic inorganic solidified material supply device that supplies the hydraulic inorganic solidified material, and a water supply device that supplies the water;
A mixed powder transfer device for transferring the mixed powder in the mixer and storing it in a storage container;
A container holding device for holding the container;
A compression molding apparatus for radioactive waste, comprising: a compression apparatus that pressurizes the mixed powder in the container at a pressure of 10 MPa to 13 MPa.
前記圧縮装置は、加圧ピストンを備え、
前記収容容器の内壁と前記加圧ピストンの外周の間に、幅が0.5mm以上3mm以下のクリアランスを有することを特徴とする請求項6記載の放射性廃棄物の圧縮成型装置。
The compression device includes a pressure piston,
7. The radioactive waste compression molding apparatus according to claim 6, wherein a clearance having a width of not less than 0.5 mm and not more than 3 mm is provided between the inner wall of the container and the outer periphery of the pressure piston.
JP2017118483A 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste Active JP6871078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118483A JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118483A JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Publications (2)

Publication Number Publication Date
JP2019002824A true JP2019002824A (en) 2019-01-10
JP6871078B2 JP6871078B2 (en) 2021-05-12

Family

ID=65004902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118483A Active JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Country Status (1)

Country Link
JP (1) JP6871078B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150879A (en) * 1983-12-01 1985-08-08 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Conditioning method of contaminated waste by cement solidification
JPS6178483A (en) * 1984-09-25 1986-04-22 Mitsui Eng & Shipbuild Co Ltd Solidification of incineration ash
JP2013220615A (en) * 2012-04-18 2013-10-28 Fuji Corporation:Kk Forming form for test piece for test of elution amount of harmful substance included in inorganic waste or soil, and usage thereof
JP2015108521A (en) * 2013-12-03 2015-06-11 株式会社東芝 Solidification method and solidification device of radioactive waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150879A (en) * 1983-12-01 1985-08-08 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Conditioning method of contaminated waste by cement solidification
JPS6178483A (en) * 1984-09-25 1986-04-22 Mitsui Eng & Shipbuild Co Ltd Solidification of incineration ash
JP2013220615A (en) * 2012-04-18 2013-10-28 Fuji Corporation:Kk Forming form for test piece for test of elution amount of harmful substance included in inorganic waste or soil, and usage thereof
JP2015108521A (en) * 2013-12-03 2015-06-11 株式会社東芝 Solidification method and solidification device of radioactive waste

Also Published As

Publication number Publication date
JP6871078B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
Razak et al. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material
Camilleri Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry
UA123846C2 (en) Geopolymer molding production method and geopolymer molding production system
Collier et al. The suitability of a supersulfated cement for nuclear waste immobilisation
JP6871078B2 (en) Compression molding method and compression molding equipment for radioactive waste
JP2018065731A (en) Method for manufacturing geopolymer molded body and manufacturing system of geopolymer molded body
JP2015014571A (en) Radioactive waste solidification apparatus, solidification processing method of radioactive waste solidified substance and manufacturing method of radioactive waste solidified substance
JP2015108521A (en) Solidification method and solidification device of radioactive waste
JP2013234881A (en) Method for manufacturing cement solidified product of radioactive waste incineration ash, and the solidified product
WO2018143205A1 (en) Geopolymer molding production method and geopolymer molding production system
JP7159147B2 (en) Solidified geopolymer manufacturing method and solidified geopolymer manufacturing system
JP2929077B2 (en) Hydraulic material for neutron shielding and method of manufacturing neutron shielding body using the same
JP5190975B1 (en) Solidification method for combustible waste incineration ash and its solidified body
JP2007210871A (en) Cement-based packing/solidifying material
Tamanna et al. Strength Characteristics of Mortar Containing Different Sizes Glass Powder
JP7487025B2 (en) Manufacturing method and manufacturing device for geopolymer molded body
JP5676857B2 (en) Solidification method for radioactive waste
JP2009209036A (en) Method for producing zeolite-containing hardened body
JP2006096624A (en) Method of manufacturing artificial aggregate using heavy metal contaminated soil
RU2137229C1 (en) Method for immobilizing ash residue of radioactive and toxic waste combustion process
VANDEVENNE et al. The effect of Cs and Sr on the mechanical properties of blast furnace slag inorganic polymer for radioactive waste immobilisation
JP6869843B2 (en) How to suppress dust generation of clinker ash
JP2006273600A (en) Adhesion-suppressed slaked lime
JP2014228406A (en) Method for manufacturing cement solidified material of radioactive waste incineration ash, and cement solidified material
JP2014186012A (en) Recognizing method of slag powder content and cement composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150