JP2019000952A - Construction method of drill screw - Google Patents

Construction method of drill screw Download PDF

Info

Publication number
JP2019000952A
JP2019000952A JP2017118711A JP2017118711A JP2019000952A JP 2019000952 A JP2019000952 A JP 2019000952A JP 2017118711 A JP2017118711 A JP 2017118711A JP 2017118711 A JP2017118711 A JP 2017118711A JP 2019000952 A JP2019000952 A JP 2019000952A
Authority
JP
Japan
Prior art keywords
torque
drill screw
operation mode
probability distribution
fastening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017118711A
Other languages
Japanese (ja)
Other versions
JP6846992B2 (en
Inventor
麻起 大和矢
Maki Owaya
麻起 大和矢
聡 安田
Satoshi Yasuda
聡 安田
加藤 圭
Kei Kato
圭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2017118711A priority Critical patent/JP6846992B2/en
Publication of JP2019000952A publication Critical patent/JP2019000952A/en
Application granted granted Critical
Publication of JP6846992B2 publication Critical patent/JP6846992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

To provide a construction method of a drill screw, allowing for securement of a required fastening performance with an electric screwdriver.SOLUTION: The construction method of a drill screw is provided that comprises operation mode evaluation step S1 of an operation mode of an electric screwdriver employed when the drill screw is fastened to a substrate. In the operation mode evaluation step S1, there are performed a breakdown torque measurement work S11 for measuring a breakdown torque value of the drill screw, a return torque measurement work S13 for measuring a return torque by the pre-determined operation mode of the electric screwdriver, a breakdown torque probability distribution assumption work S12 for assuming the probability distribution of the breakdown torque as the normal distribution comprising its average value and standard deviation, a return torque probability distribution assumption work S14 for assuming the probability distribution of the return torque as the normal distribution comprising its average value and standard deviation, and a fastening performance evaluation/mode determination work S15 for evaluating the fastening performance by the predetermined operation mode from the relationship between the probability distribution of the breakdown torque and the probability distribution of the return torque and determining the operation mode in the drill screw fastening.SELECTED DRAWING: Figure 1

Description

本発明は、電動ドライバを用いたドリルねじの施工方法に関する。   The present invention relates to a drill screw construction method using an electric screwdriver.

鋼板等の基板にねじを締め付ける場合には、例えば特許文献1に示すように、トルク管理を行いながら締め付けるのが一般的である。このようなねじは、基板に形成された下穴にねじ込むのが一般的である。設備機器を基板に固定する場合や、鋼板同士を接合する場合等には、ねじを締結するための下穴を基板(鋼板)に多数形成する必要があるため手間がかかる。そのため、電動ドライバを用いてドリルねじを締結することで、下穴を形成する手間を省略する場合がある(例えば、特許文献2参照)。
ところが、下穴を設けることなくドリルねじを締結する場合には、削孔から締付完了までに時間がかかってしまう。また、締付に必要なトルクの大きさは、ドリルねじの形状(ねじ山の間隔や勾配等)、鋼板の厚さ、削孔時に生じるバリによる摩擦によって変動する。そのため、ドリルねじの施工では、インパクトドライバを用いて高トルクで作業する場合がある。
インパクトドライバ等の電動ドライバを用いたドリルねじの締結作業は、基板に衝撃を与えながら削孔を行うため、トルク管理が難く、締付トルクがドリルねじの適正トルク値よりも大きく上回ることから、ドリルねじ頭のねじ切れや基板のねじ孔の損傷によるねじの空転が発生する場合がある。このように、電動ドライバを用いたドリルねじの締結作業には、経験と技術が必要となる。一方、経験や技術は現場で評価し、客観的に施工管理することが困難であるため、施工品質のばらつきにより、ドリルねじの緩みや破断が確認されている。そのため、電動ドライバを用いたドリルねじの施工では、設計で必要とされる本数よりも多めにドリルねじを締結することで、安全性の向上を図っていた。
When a screw is tightened on a substrate such as a steel plate, for example, as shown in Patent Document 1, it is generally tightened while performing torque management. Such a screw is generally screwed into a pilot hole formed in the substrate. When fixing equipment to a substrate, or when joining steel plates, etc., it is necessary to form a large number of pilot holes in the substrate (steel plate) for fastening screws. For this reason, the labor of forming the pilot hole may be omitted by fastening the drill screw using an electric screwdriver (see, for example, Patent Document 2).
However, when a drill screw is fastened without providing a pilot hole, it takes time from drilling to completion of tightening. In addition, the magnitude of torque required for tightening varies depending on the shape of the drill screw (such as the thread spacing and gradient), the thickness of the steel sheet, and friction caused by burrs generated during drilling. Therefore, in the construction of the drill screw, there are cases where work is performed with high torque using an impact driver.
Because the drill screw fastening operation using an electric screwdriver such as impact driver performs drilling while impacting the board, torque management is difficult, and the tightening torque is much higher than the appropriate torque value of the drill screw. There is a case where the screw slips due to the thread breakage of the drill screw head or the damage to the screw hole of the substrate. Thus, experience and skill are required for the fastening operation of the drill screw using the electric screwdriver. On the other hand, since experience and technology are difficult to evaluate on site and to objectively manage construction, loosening and breaking of drill screws have been confirmed due to variations in construction quality. Therefore, in the construction of the drill screw using the electric screwdriver, the safety is improved by fastening the drill screw more than the number required for the design.

特開2010−194702号公報JP 2010-194702 A 特開平06−200915号公報Japanese Patent Laid-Open No. 06-200915

ドリルねじの本数が多いと、施工に手間がかかるとともに材料費が高くなる。
このような観点から、本発明は、作業員の技量に関わらず、簡易かつ安価に電動ドライバを用いてドリルねじを締結することを可能としたドリルねじの施工方法を提案することを課題とする。
When the number of drill screws is large, the construction takes time and the material cost increases.
From such a viewpoint, it is an object of the present invention to propose a drill screw construction method capable of fastening a drill screw using an electric screwdriver easily and inexpensively regardless of the skill of the worker. .

前記課題を解決するために、本発明は、電動ドライバを用いてドリルねじを基板に締結するドリルねじの施工方法であって、前記ドリルねじを前記基板に締結する際の前記電動ドライバの運転モードを本施工工程の事前に決定する運転モード評価工程を備えるものである。前記運転モード評価工程では、前記ドリルねじの破壊トルクを測定する作業および前記基板と同種の試験板に対して、前記電動ドライバの所定の運転モードにより締結させた複数のドリルねじの戻しトルクを測定する作業と、前記ドリルねじの破壊トルクの確率分布を仮定する作業および前記戻しトルクの確率分布を仮定する作業と、前記ドリルねじの破壊トルクの確率分布および前記戻しトルクの確率分布とを比較して、前記所定の運転モードによる締結性能を評価し、前記ドリルねじ締結時の運転モードを決定する作業とを行う。   In order to solve the above-mentioned problems, the present invention provides a drill screw construction method for fastening a drill screw to a substrate using an electric screwdriver, and the operation mode of the electric driver when fastening the drill screw to the substrate. Is provided with an operation mode evaluation step for determining the above in advance of this construction step. In the operation mode evaluation step, the operation of measuring the breaking torque of the drill screw and the return torque of a plurality of drill screws fastened by a predetermined operation mode of the electric driver with respect to a test plate of the same type as the substrate Comparing the work of assuming the probability distribution of the breaking torque of the drill screw and the work of assuming the probability distribution of the return torque with the probability distribution of the breaking torque of the drill screw and the probability distribution of the return torque. Then, the fastening performance by the predetermined operation mode is evaluated, and the operation mode at the time of fastening the drill screw is determined.

なお、前記電動ドライバの複数の運転モードに対して前記締結性能の評価をそれぞれ行えば、各運転モードの評価結果に基づいて最適の運転モードを決定することができる。   In addition, if the said fastening performance is each evaluated with respect to the several driving mode of the said electric driver, the optimal driving mode can be determined based on the evaluation result of each driving mode.

かかるドリルねじの施工方法によれば、事前に適切な運転モードを決定したうえで作業を行うため、作業員の技量に関わらず、電動ドライバを用いたドリルねじの締結を高品質に施工することができる。また、破壊トルクおよび戻しトルクの確率分布の関係に基づいて決定した運転モードでドリルねじを締結すれば、ドリルねじおよび基板に破壊が生じることがなく、かつ、必要な締結性能を確保することができる。そのため、ドリルねじを締結する必要がなく、簡易かつ安価に施工を行うことができる。   According to this drill screw construction method, work is performed after an appropriate operation mode has been determined in advance, so that the drill screw must be fastened using an electric screwdriver regardless of the skill of the worker. Can do. In addition, if the drill screw is fastened in the operation mode determined based on the relationship between the probability distribution of the breaking torque and the return torque, the drill screw and the board will not be broken, and the necessary fastening performance can be ensured. it can. Therefore, it is not necessary to fasten a drill screw, and construction can be performed easily and inexpensively.

本発明の実施形態に係るドリルねじの施工方法のフローチャートである。It is a flowchart of the construction method of the drill screw which concerns on embodiment of this invention. ドリルねじの施工方法について実施した、電動ドライバの運転モード毎の試験結果を示すグラフであって、(a)は中モード、(b)は弱モード、(c)はPモードである。It is a graph which shows the test result for every operation mode of the electric driver implemented about the construction method of a drill screw, (a) is a medium mode, (b) is a weak mode, (c) is a P mode. 本発明のドリルねじの施工方法の安全性を確認するための計算例を示す説明図である。It is explanatory drawing which shows the example of a calculation for confirming the safety | security of the construction method of the drill screw of this invention.

本実施形態では、鋼板に機器を接合する場合において、電動ドライバを用いてドリルねじを鋼板(基板)に締結するドリルねじの施工方法について説明する。
本実施形態では、図1に示すように、鋼板にドリルねじを締結する本施工工程S2の事前に、ドリルねじを基板に締結する際の電動ドライバの運転モードを決定する運転モード評価工程S1を実施する。本施工工程S2では、運転モード評価工程S1で決定した電動ドライバの運転モードにより、ドリルねじの締結を行う。
This embodiment demonstrates the construction method of the drill screw which fastens a drill screw to a steel plate (board | substrate) using an electric driver, when joining an apparatus to a steel plate.
In this embodiment, as shown in FIG. 1, an operation mode evaluation step S1 for determining an operation mode of the electric driver when fastening the drill screw to the substrate is performed in advance of the main construction step S2 for fastening the drill screw to the steel plate. carry out. In this construction process S2, the drill screw is fastened according to the operation mode of the electric driver determined in the operation mode evaluation process S1.

運転モード評価工程S1は、破壊トルク測定作業S11と、戻しトルク測定作業S13と、破壊トルク確率分布仮定作業S12と、戻しトルク確率分布仮定作業S14と、締結性能評価・モード決定作業S15とを備えている。運転モード評価工程S1では、使用する電動ドライバの機種やメーカ、鋼板の材質、寸法およびドリルねじの製造元や種類等の組み合わせに対して適切な運転モードを決定する。   The operation mode evaluation step S1 includes a breaking torque measurement operation S11, a return torque measurement operation S13, a destruction torque probability distribution assumption operation S12, a return torque probability distribution assumption operation S14, and a fastening performance evaluation / mode determination operation S15. ing. In the operation mode evaluation step S1, an appropriate operation mode is determined for the combination of the type and manufacturer of the electric driver to be used, the material and dimensions of the steel plate, the manufacturer and type of the drill screw, and the like.

「破壊トルク」とは、基板にドリルねじを過度に締め付けることで、ドリルねじまたは基板に破壊が生じた時のトルク値である。破壊トルク測定作業S11では、本施工工程S2で使用するドリルねじと同種のドリルねじについて、その破壊トルクを複数回測定する。   The “breaking torque” is a torque value when the drill screw or the substrate is broken by excessively tightening the drill screw on the substrate. In the breaking torque measurement operation S11, the breaking torque is measured a plurality of times for the same type of drill screw used in the main construction step S2.

また、「戻しトルク」とは、締め付けられているドリルねじに緩む向きに力を加え、ドリルねじが廻り始めた時のトルク値で、ドリルねじがどの程度のトルクで締め付けられているかを表す指標ある。戻しトルク測定作業S13では、本施工工程S2で使用する鋼板と同種の鋼板からなる試験板に対して、電動ドライバの所定の運転モードにより締結させたドリルねじの戻しトルクを複数回測定する。なお、一般に戻しトルクは負の値で示されるが、ここでは簡単のため正の値として扱う。   “Return torque” is the torque value when the drill screw starts to turn by applying a force in the loosening direction to the tightened drill screw, and an index showing how much torque the drill screw is tightened. is there. In the return torque measurement operation S13, the return torque of the drill screw fastened in a predetermined operation mode of the electric driver is measured a plurality of times with respect to the test plate made of the same type of steel plate as that used in the main construction step S2. In general, the return torque is indicated by a negative value, but here it is treated as a positive value for simplicity.

破壊トルク確率分布仮定作業S12では、破壊トルクの確率分布をその平均値μと標準偏差σからなる正規分布と仮定する。同様に、戻しトルク確率分布仮定作業S14では、戻しトルクの確率分布をその平均値μと標準偏差σからなる正規分布と仮定する。
戻しトルクの確率分布は、戻しトルクの測定結果を用いて、運転モード毎に仮定する。このとき、ドリルねじや鋼板の破損等により、戻しトルクが測定できないドリルねじは除外し、平均値μおよび標準偏差σの算出に使用しない。
In damaging torque probability distribution assumption work S12, it is assumed that the normal distribution becomes a probability distribution of the damaging torque from the average value mu F and the standard deviation sigma F. Similarly, the returning torque probability distribution assumption work S14, the normal distribution becomes a probability distribution of the returning torque from the average value mu R and the standard deviation sigma R assumed.
The probability distribution of the return torque is assumed for each operation mode using the measurement result of the return torque. In this case, the damage of drill screws or steel, excluding drill screw can not be returning torque is measured, not used for calculation of the average value mu R and the standard deviation sigma R.

締結性能評価・モード決定作業S15では、破壊トルクおよび戻しトルクの確率分布を比較して、所定の運転モードによる締結性能を評価し、本施工工程S2におけるドリルねじ締結の運転モードを決定する。
破壊トルクの平均値μおよび標準偏差σを用いて、破壊トルク判断値Xを式1により定義する。ここでαは正の値で、好ましくは2以下の値である。
=μ−ασ ・・・式1
戻しトルクの確率分布における破壊トルク判断値X以上となる領域の積分値が0〜15%以下、好ましくは5%以下となる運転モードを選択する。ここで「15%」は、戻しトルクの確率分布において、トルク値が平均値μと標準偏差σの和以上となる確率(31.7%)を、同様に「5%」は、戻しトルクの確率分布において、トルク値が平均値μと標準偏差σの倍数との和以上となる確率(4.55%)を目安に設定した。
なお、運転モードを複数のモードから選択する場合には、戻しトルクの確率分布における、破壊トルク判断値X以上となる領域の積分値が最小の運転モードに決定すると良い。
In the fastening performance evaluation / mode determination operation S15, the probability distribution of the breaking torque and the return torque is compared, the fastening performance in a predetermined operation mode is evaluated, and the operation mode of the drill screw fastening in this construction step S2 is determined.
Using the average value mu F and standard deviation sigma F of damaging torque, breakdown torque determination value X F defined by equation 1. Here, α is a positive value, preferably 2 or less.
X F = μ F −ασ F Formula 1
0-15% is the integral value of the area to be damaging torque determination value X F or higher in the probability distribution of the torque return less, preferably selects the operation mode of 5% or less. Where "15%" in the probability distribution of the returning torque, the probability that the torque value is equal to or greater than the sum of the average value mu R and the standard deviation sigma R a (31.7 percent), as well as "5%" returns in the probability distribution of the torque was set probability that torque value is equal to or greater than the sum of a multiple of the average value mu R and the standard deviation sigma R a (4.55%) as a guide.
In the case where the operation mode is selected from a plurality of modes, it is preferable that the integral value of the region where the fracture torque determination value XF or more in the return torque probability distribution is determined to be the minimum operation mode.

ここで、パネル31(W900mm×H1500mm)をドリルねじ32(300mmピッチ)にて留め付ける場合において(図3参照)、風荷重が3000N/mに対するドリルねじ32の1本当たりの負担面積は(ドリルねじピッチ幅)×(パネル幅/2)であり、引抜力Pは、P=3000×0.3×0.45=405Nである。
これに対し、ビス径:4.2mmのドリルねじを、下地材(軽量形鋼60×30×10、t=2.3mm)に締結する場合の引抜保持力(鉄板にドリルねじを打ち込み、ドリルねじが鋼板から抜けるまでの荷重値)は4.46kNである。このとき、安全率を5倍とした場合のドリルねじの引抜許容耐力は4.46/5=892N(>P=405N(約2.2倍))となる。すなわち、ドリルねじの2本中1本に不具合が生じたとしても、風荷重に対して安全性を確保することができる。
以上のように、締結性能評価において、戻しトルクの確率分布における、破壊トルク判断値X以上となる領域の積分値が15%以下とした場合、6本中1本(5%以下とした場合は20本中1本)が不良となる可能性があるが、前記の通り、安全性を確保することができる。よって、本発明のドリルねじの施工方法によれば、より安全な施工を行うための工具とドリルねじとの組み合わせを判定することができる。
Here, when the panel 31 (W900 mm × H1500 mm) is fastened with the drill screw 32 (300 mm pitch) (see FIG. 3), the load area per one drill screw 32 with respect to the wind load of 3000 N / m 2 is ( Drill screw pitch width) × (panel width / 2), and the pulling force P is P = 3000 × 0.3 × 0.45 = 405N.
On the other hand, when holding a drill screw with a screw diameter of 4.2 mm to the base material (light weight shaped steel 60 × 30 × 10, t = 2.3 mm), the drawing holding force (drilling the drill screw into the iron plate, The load value until the screw is removed from the steel plate) is 4.46 kN. At this time, when the safety factor is 5 times, the allowable pulling strength of the drill screw is 4.46 / 5 = 892N (> P = 405N (about 2.2 times)). That is, even if a failure occurs in one of the two drill screws, safety against wind loads can be ensured.
As described above, the fastening in the performance evaluation, back in the probability distribution of the torque, when the integrated value of the area to be damaging torque determination value X F or more was 15% or less, when the one in six (5% 1 of 20) may be defective, but as described above, safety can be ensured. Therefore, according to the drill screw construction method of the present invention, a combination of a tool and a drill screw for safer construction can be determined.

以下、本実施形態のドリルねじの施工方法における運転モード評価工程S1について実施した実施例について説明する。
本実施例では、まず、某社のドリルねじ(M4)の破壊トルクをPCトルクアナライザーにより測定した(破壊トルク測定作業S11)。PCトルクアナライザーは、ねじを一定の回転数にて施工し、その過程のトルク値を測定する測定装置である。この測定結果より破壊トルクの平均値μおよび標準偏差σを算出し、破壊トルクの確率分布をその平均値μおよび標準偏差σからなる正規分布と仮定した(破壊トルク確率分布仮定作業S12)。
Hereinafter, the Example implemented about operation mode evaluation process S1 in the construction method of the drill screw of this embodiment is described.
In this example, first, the breaking torque of a drill screw (M4) of a certain company was measured with a PC torque analyzer (breaking torque measurement operation S11). The PC torque analyzer is a measuring device that installs a screw at a constant rotational speed and measures a torque value in the process. The average value μ F and standard deviation σ F of the breaking torque are calculated from the measurement results, and the probability distribution of the breaking torque is assumed to be a normal distribution composed of the average value μ F and the standard deviation σ F (the breaking torque probability distribution assuming operation) S12).

次に、電動ドライバのうちマキタ社製インパクトドライバを用いて、その中モード[回転数:0〜2100回転/分、打撃数:0〜2600回/分]、弱モード[回転:0〜1100回転/分、打撃数:0〜1100回/分]およびPモード[回転数:0〜2300回/分]の各運転モードにより、それぞれ前記ドリルねじ(M4)を30本ずつ、厚さt=1.6mmの鋼板に締結し、ドリルねじや鋼板の破損等により、戻しトルクが測定できない数本のドリルねじは除外し、戻しトルクをPCトルクアナライザーにより測定した(戻しトルク測定作業S13)。なお、Pモードとは、打撃を加えないねじ締めのための運転モードである。この測定結果から戻しトルクの測定が不能な数本のドリルねじを除き、戻しトルクの平均値μおよび標準偏差σを算出し、戻しトルクの確率分布をその平均値μおよび標準偏差σからなる正規分布と仮定した(戻しトルク確率分布仮定作業S14)。 Next, among the electric drivers, an impact driver manufactured by Makita Co., Ltd. is used. / Min, number of impacts: 0 to 1100 times / min] and P mode [number of rotations: 0 to 2300 times / min], each of the 30 drill screws (M4), thickness t = 1 It was fastened to a 6 mm steel plate, and several drill screws whose return torque could not be measured due to breakage of the drill screw or the steel plate were excluded, and the return torque was measured with a PC torque analyzer (return torque measurement operation S13). The P mode is an operation mode for screw tightening without hitting. Except for several drill screws of impossible to measure the torque return from the measurement results, back to calculate the average value mu R and the standard deviation sigma R torque, the average value of the probability distribution of the torque return mu R and the standard deviation sigma A normal distribution consisting of R is assumed (return torque probability distribution assumption operation S14).

運転モード毎に、戻しトルクおよび破壊トルクの確率分布を比較し、各運転モードによる締結性能を評価し、本施工工程S2におけるドリルねじ締結の運転モードを決定する(締結性能評価・モード決定作業S15)。
ここで、破壊トルク判断値Xの算定におけるα値はα=2と設定した。
中モードでは、戻しトルクの確率分布における破壊トルク判断値X以上となる領域の積分値(面積A)が13%程度となった(図2(a))。一方、弱モードでは、戻しトルクの確率分布における破壊トルク判断値X以上となる領域の積分値(面積A)が0%程度であった(図2(b))。さらに、Pモードでは、戻しトルクの確率分布における破壊トルク判断値X以下となる領域の積分値(面積A)が27%程度となった(図2(c))。
この結果から、マキタ社製インパクトドライバを用いて、某社ドリルねじ(M4)を厚さt=1.6mmの鋼板に対して締結する際の運転モードは、弱モードが最適であると評価される。したがって、本施工工程S2におけるドリルねじ締結の運転モードは弱モードに決定できる。
For each operation mode, the probability distribution of the return torque and the breaking torque is compared, the fastening performance in each operation mode is evaluated, and the operation mode of the drill screw fastening in this construction process S2 is determined (fastening performance evaluation / mode determination operation S15). ).
Here, alpha values in the calculation of fracture torque determination value X F was set as alpha = 2.
In the middle mode, the integral value (area A 1 ) of the region where the failure torque judgment value XF or more in the return torque probability distribution is about 13% (FIG. 2A). On the other hand, in the weak mode, the integral value of the area to be damaging torque determination value X F or higher in the probability distribution of the returning torque (area A 2) was about 0% (Figure 2 (b)). Moreover, the P mode, the integral value of the area back the less damaging torque determination value X F in the probability distribution of torque (the area A 3) becomes about 27% (FIG. 2 (c)).
From this result, it is evaluated that the weak mode is optimal as the operation mode when fastening the steel drill screw (M4) to the steel plate having a thickness t = 1.6 mm using an impact driver manufactured by Makita. . Therefore, the operation mode for fastening the drill screw in the main construction process S2 can be determined as the weak mode.

本実施形態のドリルねじの施工方法によれば、事前に最適な運転モードを決定したうえで作業を行うため、作業員の技量に関わらず、電動ドライバを用いたドリルねじの締結を所要の締結性能で行うことができる。また、破壊トルクと戻しトルクの確率分布の関係により、運転モードを決定しているため、ドリルねじおよび基板に破壊が生じることがなく、かつ、必要な締結性能を確保することができる。そのため、設計上必要とされる最小限の本数でドリルねじによる締結を行うことができる。   According to the drill screw construction method of the present embodiment, the optimum operation mode is determined in advance, and the work is performed. Therefore, the drill screw is tightened using an electric screwdriver regardless of the skill of the worker. Can be done with performance. In addition, since the operation mode is determined based on the relationship between the probability distribution of the breaking torque and the return torque, the drill screw and the substrate are not broken, and the necessary fastening performance can be ensured. Therefore, the fastening with the drill screw can be performed with the minimum number required for the design.

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
前記実施形態では、電動ドライバの複数の運転モードに対して、それぞれ締結性能を確認する場合について説明したが、締結性能の確認は、所定の運転モードに対して行えばよく、必ずしも複数の運転モードに対して行う必要はない。
また、締結性能評価・モード決定作業S15における締結性能の評価基準は、前記実施形態で示したものに限定されるものではない。例えば、破壊トルクと戻しトルクの確率分布から両者の差の確率分布を仮定し、0以下となる領域の積分値により評価してもよい。
前記実施形態では、α=2の場合の破壊トルク判断値Xで評価を行ったが、αの値はこれに限定されるものではなく、例えばα=1であってもよい。
戻しトルクを測定する場合において試験板に締結させるドリルねじの本数は限定されるものではなく、適宜決定すればよい。このとき、試験板には、各運転モードにより所定数のドリルねじを締結する。また、戻しトルクの測定個所および測定装置は限定されるものではなく、現場において実施してもよい。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
In the above embodiment, the case where the fastening performance is confirmed for each of the plurality of operation modes of the electric driver has been described, but the confirmation of the fastening performance may be performed for a predetermined operation mode, and the plurality of operation modes are not necessarily required. There is no need to do this.
Further, the evaluation criteria for the fastening performance in the fastening performance evaluation / mode determination operation S15 are not limited to those shown in the embodiment. For example, the probability distribution of the difference between the two may be assumed from the probability distribution of the breaking torque and the return torque, and the evaluation may be performed based on the integral value in a region that is 0 or less.
In the above embodiment has been evaluated by the damaging torque determination value X F in the case of alpha = 2, the value of alpha is not intended to be limited thereto, but may be, for example, alpha = 1.
In the case of measuring the return torque, the number of drill screws to be fastened to the test plate is not limited and may be determined as appropriate. At this time, a predetermined number of drill screws are fastened to the test plate in each operation mode. Further, the measurement location and measuring device for the return torque are not limited, and may be implemented on site.

S1 運転モード評価工程
S11 破壊トルク測定作業
S12 破壊トルク確率分布仮定作業
S13 戻しトルク測定作業
S14 戻しトルク確率分布仮定作業
S15 締結性能評価・モード決定作業
S2 本施工工程
31 パネル
32 ドリルねじ
S1 operation mode evaluation process S11 fracture torque measurement work S12 fracture torque probability distribution assumption work S13 return torque measurement work S14 return torque probability distribution assumption work S15 fastening performance evaluation / mode determination work S2 main construction process 31 panel 32 drill screw

Claims (5)

電動ドライバを用いて、ドリルねじを基板に締結するドリルねじの施工方法であって、
前記ドリルねじを前記基板に締結する際の前記電動ドライバの運転モードを事前に決定する運転モード評価工程を備えており、
前記運転モード評価工程では、
前記ドリルねじの破壊トルクを測定する作業と、
前記基板と同種の試験板に対して、前記電動ドライバの所定の運転モードにより締結させた複数のドリルねじの戻しトルクを測定する作業と、
前記破壊トルクの確率分布を仮定する作業と、
前記戻しトルクの確率分布を仮定する作業と、
前記破壊トルクの確率分布と前記戻しトルクの確率分布との関係から前記所定の運転モードによる締結性能を評価し、前記ドリルねじ締結時の運転モードを決定する作業と、
を行うことを特徴とする、ドリルねじの施工方法。
A drill screw construction method for fastening a drill screw to a substrate using an electric screwdriver,
An operation mode evaluation step of determining in advance an operation mode of the electric driver when fastening the drill screw to the substrate;
In the operation mode evaluation step,
An operation of measuring the breaking torque of the drill screw;
The operation of measuring the return torque of a plurality of drill screws fastened by a predetermined operation mode of the electric driver, with respect to the same type of test plate as the substrate,
Assuming a probability distribution of the breaking torque;
Assuming a probability distribution of the return torque;
Evaluating the fastening performance by the predetermined operation mode from the relationship between the probability distribution of the breaking torque and the probability distribution of the return torque, and determining the operation mode at the time of fastening the drill screw;
A drill screw construction method, characterized by:
前記電動ドライバの複数の運転モードに対して前記締結性能の評価をそれぞれ行い、各運転モードによる締結性能の評価結果に基づいて最適の運転モードを決定することを特徴とする、請求項1に記載のドリルねじの施工方法。   The evaluation of the fastening performance is performed for each of a plurality of operation modes of the electric driver, and the optimum operation mode is determined based on the evaluation result of the fastening performance in each operation mode. Drill screw installation method. 前記破壊トルクの平均値μおよび標準偏差σを用いた式1により算出した破壊トルク判断値Xと、前記戻しトルクの確率分布との比較により締結性能を評価することを特徴とする、請求項1または請求項2に記載のドリルねじの施工方法。
=μ−ασ ・・・式1
ここで、αは正の値である。
A damaging torque determination value X F calculated by Equation 1 using the average value mu F and standard deviation sigma F of the damaging torque, and evaluating the fastening performance by comparison with the probability distribution of the returning torque, The construction method of the drill screw of Claim 1 or Claim 2.
X F = μ F −ασ F Formula 1
Here, α is a positive value.
前記戻しトルクの確率分布における前記破壊トルク判断値X以上となる領域の積分値が0〜15%以下となる運転モードに決定することを特徴とする、請求項3に記載のドリルねじの施工方法。 And determining the operating mode in which the return integral value of the region to be the breakdown torque determination value X F or higher in the probability distribution of the torque is 0 to 15% or less, application of the drill screw according to claim 3 Method. 前記電動ドライバが、インパクトドライバであることを特徴とする、請求項1乃至請求項4のいずれか1項に記載のドリルねじの施工方法。   The construction method for a drill screw according to any one of claims 1 to 4, wherein the electric driver is an impact driver.
JP2017118711A 2017-06-16 2017-06-16 How to install a drill screw Active JP6846992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118711A JP6846992B2 (en) 2017-06-16 2017-06-16 How to install a drill screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118711A JP6846992B2 (en) 2017-06-16 2017-06-16 How to install a drill screw

Publications (2)

Publication Number Publication Date
JP2019000952A true JP2019000952A (en) 2019-01-10
JP6846992B2 JP6846992B2 (en) 2021-03-24

Family

ID=65007211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118711A Active JP6846992B2 (en) 2017-06-16 2017-06-16 How to install a drill screw

Country Status (1)

Country Link
JP (1) JP6846992B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430975A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Screw driving method
US7091683B1 (en) * 2003-10-24 2006-08-15 Intelligent Automation Design, Llc Method of monitoring and controlling the seating of screws to the optimum point of grip independent of screw size and material density
JP2006214577A (en) * 2005-01-06 2006-08-17 Shinjo Mfg Co Ltd Self drilling tapping screw for thin steel sheet
JP2013542381A (en) * 2010-10-01 2013-11-21 インファステック インテレクチュアル プロパティーズ ピーティーイー.リミテッド Screw fastener
JP2013252575A (en) * 2012-06-05 2013-12-19 Makita Corp Power tool
JP2013252578A (en) * 2012-06-05 2013-12-19 Makita Corp Rotary impact tool
JP2017067747A (en) * 2015-09-28 2017-04-06 ベクトリックス株式会社 Method for determining fastening axial force of tapping screw and display device of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430975A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Screw driving method
US7091683B1 (en) * 2003-10-24 2006-08-15 Intelligent Automation Design, Llc Method of monitoring and controlling the seating of screws to the optimum point of grip independent of screw size and material density
JP2006214577A (en) * 2005-01-06 2006-08-17 Shinjo Mfg Co Ltd Self drilling tapping screw for thin steel sheet
JP2013542381A (en) * 2010-10-01 2013-11-21 インファステック インテレクチュアル プロパティーズ ピーティーイー.リミテッド Screw fastener
JP2013252575A (en) * 2012-06-05 2013-12-19 Makita Corp Power tool
JP2013252578A (en) * 2012-06-05 2013-12-19 Makita Corp Rotary impact tool
JP2017067747A (en) * 2015-09-28 2017-04-06 ベクトリックス株式会社 Method for determining fastening axial force of tapping screw and display device of the same

Also Published As

Publication number Publication date
JP6846992B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP2019000952A (en) Construction method of drill screw
JP2018188921A (en) Drilling guide device and method of drilling guide hole
KR20060011799A (en) Method for detecting drill breakage and device for the same
KR100951250B1 (en) Apparatus and method for high speed tensile testing of workpiece
KR20130127268A (en) Self-tapping bolt
JP2010060490A (en) Stress measurement method of concrete structure
JP3844487B1 (en) Expanding anchor
JP2012012190A (en) Fastening tool of guide rail clip for elevator
CN108202215B (en) Method for installing riser tensioner of drilling ship
US20050204540A1 (en) Insert for steel plates
JP5049084B2 (en) Load abnormality diagnosis device and load abnormality diagnosis program
WO2013140121A2 (en) Colour co-ordination of construction elements
JPWO2018229870A1 (en) Tool life detecting device and tool life detecting method
US20050047888A1 (en) Insert for steel plates
JP2016223284A (en) Anchor, method for manufacturing anchor, method for constructing anchor, and sleeve drive tool
Ramhormozian et al. The high strength friction grip property class 8.8 bolts: Variability of installed tension and potential resulting effects on the friction-type connections’ behaviour
GR1010543B (en) Tool for quick and safe installation of metal expanded impact anchors
JP7330847B2 (en) Positioning jig and drilling method
Wurth Innovation, Efficiency and Safety.
CN218252982U (en) Positioning pin hole drilling and positioning tool
CN209924169U (en) Shaft crane span structure fire baffle fixed mounting device
JP7485992B2 (en) U-bolts and installation methods
KR20230174398A (en) Sensor fixing new anchor bolt
JP7321874B2 (en) Roughening construction method
JP2005220963A (en) Anchor bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150