JP2018530740A - Tin-doped photocatalytic formaldehyde sensing material, method for producing the same, and formaldehyde sensor - Google Patents

Tin-doped photocatalytic formaldehyde sensing material, method for producing the same, and formaldehyde sensor Download PDF

Info

Publication number
JP2018530740A
JP2018530740A JP2018503670A JP2018503670A JP2018530740A JP 2018530740 A JP2018530740 A JP 2018530740A JP 2018503670 A JP2018503670 A JP 2018503670A JP 2018503670 A JP2018503670 A JP 2018503670A JP 2018530740 A JP2018530740 A JP 2018530740A
Authority
JP
Japan
Prior art keywords
formaldehyde
tin
sensing material
zinc oxide
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018503670A
Other languages
Japanese (ja)
Inventor
シンファ チャン
シンファ チャン
ユ リュ
ユ リュ
ジー ジェン
ジー ジェン
シングオ リ
シングオ リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Publication of JP2018530740A publication Critical patent/JP2018530740A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Catalysts (AREA)

Abstract

本発明は、酸化亜鉛ナノ粒子および錫系添加剤を含む錫ドープ光触媒式ホルムアルデヒド感知材料およびその製造方法、ならびにホルムアルデヒドセンサに関する。該材料を作製する際は、まず、予め合成された酸化亜鉛ナノ粒子を錫塩溶液に均一に分散させた溶液Aを得て、次に、溶液Aを撹拌しながら溶媒を全て蒸発させた沈殿物Bを得て、その後、沈殿物Bを高温下で焼結処理し、光触媒式ホルムアルデヒド感知材料である産物Cを得る。本方法は、低コスト、高感度、高選択性の光触媒式ホルムアルデヒド感知材料を提供し、ホルムアルデヒドの検知下限値を0.1ppmにまで下げると共に、材料によるエタノール選択性を高めることができる。The present invention relates to a tin-doped photocatalytic formaldehyde sensing material containing zinc oxide nanoparticles and a tin-based additive, a method for producing the same, and a formaldehyde sensor. When producing the material, first, a solution A in which zinc oxide nanoparticles synthesized in advance are uniformly dispersed in a tin salt solution is obtained, and then a precipitate in which all of the solvent is evaporated while stirring the solution A is obtained. The product B is obtained, and then the precipitate B is sintered at a high temperature to obtain the product C which is a photocatalytic formaldehyde sensing material. This method provides a low-cost, high-sensitivity, high-selectivity photocatalytic formaldehyde sensing material, which can lower the detection limit of formaldehyde to 0.1 ppm and increase the ethanol selectivity of the material.

Description

発明の詳細な説明Detailed Description of the Invention

〔技術分野〕   〔Technical field〕

本発明は、ホルムアルデヒドガスの監視測定、ホルムアルデヒドセンサの技術分野に属し、具体的には、錫ドープ光触媒式ホルムアルデヒド感知材料およびその製造方法、ならびにホルムアルデヒドセンサに関する。   The present invention belongs to the technical field of formaldehyde gas monitoring measurement and formaldehyde sensor, and specifically relates to a tin-doped photocatalytic formaldehyde sensing material, a method for producing the same, and a formaldehyde sensor.

〔背景技術〕
安全濃度基準を超えるホルムアルデヒドガスに長期間接触することは、人間の健康に有害であり、目や喉の灼熱感、呼吸困難ひいては命に関わる病気、例えば、鼻がん、骨髄性白血病等を引き起こす可能性がある。目下、中国のホルムアルデヒド汚染は非常に深刻であり、内装された直後の家屋のうちの約70%にホルムアルデヒド汚染の問題があるため、ホルムアルデヒドは中国で最も懸念される室内汚染ガスである。
[Background Technology]
Long-term contact with formaldehyde gas that exceeds safe concentration standards is harmful to human health and causes burning in the eyes and throat, breathing difficulties and life-threatening diseases such as nasal cancer and myeloid leukemia there is a possibility. At present, formaldehyde is the most concerned indoor pollutant gas in China because formaldehyde pollution in China is very serious and about 70% of the houses just after they are installed have the problem of formaldehyde contamination.

センサの技術は、空気の品質を管理する製品に非常に重要である。なぜなら、消費者が、空気の品質を管理する製品の真の役割について疑問を持つと、その製品を疑うようになるからである。従来、商用センサは、主に電気化学に基づくものであり、このようなセンサには、白金製電極が用いられるため、非常に高額になる。また、該種類のセンサの精度、安定性および選択性はいずれも不十分である。   Sensor technology is very important for products that control air quality. This is because when consumers have doubts about the true role of a product that controls air quality, they will begin to doubt that product. Conventionally, commercial sensors are mainly based on electrochemistry, and such sensors are very expensive because platinum electrodes are used. Also, the accuracy, stability and selectivity of this type of sensor are all insufficient.

電気化学的センサに比べて、半導体センサは、コストが低く、耐用年数が長い等、特別な優位性を有し、且つ改善の余地が大きい。従来の商用センサは、いずれも200℃以上で動作する必要があるが、この温度ではほとんど全ての有機汚染物が反応して検知されるため、センサによる選択性が非常に低い。そこで、ガスに対する選択性を向上させるために、一部の研究者により、室温下で動作する光触媒式半導体ホルムアルデヒドセンサが製造されたが、実用上、これらのセンサの検知下限値(1ppmよりも大きい)は依然として高いままであった。表1には、従来の感知材料およびその課題が挙げられている。   Compared to electrochemical sensors, semiconductor sensors have special advantages such as low cost and long service life, and have a lot of room for improvement. All the conventional commercial sensors need to operate at 200 ° C. or higher, but at this temperature, almost all organic contaminants react and are detected, so the selectivity by the sensor is very low. Thus, in order to improve the selectivity to gas, some researchers have produced photocatalytic semiconductor formaldehyde sensors that operate at room temperature. However, in practice, these sensors have a lower detection limit (greater than 1 ppm). ) Remained high. Table 1 lists conventional sensing materials and their challenges.

Figure 2018530740

ところで、中国特許出願CN2007153341(ホルムアルデヒド空気感知材料およびホルムアルデヒド空気センサ装置の製造方法)には、ホルムアルデヒドガス感知材料およびその製造方法、並びにホルムアルデヒドガスセンサデバイスの製造方法が開示されている。該感知材料はSnO−TiO二元ナノ粉末からなり、Ti/Snのモル比が0.2〜0.5であり、且つ2%〜5%のカドミウムがドープされているものである。また、該材料を無水エタノールおよびポリエチレングリコールと共混練して得たペーストを電極管に均一に塗布し、該電極管を400℃下で2〜4時間焼きなました後、溶接、エージング、シールすることにより、ホルムアルデヒドガスセンサが得られる。該センサは、動作温度が低く、ホルムアルデヒドに対する感度が高く、且つベンゼン、トルエン、キシレン、アンモニア等の室内汚染ガスからの干渉に対する耐性が非常に高く、更に応答時間と回復時間が非常に短いという特性を有し、主に室内装で生じたホルムアルデヒドガスの検知に用いられる。しかしながら、該センサの動作温度は260〜300℃であり、このような温度下ではほとんどすべての室内有機汚染物が感知材料の表面で酸化されることになるため、材料による選択性が不十分であり、特にエタノールとホルムアルデヒドとを十分に区別することができない。また、該技術の検知下限値は20ppmであり、安全濃度基準(0.06ppm)より2桁も高い。
Figure 2018530740

By the way, Chinese Patent Application CN2007153341 (Method for Manufacturing Formaldehyde Air Sensing Material and Formaldehyde Air Sensor Device) discloses a formaldehyde gas sensing material, a method for manufacturing the same, and a method for manufacturing a formaldehyde gas sensor device. The sensing material is made of SnO 2 —TiO 2 binary nanopowder, has a Ti / Sn molar ratio of 0.2 to 0.5, and is doped with 2% to 5% cadmium. Also, a paste obtained by co-kneading the material with absolute ethanol and polyethylene glycol is uniformly applied to an electrode tube, the electrode tube is annealed at 400 ° C. for 2 to 4 hours, and then welded, aged, and sealed. Thus, a formaldehyde gas sensor is obtained. The sensor is characterized by low operating temperature, high sensitivity to formaldehyde, very high resistance to interference from indoor pollutant gases such as benzene, toluene, xylene, ammonia, etc., and very short response time and recovery time. It is mainly used to detect formaldehyde gas generated in the room interior. However, the operating temperature of the sensor is 260-300 ° C., and under such temperatures almost all indoor organic contaminants will be oxidized on the surface of the sensing material, so the selectivity by the material is insufficient. In particular, ethanol and formaldehyde cannot be sufficiently distinguished. Moreover, the detection lower limit of this technique is 20 ppm, which is two orders of magnitude higher than the safe concentration standard (0.06 ppm).

〔発明の内容〕
本発明は、上記課題に対して、低コスト、高感度、高選択性の錫ドープ光触媒式ホルムアルデヒド感知材料、および該材料を用いるホルムアルデヒドセンサを提供する。
[Content of the Invention]
The present invention provides a low-cost, high-sensitivity, high-selectivity tin-doped photocatalytic formaldehyde sensing material and a formaldehyde sensor using the material.

本発明における技術案は、以下のとおりである。   The technical solution in the present invention is as follows.

本発明に係る光触媒式ホルムアルデヒド感知材料は、酸化亜鉛ナノ粒子および錫系添加剤を含む。   The photocatalytic formaldehyde sensing material according to the present invention includes zinc oxide nanoparticles and a tin-based additive.

さらに、前記酸化亜鉛ナノ粒子の粒子径は20nm〜50nmであり、より好ましくは30nmである。   Furthermore, the particle diameter of the zinc oxide nanoparticles is 20 nm to 50 nm, more preferably 30 nm.

さらに、前記錫系添加剤は酸化錫であり、酸化錫は酸化亜鉛および酸化錫の合計重量の0.3%〜5%を占め、より好ましくは2%を占める。   Furthermore, the tin-based additive is tin oxide, and tin oxide accounts for 0.3% to 5%, more preferably 2% of the total weight of zinc oxide and tin oxide.

上記光触媒式ホルムアルデヒド感知材料を合成する方法は、
予め合成された酸化亜鉛ナノ粒子を錫塩溶液に均一に分散させ、溶液Aを得るステップ(1)と、
溶液Aを撹拌しながら溶媒を全て蒸発させ、沈殿物Bを得るステップ(2)と、
沈殿物Bを高温下で焼結処理し、光触媒式ホルムアルデヒド感知材料である産物Cを得るステップ(3)と、を含む。
The method of synthesizing the photocatalytic formaldehyde sensing material is as follows:
(1) a step of uniformly dispersing zinc oxide nanoparticles synthesized in advance in a tin salt solution to obtain a solution A;
(2) evaporating all of the solvent while stirring the solution A to obtain a precipitate B;
Sintering the precipitate B at a high temperature to obtain a product C which is a photocatalytic formaldehyde sensing material (3).

さらに、該方法は、産物Cを粉砕して溶媒に均一に分散させることによりスラリーを調製し、前記スラリーを電極に回転塗布、乾燥して薄膜状の感知材料を得るステップ(4)を含む。   Further, the method includes a step (4) of preparing a slurry by pulverizing the product C and uniformly dispersing it in a solvent, and applying the slurry to an electrode and drying to obtain a thin-film sensing material.

さらに、ステップ(1)における前記錫塩は、好ましくは硫酸第一錫(SnSO)であり、塩化錫(SnCl)、シュウ酸第一錫(SnC)等を用いてもよい。中でも、硫酸第一錫を用いる場合、得られた光触媒式ホルムアルデヒド感知材料の性能が最も良い。 Further, the tin salt in step (1) is preferably stannous sulfate (SnSO 4 ), and tin chloride (SnCl 4 ), stannous oxalate (SnC 2 O 4 ), or the like may be used. Among these, when stannous sulfate is used, the performance of the obtained photocatalytic formaldehyde sensing material is the best.

さらに、ステップ(2)では、80〜120℃下で溶媒を蒸発させ、好ましくは溶媒が全て蒸発するまで80℃下で撹拌しながら蒸発させた後、試料を完全に乾燥させるように、80℃下で12h乾燥させ、120℃下で2h乾燥させる。   Further, in step (2), the solvent is evaporated at 80 to 120 ° C., preferably 80 ° C. so that the sample is completely dried after evaporating with stirring at 80 ° C. until all of the solvent is evaporated. Dry under 12 h and dry under 120 ° C. for 2 h.

さらに、ステップ(3)では、400〜500℃下で前記焼結を行う。なお、最適な焼結温度は450℃である。   Further, in step (3), the sintering is performed at 400 to 500 ° C. The optimum sintering temperature is 450 ° C.

本発明に係るホルムアルデヒドセンサは、上記光触媒式ホルムアルデヒド感知材料を用いたホルムアルデヒドセンサであって、前記光触媒式ホルムアルデヒド感知材料が塗布された電極と、検知を行う際に電極領域に照射するための紫外線を提供する紫外光源と、前記電極と接続しており、電極領域が紫外線に照射されたときにホルムアルデヒド感知材料上に生じた光導電効果の変化を検知すると共に、ホルムアルデヒドの含量を測定する検出回路とを含む、ホルムアルデヒドセンサである。   A formaldehyde sensor according to the present invention is a formaldehyde sensor using the photocatalytic formaldehyde sensing material, and includes an electrode coated with the photocatalytic formaldehyde sensing material and ultraviolet rays for irradiating the electrode region when performing detection. An ultraviolet light source to be provided; and a detection circuit connected to the electrode for detecting a change in a photoconductive effect generated on the formaldehyde sensing material when the electrode region is irradiated with ultraviolet light, and for measuring a content of formaldehyde Is a formaldehyde sensor.

本発明は、低コスト、高感度、高選択性の光触媒式ホルムアルデヒド感知材料を提供する。酸化亜鉛への錫ドープ量を最適化することによって、ホルムアルデヒドの検知下限値が0.1ppmにまで下がり、さらに、材料によるエタノール選択性が向上している。従来技術に比べ、本発明はコストを大幅に削減し、選択性を高め、さらに検知下限値を顕著に改善することができる。   The present invention provides a photocatalytic formaldehyde sensing material with low cost, high sensitivity and high selectivity. By optimizing the amount of tin doped into zinc oxide, the lower limit of detection of formaldehyde is reduced to 0.1 ppm, and the ethanol selectivity by the material is improved. Compared with the prior art, the present invention can greatly reduce the cost, increase the selectivity, and further significantly improve the detection lower limit.

また、酸化亜鉛および酸化錫を感受性材料とする伝統的な半導体センサが存在するが、当該伝統的な加熱式半導体センサは、その原理が本発明の光触媒式センサとは大きく異なるため、感受性材料に含まれた錫による作用も異なる。伝統的な加熱式半導体センサは、酸化錫自体が感受性材料であり、VOC(揮発性有機化合物)が酸化錫の表面の酸素と反応することにより、酸化錫の電気抵抗値が変化し、検知が実現される。一方、本発明の光触媒式センサは、酸化錫を感受性材料である酸化亜鉛の添加剤として用い、酸化錫自体は光触媒としての能力を有しない。なお、酸化錫による作用は、酸化亜鉛の光誘起キャリア生成能力の寿命を延長させ、酸化亜鉛の光触媒としての能力を高めることである。   In addition, there are traditional semiconductor sensors that use zinc oxide and tin oxide as sensitive materials. However, the principle of the conventional heated semiconductor sensor is significantly different from that of the photocatalytic sensor of the present invention. The effect of the contained tin is also different. In the conventional heated semiconductor sensor, tin oxide itself is a sensitive material, and when VOC (volatile organic compound) reacts with oxygen on the surface of tin oxide, the electric resistance value of tin oxide changes and detection is possible. Realized. On the other hand, the photocatalytic sensor of the present invention uses tin oxide as an additive for zinc oxide, which is a sensitive material, and tin oxide itself has no ability as a photocatalyst. In addition, the effect | action by a tin oxide is extending the lifetime of the photo-induced carrier production | generation capability of zinc oxide, and improving the capability as a photocatalyst of a zinc oxide.

〔発明を実施するための形態〕
以下、本発明の上記目的、特徴および利点をさらにわかりやすくするために、具体的な実施例と図面により、本発明を詳細に説明する。
[Mode for Carrying Out the Invention]
Hereinafter, the present invention will be described in detail with reference to specific examples and drawings in order to make the above objects, features, and advantages of the present invention easier to understand.

図1は本発明の光触媒式ホルムアルデヒド感知材料の合成方法のフローチャートであり、以下のステップを含む。   FIG. 1 is a flowchart of a method for synthesizing a photocatalytic formaldehyde sensing material of the present invention, which includes the following steps.

1)予め合成された酸化亜鉛ナノ粒子を錫塩溶液(たとえば、SnSO+脱イオン水)に分散させる。 1) Disperse pre-synthesized zinc oxide nanoparticles in a tin salt solution (eg SnSO 4 + deionized water).

2)溶液を蒸発させ、好ましくは80〜120℃下で溶液を蒸発させ、より好ましくは溶媒が全て蒸発するまで80℃下で撹拌しながら蒸発させた後、試料を完全に乾燥させるように、80℃下で12h乾燥させ、120℃下で2h乾燥させる。   2) Evaporate the solution, preferably at 80-120 ° C., more preferably at 80 ° C. with stirring until all of the solvent is evaporated, then completely dry the sample Dry at 80 ° C. for 12 h and at 120 ° C. for 2 h.

3)得られた沈殿物を400〜500℃(最適な焼結温度は450℃)下で一定の時間焼結し、焼結後、錫塩由来の酸化錫を得る。   3) The obtained precipitate is sintered for a certain period of time at 400 to 500 ° C. (the optimum sintering temperature is 450 ° C.), and tin oxide derived from tin salt is obtained after sintering.

4)得られた固体産物を、粉末になるまで粉砕してエタノール溶液に分散させ、スラリーを調製する。   4) The obtained solid product is pulverized to a powder and dispersed in an ethanol solution to prepare a slurry.

その後、得られたスラリーをくし型電極に回転塗布し、溶媒を乾燥させることにより、所期のホルムアルデヒドセンサが得られる。   Then, the intended formaldehyde sensor is obtained by spin-coating the obtained slurry on a comb-shaped electrode and drying the solvent.

酸化亜鉛ナノ粒子(20〜50nm、最適な粒子径30nm)は、比表面積が大きいため、ホルムアルデヒドを吸着しやすくなり、光導電特性も良い。ホルムアルデヒドを検出するためには、錫系添加剤が非常に重要であり、錫の添加量は本発明のポイントである。錫の重量比(酸化錫および酸化亜鉛の合計重量に対して酸化錫が占める割合)は0.3%〜5%であり、最適な割合は2%である。また、錫系添加剤のアニオンは重要であり、硫酸イオンが最も好ましい。また、焼結温度は非常に重要である。焼結温度は400〜500℃であり、最適な温度は450℃である。また、電極に回転塗布する前のスラリーを調製するための溶媒は非常に重要であり、無水エタノールを用いることが好ましい。   Zinc oxide nanoparticles (20 to 50 nm, optimum particle diameter 30 nm) have a large specific surface area, so that they easily adsorb formaldehyde and have good photoconductive properties. In order to detect formaldehyde, a tin-based additive is very important, and the amount of tin added is a point of the present invention. The weight ratio of tin (the ratio of tin oxide to the total weight of tin oxide and zinc oxide) is 0.3% to 5%, and the optimal ratio is 2%. Further, the anion of the tin-based additive is important, and sulfate ion is most preferable. Also, the sintering temperature is very important. The sintering temperature is 400 to 500 ° C, and the optimum temperature is 450 ° C. Further, the solvent for preparing the slurry before spin coating on the electrode is very important, and it is preferable to use absolute ethanol.

<実施例1>材料の合成および測定
ステップ一:酸化亜鉛ナノ粒子の合成
10.77gのZnSO・7HO(375mmol)を25mLの脱イオン水に溶解させ、得られた溶液を50mLの100g/L(1.36mmol/L)NHHCO溶液に1滴ずつ滴下し、40℃の水浴下で1h撹拌した。上澄み液を除去し、毎回15mLの脱イオン水を用いて沈殿物を三回洗浄し、その後、沈殿物を80℃下で12h乾燥させ、120℃下で2h乾燥させた。乾燥終了後、試料をマッフル炉中に入れて500℃下で2h焼結した。
Example 1 Material Synthesis and Measurement Step 1: Synthesis of Zinc Oxide Nanoparticles 10.77 g ZnSO 4 .7H 2 O (375 mmol) was dissolved in 25 mL deionized water and the resulting solution was 50 mL 100 g. / L (1.36 mmol / L) was added dropwise to NH 4 HCO 3 solution and stirred for 1 h in a 40 ° C. water bath. The supernatant was removed and the precipitate was washed three times with 15 mL of deionized water each time, after which the precipitate was dried at 80 ° C. for 12 h and then dried at 120 ° C. for 2 h. After completion of drying, the sample was placed in a muffle furnace and sintered at 500 ° C. for 2 hours.

ステップ二:錫の添加
0.4gの予め作製された酸化亜鉛ナノ粒子を秤量して60mLの錫塩溶液(SnSO:0.007g)に分散させ、この溶液を80℃下で撹拌しながら溶媒を全て蒸発させた。その後、沈殿物を80℃で12h乾燥させ、120℃で2h乾燥させた。次に、沈殿物を450℃下で焼結した。
Step 2: Addition of tin 0.4 g of preformed zinc oxide nanoparticles are weighed and dispersed in 60 mL of a tin salt solution (SnSO 4 : 0.007 g), and this solution is stirred at 80 ° C. with a solvent. All was evaporated. Thereafter, the precipitate was dried at 80 ° C. for 12 hours and then dried at 120 ° C. for 2 hours. Next, the precipitate was sintered at 450 ° C.

ステップ三:センサの作製
固体産物を、微粉になるまで粉砕して無水エタノールに均一に分散させ、スラリーを調製した。その後、調製したスラリーを電極に塗布し、ドライヤーでエタノールを蒸発させ(1min)、薄膜状の感知材料を得た。
Step 3: Preparation of sensor The solid product was pulverized to a fine powder and uniformly dispersed in absolute ethanol to prepare a slurry. Thereafter, the prepared slurry was applied to the electrode, and ethanol was evaporated with a dryer (1 min) to obtain a thin-film sensing material.

(センサ電極の作製方法)
本実施例は、通常のPCB基板の製造方法を利用し、くし型電極パターンを有するセンサ電極基板を作製した。くし型電極の溝の幅は100μmであり、電極部分には金メッキ処理を施した。また、上部の櫛歯領域には感受性材料を滴下塗布し、下部の2つの大きな電極は検知回路に接続した。なお、ホルムアルデヒドを測定する際は、365nmの紫外線をくし型電極に直接に照射し、検出回路が、紫外線により感受性材料上に生じた光導電効果の変化を検知する。
(Method for producing sensor electrode)
In this example, a sensor electrode substrate having a comb-shaped electrode pattern was manufactured by using a normal method for manufacturing a PCB substrate. The groove width of the comb-shaped electrode was 100 μm, and the electrode portion was subjected to gold plating. In addition, a sensitive material was dropped onto the upper comb-tooth region, and the two lower large electrodes were connected to a detection circuit. When measuring formaldehyde, the comb-shaped electrode is directly irradiated with ultraviolet rays of 365 nm, and the detection circuit detects a change in the photoconductive effect generated on the sensitive material by the ultraviolet rays.

ステップ四:ホルムアルデヒドの検知
紫外線光源は、感受性材料に光触媒の効果を生じさせ、ホルムアルデヒドの検知に用いられる。紫外線光源として、波長365nmの紫外線ランプ又は波長385nmの紫外線発光ダイオードが用いられてもよい。紫外線光源がオンすると、酸化亜鉛材料の光導電効果により、センサの電気抵抗が下がり始め、所定の時間(通常、5分間)後、電気抵抗値は安定した値になる。クリーンな空気中の場合における該電気抵抗値をRとする。センサをクリーンな空気から、ホルムアルデヒドが含まれた空気中に移すと、同様にセンサの電気抵抗値が下がる。所定の時間(通常、3分間)後、電気抵抗値は安定した値になり、この場合の電気抵抗値をRとする。そして予め確定された相関に基づき、ホルムアルデヒドの濃度をR/Rにより算出することができる。検知終了後、光触媒の効果により、感知材料に吸着されたホルムアルデヒドが分解、除去されるため、該センサの電気抵抗値はRに自動的に回復できる。
Step 4: Formaldehyde detection The UV light source produces a photocatalytic effect on sensitive materials and is used to detect formaldehyde. As the ultraviolet light source, an ultraviolet lamp having a wavelength of 365 nm or an ultraviolet light emitting diode having a wavelength of 385 nm may be used. When the ultraviolet light source is turned on, the electrical resistance of the sensor starts to decrease due to the photoconductive effect of the zinc oxide material, and after a predetermined time (usually 5 minutes), the electrical resistance value becomes a stable value. The electric resistance value in the case of clean air is R 0 . If the sensor is moved from clean air into air containing formaldehyde, the electrical resistance of the sensor will similarly decrease. After a predetermined time (typically 3 minutes), the electrical resistance value becomes a stable value, the electric resistance value in this case the R s. The formaldehyde concentration can be calculated from R s / R 0 based on a predetermined correlation. After the detection, formaldehyde adsorbed on the sensing material is decomposed and removed by the effect of the photocatalyst, so that the electric resistance value of the sensor can be automatically restored to R0 .

<実施例2>異なる供給源の錫の導入(図2)
a)SnCl・5H
0.400gの合成されたZnO粒子を秤量して110mlの脱イオン水に溶解させ、0.009gのSnCl・5HOを添加した。その後、溶液を5min超音波処理し、溶媒が全て蒸発するまで、磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整し2時間乾燥した。その後、450℃のマッフル炉に入れて4時間焼結した。
<Example 2> Introduction of tin from different sources (Fig. 2)
a) SnCl 4 · 5H 2 O
0.400 g of synthesized ZnO particles were weighed and dissolved in 110 ml of deionized water, and 0.009 g of SnCl 4 .5H 2 O was added. The solution was then sonicated for 5 min and heated with stirring with a magnetic stirrer until all of the solvent was evaporated. The obtained solid was placed in an oven at 80 ° C. and dried for 8 hours, and the oven temperature was adjusted to 120 ° C. and dried for 2 hours. Thereafter, it was put in a 450 ° C. muffle furnace and sintered for 4 hours.

b)SnC
0.400gの合成されたZnO粒子を秤量して110mlの脱イオン水に溶解させ、0.0056gのSnCを添加した。その後、溶液を5min超音波処理し、溶媒が全て蒸発するまで、磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整し2時間乾燥した。その後、450℃のマッフル炉に入れて4時間焼結した。
b) SnC 2 O 4
0.400 g of synthesized ZnO particles were weighed and dissolved in 110 ml of deionized water, and 0.00056 g of SnC 2 O 4 was added. The solution was then sonicated for 5 min and heated with stirring with a magnetic stirrer until all of the solvent was evaporated. The obtained solid was placed in an oven at 80 ° C. and dried for 8 hours, and the oven temperature was adjusted to 120 ° C. and dried for 2 hours. Thereafter, it was put in a 450 ° C. muffle furnace and sintered for 4 hours.

c)SnSO
0.400gの合成されたZnO粒子を秤量して80mlの脱イオン水に溶解させ、0.007gのSnSOを添加した。その後、溶液を5min超音波処理し、溶媒が全て蒸発するまで、磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整し2時間乾燥した。その後、450℃のマッフル炉に入れて4時間焼結した。
c) SnSO 4
0.400 g of synthesized ZnO particles were weighed and dissolved in 80 ml of deionized water, and 0.007 g of SnSO 4 was added. The solution was then sonicated for 5 min and heated with stirring with a magnetic stirrer until all of the solvent was evaporated. The obtained solid was placed in an oven at 80 ° C. and dried for 8 hours, and the oven temperature was adjusted to 120 ° C. and dried for 2 hours. Thereafter, it was put in a 450 ° C. muffle furnace and sintered for 4 hours.

図2は、錫系添加剤別で、1ppmのホルムアルデヒドに対する試料の応答強度が示している。SnSOを用いる場合、ホルムアルデヒドを検出する効果が最も良く、すなわち、得られた光触媒式ホルムアルデヒド感知材料の性能が最も良いことがわかる。 FIG. 2 shows the response intensity of the sample to 1 ppm formaldehyde for each tin-based additive. When SnSO 4 is used, it can be seen that the effect of detecting formaldehyde is the best, that is, the performance of the obtained photocatalytic formaldehyde sensing material is the best.

<実施例3>異なるSn含有量、すなわち、酸化錫と「酸化亜鉛+酸化錫」との重量比(図3)
a)0.3%の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.002gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整して2時間乾燥し、その後、450℃のマッフル炉に入れて4時間焼結した。
<Example 3> Different Sn contents, that is, weight ratio of tin oxide to "zinc oxide + tin oxide" (FIG. 3)
a) 0.3% 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.002 g of SnSO 4 was added, and the solution was sonicated for 5 min. . The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, further adjusted to an oven temperature of 120 ° C. and dried for 2 hours, and then placed in a muffle furnace at 450 ° C. for 4 hours.

b)1%の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整して2時間乾燥し、その後、450℃のマッフル炉に入れて4時間焼結した。
b) In the case of 1% 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, further adjusted to an oven temperature of 120 ° C. and dried for 2 hours, and then placed in a muffle furnace at 450 ° C. for 4 hours.

c)3%の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.021gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整して2時間乾燥し、その後、450℃のマッフル炉に入れて4時間焼結した。
c) In the case of 3% 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.021 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, further adjusted to an oven temperature of 120 ° C. and dried for 2 hours, and then placed in a muffle furnace at 450 ° C. for 4 hours.

d)5%の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.030gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーブンの温度を120℃に調整して2時間乾燥し、その後、450℃のマッフル炉に入れて4時間焼結した。
d) In the case of 5% 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.030 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, further adjusted to an oven temperature of 120 ° C. and dried for 2 hours, and then placed in a muffle furnace at 450 ° C. for 4 hours.

図3は、錫ドープ割合別で、1ppmのホルムアルデヒドに対する試料の応答強度を示している。酸化錫と「酸化亜鉛+酸化錫」との重量比が1%である場合、ホルムアルデヒドに対する応答が最も顕著で、効果が最も良いことがわかる。   FIG. 3 shows the response intensity of the sample with respect to 1 ppm formaldehyde according to the tin doping ratio. When the weight ratio of tin oxide to “zinc oxide + tin oxide” is 1%, it can be seen that the response to formaldehyde is most remarkable and the effect is the best.

<実施例4>異なる試料焼結温度(図4)
a)350℃の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、サンプルをそれぞれ350℃下で4時間焼結した。
<Example 4> Different sample sintering temperatures (FIG. 4)
a) In the case of 350 ° C. 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 350 ° C. for 4 hours.

b)400℃の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、試料をそれぞれ400℃下で4時間焼結した。
b) In the case of 400 ° C. 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 400 ° C. for 4 hours.

c)450℃の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、試料をそれぞれ450℃下で4時間焼結した。
c) At 450 ° C. 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 450 ° C. for 4 hours.

d)500℃の場合
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、試料をそれぞれ500℃下で4時間焼結した。
d) At 500 ° C. 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 500 ° C. for 4 hours.

図4は、焼結温度別で、1ppmホルムアルデヒドに対する錫ドープ試料の応答強度を示している。最適な焼結温度は450℃であることがわかる。   FIG. 4 shows the response intensity of the tin-doped sample with respect to 1 ppm formaldehyde for each sintering temperature. It can be seen that the optimum sintering temperature is 450 ° C.

<実施例5>錫系添加剤とカドミウム系添加剤との比較(図5)
0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.007gのSnSOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、試料をそれぞれ450℃下で4時間焼結した。
<Example 5> Comparison of tin-based additive and cadmium-based additive (FIG. 5)
0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.007 g of SnSO 4 was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 450 ° C. for 4 hours.

0.400gの予め合成されたZnOナノ粒子を秤量して110mlの脱イオン水に溶解させ、さらに0.016gの3CdSO・8HOを添加し、溶液を5min超音波処理した。溶媒が全て蒸発するまで、該溶液を磁気スターラーで撹拌しながら加熱した。得られた固体を80℃のオーブンに入れて8時間乾燥し、さらにオーベンの温度を120℃に調整して2時間乾燥し、その後、試料をそれぞれ450℃下で4時間焼結した。 0.400 g of pre-synthesized ZnO nanoparticles were weighed and dissolved in 110 ml of deionized water, 0.016 g of 3CdSO 4 · 8H 2 O was added, and the solution was sonicated for 5 min. The solution was heated with stirring with a magnetic stirrer until all of the solvent had evaporated. The obtained solid was put in an oven at 80 ° C. and dried for 8 hours, and further, the temperature of the oven was adjusted to 120 ° C. and dried for 2 hours. Thereafter, the samples were each sintered at 450 ° C. for 4 hours.

SnSOをドープした酸化亜鉛感知材料と、3CdSO・8HOをドープした酸化亜鉛感知材料とをそれぞれ同じ時間をかけて粉砕した後、同量の無水エタノールに分散させて前記くし型電極に塗布し、乾燥して溶媒を蒸発させた。その後、光源を設け、ホルムアルデヒドセンサを作製した。その後、両方の該ホルムアルデヒドセンサについて、同じ濃度のホルムアルデヒドに対する応答をテスト、比較した。図5は、1ppmのホルムアルデヒドに対する、錫ドープ試料およびカドミウムドープ試料の応答強度、応答時間について比較したグラフである。ホルムアルデヒドに対する錫ドープ試料の応答効果は、カドミウムドープ試料の応答効果より優れていることがわかる。 The zinc oxide sensing material doped with SnSO 4 and the zinc oxide sensing material doped with 3CdSO 4 · 8H 2 O were ground for the same time, and then dispersed in the same amount of absolute ethanol to form the comb electrode. It was applied and dried to evaporate the solvent. Thereafter, a light source was provided to produce a formaldehyde sensor. Thereafter, both the formaldehyde sensors were tested and compared for response to the same concentration of formaldehyde. FIG. 5 is a graph comparing the response intensity and response time of a tin-doped sample and a cadmium-doped sample with respect to 1 ppm formaldehyde. It can be seen that the response effect of the tin-doped sample to formaldehyde is superior to the response effect of the cadmium-doped sample.

上記実施例は本発明の技術案を説明するためのものに過ぎず、本発明を限定するものではない。当業者にとっては、本発明の精神および範囲から逸脱しない範囲で本発明の技術案を変更、又は均等的に置換し得る。したがって、本発明の保護範囲は特許請求の範囲の記載内容に基づくべきである。   The above embodiment is only for explaining the technical solution of the present invention, and does not limit the present invention. For those skilled in the art, the technical solution of the present invention can be modified or equivalently replaced without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the description of the claims.

本発明の光触媒式ホルムアルデヒド感知材料の合成方法のフローチャートである。It is a flowchart of the synthesis | combining method of the photocatalyzed formaldehyde sensing material of this invention. 錫系添加剤別で、1ppmのホルムアルデヒドに対する試料の応答強度を比較したグラフである。It is the graph which compared the response intensity | strength of the sample with respect to 1 ppm formaldehyde according to the tin type additive. 錫ドープ割合別で、1ppmのホルムアルデヒドに対する試料の応答強度を比較したグラフである。It is the graph which compared the response intensity | strength of the sample with respect to 1 ppm formaldehyde according to a tin dope ratio. 焼結温度別で、1ppmのホルムアルデヒドに対する錫ドープ試料の応答強度を比較したグラフである。It is the graph which compared the response intensity | strength of the tin dope sample with respect to 1 ppm formaldehyde according to sintering temperature. 1ppmのホルムアルデヒドに対する、錫ドープ試料およびカドミウムドープ試料の応答強度、応答時間について比較したグラフである。It is the graph compared about the response intensity | strength and response time of a tin dope sample and a cadmium dope sample with respect to 1 ppm formaldehyde.

Claims (10)

酸化亜鉛ナノ粒子および錫系添加剤を含むことを特徴とする光触媒式ホルムアルデヒド感知材料。   A photocatalytic formaldehyde sensing material comprising zinc oxide nanoparticles and a tin-based additive. 前記酸化亜鉛ナノ粒子の粒子径が20nm〜50nmであり、
前記錫系添加剤は酸化錫であり、酸化錫は酸化亜鉛および酸化錫の合計重量の0.3%〜5%を占めることを特徴とする請求項1に記載の光触媒式ホルムアルデヒド感知材料。
The zinc oxide nanoparticles have a particle size of 20 nm to 50 nm,
The photocatalytic formaldehyde sensing material according to claim 1, wherein the tin-based additive is tin oxide, and tin oxide accounts for 0.3% to 5% of the total weight of zinc oxide and tin oxide.
前記酸化亜鉛ナノ粒子の粒子径は30nmであり、
前記酸化錫は酸化亜鉛および酸化錫の合計重量の2%を占めることを特徴とする請求項2に記載の光触媒式ホルムアルデヒド感知材料。
The zinc oxide nanoparticles have a particle size of 30 nm,
3. The photocatalytic formaldehyde sensing material according to claim 2, wherein the tin oxide accounts for 2% of the total weight of zinc oxide and tin oxide.
請求項1に記載の光触媒式ホルムアルデヒド感知材料を合成する方法であって、
予め合成された酸化亜鉛ナノ粒子を錫塩溶液に均一に分散させ、溶液Aを得るステップ(1)と、
溶液Aを撹拌しながら溶媒を全て蒸発させ、沈殿物Bを得るステップ(2)と、
沈殿物Bを高温下で焼結処理し、光触媒式ホルムアルデヒド感知材料である産物Cを得るステップ(3)と、を含むことを特徴とする方法。
A method of synthesizing the photocatalytic formaldehyde sensing material of claim 1 comprising:
(1) a step of uniformly dispersing zinc oxide nanoparticles synthesized in advance in a tin salt solution to obtain a solution A;
(2) evaporating all of the solvent while stirring the solution A to obtain a precipitate B;
Sintering the precipitate B at a high temperature to obtain a product C which is a photocatalytic formaldehyde sensing material (3).
ステップ(1)における錫塩はSnSO、SnClまたはSnCであることを特徴とする請求項4に記載の方法。 The method according to claim 4 , wherein the tin salt in step (1) is SnSO 4 , SnCl 4 or SnC 2 O 4 . ステップ(2)において、80〜120℃下で溶媒を全て蒸発させることを特徴とする請求項4に記載の方法。   The method according to claim 4, wherein in step (2), all of the solvent is evaporated at 80 to 120 ° C. ステップ(3)において、400〜500℃下で前記焼結を行うことを特徴とする請求項4に記載の方法。   The method according to claim 4, wherein the sintering is performed at 400 to 500 ° C. in step (3). ステップ(1)における錫塩はSnSOであり、
ステップ(2)において、溶媒が全て蒸発するまで80℃下で撹拌した後、試料が完全に乾燥するように、80℃下で12hの乾燥、および、120℃下で2hの乾燥を行い、
ステップ(3)において、450℃下で前記焼結を行うことを特徴とする請求項4に記載の方法。
The tin salt in step (1) is SnSO 4 ;
In step (2), after stirring at 80 ° C. until all the solvent has evaporated, drying is performed at 80 ° C. for 12 h and drying at 120 ° C. for 2 h so that the sample is completely dried.
The method according to claim 4, wherein the sintering is performed at 450 ° C. in step (3).
産物Cを、微粉になるまで粉砕して溶媒に均一に分散させることによりスラリーを調製し、続いて該スラリーを電極に塗布し、乾燥後、薄膜感知材料を得ることを特徴とする請求項4〜8の何れか1項に記載の方法。   The product C is pulverized to a fine powder and uniformly dispersed in a solvent to prepare a slurry. Subsequently, the slurry is applied to an electrode, and after drying, a thin film sensing material is obtained. The method of any one of -8. 請求項1に記載の光触媒式ホルムアルデヒド感知材料を用いたホルムアルデヒドセンサであって、
前記光触媒式ホルムアルデヒド感知材料が塗布された電極と、
検知を行う際に電極領域に照射するための紫外線を提供する紫外線光源と、
前記電極と接続しており、電極領域が紫外線に照射されたときにホルムアルデヒド感知材料上に生じた光導電効果の変化を検知すると共に、ホルムアルデヒドの含量を測定する検知回路と、を含むことを特徴とするホルムアルデヒドセンサ。
A formaldehyde sensor using the photocatalytic formaldehyde sensing material according to claim 1,
An electrode coated with the photocatalytic formaldehyde sensing material;
An ultraviolet light source that provides ultraviolet light to irradiate the electrode area when performing detection;
A detection circuit connected to the electrode and detecting a change in a photoconductive effect generated on the formaldehyde sensing material when the electrode region is irradiated with ultraviolet rays, and measuring a content of formaldehyde. Formaldehyde sensor.
JP2018503670A 2015-08-06 2016-08-05 Tin-doped photocatalytic formaldehyde sensing material, method for producing the same, and formaldehyde sensor Pending JP2018530740A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510477075.3 2015-08-06
CN201510477075.3A CN105092652B (en) 2015-08-06 2015-08-06 Photocatalysis formaldehyde sensing material of tin dope and preparation method thereof and formaldehyde sensor
PCT/CN2016/093563 WO2017020859A1 (en) 2015-08-06 2016-08-05 Stannum-doped photocatalysized formaldehyde sensing material and preparation method thereof, and formaldehyde sensor

Publications (1)

Publication Number Publication Date
JP2018530740A true JP2018530740A (en) 2018-10-18

Family

ID=54573564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503670A Pending JP2018530740A (en) 2015-08-06 2016-08-05 Tin-doped photocatalytic formaldehyde sensing material, method for producing the same, and formaldehyde sensor

Country Status (3)

Country Link
JP (1) JP2018530740A (en)
CN (1) CN105092652B (en)
WO (1) WO2017020859A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057883A (en) * 2018-11-16 2020-05-27 한국생산기술연구원 Visually indicating particle for detecting trace amount of formaldehyde and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092652B (en) * 2015-08-06 2019-06-21 北京大学 Photocatalysis formaldehyde sensing material of tin dope and preparation method thereof and formaldehyde sensor
CN105866183B (en) * 2016-03-11 2019-03-22 北京大学 A kind of formaldehyde sensitive material of La doped and preparation method thereof and formaldehyde sensor
CN106442644B (en) * 2016-09-26 2019-01-15 吉林大学 One kind being based on Ce5Sn3/Sn3O4The formaldehyde gas sensor and preparation method thereof of three-dimensional graded structure
CN106568812B (en) * 2016-11-09 2020-03-17 西安交通大学 Preparation method of gas sensor for isoprene gas detection
CN108434986A (en) * 2018-06-03 2018-08-24 常州德维勒新材料科技有限公司 A kind of preparation method for efficiently removing formaldehyde spray
CN112557457B (en) * 2020-11-03 2023-07-18 扬州大学 Planar flexible room temperature gas sensor based on printable nanocomposite
CN114965651A (en) * 2022-05-19 2022-08-30 湖北大学 ZnO-based methane sensor and preparation method and application thereof
CN116283356B (en) * 2023-02-16 2024-04-02 安徽维纳物联科技有限公司 SnO (tin oxide) 2 Methyl hydride gas sensor and preparation method thereof
CN117571794B (en) * 2024-01-15 2024-03-19 电子科技大学中山学院 Laser enhancement type zinc oxide formaldehyde detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050128A (en) * 2009-11-06 2011-05-13 서울시립대학교 산학협력단 Method for preparing sno2-zno particles for gas-sensor and gas-sensor using the sno2-zno particles
CN103048363A (en) * 2011-10-12 2013-04-17 中国科学院合肥物质科学研究院 Metallic oxide material with mesoporous-macroporous composite structure as well as preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419181B (en) * 2008-11-21 2011-10-05 重庆大学 Air-sensitive material for detecting oxymethylene and air-sensitive device made from the material
KR101125170B1 (en) * 2009-04-30 2012-03-19 한국과학기술연구원 Gas sensors using metal oxide nanoparticle and fabrication method
CN101929958A (en) * 2010-07-05 2010-12-29 吉林大学 High-sensitivity photosensitive gas sensor and preparation method thereof
CN104297436B (en) * 2014-11-03 2016-04-20 北京联合大学 A kind of cross sensitivity material detecting formaldehyde and methyl alcohol
CN105092652B (en) * 2015-08-06 2019-06-21 北京大学 Photocatalysis formaldehyde sensing material of tin dope and preparation method thereof and formaldehyde sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050128A (en) * 2009-11-06 2011-05-13 서울시립대학교 산학협력단 Method for preparing sno2-zno particles for gas-sensor and gas-sensor using the sno2-zno particles
CN103048363A (en) * 2011-10-12 2013-04-17 中国科学院合肥物质科学研究院 Metallic oxide material with mesoporous-macroporous composite structure as well as preparation method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C. S. PRAJAPATI ET AL.: "Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films", APPL PHYS A, vol. 113, JPN7018004041, 2013, pages 651 - 662, XP035331165, DOI: doi:10.1007/s00339-013-7589-3 *
G. LU ET AL.: "UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles", SENS. ACTUATORS B, vol. 162, JPN6018046399, 2012, pages 82 - 88, XP055183083, DOI: doi:10.1016/j.snb.2011.12.039 *
P. SUN ET AL.: "Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing pro", CRYSTENGCOMM, vol. 13, JPN7018004042, 2011, pages 3718 - 3724 *
Z. FENG ET AL.: "Hydrothermal synthesis of ZnO/SnO composite nanorods as gas sensors for volatile organic compounds d", JOURNAL OF SHANDONG UNIVERSITY (NATURAL SCIENCE), vol. 49, 7,, JPN6018046400, 2014, CN, pages 18 - 22 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057883A (en) * 2018-11-16 2020-05-27 한국생산기술연구원 Visually indicating particle for detecting trace amount of formaldehyde and preparation method thereof
KR102128455B1 (en) 2018-11-16 2020-07-01 한국생산기술연구원 Visually indicating particle for detecting trace amount of formaldehyde and preparation method thereof

Also Published As

Publication number Publication date
CN105092652A (en) 2015-11-25
CN105092652B (en) 2019-06-21
WO2017020859A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP2018530740A (en) Tin-doped photocatalytic formaldehyde sensing material, method for producing the same, and formaldehyde sensor
JP6239668B2 (en) Double-layer photocatalytic formaldehyde sensor and manufacturing method thereof
Casals et al. A parts per billion (ppb) sensor for NO2 with microwatt (μW) power requirements based on micro light plates
Teng et al. Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film
Joshi et al. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures
Wang et al. Bifunctional gas sensor based on Bi 2 S 3/SnS 2 heterostructures with improved selectivity through visible light modulation
Tian et al. Modification of indium oxide nanofibers by polyoxometalate electron acceptor doping for enhancement of gas sensing at room temperature
Zhang et al. Performance improvement of photoelectrochemical NO2 gas sensing at room temperature by BiVO4-polyoxometalate nanocomposite photoanode
Jiang et al. Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in UV excitation
Deng et al. A novel ammonia gas sensors based on p-type delafossite AgAlO2
Tian et al. Toluene sensing properties of porous Pd-loaded flower-like SnO2 microspheres
WO2018082585A1 (en) Synthesis method for composite gas sensitive material of porous zinc oxide nanosheet loaded with a high-dispersion nano precious metal
CN107827150B (en) Nickel-doped tin oxide nano material, formaldehyde gas sensor and preparation method
Kaur et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique
Wang et al. Enhanced photoelectric gas sensing performance of SnO2 flower-like nanorods modified with polyoxometalate for detection of volatile organic compound at room temperature
Chizhov et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals
Guo et al. Enhanced isoprene gas sensing performance based on p-CaFe2O4/n-ZnFe2O4 heterojunction composites
Deng et al. High sensitivity and selectivity of C-Doped ${\rm WO} _ {3} $ Gas sensors toward toluene and xylene
CN103713016A (en) Palladium-doped stannic oxide wrapped carbon nano tube as well as preparation method and application of nano tube
Zhang et al. Interfacial energy barrier tuning of hierarchical Bi2O3/WO3 heterojunctions for advanced triethylamine sensor
Eom et al. Visible light driven ultrasensitive and selective NO2 detection in tin oxide nanoparticles with sulfur doping assisted by l‐cysteine
KR20160014134A (en) Metal/oxide core-shell structure nanoparticle mixed sensing materials for semiconductor gas sensor
Jagadish et al. Zinc Oxide Nanoparticle‐modified Glassy Carbon Electrode as a Highly Sensitive Electrochemical Sensor for the Detection of Caffeine
Liu et al. High-sensitivity SO2 gas sensor based on noble metal doped WO3 nanomaterials
Wang et al. Highly sensitive and selective HCHO sensor based on Co doped ZnO hollow microspheres activated by UV light

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625